<documentid="5EA7B42D2FCFFFC9264337FFF8624A99"ID-CLB-Dataset="304161"ID-DOI="10.5070/P9401462457"ID-GBIF-Dataset="55f81c30-f18f-44ef-a480-dc7531b3b818"ID-ISSN="0031-0298"ID-Zenodo-Dep="10913330"IM.bibliography_approvedBy="carolina"IM.illustrations_approvedBy="carolina"IM.materialsCitations_approvedBy="carolina"IM.metadata_approvedBy="felipe"IM.tables_approvedBy="carolina"IM.taxonomicNames_approvedBy="carolina"IM.treatments_approvedBy="carolina"checkinTime="1712167746961"checkinUser="felipe"docAuthor="Wheeler, Elisabeth A., Manchester, Steven R. & Baas, Pieter"docDate="2023"docId="038AF505A313960E57BDF9F6FB1F99CC"docLanguage="en"docName="PaleoBios.40.14.1-55.pdf"docOrigin="PaleoBios 40 (14)"docSource="http://dx.doi.org/10.5070/p9401462457"docStyle="DocumentStyle:76F55B8832C4952BA7DD61B33E1F0E81.3:PaleoBios.2023-.journal_article"docStyleId="76F55B8832C4952BA7DD61B33E1F0E81"docStyleName="PaleoBios.2023-.journal_article"docStyleVersion="3"docTitle="Hamamelidoxylon LIGNIER 1907"docType="treatment"docVersion="4"lastPageNumber="46"masterDocId="FFB38D7DA33F9621547BFFC0FFD49B4F"masterDocTitle="A late Eocene wood assemblage from the Crooked River Basin, Oregon, USA"masterLastPageNumber="55"masterPageNumber="1"pageNumber="43"updateTime="1731588244673"updateUser="carolina"zenodo-license-document="CC-BY-NC-SA-4.0">
<figureCitationid="13185896A313960D5022F949FB019DEE"box="[1113,1237,1673,1697]"captionStart="Figure 21"captionStartId="46.[110,185,1601,1625]"captionTargetBox="[139,1489,405,1582]"captionTargetId="figure-203@46.[139,1489,405,1585]"captionTargetPageId="46"captionText="Figure 21. Incertae Sedis. cf. Hamamelidoxylon sp., UF 278-84876. A, B. Wood diffuse-porous, vessels solitary, angular in outline, TS. C, D. Scalariform perforation plates, RLS. E. Transitional intervessel pitting,,scalariform to opposite, TLS. F. Vessel-ray parenchyma (VRP) pits horizontally elongate, RLS. G. Ray cellular composition, intermixed square, upright, and barely procumbent cells. H. Rays exclusively uniseriate, T next to beginning of tyloses formation, TLS. Scale bars=200 µm in A; 100 µm B, H; 50 µm in C; D, G; 20 µm in E, F."figureDoi="http://doi.org/10.5281/zenodo.10913372"httpUri="https://zenodo.org/record/10913372/files/figure.png"pageId="44"pageNumber="43">FIG. 21A–H</figureCitation>
<figureCitationid="13185896A313960D5733F93EFC189C57"box="[840,972,1790,1816]"captionStart="Figure 21"captionStartId="46.[110,185,1601,1625]"captionTargetBox="[139,1489,405,1582]"captionTargetId="figure-203@46.[139,1489,405,1585]"captionTargetPageId="46"captionText="Figure 21. Incertae Sedis. cf. Hamamelidoxylon sp., UF 278-84876. A, B. Wood diffuse-porous, vessels solitary, angular in outline, TS. C, D. Scalariform perforation plates, RLS. E. Transitional intervessel pitting,,scalariform to opposite, TLS. F. Vessel-ray parenchyma (VRP) pits horizontally elongate, RLS. G. Ray cellular composition, intermixed square, upright, and barely procumbent cells. H. Rays exclusively uniseriate, T next to beginning of tyloses formation, TLS. Scale bars=200 µm in A; 100 µm B, H; 50 µm in C; D, G; 20 µm in E, F."figureDoi="http://doi.org/10.5281/zenodo.10913372"httpUri="https://zenodo.org/record/10913372/files/figure.png"pageId="44"pageNumber="43">Fig. 21A, B</figureCitation>
). Vessels predominantly solitary, overlapping end walls of vessel elements appearing as tangential or oblique pairs; vessels angular in outline (
