205 lines
27 KiB
XML
205 lines
27 KiB
XML
<document ID-DOI="10.1093/zoolinnean/zlaa061" ID-ISSN="0024-4082" ID-Zenodo-Dep="5300243" approvalRequired="62" approvalRequired_for_taxonomicNames="11" approvalRequired_for_textStreams="45" approvalRequired_for_treatments="6" checkinTime="1630095814227" checkinUser="felipe" docAuthor="Norman, David B" docDate="2021" docId="B66BDD2A0835FF8AE0A372B0FD52E72D" docLanguage="en" docName="zlaa061.pdf" docOrigin="Zoological Journal of the Linnean Society 191 (1)" docSource="https://academic.oup.com/zoolinnean/article/191/1/1/5893854" docStyle="DocumentStyle:36B3BD6A90C22AB4F7F465C853188CC8.5:ZoolJLinnSoc.2017-.journal_article" docStyleId="36B3BD6A90C22AB4F7F465C853188CC8" docStyleName="ZoolJLinnSoc.2017-.journal_article" docStyleVersion="5" docTitle="Scelidosaurus Norman 2020" docType="treatment" docVersion="4" lastPageNumber="28" masterDocId="4A52A552082FFF96E03F7400FFA5E61A" masterDocTitle="Scelidosaurus harrisonii (Dinosauria: Ornithischia) from the Early Jurassic of Dorset, England: biology and phylogenetic relationships" masterLastPageNumber="86" masterPageNumber="1" pageNumber="27" updateTime="1631151263965" updateUser="ExternalLinkService">
|
||
<mods:mods xmlns:mods="http://www.loc.gov/mods/v3">
|
||
<mods:titleInfo>
|
||
<mods:title>Scelidosaurus harrisonii (Dinosauria: Ornithischia) from the Early Jurassic of Dorset, England: biology and phylogenetic relationships</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:name type="personal">
|
||
<mods:role>
|
||
<mods:roleTerm>Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart>Norman, David B</mods:namePart>
|
||
</mods:name>
|
||
<mods:typeOfResource>text</mods:typeOfResource>
|
||
<mods:relatedItem type="host">
|
||
<mods:titleInfo>
|
||
<mods:title>Zoological Journal of the Linnean Society</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:part>
|
||
<mods:date>2021</mods:date>
|
||
<mods:detail type="pubDate">
|
||
<mods:number>2021-01-01</mods:number>
|
||
</mods:detail>
|
||
<mods:detail type="volume">
|
||
<mods:number>191</mods:number>
|
||
</mods:detail>
|
||
<mods:detail type="issue">
|
||
<mods:number>1</mods:number>
|
||
</mods:detail>
|
||
<mods:extent unit="page">
|
||
<mods:start>1</mods:start>
|
||
<mods:end>86</mods:end>
|
||
</mods:extent>
|
||
</mods:part>
|
||
</mods:relatedItem>
|
||
<mods:location>
|
||
<mods:url>https://academic.oup.com/zoolinnean/article/191/1/1/5893854</mods:url>
|
||
</mods:location>
|
||
<mods:classification>journal article</mods:classification>
|
||
<mods:identifier type="DOI">10.1093/zoolinnean/zlaa061</mods:identifier>
|
||
<mods:identifier type="ISSN">0024-4082</mods:identifier>
|
||
<mods:identifier type="Zenodo-Dep">5300243</mods:identifier>
|
||
</mods:mods>
|
||
<treatment LSID="urn:lsid:plazi:treatment:B66BDD2A0835FF8AE0A372B0FD52E72D" httpUri="http://treatment.plazi.org/id/B66BDD2A0835FF8AE0A372B0FD52E72D" lastPageId="28" lastPageNumber="28" pageId="26" pageNumber="27">
|
||
<subSubSection pageId="26" pageNumber="27" type="nomenclature">
|
||
<paragraph blockId="26.[156,749,1712,1736]" box="[156,749,1712,1736]" pageId="26" pageNumber="27">
|
||
<heading box="[156,749,1712,1736]" centered="true" fontSize="9" level="2" pageId="26" pageNumber="27" reason="2">
|
||
<taxonomicName authorityName="Norman" authorityYear="2020" box="[156,399,1712,1735]" class="Reptilia" family="Scelidosauridae" genus="Scelidosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="26" pageNumber="27" phylum="Chordata" rank="genus">
