treatments-xml/data/03/8D/42/038D427DF43CFFB89799AD9AFAA8F895.xml
2024-06-21 12:22:17 +02:00

604 lines
100 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document ID-DOI="http://doi.org/10.5281/zenodo.4323878" ID-Zenodo-Dep="4323878" approvedBy="tatiana" checkinTime="1604959538993" checkinUser="tatiana" docAuthor="David S. Jacobs, Hassan Babiker, Anna Bastian, Teresa Kearney, Rowen van Eeden &amp; Jacqueline M. Bishop" docDate="2013" docId="038D427DF43CFFB89799AD9AFAA8F895" docLanguage="en" docName="PLoSOne.8.12.e82614.pdf" docOrigin="PLoS ONE 8 (12)" docTitle="Rhinolophus darlingi Andersen 1905" docType="treatment" docVersion="3" lastPageId="12" lastPageNumber="13" masterDocId="FFB43A05F437FFB49703AC02FF8EFFEB" masterDocTitle="Phenotypic Convergence in Genetically Distinct Lineages of a Rhinolophus Species Complex (Mammalia, Chiroptera)" masterLastPageNumber="16" masterPageNumber="1" pageId="11" pageNumber="12" updateTime="1608077251455" updateUser="ExternalLinkService" zenodo-license-document="CC-BY-4.0">
<mods:mods xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo>
<mods:title>Phenotypic Convergence in Genetically Distinct Lineages of a Rhinolophus Species Complex (Mammalia, Chiroptera)</mods:title>
</mods:titleInfo>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>David S. Jacobs</mods:namePart>
<mods:affiliation>Department of Biological Sciences, University of Cape Town, Cape Town, South Africa</mods:affiliation>
<mods:nameIdentifier type="email">david.jacobs@uct.ac.za</mods:nameIdentifier>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Hassan Babiker</mods:namePart>
<mods:affiliation>Department of Biological Sciences, University of Cape Town, Cape Town, South Africa</mods:affiliation>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Anna Bastian</mods:namePart>
<mods:affiliation>Department of Biological Sciences, University of Cape Town, Cape Town, South Africa</mods:affiliation>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Teresa Kearney</mods:namePart>
<mods:affiliation>Ditsong Museum of Natural History, Pretoria, South Africa</mods:affiliation>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Rowen van Eeden</mods:namePart>
<mods:affiliation>Department of Biological Sciences, University of Cape Town, Cape Town, South Africa</mods:affiliation>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Jacqueline M. Bishop</mods:namePart>
<mods:affiliation>Department of Biological Sciences, University of Cape Town, Cape Town, South Africa</mods:affiliation>
</mods:name>
<mods:typeOfResource>text</mods:typeOfResource>
<mods:relatedItem type="host">
<mods:titleInfo>
<mods:title>PLoS ONE</mods:title>
</mods:titleInfo>
<mods:part>
<mods:date>2013</mods:date>
<mods:detail type="pubDate">
<mods:number>2013-12-03</mods:number>
</mods:detail>
<mods:detail type="volume">
<mods:number>8</mods:number>
</mods:detail>
<mods:detail type="issue">
<mods:number>12</mods:number>
</mods:detail>
<mods:extent unit="page">
<mods:start>1</mods:start>
<mods:end>16</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:classification>journal article</mods:classification>
<mods:identifier type="DOI">doi:10.1371/journal.pone.0082614</mods:identifier>
<mods:identifier type="Zenodo-Dep">4265355</mods:identifier>
</mods:mods>
<treatment ID-DOI="http://doi.org/10.5281/zenodo.4323878" ID-Zenodo-Dep="4323878" LSID="urn:lsid:plazi:treatment:038D427DF43CFFB89799AD9AFAA8F895" httpUri="http://treatment.plazi.org/id/038D427DF43CFFB89799AD9AFAA8F895" lastPageId="12" lastPageNumber="13" pageId="11" pageNumber="12">
<paragraph blockId="11.[154,792,408,1919]" box="[154,447,408,431]" pageId="11" pageNumber="12">
<heading bold="true" box="[154,447,408,431]" fontSize="9" level="2" pageId="11" pageNumber="12" reason="6">
<emphasis bold="true" box="[154,447,408,431]" pageId="11" pageNumber="12">
Systematics of
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[330,447,408,431]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis bold="true" box="[330,447,408,431]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
</emphasis>
</heading>
</paragraph>
<paragraph blockId="11.[154,792,408,1919]" pageId="11" pageNumber="12">
Eastern
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[267,376,442,465]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[267,376,442,465]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
, which includes the
<typeStatus box="[606,692,442,465]" pageId="11" pageNumber="12">holotype</typeStatus>
of
<materialsCitation accessionNumber="KF683217" country="South Africa" pageId="11" pageNumber="12" specimenCount="1">
<emphasis italics="true" pageId="11" pageNumber="12">
<collectionCode box="[736,755,442,465]" country="Chile" name="Departamento de Geologia, Universidad de Chile" pageId="11" pageNumber="12">R</collectionCode>
. d. barbetonensis
</emphasis>
</materialsCitation>
(TM 2476), are genetically distinct from western
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[154,266,501,524]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[154,266,501,524]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
, the two groups occurring in different clades. Eastern
<materialsCitation accessionNumber="KF683218, KF683252, KF683219, KF683253, KF683254, KF683255, KF683256, KF683221, KF683258, KF683222, KF683259, KF683260, AJ865673, FJ171197" box="[243,350,531,554]" country="South Africa" pageId="11" pageNumber="12" specimenCount="14">
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[243,350,531,554]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[243,350,531,554]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
</materialsCitation>
is embedded in the
<taxonomicName authorityName="Ruppell" authorityYear="1842" box="[578,676,531,554]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="fumigatus">
<emphasis box="[578,676,531,554]" italics="true" pageId="11" pageNumber="12">fumigatus</emphasis>
</taxonomicName>
clade that includes
<materialsCitation accessionNumber="FJ171200, AJ865674" box="[254,393,561,584]" country="South Africa" pageId="11" pageNumber="12" specimenCount="2">
<taxonomicName authorityName="Ruppell" authorityYear="1842" box="[254,393,561,584]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="fumigatus">
<emphasis box="[254,393,561,584]" italics="true" pageId="11" pageNumber="12">R. fumigatus</emphasis>
</taxonomicName>
</materialsCitation>
,
<materialsCitation accessionNumber="EU436677" box="[417,549,561,584]" country="Kenya" pageId="11" pageNumber="12" specimenCount="1">
<taxonomicName authorityName="K. Andersen" authorityYear="1905" box="[417,549,561,584]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="eloquens">
<emphasis box="[417,549,561,584]" italics="true" pageId="11" pageNumber="12">R. eloquens</emphasis>
</taxonomicName>
</materialsCitation>
and
<materialsCitation accessionNumber="EU436676, FJ171203" box="[622,790,561,584]" country="Tanzania" pageId="11" pageNumber="12" specimenCount="2">
<taxonomicName authorityName="Peters" authorityYear="1878" box="[622,784,561,584]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="hildebrandtii">
<emphasis box="[622,784,561,584]" italics="true" pageId="11" pageNumber="12">R. hildebrandtii</emphasis>
</taxonomicName>
.