<figureCitationid="13185896A313960D512BF884FA349C10"box="[1360,1504,1860,1887]"captionStart="Figure 21"captionStartId="46.[110,185,1601,1625]"captionTargetBox="[139,1489,405,1582]"captionTargetId="figure-203@46.[139,1489,405,1585]"captionTargetPageId="46"captionText="Figure 21. Incertae Sedis. cf. Hamamelidoxylon sp., UF 278-84876. A, B. Wood diffuse-porous, vessels solitary, angular in outline, TS. C, D. Scalariform perforation plates, RLS. E. Transitional intervessel pitting,,scalariform to opposite, TLS. F. Vessel-ray parenchyma (VRP) pits horizontally elongate, RLS. G. Ray cellular composition, intermixed square, upright, and barely procumbent cells. H. Rays exclusively uniseriate, T next to beginning of tyloses formation, TLS. Scale bars=200 µm in A; 100 µm B, H; 50 µm in C; D, G; 20 µm in E, F."figureDoi="http://doi.org/10.5281/zenodo.10913372"httpUri="https://zenodo.org/record/10913372/files/figure.png"pageId="44"pageNumber="43">Fig. 21A, B</figureCitation>
); very narrow to narrow, average tangential diameter 43 (9) µm; very numerous,>
. Perforation plates exclusively scalariform with more than 20 bars (
<figureCitationid="13185896A311960F56CDF933FF539C7E"captionStart="Figure 21"captionStartId="46.[110,185,1601,1625]"captionTargetBox="[139,1489,405,1582]"captionTargetId="figure-203@46.[139,1489,405,1585]"captionTargetPageId="46"captionText="Figure 21. Incertae Sedis. cf. Hamamelidoxylon sp., UF 278-84876. A, B. Wood diffuse-porous, vessels solitary, angular in outline, TS. C, D. Scalariform perforation plates, RLS. E. Transitional intervessel pitting,,scalariform to opposite, TLS. F. Vessel-ray parenchyma (VRP) pits horizontally elongate, RLS. G. Ray cellular composition, intermixed square, upright, and barely procumbent cells. H. Rays exclusively uniseriate, T next to beginning of tyloses formation, TLS. Scale bars=200 µm in A; 100 µm B, H; 50 µm in C; D, G; 20 µm in E, F."figureDoi="http://doi.org/10.5281/zenodo.10913372"httpUri="https://zenodo.org/record/10913372/files/figure.png"pageId="46"pageNumber="45">Fig. 21C, D</figureCitation>
), 34–42 bars counted. Intervessel pits scalariform to opposite. (
<figureCitationid="13185896A311960F548DF8F9FEB09C1C"box="[246,356,1849,1875]"captionStart="Figure 21"captionStartId="46.[110,185,1601,1625]"captionTargetBox="[139,1489,405,1582]"captionTargetId="figure-203@46.[139,1489,405,1585]"captionTargetPageId="46"captionText="Figure 21. Incertae Sedis. cf. Hamamelidoxylon sp., UF 278-84876. A, B. Wood diffuse-porous, vessels solitary, angular in outline, TS. C, D. Scalariform perforation plates, RLS. E. Transitional intervessel pitting,,scalariform to opposite, TLS. F. Vessel-ray parenchyma (VRP) pits horizontally elongate, RLS. G. Ray cellular composition, intermixed square, upright, and barely procumbent cells. H. Rays exclusively uniseriate, T next to beginning of tyloses formation, TLS. Scale bars=200 µm in A; 100 µm B, H; 50 µm in C; D, G; 20 µm in E, F."figureDoi="http://doi.org/10.5281/zenodo.10913372"httpUri="https://zenodo.org/record/10913372/files/figure.png"pageId="46"pageNumber="45">Fig. 21E</figureCitation>
) Vessel-ray parenchyma pits horizontally elongate, half-bordered or with slightly reduced borders (