|
||
<emphasis box="[156,399,1712,1735]" italics="true" pageId="26" pageNumber="27">SCELIDOSAURUS</emphasis>
|
||
</taxonomicName>
|
||
: POSTCRANIAL BIOLOGY
|
||
</heading>
|
||
</paragraph>
|
||
<paragraph blockId="26.[345,561,1757,1782]" box="[345,561,1757,1782]" pageId="26" pageNumber="27">DIGESTIVE SYSTEM</paragraph>
|
||
</subSubSection>
|
||
<subSubSection lastPageId="28" lastPageNumber="29" pageId="26" pageNumber="27" type="description">
|
||
<paragraph blockId="26.[145,760,1798,1912]" lastBlockId="26.[809,1425,846,1911]" pageId="26" pageNumber="27">
|
||
A diet of terrestrial plants requires a variety of modifications to be made to the digestive system (
|
||
<bibRefCitation author="King GM" box="[153,278,1859,1881]" pageId="26" pageNumber="27" refId="ref61249" refString="King GM. 1996. Reptiles and herbivory. London: Chapman and Hall." type="book" year="1996">King, 1996</bibRefCitation>
|
||
;
|
||
<bibRefCitation author="Sues H-D" box="[292,416,1859,1880]" pageId="26" pageNumber="27" refId="ref65462" refString="Sues H-D, ed. 2000. Evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record. Cambridge: Cambridge University Press." type="book" year="2000">Sues, 2000</bibRefCitation>
|
||
). Land plants have a skeletal scaffold formed by a combination of structural polymers: lignin, hemicellulose and cellulose, none of which can be hydrolysed by vertebrate gut enzymes. To release the soluble contents of plant cells, their lignin/ cellulose fabric needs to be broken down. This process is started in the mouth using teeth and jaw muscles. There is structural evidence in
|
||
<taxonomicName authorityName="Norman" authorityYear="2020" box="[1192,1360,1000,1021]" class="Reptilia" family="Scelidosauridae" genus="Scelidosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="26" pageNumber="27" phylum="Chordata" rank="genus">
|
||
<emphasis box="[1192,1360,1000,1021]" italics="true" pageId="26" pageNumber="27">Scelidosaurus</emphasis>
|
||
</taxonomicName>
|
||
for a small, sharp keratinous beak that was narrow so that the animal was capable of cropping plant material (perhaps more succulent items) selectively. Once in the oral cavity, a modest amount of pulping and shearing of plant tissue occurred prior to swallowing, judged by the morphology of the dentition. The structure of the gut into which the browse was passed is unknown in
|
||
<taxonomicName authorityName="Norman" authorityYear="2020" box="[979,1141,1245,1266]" class="Reptilia" family="Scelidosauridae" genus="Scelidosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="26" pageNumber="27" phylum="Chordata" rank="genus">
|
||
<emphasis box="[979,1141,1245,1266]" italics="true" pageId="26" pageNumber="27">Scelidosaurus</emphasis>
|
||
</taxonomicName>
|
||
but the wide span of the ribcage (
|
||
<bibRefCitation author="Norman DB" box="[909,1087,1276,1298]" pageId="26" pageNumber="27" pagination="47 - 157" refId="ref63118" refString="Norman DB. 2020 b. Scelidosaurus harrisonii Owen, 1861 (Dinosauria: Ornithischia) from the Early Jurassic of Dorset, England: postcranial endoskeleton. Zoological Journal of the Linnean Society 189: 47 - 157." type="journal article" year="2020">Norman, 2020b</bibRefCitation>
|
||
) indicates that the torso was broad. In its proportions and general body shape,
|
||