</materialsCitation>
Western
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[246,350,590,613]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[246,350,590,613]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
form a monophyletic clade which diverged from the
<taxonomicName authorityName="Ruppell" authorityYear="1842" box="[244,342,620,643]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="fumigatus">
<emphasis box="[244,342,620,643]" italics="true" pageId="11" pageNumber="12">fumigatus</emphasis>
</taxonomicName>
clade ~9.7 Mya (
<figureCitation box="[518,604,620,643]" captionStart="Figure 2" captionStartId="5.[154,223,1626,1649]" captionTargetBox="[188,1444,218,1588]" captionTargetId="figure-0@5.[176,1456,206,1600]" captionTargetPageId="5" captionText="Figure 2. Bayesian consensus topology of Rhinolophus spp. based on cytochrome b. Values above nodes indicate Bayesian posterior probabilities (&gt; 0.80) and below nodes report parsimony bootstrap support. Branch lengths are proportional to average number of substitutions per site. Divergence times (millions years ago, Mya) were estimated for three nodes of interest: node A = 4.8 Mya (95% HPD; 2.697.52), B = 9.68 Mya (95% HPD; 5.8710.04), C = 10.51 Mya (95% HPD; 6.6515.43). The split between the Hipposideridae (outgroup) and the Rhinolophidae together with fossil dates for R. ferrumequinum were used as calibration points; calibration points are indicated on the tree with an asterisk *. Sequences from the type localities for R. darlingi darlingi (TM2476) and R. darlingi damarensis (TM9474) are indicated on the tree in bold. The eastern R. darlingi darlingi subspecies forms a single clade together with R. fumigatus, R. eloquens and R. hildebrandti (blue) while R. damarensis damarensis, distributed in the western region of southern Africa, is composed of two very well supported clades that subdivide into northern and southern lineages (red) that diverged in the late Miocene. doi: 10.1371/journal. pone.0082614.g002" figureDoi="http://doi.org/10.5281/zenodo.4265359" httpUri="https://zenodo.org/record/4265359/files/figure.png" pageId="11" pageNumber="12">Figure 2</figureCitation>
). Furthermore, the percentage sequence divergence for cyt b within eastern
<taxonomicName authorityName="Andersen" authorityYear="1905" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
(1.3%) and within western
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[504,607,679,702]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[504,607,679,702]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
(2.1%) was much lower than between the two clades (8.1%). This percentage sequence divergence falls within the range used to distinguish other species of bats (327%; [
<bibRefCitation author="Jacobs DS &amp; Eick GN &amp; Schoeman MC &amp; Matthee CA" box="[488,515,768,791]" journalOrPublisher="J Mammal" pageId="11" pageNumber="12" pagination="161 - 170" part="87" refId="ref11025" refString="20. Jacobs DS, Eick GN, Schoeman MC, Matthee CA (2006) Cryptic species in an insectivorous bat, Scotophilus dinganii. J Mammal 87: 161 - 170. doi: 10.1644 / 04 - MAMM-A- 132 R 2.1." title="Cryptic species in an insectivorous bat, Scotophilus dinganii" type="journal article" year="2006">20</bibRefCitation>
,
<bibRefCitation author="Zhou ZM &amp; Guillen-Servent A &amp; Lim BK &amp; Eger JL &amp; Wang YX" box="[517,544,768,791]" journalOrPublisher="J Mammal" pageId="11" pageNumber="12" pagination="57 - 73" part="90" refId="ref12065" refString="45. Zhou ZM, Guillen-Servent A, Lim BK, Eger JL, Wang YX et al. (2009) A new species from southwestern China in the Afro-Palearctic lineage of the Horseshoe bats (Rhinolophus). J Mammal 90: 57 - 73. doi: 10.1644 / 08 - MAMM-A- 048.1." title="A new species from southwestern China in the Afro-Palearctic lineage of the Horseshoe bats (Rhinolophus)" type="journal article" year="2009">45</bibRefCitation>
]). This divergence was supported by differences in the size and shape of the bacula, characteristics which may act as crucial pre-zygotic reproductive barriers [
<bibRefCitation author="Patterson BD &amp; Thaeler CS" box="[373,403,857,880]" journalOrPublisher="J Mammal" pageId="11" pageNumber="12" pagination="1 - 15" part="6" refId="ref12676" refString="60. Patterson BD, Thaeler CS (1982) The Mammalian Baculum: Hypotheses on the nature of bacular variability. J Mammal 6 (1): 1 - 15." title="The Mammalian Baculum: Hypotheses on the nature of bacular variability" type="journal article" year="1982">60</bibRefCitation>
].