<figureCitationid="13185896A311960F5499F840FE9F9CD5"box="[226,331,1920,1946]"captionStart="Figure 21"captionStartId="46.[110,185,1601,1625]"captionTargetBox="[139,1489,405,1582]"captionTargetId="figure-203@46.[139,1489,405,1585]"captionTargetPageId="46"captionText="Figure 21. Incertae Sedis. cf. Hamamelidoxylon sp., UF 278-84876. A, B. Wood diffuse-porous, vessels solitary, angular in outline, TS. C, D. Scalariform perforation plates, RLS. E. Transitional intervessel pitting,,scalariform to opposite, TLS. F. Vessel-ray parenchyma (VRP) pits horizontally elongate, RLS. G. Ray cellular composition, intermixed square, upright, and barely procumbent cells. H. Rays exclusively uniseriate, T next to beginning of tyloses formation, TLS. Scale bars=200 µm in A; 100 µm B, H; 50 µm in C; D, G; 20 µm in E, F."figureDoi="http://doi.org/10.5281/zenodo.10913372"httpUri="https://zenodo.org/record/10913372/files/figure.png"pageId="46"pageNumber="45">Fig. 21F</figureCitation>
Axial parenchyma diffuse and scanty paratracheal, in strands of 5 or more cells (
<figureCitationid="13185896A311960F50F6F89CFB2F9C38"box="[1165,1275,1884,1911]"captionStart="Figure 21"captionStartId="46.[110,185,1601,1625]"captionTargetBox="[139,1489,405,1582]"captionTargetId="figure-203@46.[139,1489,405,1585]"captionTargetPageId="46"captionText="Figure 21. Incertae Sedis. cf. Hamamelidoxylon sp., UF 278-84876. A, B. Wood diffuse-porous, vessels solitary, angular in outline, TS. C, D. Scalariform perforation plates, RLS. E. Transitional intervessel pitting,,scalariform to opposite, TLS. F. Vessel-ray parenchyma (VRP) pits horizontally elongate, RLS. G. Ray cellular composition, intermixed square, upright, and barely procumbent cells. H. Rays exclusively uniseriate, T next to beginning of tyloses formation, TLS. Scale bars=200 µm in A; 100 µm B, H; 50 µm in C; D, G; 20 µm in E, F."figureDoi="http://doi.org/10.5281/zenodo.10913372"httpUri="https://zenodo.org/record/10913372/files/figure.png"pageId="46"pageNumber="45">Fig. 21H</figureCitation>
<figureCitationid="13185896A311960F5048F840FB779CD5"box="[1075,1187,1920,1946]"captionStart="Figure 20"captionStartId="45.[141,216,1905,1929]"captionTargetBox="[149,1481,193,1878]"captionTargetId="figure-23@45.[149,1481,193,1884]"captionTargetPageId="45"captionText="Figure 20. Caption on pg. 45."figureDoi="http://doi.org/10.5281/zenodo.10913370"httpUri="https://zenodo.org/record/10913370/files/figure.png"pageId="46"pageNumber="45">Fig. 20H</figureCitation>
), heterocellular, composed of intermixed procumbent, square, and upright cells (
<figureCitationid="13185896A310960E5689FF03FF739A4F"captionStart="Figure 21"captionStartId="46.[110,185,1601,1625]"captionTargetBox="[139,1489,405,1582]"captionTargetId="figure-203@46.[139,1489,405,1585]"captionTargetPageId="46"captionText="Figure 21. Incertae Sedis. cf. Hamamelidoxylon sp., UF 278-84876. A, B. Wood diffuse-porous, vessels solitary, angular in outline, TS. C, D. Scalariform perforation plates, RLS. E. Transitional intervessel pitting,,scalariform to opposite, TLS. F. Vessel-ray parenchyma (VRP) pits horizontally elongate, RLS. G. Ray cellular composition, intermixed square, upright, and barely procumbent cells. H. Rays exclusively uniseriate, T next to beginning of tyloses formation, TLS. Scale bars=200 µm in A; 100 µm B, H; 50 µm in C; D, G; 20 µm in E, F."figureDoi="http://doi.org/10.5281/zenodo.10913372"httpUri="https://zenodo.org/record/10913372/files/figure.png"pageId="47"pageNumber="46">Fig. 21G</figureCitation>
); 9–14 rays/mm.