<taxonomicName authorityName="Norman" authorityYear="2020" box="[809,976,1337,1358]" class="Reptilia" family="Scelidosauridae" genus="Scelidosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="26" pageNumber="27" phylum="Chordata" rank="genus">
|
||
<emphasis box="[809,976,1337,1358]" italics="true" pageId="26" pageNumber="27">Scelidosaurus</emphasis>
|
||
</taxonomicName>
|
||
more closely resembles those seen in ankylosaurs (
|
||
<figureCitation box="[969,1067,1368,1390]" captionStart="Figure 22" captionStartId="26.[809,890,721,743]" captionTargetBox="[818,1414,196,675]" captionTargetId="figure-636@26.[813,1421,195,682]" captionTargetPageId="26" captionText="Figure 22. Cartoons approximating pelvic region crosssectional body profiles of (A) an ankylosaur and (B) a stegosaur." figureDoi="http://doi.org/10.5281/zenodo.5496179" httpUri="https://zenodo.org/record/5496179/files/figure.png" pageId="26" pageNumber="27">Fig. 22A</figureCitation>
|
||
), than the vertically extended (narrow and deep) torso morphology exhibited by stegosaurs (
|
||
<figureCitation box="[948,1044,1429,1451]" captionStart="Figure 22" captionStartId="26.[809,890,721,743]" captionTargetBox="[818,1414,196,675]" captionTargetId="figure-636@26.[813,1421,195,682]" captionTargetPageId="26" captionText="Figure 22. Cartoons approximating pelvic region crosssectional body profiles of (A) an ankylosaur and (B) a stegosaur." figureDoi="http://doi.org/10.5281/zenodo.5496179" httpUri="https://zenodo.org/record/5496179/files/figure.png" pageId="26" pageNumber="27">Fig. 22B</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph blockId="26.[809,1425,846,1911]" lastBlockId="27.[163,779,197,1875]" lastPageId="27" lastPageNumber="28" pageId="26" pageNumber="27">
|
||
It is reasonable to assume that a modest amount of chewing of ingested plant material occurred in the mouth. However, the residence time in the gut to allow for the enzymatic breakdown of lignin and digestion of cellulose would be expected to be long, prior to absorption and assimilation of the plant breakdown products. There are additional factors to be considered, such as the presence of antipredation chemical defences produced by the plants, such as alkaloids, terpenoids, condensed and hydrolysable tannins (
|
||
<bibRefCitation author="Swain T" box="[818,971,1766,1788]" pageId="26" pageNumber="27" pagination="107 - 122" refId="ref65549" refString="Swain T. 1976. Angiosperm-reptile co-evolution. In: Bellairs Ad'A, Cox CB, eds. Morphology and biology of reptiles. London: Academic Press, 107 - 122." type="book chapter" year="1976">Swain, 1976</bibRefCitation>
|
||
), as well as the relative succulence and physical texture of the browse. A crop can be inferred (because it is present in living archosaurs) as a specialized sac-like compartment at the base of the oesophagus, adjacent to the stomach. The crop can store and chemically prepare the browse for subsequent digestion by softening and enzymatically detoxifying plant tissue. Herbivorous reptiles and birds have a far greater tolerance of alkaloids than, for example, crop-less herbivorous mammals (
|
||
<bibRefCitation author="King GM" pageId="27" pageNumber="28" refId="ref61249" refString="King GM. 1996. Reptiles and herbivory. London: Chapman and Hall." type="book" year="1996">King, 1996</bibRefCitation>
|
||
). This may in part be attributed to the ability of the former groups to chemically neutralize these poisons in the crop before they enter the absorptive part of the digestive system.