</paragraph>
<paragraph blockId="11.[154,792,408,1919]" pageId="11" pageNumber="12">
Ecological niche modelling showed substantial differences in the ecology of the two lineages. The distribution of the western lineage (
<taxonomicName box="[243,360,946,969]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[243,360,946,969]" italics="true" pageId="11" pageNumber="12">damarensis</emphasis>
</taxonomicName>
;
<figureCitation box="[375,462,946,969]" captionStart="Figure 5" captionStartId="9.[154,223,1685,1708]" captionTargetBox="[343,1289,220,1651]" captionTargetId="figure-0@9.[334,1298,206,1659]" captionTargetPageId="9" captionText="Figure 5. Probability of occurrence for A) R. darlingi and B) R. damarensis in southern Africa. The predictions (Low-High) show a suitability gradient from 01 based on environmental suitability where 0 (low) indicates a zero probability of occurrence and 1 (high) indicates maximum probability of occurrence. White circles indicate locality records used for modelling the species. Dotted white triangles indicate locality records from where DNA sequences were obtained. Variables used in the final model include annual mean temperature, isothermality, temperature seasonality, temperature annual range, mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest quarter, mean temperature of the coldest quarter, annual precipitation, precipitation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter, and precipitation of the coldest quarter." figureDoi="http://doi.org/10.5281/zenodo.4265365" httpUri="https://zenodo.org/record/4265365/files/figure.png" pageId="11" pageNumber="12">Figure 5</figureCitation>
) is restricted to the drier, hotter western half of the subcontinent (
<figureCitation box="[556,679,976,999]" captionStart="Figure 5" captionStartId="9.[154,223,1685,1708]" captionTargetBox="[343,1289,220,1651]" captionTargetId="figure-0@9.[334,1298,206,1659]" captionTargetPageId="9" captionText="Figure 5. Probability of occurrence for A) R. darlingi and B) R. damarensis in southern Africa. The predictions (Low-High) show a suitability gradient from 01 based on environmental suitability where 0 (low) indicates a zero probability of occurrence and 1 (high) indicates maximum probability of occurrence. White circles indicate locality records used for modelling the species. Dotted white triangles indicate locality records from where DNA sequences were obtained. Variables used in the final model include annual mean temperature, isothermality, temperature seasonality, temperature annual range, mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest quarter, mean temperature of the coldest quarter, annual precipitation, precipitation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter, and precipitation of the coldest quarter." figureDoi="http://doi.org/10.5281/zenodo.4265365" httpUri="https://zenodo.org/record/4265365/files/figure.png" pageId="11" pageNumber="12">Figures 5b</figureCitation>
and
<figureCitation box="[758,784,976,999]" captionStart="Figure 6" captionStartId="10.[154,223,1773,1796]" captionTargetBox="[183,1449,217,1734]" captionTargetId="figure-0@10.[172,1460,206,1747]" captionTargetPageId="10" captionText="Figure 6. The log response curves for R. darlingi. A) R. darlingi; (i) annual precipitation, (ii) precipitation of the wettest quarter, (iii) temperature seasonality when all locality records were used to build the model (temperature seasonality (Coefficient of Variation) is the standard deviation of the monthly temperature estimates expressed as a percentage of the mean of those estimates (i.e., the annual mean); and B) R. damarensis; (i) annual precipitation, (ii), precipitation of the wettest quarter, and (iii) mean temperature of the wettest quarter when all locality records were used to build the model. doi: 10.1371/journal. pone.0082614.g006" figureDoi="http://doi.org/10.5281/zenodo.4265367" httpUri="https://zenodo.org/record/4265367/files/figure.png" pageId="11" pageNumber="12">6b</figureCitation>
) characterisedbyanannualprecipitationof &lt;
<quantity box="[634,791,1006,1029]" metricMagnitude="-1" metricUnit="m" metricValue="5.0" pageId="11" pageNumber="12" unit="mm" value="500.0">500 mmanda</quantity>
mean temperature in the wettest quarter of about 28°C (
<figureCitation captionStart="Figure 6" captionStartId="10.[154,223,1773,1796]" captionTargetBox="[183,1449,217,1734]" captionTargetId="figure-0@10.[172,1460,206,1747]" captionTargetPageId="10" captionText="Figure 6. The log response curves for R. darlingi. A) R. darlingi; (i) annual precipitation, (ii) precipitation of the wettest quarter, (iii) temperature seasonality when all locality records were used to build the model (temperature seasonality (Coefficient of Variation) is the standard deviation of the monthly temperature estimates expressed as a percentage of the mean of those estimates (i.e., the annual mean); and B) R. damarensis; (i) annual precipitation, (ii), precipitation of the wettest quarter, and (iii) mean temperature of the wettest quarter when all locality records were used to build the model. doi: 10.1371/journal. pone.0082614.g006" figureDoi="http://doi.org/10.5281/zenodo.4265367" httpUri="https://zenodo.org/record/4265367/files/figure.png" pageId="11" pageNumber="12">Figure 6b</figureCitation>
). The distribution of eastern lineage (
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[567,671,1065,1088]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[567,671,1065,1088]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
;
<figureCitation box="[685,783,1065,1088]" captionStart="Figure 5" captionStartId="9.[154,223,1685,1708]" captionTargetBox="[343,1289,220,1651]" captionTargetId="figure-0@9.[334,1298,206,1659]" captionTargetPageId="9" captionText="Figure 5. Probability of occurrence for A) R. darlingi and B) R. damarensis in southern Africa. The predictions (Low-High) show a suitability gradient from 01 based on environmental suitability where 0 (low) indicates a zero probability of occurrence and 1 (high) indicates maximum probability of occurrence. White circles indicate locality records used for modelling the species. Dotted white triangles indicate locality records from where DNA sequences were obtained. Variables used in the final model include annual mean temperature, isothermality, temperature seasonality, temperature annual range, mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest quarter, mean temperature of the coldest quarter, annual precipitation, precipitation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter, and precipitation of the coldest quarter." figureDoi="http://doi.org/10.5281/zenodo.4265365" httpUri="https://zenodo.org/record/4265365/files/figure.png" pageId="11" pageNumber="12">Figure 5a</figureCitation>
) is restricted to the more mesic eastern half of the subcontinent (