</paragraph>
<paragraphid="8B9C4413A310960E54EBFEC9FD6A9A6C"blockId="47.[112,801,195,1946]"box="[144,702,265,292]"pageId="47"pageNumber="46">Crystals and oil/mucilage cells not observed.</paragraph>
<emphasisid="B9579801A310960E54EBFE56FD9C9AFF"bold="true"box="[144,584,406,432]"pageId="47"pageNumber="46">Comparison to extant woods—</emphasis>
We did multiple searches of the IW database for modern woods; all searches included diffuse-porous wood (5p), predominantly solitary vessels angular in outline (9p, 12p), exclusively scalariform perforation plates with more than 10 bars (13a, 14p, 15a), scalariform intervessel pits (20p), narrow numerous vessels (42a, 43a, 46a, 47a, 48a), non-septate fibers with bordered pits (62p, 66p) axial parenchyma not obvious (77a, 79–89a), exclusively uniseriate heterocellular rays (96p 104a, 105a). These searches returned
<taxonomicNameid="4C233F90A310960E56EDFD36FECF987C"authority="H. T. Chang (1948)"authorityName="H. T. Chang"authorityYear="1948"class="Magnoliopsida"family="Hamamelidaceae"genus="Chunia"kingdom="Plantae"order="Saxifragales"pageId="47"pageNumber="46"phylum="Tracheophyta"rank="genus">
<taxonomicNameid="4C233F90A310960E555EFCD8FD5F987B"authority="R. W. Br. (1946)"authorityName="R. W. Br."authorityYear="1946"box="[293,651,792,820]"class="Magnoliopsida"family="Hamamelidaceae"genus="Exbucklandia"kingdom="Plantae"order="Saxifragales"pageId="47"pageNumber="46"phylum="Tracheophyta"rank="genus">
<taxonomicNameid="4C233F90A310960E54D9FC9EFD709835"authority="W. Bartram ex Marshall (1785)"authorityName="Marshall"authorityYear="1785"box="[162,676,862,890]"class="Magnoliopsida"family="Theaceae"genus="Franklinia"kingdom="Plantae"order="Ericales"pageId="47"pageNumber="46"phylum="Tracheophyta"rank="genus">
<taxonomicNameid="4C233F90A310960E5569FC43FD7698D2"authority="Reinw. ex Blume (1823)"authorityName="Blume"authorityYear="1823"box="[274,674,899,925]"class="Magnoliopsida"family="Theaceae"genus="Schima"kingdom="Plantae"order="Ericales"pageId="47"pageNumber="46"phylum="Tracheophyta"rank="genus">
<taxonomicNameid="4C233F90A310960E551FFC66FF1398AC"authority="Bertchtold and J. Presl. (1820)"authorityName="Bertchtold and J. Presl."authorityYear="1820"class="Magnoliopsida"higherTaxonomySource="GBIF"kingdom="Plantae"order="Saxifragales"pageId="47"pageNumber="46"phylum="Tracheophyta"rank="order">Saxifragales Bertchtold and J. Presl. (1820)</taxonomicName>
and
<taxonomicNameid="4C233F90A310960E557DFC09FD3A98AB"authority="Bertchtold and J. Presl. (1820)"authorityName="Bertchtold and J. Presl."authorityYear="1820"box="[262,750,969,996]"class="Magnoliopsida"kingdom="Plantae"order="Ericales"pageId="47"pageNumber="46"phylum="Tracheophyta"rank="order">Ericales Bertchtold and J. Presl. (1820)</taxonomicName>
, respectively, these families have some genera with similar combinations of wood anatomical features, making it difficult, often impossible, to determine the familial affinities of small, isolated pieces of wood. The anatomy of the
<bibRefCitationid="EFB239E2A310960E5624FBB9FF699FF8"author="Liang, D. & P. Baas"pageId="47"pageNumber="46"pagination="337 - 378"refId="ref36683"refString="Liang, D. and P. Baas. 1990. Wood anatomy of trees and shrubs from China. II. Theaceae. IAWA Bulletin n. s. 11 (4): 337 - 378. [https: // doi. org / 10.1163 / 22941932 - 90000525]."type="journal article"year="1990">Liang and Baas (1990</bibRefCitation>
,
<bibRefCitationid="EFB239E2A310960E54B2FB5DFEDE9FF8"author="Liang, D. & P. Baas"box="[201,266,1181,1207]"pageId="47"pageNumber="46"pagination="333 - 353"refId="ref36737"refString="Liang, D. and P. Baas. 1991. Wood anatomy of the Theaceae. IAWA Journal 12 (3): 333 - 353. [https: // doi. org / 10.1163 / 22941932 - 90001258]."type="journal article"year="1991">1991</bibRefCitation>