|
||
</paragraph>
|
||
<paragraph blockId="27.[163,779,197,1875]" pageId="27" pageNumber="28">
|
||
The stomach of living birds and crocodiles is also modified by the presence of a muscular gizzard whose walls are abrasive and used to physically pulverize the plant tissues (or large bones in the case of crocodiles) in preparation for digestion. Birds and crocodiles are known to swallow grit or stones (gastroliths) that become lodged in the walls of the gizzard and assist in the physical breakdown of food in the stomach (gastroliths are also known to serve as ballast in crocodiles –
|
||
<bibRefCitation author="Taylor MA" box="[470,617,749,771]" pageId="27" pageNumber="28" pagination="171 - 195" refId="ref65657" refString="Taylor MA. 1987. How tetrapods feed in water: a functional analysis by paradigm. Zoological Journal of the Linnean Society (London) 91: 171 - 195." type="journal article" year="1987">Taylor, 1987</bibRefCitation>
|
||
). Beyond the stomach and gizzard, the intestine has an absorptive section (small intestine) that can remove soluble plant cell contents released by the crushing of their tissues. In herbivorous birds, this region of the gut contains a series of blind-ended pouches (caecae). The caecae are diverticulae in the gut (sometimes spirally coiled) into which the partly digested and crushed plant material passes for further digestion mediated by symbiotic microbes (prokaryotes and protistans). Unlike their vertebrate hosts, these microbes are capable of producing enzymes that hydrolyse plant cell walls by converting them to breakdown products, such as sugars and volatile fatty acids (
|
||
<bibRefCitation author="McBee RH" box="[315,473,1178,1200]" pageId="27" pageNumber="28" pagination="185 - 222" refId="ref62462" refString="McBee RH. 1977. Fermentation in the hindgut. In: Clarke RTJ, Bauchop T, eds. Microbial ecology of the gut. London: Academic Press, 185 - 222." type="book chapter" year="1977">McBee, 1977</bibRefCitation>
|
||
). Enzymatic breakdown of the plant cell walls releases sugars, proteins, minerals and vitamins that can be absorbed through the lining of the caecum and small intestine. The process of providing nutrition to the population of symbiotic microbes boosts their population, which in turn allows the host to absorb amino acids and other breakdown products derived from cell death among symbionts. In living herbivorous lizards (and mammals), the more distal region of the gut accommodates a voluminous caecum that arises at the junction of the small and large intestines (
|
||
<bibRefCitation author="Romer AS & Parsons TS" box="[171,451,1546,1568]" pageId="27" pageNumber="28" refId="ref64786" refString="Romer AS, Parsons TS. 1980. The vertebrate body, 6 th edn. London: Saunders College Publishing." type="book" year="1980">Romer & Parsons, 1980</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph blockId="27.[163,779,197,1875]" pageId="27" pageNumber="28">
|
||
The size of the abdominal cavity simply reflects the storage capacity of the gut and its ability to cater for the lengthier phases of digestion and absorption inherent in a vegetarian diet. Only in exceptional circumstances are traces of the soft tissues of the gut (cololites) preserved (
|
||
<bibRefCitation author="Dal Sasso C & Signore M" box="[422,741,1730,1752]" pageId="27" pageNumber="28" pagination="383 - 387" refId="ref59315" refString="Dal Sasso C, Signore M. 1998. Exceptional soft-tissue preservation in a theropod from Italy. Nature 392: 383 - 387." type="journal article" year="1998">Dal Sasso & Signore, 1998</bibRefCitation>
|
||
;
|
||
<bibRefCitation author="Ji Q & Currie PJ & Norell MA & Ji S-A" pageId="27" pageNumber="28" pagination="753 - 761" refId="ref61196" refString="Ji Q, Currie PJ, Norell MA, Ji S-A. 1998. Two feathered dinosaurs from northeastern China. Nature 393: 753 - 761." type="journal article" year="1998">
|
||
Ji
|
||
<emphasis box="[163,223,1761,1783]" italics="true" pageId="27" pageNumber="28">et al.</emphasis>
|
||
, 1998
|
||
</bibRefCitation>
|
||
), but in the case of
|
||
<taxonomicName authorityName="Norman" authorityYear="2020" box="[539,707,1761,1782]" class="Reptilia" family="Scelidosauridae" genus="Scelidosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="27" pageNumber="28" phylum="Chordata" rank="genus">
|
||
<emphasis box="[539,707,1761,1782]" italics="true" pageId="27" pageNumber="28">Scelidosaurus</emphasis>
|
||
</taxonomicName>
|
||
there is, to date, no known preservation of gut tissues or gastroliths in association with the abdominal cavity that might illuminate gut structure and function.