<figureCitation box="[161,276,1124,1147]" captionStart="Figure 5" captionStartId="9.[154,223,1685,1708]" captionTargetBox="[343,1289,220,1651]" captionTargetId="figure-0@9.[334,1298,206,1659]" captionTargetPageId="9" captionText="Figure 5. Probability of occurrence for A) R. darlingi and B) R. damarensis in southern Africa. The predictions (Low-High) show a suitability gradient from 01 based on environmental suitability where 0 (low) indicates a zero probability of occurrence and 1 (high) indicates maximum probability of occurrence. White circles indicate locality records used for modelling the species. Dotted white triangles indicate locality records from where DNA sequences were obtained. Variables used in the final model include annual mean temperature, isothermality, temperature seasonality, temperature annual range, mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest quarter, mean temperature of the coldest quarter, annual precipitation, precipitation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter, and precipitation of the coldest quarter." figureDoi="http://doi.org/10.5281/zenodo.4265365" httpUri="https://zenodo.org/record/4265365/files/figure.png" pageId="11" pageNumber="12">Figures 5a</figureCitation>
and
<figureCitation box="[340,365,1124,1147]" captionStart="Figure 6" captionStartId="10.[154,223,1773,1796]" captionTargetBox="[183,1449,217,1734]" captionTargetId="figure-0@10.[172,1460,206,1747]" captionTargetPageId="10" captionText="Figure 6. The log response curves for R. darlingi. A) R. darlingi; (i) annual precipitation, (ii) precipitation of the wettest quarter, (iii) temperature seasonality when all locality records were used to build the model (temperature seasonality (Coefficient of Variation) is the standard deviation of the monthly temperature estimates expressed as a percentage of the mean of those estimates (i.e., the annual mean); and B) R. damarensis; (i) annual precipitation, (ii), precipitation of the wettest quarter, and (iii) mean temperature of the wettest quarter when all locality records were used to build the model. doi: 10.1371/journal. pone.0082614.g006" figureDoi="http://doi.org/10.5281/zenodo.4265367" httpUri="https://zenodo.org/record/4265367/files/figure.png" pageId="11" pageNumber="12">6a</figureCitation>
) suggesting a limited tolerance to arid conditions and a general absence from regions with an annual precipitationof &lt;
<quantity box="[344,765,1184,1207]" metricMagnitude="-1" metricUnit="m" metricValue="1.0" pageId="11" pageNumber="12" unit="mm" value="100.0">100 mmandatemperatureseasonality</quantity>
&lt;10% and&gt; 55% (
<figureCitation box="[326,428,1213,1236]" captionStart="Figure 6" captionStartId="10.[154,223,1773,1796]" captionTargetBox="[183,1449,217,1734]" captionTargetId="figure-0@10.[172,1460,206,1747]" captionTargetPageId="10" captionText="Figure 6. The log response curves for R. darlingi. A) R. darlingi; (i) annual precipitation, (ii) precipitation of the wettest quarter, (iii) temperature seasonality when all locality records were used to build the model (temperature seasonality (Coefficient of Variation) is the standard deviation of the monthly temperature estimates expressed as a percentage of the mean of those estimates (i.e., the annual mean); and B) R. damarensis; (i) annual precipitation, (ii), precipitation of the wettest quarter, and (iii) mean temperature of the wettest quarter when all locality records were used to build the model. doi: 10.1371/journal. pone.0082614.g006" figureDoi="http://doi.org/10.5281/zenodo.4265367" httpUri="https://zenodo.org/record/4265367/files/figure.png" pageId="11" pageNumber="12">Figure 6a</figureCitation>
).
</paragraph>
<paragraph blockId="11.[154,792,408,1919]" lastBlockId="11.[841,1480,197,695]" pageId="11" pageNumber="12">
Thus, there are species level genetic differences supported by differences in bacula morphology as well as substantial ecological differences between
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[481,587,1302,1325]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[481,587,1302,1325]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
in the east and
<taxonomicName authorityName="Andersen" authorityYear="1905" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
in the west, suggesting that a taxonomic revision is required despite their substantial convergence in echolocation frequency and skull and post-cranial morphology. Since the
<typeStatus box="[154,197,1421,1444]" pageId="11" pageNumber="12">type</typeStatus>
specimen of
<materialsCitation accessionNumber="KF683223, KF683263, KF683264, KF683262, KF683261" box="[361,791,1421,1444]" country="Zimbabwe" pageId="11" pageNumber="12" specimenCount="5">
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[361,473,1421,1444]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[361,473,1421,1444]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
was collected in
<collectingCountry box="[686,791,1421,1444]" name="Zimbabwe" pageId="11" pageNumber="12">Zimbabwe</collectingCountry>
</materialsCitation>
(eastern part of the subcontinent) we retain the name
<taxonomicName authorityName="Andersen" authorityYear="1905" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
for the eastern lineage (
<figureCitation box="[479,565,1480,1503]" captionStart="Figure 1" captionStartId="2.[154,223,1215,1238]" captionTargetBox="[173,1458,219,1176]" captionTargetId="figure-314@2.[160,1471,206,1189]" captionTargetPageId="2" captionText="Figure 1. The distribution of R. darlingi (shaded areas) and sample localities (symbols). Squares = eastern R. darlingi; Circles (southern lineage) and triangles (northern lineage) = western R. darlingi (R. damarensis; Fig. 2). TM 9474 = holotype R. d. damarensis Namibia), TM 2476 = holotype of R. d. barbetonensis South Africa. doi: 10.1371/journal.pone.0082614.g001" figureDoi="http://doi.org/10.5281/zenodo.4265357" httpUri="https://zenodo.org/record/4265357/files/figure.png" pageId="11" pageNumber="12">Figure 1</figureCitation>
). Henceforth we refer to individuals in the western lineage as
<materialsCitation accessionNumber="KF683235, KF683277, KF683240, KF683248, KF683279, KF683265, KF683236, KF683280, KF683241, KF683233, KF683274, KF683237, KF683270, KF683238, KF683272, KF683239, KF683282, KF683242, KF683243, KF683244, KF683283, KF683245, KF683265, KF683246, KF683247, KF683278, KF683281, KF683284, KF683285 " box="[552,697,1510,1533]" country="South Africa" pageId="11" pageNumber="12" specimenCount="29">
<taxonomicName box="[552,697,1510,1533]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[552,697,1510,1533]" italics="true" pageId="11" pageNumber="12">R. damarensis</emphasis>
</taxonomicName>
</materialsCitation>
because the
<typeStatus box="[196,282,1540,1563]" pageId="11" pageNumber="12">holotype</typeStatus>
of
<materialsCitation accessionNumber="KF683220" box="[322,502,1540,1563]" country="South Africa" pageId="11" pageNumber="12" specimenCount="1">
<emphasis box="[322,338,1540,1563]" italics="true" pageId="11" pageNumber="12">
<collectionCode box="[322,338,1540,1563]" country="Chile" name="Departamento de Geologia, Universidad de Chile" pageId="11" pageNumber="12">R</collectionCode>
</emphasis>
.