<bibRefCitationid="EFB239E2A310960E5530FB00FE359F95"author="Tang, Y."box="[331,481,1216,1242]"pageId="47"pageNumber="46"pagination="8 - 63"refId="ref39984"refString="Tang, Y. 1943. Systematic anatomy of the woods of the Hamamelidaceae. Bulletin of the Fan Memorial Institute of Biology (New Series) 1 (1): 8 - 63."type="journal article"year="1943">Tang (1943)</bibRefCitation>
and
<bibRefCitationid="EFB239E2A310960E5662FB00FCCF9F95"author="Wheeler, E. A. & J. Lee & P. Baas"box="[537,795,1216,1242]"pageId="47"pageNumber="46"pagination="399 - 423"refId="ref41059"refString="Wheeler, E. A., J. Lee and P. Baas. 2010. Wood anatomy of the Altingiaceae and Hamamelidaceae. IAWA Journal 31 (4): 399 - 423. [https: // doi. org / 10.1163 / 22941932 - 90000032]."type="journal article"year="2010">Wheeler et al. (2010)</bibRefCitation>
. Descriptions of species of both families appear in wood anatomical atlases (e.g.,
<bibRefCitationid="EFB239E2A310960E55E6FAC7FD0E9E6F"author="Pearson, R. S. & H. P. Brown"box="[413,730,1286,1313]"pageId="47"pageNumber="46"refId="ref38118"refString="Pearson, R. S. and H. P. Brown. 1932. Commercial Timbers of India. Their Distribution, Supplies, Anatomical Xtructure, Physical and Mechanical Properties and Uses. Volume I. Government of India Central Publication Branch, Calcutta, 548 pp."type="book"year="1932">Pearson and Brown 1932</bibRefCitation>
,
<bibRefCitationid="EFB239E2A310960E569DFAC7FEBE9E0B"author="Metcalfe, C. R. & L. Chalk"pageId="47"pageNumber="46"refId="ref37662"refString="Metcalfe, C. R. and L. Chalk. 1950. Anatomy of the Dicotyledons. 2 vols. Clarendon Press, Oxford, U. K., 1500 pp."type="book"year="1950">Metcalfe and Chalk 1950</bibRefCitation>
, Suzuki, et al. 1991,
<bibRefCitationid="EFB239E2A310960E5623FAE9FCCE9E0C"author="Sosef, M. S. M. & L. T. Hong & S. Prawirohatmodjo"box="[600,794,1321,1348]"pageId="47"pageNumber="46"refId="ref39473"refString="Sosef, M. S. M., L. T. Hong and S. Prawirohatmodjo (eds.). 1998. Plant Resources of South-East Asia. No. 5 (3). Timber Trees: Lesser-known Timbers. Backhuys Publishers, Leiden. 859 pp."type="book"year="1998">Sosef et al. 1998</bibRefCitation>
,
<bibRefCitationid="EFB239E2A310960E540BFA8CFEE69E28"author="Itoh, T. B. & Pan, P. & Baas, J. & Luo, D. & Li, Y. & Cui, F. & Wang & M. Mertz & Y. Yasumoto"box="[112,306,1356,1383]"pageId="47"pageNumber="46"refId="ref36047"refString="Itoh, T. B. Pan, P. Baas, J. Luo, D. Li, Y. Cui, F. Wang. M. Mertz and Y. Yasumoto. 2022. Anatomical Atlas and Database of Chinese Woods. Kaiseisha Press. 2679 pp."type="book"year="2022">Itoh et al. 2022</bibRefCitation>
<bibRefCitationid="EFB239E2A310960E56E1FA19FF139D58"author="Mathiesen, Fr. J."pageId="47"pageNumber="46"pagination="1 - 62"refId="ref37533"refString="Mathiesen, Fr. J. 1932. Notes on some fossil plants from east Greenland. Meddelelser om Gronland 85 (4): 1 - 62."type="journal article"year="1932">Mathiesen (1932)</bibRefCitation>
<bibRefCitationid="EFB239E2A310960E563FF9E0FCF49D75"author="Mathiesen, Fr. J."box="[580,800,1568,1594]"pageId="47"pageNumber="46"pagination="1 - 62"refId="ref37533"refString="Mathiesen, Fr. J. 1932. Notes on some fossil plants from east Greenland. Meddelelser om Gronland 85 (4): 1 - 62."type="journal article"year="1932">Mathiesen (1932)</bibRefCitation>
</taxonomicName>
lacks details on vessel-ray parenchyma pitting, vessel element frequency; it differs in having crystals in both ray and axial parenchyma cells.