|
||
</paragraph>
|
||
<paragraph blockId="27.[1010,1259,196,221]" box="[1010,1259,196,221]" pageId="27" pageNumber="28">RESPIRATORY SYSTEM</paragraph>
|
||
<paragraph blockId="27.[827,1444,236,1883]" pageId="27" pageNumber="28">
|
||
The respiratory systems of dinosaurs are not preserved but they are so central to the development of an understanding of the physiology and metabolic status of these animals that they have become a persistent subject of investigation.
|
||
<bibRefCitation author="Carrier DR & Farmer CG" pageId="27" pageNumber="28" pagination="271 - 293" refId="ref58559" refString="Carrier DR, Farmer CG. 2000 a. The evolution of pelvic aspiration in archosaurs. Paleobiology 26: 271 - 293." type="journal article" year="2000">Carrier & Farmer (2000a</bibRefCitation>
|
||
, b),
|
||
<bibRefCitation author="Perry SF" box="[960,1109,390,412]" pageId="27" pageNumber="28" pagination="429 - 441" refId="ref64192" refString="Perry SF. 2001. Functional morphology of the reptilian and avian respiratory systems and its implications for theropod dinosaurs. In: Gauthier J, Gall LF, eds. New perspectives on the origin and early evolution of birds. New Haven: Yale University Press, 429 - 441." type="book chapter" year="2001">Perry (2001)</bibRefCitation>
|
||
and
|
||
<bibRefCitation author="Perry SF & Sander PM" box="[1171,1443,390,412]" pageId="27" pageNumber="28" pagination="125 - 139" refId="ref64285" refString="Perry SF, Sander PM. 2004. Reconstructing the evolution of the respiratory apparatus in tetrapods. Respiratory Physiology & Neurobiology 144: 125 - 139." type="journal article" year="2004">Perry & Sander (2004)</bibRefCitation>
|
||
did much to promote debate on this topic by focusing on the respiratory
|
||
<emphasis box="[1045,1147,451,472]" italics="true" pageId="27" pageNumber="28">potential</emphasis>
|
||
in dinosaurs, given what was then known about the skeletal mechanics and respiratory physiology of extant squamates, crocodiles and birds. The close relationship between theropod dinosaurs and birds (
|
||
<bibRefCitation author="Huxley TH" box="[1075,1226,574,596]" pageId="27" pageNumber="28" pagination="66 - 75" refId="ref61029" refString="Huxley TH. 1868. On the animals which are most nearly intermediate between birds and reptiles. Annals and Magazine of Natural History 2: 66 - 75." type="journal article" year="1868">Huxley, 1868</bibRefCitation>
|
||
;
|
||
<bibRefCitation author="Ostrom JH" box="[1239,1396,574,596]" pageId="27" pageNumber="28" pagination="91 - 182" refId="ref63678" refString="Ostrom JH. 1976. Archaeopteryx and the origin of birds. Biological Journal of the Linnean Society of London 8: 91 - 182." type="journal article" year="1976">Ostrom, 1976</bibRefCitation>
|
||
;
|
||
<bibRefCitation author="Xu X & Zhonghe Z & Dudley R & Machem S & Chuong C-M & Erickson GM & Varricchio DJ" pageId="27" pageNumber="28" pagination="6215" refId="ref66435" refString="Xu X, Zhonghe Z, Dudley R, Machem S, Chuong C-M, Erickson GM, Varricchio DJ. 2014. An integrative approach to the understanding of bird origins. Science 346: e 6215." type="journal article" year="2014">