<emphasis box="[356,502,1540,1563]" italics="true" pageId="11" pageNumber="12">
d.
<taxonomicName box="[385,502,1540,1563]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">damarensis</taxonomicName>
</emphasis>
</materialsCitation>
(TM9474, locality Namibia;
<tableCitation box="[154,245,1569,1592]" captionStart="Table 2" captionStartId="7.[154,217,209,232]" captionText="Table 2. Squared Mahalanobis distances obtained from Discriminant Function Analysis on skull and post-cranial measurements." pageId="11" pageNumber="12">Table S2</tableCitation>
and Appendix S
<quantity box="[415,448,1569,1592]" metricMagnitude="-2" metricUnit="m" metricValue="2.54" pageId="11" pageNumber="12" unit="in" value="1.0">1 in</quantity>
File S1 Supporting Information) is associated with this group (
<figureCitation box="[448,543,1599,1622]" captionStart="Figure 3" captionStartId="6.[154,223,1108,1131]" captionTargetBox="[173,1458,217,1071]" captionTargetId="figure-350@6.[160,1471,206,1083]" captionTargetPageId="6" captionText="Figure 3. Plot of canonical scores extracted by Discriminant Function Analysis from 24 skull and external parameters. Species abbreviations are the same as those in Table S1 (Supporting Information). Museum accession numbers relate to holotypes (See legend of Figure 1). doi: 10.1371/journal.pone.0082614.g003" figureDoi="http://doi.org/10.5281/zenodo.4265361" httpUri="https://zenodo.org/record/4265361/files/figure.png" pageId="11" pageNumber="12">Figure 3</figureCitation>
). The distribution of
<taxonomicName authorityName="Andersen" authorityYear="1905" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
is restricted to the mesic eastern parts of the subcontinent (
<figureCitation box="[258,359,1658,1681]" captionStart="Figure 5" captionStartId="9.[154,223,1685,1708]" captionTargetBox="[343,1289,220,1651]" captionTargetId="figure-0@9.[334,1298,206,1659]" captionTargetPageId="9" captionText="Figure 5. Probability of occurrence for A) R. darlingi and B) R. damarensis in southern Africa. The predictions (Low-High) show a suitability gradient from 01 based on environmental suitability where 0 (low) indicates a zero probability of occurrence and 1 (high) indicates maximum probability of occurrence. White circles indicate locality records used for modelling the species. Dotted white triangles indicate locality records from where DNA sequences were obtained. Variables used in the final model include annual mean temperature, isothermality, temperature seasonality, temperature annual range, mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest quarter, mean temperature of the coldest quarter, annual precipitation, precipitation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter, and precipitation of the coldest quarter." figureDoi="http://doi.org/10.5281/zenodo.4265365" httpUri="https://zenodo.org/record/4265365/files/figure.png" pageId="11" pageNumber="12">Figure 5a</figureCitation>
) and is described in detail in Monadjem et al. [
<bibRefCitation author="Monadjem A &amp; Taylor PJ &amp; Cotterill FPD &amp; Schoeman MC" bookContentInfo="596 pp." box="[193,218,1688,1711]" journalOrPublisher="Johannesburg: Wits University Press" pageId="11" pageNumber="12" refId="ref11968" refString="42. Monadjem A, Taylor PJ, Cotterill FPD, Schoeman MC (2010) Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis. Johannesburg: Wits University Press. 596 pp. PubMed: 2404026923029517217317494316682." title="Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis" type="book" year="2010">42</bibRefCitation>
]. It appears to occupy mainly woodland and grassland biomes (
<figureCitation box="[241,344,1718,1741]" captionStart="Figure 5" captionStartId="9.[154,223,1685,1708]" captionTargetBox="[343,1289,220,1651]" captionTargetId="figure-0@9.[334,1298,206,1659]" captionTargetPageId="9" captionText="Figure 5. Probability of occurrence for A) R. darlingi and B) R. damarensis in southern Africa. The predictions (Low-High) show a suitability gradient from 01 based on environmental suitability where 0 (low) indicates a zero probability of occurrence and 1 (high) indicates maximum probability of occurrence. White circles indicate locality records used for modelling the species. Dotted white triangles indicate locality records from where DNA sequences were obtained. Variables used in the final model include annual mean temperature, isothermality, temperature seasonality, temperature annual range, mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest quarter, mean temperature of the coldest quarter, annual precipitation, precipitation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter, and precipitation of the coldest quarter." figureDoi="http://doi.org/10.5281/zenodo.4265365" httpUri="https://zenodo.org/record/4265365/files/figure.png" pageId="11" pageNumber="12">Figure 5a</figureCitation>
; [
<bibRefCitation author="Mucina LAR &amp; Rutherford MC" box="[363,388,1718,1741]" journalOrPublisher="Pretoria" pageId="11" pageNumber="12" refId="ref11939" refString="41. Mucina LAR, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African National Biodiversity Institute. Pretoria" title="The vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African National Biodiversity Institute" type="book" year="2006">41</bibRefCitation>