<bibRefCitationid="EFB239E2A310960E5595F949FF6F9D88"author="Wheeler, E. A. & S. R. Manchester"pageId="47"pageNumber="46"pagination="299 - 329"refId="ref41269"refString="Wheeler, E. A. and S. R. Manchester. 2021. A diverse assemblage of late Eocene woods from Oregon, USA. Fossil Imprint 77 (2): 299 - 329. [https: // doi. org / 10.37520 / fi. 2021.022]."type="journal article"year="2021">
<tableCitationid="C6A171A8A310960E54BEF96CFEC99D88"box="[197,285,1708,1735]"captionStart="Table 2"captionStartId="18.[111,175,194,218]"captionTargetBox="[128,1430,342,701]"captionTargetId="graphics-674@18.[114,1502,377,711]"captionText="Table 2. Comparison of fossil Fagus woods from Dietz Hill with Fagus dodgei from Post Hammer (UF 279, late Eocene, Wheeler and Manchester 2021) and Fagus manosii (mid-Miocene, Wheeler and Dillhoff 2009). VTD=vessel tangential diameter in µm, mean (SD); V/mm2=number of vessels per square mm; Lrg Ray=large ray, number of cells wide; Cmp=compound ray; Lrg Ray Ht.=large ray height in µm, mean (SD, when known), range."httpUri="http://table.plazi.org/id/DF5C149BA32D96335414FF02FD389A65"pageId="47"pageNumber="46"tableDoi="http://doi.org/10.5281/zenodo.13891735"tableUuid="DF5C149BA32D96335414FF02FD389A65">Table 2</tableCitation>
<taxonomicNameid="4C233F90A310960E56C3F931FD839C7F"authority="Wheeler and Manchester (2002)"authorityName="Wheeler"authorityYear="2002"class="Magnoliopsida"family="Hamamelidaceae"genus="Hamamelidoxylon"higherTaxonomySource="GBIF"kingdom="Plantae"order="Saxifragales"pageId="47"pageNumber="46"phylum="Tracheophyta"rank="species"species="uniseriatum">
<bibRefCitationid="EFB239E2A310960E54B2F8D6FD839C7F"author="Wheeler, E. A. & S. R. Manchester"box="[201,599,1814,1840]"pageId="47"pageNumber="46"pagination="1 - 188"refId="ref41110"refString="Wheeler, E. A. and S. R. Manchester. 2002. Woods of the Eocene Nut Beds flora, Clarno Formation, Oregon, USA. IAWA Journal Supplement 3: 1 - 188."type="journal article"year="2002">Wheeler and Manchester (2002)</bibRefCitation>
</taxonomicName>
from the middle Eocene Clarno Nut Beds (but this species usually has rays with procumbent body cells, not intermixed procumbent, square, and upright cells.
<bibRefCitationid="EFB239E2A310960E5107FF03FC699A4E"author="Terada, K. & H. Nishida & Sun Ge."pageId="47"pageNumber="46"pagination="192 - 208"refId="ref40020"refString="Terada, K., H. Nishida and Sun Ge. 2011. Fossil woods from the Upper Cretaceous to Paleocene of Heilongjang (Amur) River area of China and Russia. Global Geology 14 (3): 192 - 208. [https: // doi. org / 10. 3969 / j. issn. 1673 - 9736. 2011. 03. 0]."type="journal article"year="2011">Terada et al. (2011)</bibRefCitation>
<taxonomicNameid="4C233F90A310960E510EFEECFC299A25"authority="A. C. Sm. (1947)"authorityName="A. C. Sm."authorityYear="1947"class="Magnoliopsida"family="Illiciaceae"higherTaxonomySource="GBIF"kingdom="Plantae"order="Austrobaileyales"pageId="47"pageNumber="46"phylum="Tracheophyta"rank="family">Illiciaceae A.C. Sm. (1947)</taxonomicName>
wood has narrow rays, but not exclusively uniseriate rays and so is not similar to the Dietz Hill (UF 278) fossil. We follow Terada et al.’s example and note that while UF 278-84876 has a combination of features that are consistent with