|
||
Xu
|
||
<emphasis box="[827,882,604,626]" italics="true" pageId="27" pageNumber="28">et al.</emphasis>
|
||
, 2014
|
||
</bibRefCitation>
|
||
) focused much of the subsequent discussion about dinosaur lung structure on the osteological correlates identifiable in theropods: pneumatized bones, uncinate ribs and gastralia (
|
||
<bibRefCitation author="Claessens LAPM" box="[1248,1436,696,718]" pageId="27" pageNumber="28" pagination="89 - 106" refId="ref58798" refString="Claessens LAPM. 2004. Dinosaur gastralia: origin, myology and function. Journal of Vertebrate Paleontology 24: 89 - 106." type="journal article" year="2004">Claessens, 2004</bibRefCitation>
|
||
;
|
||
<bibRefCitation author="O'Connor PM & Claessens LAPM" box="[827,1147,727,749]" pageId="27" pageNumber="28" pagination="253 - 256" refId="ref63472" refString="O'Connor PM, Claessens LAPM. 2005. Basic avian pulmonary design and flow-through ventilation in non-avian theropod dinosaurs. Nature 436: 253 - 256." type="journal article" year="2005">O’Connor & Claessens, 2005</bibRefCitation>
|
||
;
|
||
<bibRefCitation author="Codd JR & Manning PL & Norell MA & Perry SF" box="[1159,1346,727,749]" pageId="27" pageNumber="28" pagination="157 - 161" refId="ref58822" refString="Codd JR, Manning PL, Norell MA, Perry SF. 2008. Avianlike breathing mechanics in maniraptoran dinosaurs. Proceedings of the Royal Society B 275: 157 - 161." type="journal article" year="2008">
|
||
Codd
|
||
<emphasis box="[1224,1280,727,749]" italics="true" pageId="27" pageNumber="28">et al.</emphasis>
|
||
, 2008
|
||
</bibRefCitation>
|
||
;
|
||
<bibRefCitation author="Benson RBJ & Butler RJ & Carrano MT & O'Connor PM" pageId="27" pageNumber="28" pagination="168 - 193" refId="ref57864" refString="Benson RBJ, Butler RJ, Carrano MT, O'Connor PM. 2012. Air-filled postcranial bones in theropod dinosaurs: physiological implications and the ' reptile' - bird transition. Biological Reviews 87: 168 - 193." type="journal article" year="2012">
|
||
Benson
|
||
<emphasis box="[827,885,758,779]" italics="true" pageId="27" pageNumber="28">et al.</emphasis>
|
||
, 2012
|
||
</bibRefCitation>
|
||
) and, to a lesser extent, sauropods (
|
||
<bibRefCitation author="Britt BB" pageId="27" pageNumber="28" pagination="590 - 593" refId="ref58039" refString="Britt BB. 1997. Postcranial pneumaticity. In: Currie PJ, Padian K, eds. Encyclopedia of Dinosaurs. London: Academic Press, 590 - 593." type="book chapter" year="1997">Britt, 1997</bibRefCitation>
|
||
;
|
||
<bibRefCitation author="Perry SF & Reuter C" box="[902,1168,788,810]" pageId="27" pageNumber="28" pagination="75 - 79" refId="ref64245" refString="Perry SF, Reuter C. 1999. Hypothetical lung structure of Brachiosaurus (Dinosauria: Sauropoda) based on functional constraints. Mittheilungen aus dem Museum fur Naturkunde in Berlin, Geowissenschaftliche Reihe 2: 75 - 79." type="journal article" year="1999">Perry & Reuter, 1999</bibRefCitation>
|
||
).