,
<bibRefCitation author="Monadjem A &amp; Taylor PJ &amp; Cotterill FPD &amp; Schoeman MC" bookContentInfo="596 pp." box="[390,419,1718,1741]" journalOrPublisher="Johannesburg: Wits University Press" pageId="11" pageNumber="12" refId="ref11968" refString="42. Monadjem A, Taylor PJ, Cotterill FPD, Schoeman MC (2010) Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis. Johannesburg: Wits University Press. 596 pp. PubMed: 2404026923029517217317494316682." title="Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis" type="book" year="2010">42</bibRefCitation>
]). The distribution of
<materialsCitation accessionNumber="KF683226, KF683225, KF683265, KF683227, KF683267, KF683228, KF683269, KF683229, KF683270, KF683271 " box="[642,791,1718,1741]" country="Namibia" pageId="11" pageNumber="12" specimenCount="10">
<taxonomicName box="[642,791,1718,1741]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[642,791,1718,1741]" italics="true" pageId="11" pageNumber="12">R. damarensis</emphasis>
</taxonomicName>
</materialsCitation>
is restricted to the xeric regions from south-western Angola, through northern Namibia, southwards as far as Carnarvon in south-western South Africa and occupies mainly arid savanna, Succulent- and Nama-Karoo, shrubland and desert (
<figureCitation box="[685,784,1836,1859]" captionStart="Figure 5" captionStartId="9.[154,223,1685,1708]" captionTargetBox="[343,1289,220,1651]" captionTargetId="figure-0@9.[334,1298,206,1659]" captionTargetPageId="9" captionText="Figure 5. Probability of occurrence for A) R. darlingi and B) R. damarensis in southern Africa. The predictions (Low-High) show a suitability gradient from 01 based on environmental suitability where 0 (low) indicates a zero probability of occurrence and 1 (high) indicates maximum probability of occurrence. White circles indicate locality records used for modelling the species. Dotted white triangles indicate locality records from where DNA sequences were obtained. Variables used in the final model include annual mean temperature, isothermality, temperature seasonality, temperature annual range, mean temperature of the wettest quarter, mean temperature of the driest quarter, mean temperature of the warmest quarter, mean temperature of the coldest quarter, annual precipitation, precipitation seasonality, precipitation of the wettest quarter, precipitation of the driest quarter, and precipitation of the coldest quarter." figureDoi="http://doi.org/10.5281/zenodo.4265365" httpUri="https://zenodo.org/record/4265365/files/figure.png" pageId="11" pageNumber="12">Figure 5b</figureCitation>
; [41,42]). The eastern limits of the distribution of
<materialsCitation box="[643,791,1866,1889]" pageId="11" pageNumber="12">
<taxonomicName box="[643,791,1866,1889]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[643,791,1866,1889]" italics="true" pageId="11" pageNumber="12">R. damarensis</emphasis>
</taxonomicName>
</materialsCitation>
appears to be demarcated by the area around Taung, the eastern most locality for a specimen in
<taxonomicName box="[1320,1478,197,220]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[1320,1478,197,220]" italics="true" pageId="11" pageNumber="12">R. damarensis</emphasis>
</taxonomicName>
(TM48040,
<tableCitation box="[961,1056,227,250]" captionStart="Table 2" captionStartId="7.[154,217,209,232]" captionText="Table 2. Squared Mahalanobis distances obtained from Discriminant Function Analysis on skull and post-cranial measurements." pageId="11" pageNumber="12">Table S2</tableCitation>
and Appendix S
<quantity box="[1238,1274,227,250]" metricMagnitude="-2" metricUnit="m" metricValue="2.54" pageId="11" pageNumber="12" unit="in" value="1.0">1 in</quantity>
File S1 Supporting Information;
<figureCitation box="[970,1054,257,280]" captionStart="Figure 1" captionStartId="2.[154,223,1215,1238]" captionTargetBox="[173,1458,219,1176]" captionTargetId="figure-314@2.[160,1471,206,1189]" captionTargetPageId="2" captionText="Figure 1. The distribution of R. darlingi (shaded areas) and sample localities (symbols). Squares = eastern R. darlingi; Circles (southern lineage) and triangles (northern lineage) = western R. darlingi (R. damarensis; Fig. 2). TM 9474 = holotype R. d. damarensis Namibia), TM 2476 = holotype of R. d. barbetonensis South Africa. doi: 10.1371/journal.pone.0082614.g001" figureDoi="http://doi.org/10.5281/zenodo.4265357" httpUri="https://zenodo.org/record/4265357/files/figure.png" pageId="11" pageNumber="12">Figure 1</figureCitation>
) and close to the boundary between the Savanna biome in the west and the Grassland biome in the east [
<bibRefCitation author="Mucina LAR &amp; Rutherford MC" box="[897,926,316,339]" journalOrPublisher="Pretoria" pageId="11" pageNumber="12" refId="ref11939" refString="41. Mucina LAR, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African National Biodiversity Institute. Pretoria" title="The vegetation of South Africa, Lesotho and Swaziland. Pretoria: South African National Biodiversity Institute" type="book" year="2006">41</bibRefCitation>
].