|
||
<bibRefCitation author="Benson RBJ & Butler RJ & Carrano MT & O'Connor PM" pageId="27" pageNumber="28" pagination="168 - 193" refId="ref57864" refString="Benson RBJ, Butler RJ, Carrano MT, O'Connor PM. 2012. Air-filled postcranial bones in theropod dinosaurs: physiological implications and the ' reptile' - bird transition. Biological Reviews 87: 168 - 193." type="journal article" year="2012">
|
||
Benson
|
||
<emphasis box="[1295,1358,788,810]" italics="true" pageId="27" pageNumber="28">et al.</emphasis>
|
||
(2012: 188)
|
||
</bibRefCitation>
|
||
, in an article that focused solely upon skeletal pneumaticity and its implications for dinosaurian (including bird) physiology, noted that
|
||
<taxonomicName authorityName="Seeley" authorityYear="1887" box="[1292,1442,880,902]" class="Reptilia" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="27" pageNumber="28" phylum="Chordata" rank="order">Ornithischia</taxonomicName>
|
||
is a clade of diverse and abundant dinosaurs that is deeply nested within ornithodiran archosaurs and yet lacks a pneumatic postcranium, implying that this factor needed to be reconciled in any model of dinosaurian biology.
|
||
</paragraph>
|
||
<paragraph blockId="27.[827,1444,236,1883]" pageId="27" pageNumber="28">
|
||
Aspiratory respiration became established in amniotes ancestral to
|
||
<taxonomicName box="[1094,1242,1095,1117]" class="Archosauria" higherTaxonomySource="GBIF" kingdom="Animalia" pageId="27" pageNumber="28" phylum="Chordata" rank="class">Archosauria</taxonomicName>
|
||
, resulting in the potential to increase the overall efficiency of gas exchange among these animals (
|
||
<bibRefCitation author="Perry SF & Sander PM" box="[1190,1429,1156,1178]" pageId="27" pageNumber="28" pagination="125 - 139" refId="ref64285" refString="Perry SF, Sander PM. 2004. Reconstructing the evolution of the respiratory apparatus in tetrapods. Respiratory Physiology & Neurobiology 144: 125 - 139." type="journal article" year="2004">Perry & Sander, 2004</bibRefCitation>
|
||
). Most models of amniote respiration were understood to be driven by muscle-induced repositioning of the ribs to change the volume of the thoracic cavity (costal aspiration). However, it has become clear that respiration can be augmented by cuirassal aspiration (indicated by the presence of an abdominal skeleton of gastralia – belly ribs) and pelvic aspiration (dependent upon an ability to flex either the entire pelvis against the dorsal vertebral column or specialized parts of a fixed pelvis –
|
||
<bibRefCitation author="Carrier DR & Farmer CG" box="[983,1267,1463,1485]" pageId="27" pageNumber="28" pagination="271 - 293" refId="ref58559" refString="Carrier DR, Farmer CG. 2000 a. The evolution of pelvic aspiration in archosaurs. Paleobiology 26: 271 - 293." type="journal article" year="2000">Carrier & Farmer, 2000a</bibRefCitation>
|
||
, b).