</paragraph>
<paragraph blockId="11.[841,1480,197,695]" pageId="11" pageNumber="12">
The
<taxonomicName box="[910,1056,346,369]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[910,1056,346,369]" italics="true" pageId="11" pageNumber="12">R. damarensis</emphasis>
</taxonomicName>
clade comprises two lineages, a northern lineage restricted to the more mesic regions of northern Namibia and a southern lineage with a distribution across several biomes in central and north-western South Africa, extending as far north as central Namibia (
<figureCitation box="[1319,1410,464,487]" captionStart="Figure 1" captionStartId="2.[154,223,1215,1238]" captionTargetBox="[173,1458,219,1176]" captionTargetId="figure-314@2.[160,1471,206,1189]" captionTargetPageId="2" captionText="Figure 1. The distribution of R. darlingi (shaded areas) and sample localities (symbols). Squares = eastern R. darlingi; Circles (southern lineage) and triangles (northern lineage) = western R. darlingi (R. damarensis; Fig. 2). TM 9474 = holotype R. d. damarensis Namibia), TM 2476 = holotype of R. d. barbetonensis South Africa. doi: 10.1371/journal.pone.0082614.g001" figureDoi="http://doi.org/10.5281/zenodo.4265357" httpUri="https://zenodo.org/record/4265357/files/figure.png" pageId="11" pageNumber="12">Figure 1</figureCitation>
). The genetic differentiation between the two lineages in
<taxonomicName class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">
<emphasis italics="true" pageId="11" pageNumber="12">R. damarensis</emphasis>
</taxonomicName>
is of the same magnitude as that used to infer cryptic species in other rhinolophids e.g.
<materialsCitation box="[1275,1395,553,576]" pageId="11" pageNumber="12">
<taxonomicName authorityName="Peters" authorityYear="1871" box="[1275,1395,553,576]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="arcuatus">
<emphasis box="[1275,1395,553,576]" italics="true" pageId="11" pageNumber="12">R. arcuatus</emphasis>
</taxonomicName>
</materialsCitation>
[
<bibRefCitation author="Sedlock JL &amp; Weyandt SE" box="[1411,1437,553,576]" journalOrPublisher="J Zool" pageId="11" pageNumber="12" pagination="388 - 395" part="279" refId="ref12709" refString="61. Sedlock JL, Weyandt SE (2009) Genetic divergence between morphologically and acoustically cryptic bats: novel niche partitioning or recent contact? J Zool 279: 388 - 395. doi: 10.1111 / j. 1469 - 7998.2009.00634. x." title="Genetic divergence between morphologically and acoustically cryptic bats: novel niche partitioning or recent contact?" type="journal article" year="2009">61</bibRefCitation>
]. In combination with ecological divergence the genetic divergence reported here suggests that
<taxonomicName box="[1126,1272,613,636]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[1126,1272,613,636]" italics="true" pageId="11" pageNumber="12">R. damarensis</emphasis>
</taxonomicName>
may itself consist of cryptic species and further taxonomic revision of both this clade and
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[885,987,672,695]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[885,987,672,695]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
(
<emphasis box="[1001,1105,672,695]" italics="true" pageId="11" pageNumber="12">sensu lato</emphasis>
) is required.
</paragraph>
<paragraph blockId="11.[841,1480,734,1919]" box="[841,1313,734,757]" pageId="11" pageNumber="12">
<heading box="[841,1313,734,757]" pageId="11" pageNumber="12">
<emphasis bold="true" box="[841,1313,734,757]" pageId="11" pageNumber="12">Morphological and acoustic convergence</emphasis>
</heading>
</paragraph>
<paragraph blockId="11.[841,1480,734,1919]" pageId="11" pageNumber="12">
Despite the relatively ancient split (~9.7 Mya), marked genetic differentiation and the occupation of different biomes there was convergence in the cranial and post-cranial measurements of
<taxonomicName box="[1036,1189,857,880]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[1036,1189,857,880]" italics="true" pageId="11" pageNumber="12">R. damarensis</emphasis>
</taxonomicName>
and
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[1253,1362,857,880]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[1253,1362,857,880]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
(
<figureCitation box="[1380,1475,857,880]" captionStart="Figure 3" captionStartId="6.[154,223,1108,1131]" captionTargetBox="[173,1458,217,1071]" captionTargetId="figure-350@6.[160,1471,206,1083]" captionTargetPageId="6" captionText="Figure 3. Plot of canonical scores extracted by Discriminant Function Analysis from 24 skull and external parameters. Species abbreviations are the same as those in Table S1 (Supporting Information). Museum accession numbers relate to holotypes (See legend of Figure 1). doi: 10.1371/journal.pone.0082614.g003" figureDoi="http://doi.org/10.5281/zenodo.4265361" httpUri="https://zenodo.org/record/4265361/files/figure.png" pageId="11" pageNumber="12">Figure 3</figureCitation>
,
<tableCitation box="[841,934,887,910]" captionStart="Table 1" captionStartId="6.[841,904,1275,1298]" captionText="Table 1. Results of discriminant functions analysis on principal component scores extracted by principal component analyses on 24 skull and external variables (see Table S5, Supporting Information)." pageId="11" pageNumber="12">Table S1</tableCitation>
and Appendix S
<quantity box="[1113,1148,887,910]" metricMagnitude="-2" metricUnit="m" metricValue="2.54" pageId="11" pageNumber="12" unit="in" value="1.0">1 in</quantity>
File S1 Supporting Information) as well as in the noseleaf width and resting echolocation frequency (
<tableCitation box="[957,1053,946,969]" captionStart="Table 1" captionStartId="6.[841,904,1275,1298]" captionText="Table 1. Results of discriminant functions analysis on principal component scores extracted by principal component analyses on 24 skull and external variables (see Table S5, Supporting Information)." pageId="11" pageNumber="12">Table S1</tableCitation>
and Appendix S
<quantity box="[1237,1274,946,969]" metricMagnitude="-2" metricUnit="m" metricValue="2.54" pageId="11" pageNumber="12" unit="in" value="1.0">1 in</quantity>
File S1 Supporting Information). None of these parameters are thus taxonomically informative with respect to differentiating
<taxonomicName box="[1273,1423,1006,1029]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[1273,1423,1006,1029]" italics="true" pageId="11" pageNumber="12">R. damarensis</emphasis>
</taxonomicName>
from