|
||
</paragraph>
|
||
<paragraph blockId="27.[827,1444,236,1883]" lastBlockId="28.[145,761,197,311]" lastPageId="28" lastPageNumber="29" pageId="27" pageNumber="28">
|
||
In living birds, highly compliant air-sacs evolved in association with a unidirectional (‘flow-through’) lung structure. A strictly comparable respiratory system was hypothesized for theropods ancestral to birds (
|
||
<bibRefCitation author="O'Connor PM & Claessens LAPM" box="[836,1180,1616,1638]" pageId="27" pageNumber="28" pagination="253 - 256" refId="ref63472" refString="O'Connor PM, Claessens LAPM. 2005. Basic avian pulmonary design and flow-through ventilation in non-avian theropod dinosaurs. Nature 436: 253 - 256." type="journal article" year="2005">O’Connor & Claessens, 2005</bibRefCitation>
|
||
;
|
||
<bibRefCitation author="Benson RBJ & Butler RJ & Carrano MT & O'Connor PM" box="[1196,1427,1616,1638]" pageId="27" pageNumber="28" pagination="168 - 193" refId="ref57864" refString="Benson RBJ, Butler RJ, Carrano MT, O'Connor PM. 2012. Air-filled postcranial bones in theropod dinosaurs: physiological implications and the ' reptile' - bird transition. Biological Reviews 87: 168 - 193." type="journal article" year="2012">
|
||
Benson
|
||
<emphasis box="[1293,1354,1616,1638]" italics="true" pageId="27" pageNumber="28">et al.</emphasis>
|
||
, 2012
|
||
</bibRefCitation>
|
||
). Abdominal wall compliance probably increased in birds with the loss of gastralia. However, cross-current (unidirectional) gas-exchange systems were then identified by
|
||
<bibRefCitation author="Farmer CG & Sanders K" box="[978,1269,1739,1761]" pageId="27" pageNumber="28" pagination="338 - 340" refId="ref59669" refString="Farmer CG, Sanders K. 2010. Unidirectional airflow in the lungs of alligators. Science 327: 338 - 340." type="journal article" year="2010">Farmer & Sanders (2010)</bibRefCitation>
|
||
in the lungs of alligators. The strong similarity in air-flow patterns in the lungs of birds and crocodilians suggests that these features are plesiomorphic for
|
||
<taxonomicName authority="(Schachner et al., 2013 a)" baseAuthorityName="Schachner" baseAuthorityYear="2013" class="Archosauria" higherTaxonomySource="GBIF" kingdom="Animalia" pageId="27" pageNumber="28" phylum="Chordata" rank="class">
|
||
Archosauria (
|
||
<bibRefCitation author="Schachner ER & Hutchinson JR & Farmer CG" box="[835,1099,1861,1883]" pageId="27" pageNumber="28" pagination="7717" refId="ref65010" refString="Schachner ER, Hutchinson JR, Farmer CG. 2013 a. Pulmonary anatomy in the Nile Crocodile and the evolution of unidirectional airflow in Archosauria. PeerJ 1: e 7717." type="journal article" year="2013">
|
||
Schachner
|
||
<emphasis box="[961,1018,1861,1883]" italics="true" pageId="27" pageNumber="28">et al.</emphasis>
|
||
, 2013a
|
||
</bibRefCitation>
|
||
)
|
||
</taxonomicName>
|
||
. Flow-through lungs are also now recognized more widely among diapsid amniotes, including squamates (
|
||
<bibRefCitation author="Schachner ER & Cieri RL & Butler JP & Farmer CG" box="[398,664,228,250]" pageId="28" pageNumber="29" pagination="367 - 370" refId="ref65043" refString="Schachner ER, Cieri RL, Butler JP, Farmer CG. 2013 b. Unidirectional pulmonary airflow patterns in the savannah monitor lizard. Nature 506: 367 - 370." type="journal article" year="2013">
|
||
Schachner
|
||
<emphasis box="[525,581,228,250]" italics="true" pageId="28" pageNumber="29">et al.</emphasis>
|
||
, 2013b
|
||
</bibRefCitation>
|
||
;
|
||
<bibRefCitation author="Cieri RL & Farmer CG" pageId="28" pageNumber="29" pagination="541 - 552" refId="ref58764" refString="Cieri RL, Farmer CG. 2016. Unidirectional pulmonary airflow in vertebrates: a review of structure, function and evolution. Journal of Comparative Physiology B 186: 541 - 552." type="journal article" year="2016">Cieri & Farmer, 2016</bibRefCitation>
|
||
), so the inference of the existence of this
|
||
<typeStatus box="[145,194,290,311]" pageId="28" pageNumber="29">type</typeStatus>
|
||
of lung in dinosaurs cannot seriously be doubted.
|
||
</paragraph>
|
||
</subSubSection>
|
||
</treatment>
|
||
</document> |