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[841,946,1035,1058]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[841,946,1035,1058]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
. The phenotypic similarity between the two
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[1405,1478,1035,1058]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[1405,1478,1035,1058]" italics="true" pageId="11" pageNumber="12">darlingi</emphasis>
</taxonomicName>
lineages is greater than that between any other pair of species in our analyses (
<tableCitation box="[1024,1111,1095,1118]" captionStart="Table 2" captionStartId="7.[154,217,209,232]" captionText="Table 2. Squared Mahalanobis distances obtained from Discriminant Function Analysis on skull and post-cranial measurements." pageId="11" pageNumber="12">Table 2</tableCitation>
). Furthermore,
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[1277,1385,1095,1118]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[1277,1385,1095,1118]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
is more similar to
<taxonomicName box="[961,1118,1124,1147]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[961,1118,1124,1147]" italics="true" pageId="11" pageNumber="12">R. damarensis</emphasis>
</taxonomicName>
in body size and echolocation frequency than it is to any of the other species in the
<taxonomicName authorityName="Ruppell" authorityYear="1842" box="[1380,1478,1154,1177]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="fumigatus">
<emphasis box="[1380,1478,1154,1177]" italics="true" pageId="11" pageNumber="12">fumigatus</emphasis>
</taxonomicName>
clade (
<figureCitation box="[912,1002,1184,1207]" captionStart="Figure 2" captionStartId="5.[154,223,1626,1649]" captionTargetBox="[188,1444,218,1588]" captionTargetId="figure-0@5.[176,1456,206,1600]" captionTargetPageId="5" captionText="Figure 2. Bayesian consensus topology of Rhinolophus spp. based on cytochrome b. Values above nodes indicate Bayesian posterior probabilities (&gt; 0.80) and below nodes report parsimony bootstrap support. Branch lengths are proportional to average number of substitutions per site. Divergence times (millions years ago, Mya) were estimated for three nodes of interest: node A = 4.8 Mya (95% HPD; 2.697.52), B = 9.68 Mya (95% HPD; 5.8710.04), C = 10.51 Mya (95% HPD; 6.6515.43). The split between the Hipposideridae (outgroup) and the Rhinolophidae together with fossil dates for R. ferrumequinum were used as calibration points; calibration points are indicated on the tree with an asterisk *. Sequences from the type localities for R. darlingi darlingi (TM2476) and R. darlingi damarensis (TM9474) are indicated on the tree in bold. The eastern R. darlingi darlingi subspecies forms a single clade together with R. fumigatus, R. eloquens and R. hildebrandti (blue) while R. damarensis damarensis, distributed in the western region of southern Africa, is composed of two very well supported clades that subdivide into northern and southern lineages (red) that diverged in the late Miocene. doi: 10.1371/journal. pone.0082614.g002" figureDoi="http://doi.org/10.5281/zenodo.4265359" httpUri="https://zenodo.org/record/4265359/files/figure.png" pageId="11" pageNumber="12">Figure 2</figureCitation>
) which all have bigger body sizes and lower resting echolocation frequencies (than both
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[1295,1400,1213,1236]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[1295,1400,1213,1236]" italics="true" pageId="11" pageNumber="12">R. darlingi</emphasis>
</taxonomicName>
and
<taxonomicName class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="11" pageNumber="12" phylum="Chordata" rank="species" species="damarensis">
<emphasis italics="true" pageId="11" pageNumber="12">R. damarensis</emphasis>
</taxonomicName>
) ranging from
<quantity box="[1109,1218,1243,1266]" metricMagnitude="-2" metricUnit="m" metricValue="5.75" metricValueMax="6.7" metricValueMin="4.8" pageId="11" pageNumber="12" unit="mm" value="57.5" valueMax="67.0" valueMin="48.0">4867 mm</quantity>
(forearm length) and 32 54 kHz, respectively [
<bibRefCitation author="Taylor PJ &amp; Stoffberg S &amp; Monadjem A &amp; Schoeman MC &amp; Bayliss J" box="[1075,1100,1273,1296]" journalOrPublisher="PLOS ONE" pageId="11" pageNumber="12" pagination="41744" part="7" refId="ref11531" refString="31. Taylor PJ, Stoffberg S, Monadjem A, Schoeman MC, Bayliss J et al. (2012) Four new bat species Rhinolophus hildebrandtii complex reflect plio-pleistocene divergence of dwarfs and giants across an afromontane archipelago. PLOS ONE 7 (9): e 41744. doi: 10.1371 / journal. pone. 0041744. PubMed: 22984399." title="Four new bat species Rhinolophus hildebrandtii complex reflect plio-pleistocene divergence of dwarfs and giants across an afromontane archipelago" type="journal article" year="2012">31</bibRefCitation>
,
<bibRefCitation author="Monadjem A &amp; Taylor PJ &amp; Cotterill FPD &amp; Schoeman MC" bookContentInfo="596 pp." box="[1102,1131,1273,1296]" journalOrPublisher="Johannesburg: Wits University Press" pageId="11" pageNumber="12" refId="ref11968" refString="42. Monadjem A, Taylor PJ, Cotterill FPD, Schoeman MC (2010) Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis. Johannesburg: Wits University Press. 596 pp. PubMed: 2404026923029517217317494316682." title="Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis" type="book" year="2010">42</bibRefCitation>
]. They are also more similar to each other than either is to the ancestral character state at node B (
<figureCitation box="[927,1015,1332,1355]" captionStart="Figure 2" captionStartId="5.[154,223,1626,1649]" captionTargetBox="[188,1444,218,1588]" captionTargetId="figure-0@5.[176,1456,206,1600]" captionTargetPageId="5" captionText="Figure 2. Bayesian consensus topology of Rhinolophus spp. based on cytochrome b. Values above nodes indicate Bayesian posterior probabilities (&gt; 0.80) and below nodes report parsimony bootstrap support. Branch lengths are proportional to average number of substitutions per site. Divergence times (millions years ago, Mya) were estimated for three nodes of interest: node A = 4.8 Mya (95% HPD; 2.697.52), B = 9.68 Mya (95% HPD; 5.8710.04), C = 10.51 Mya (95% HPD; 6.6515.43). The split between the Hipposideridae (outgroup) and the Rhinolophidae together with fossil dates for R. ferrumequinum were used as calibration points; calibration points are indicated on the tree with an asterisk *. Sequences from the type localities for R. darlingi darlingi (TM2476) and R. darlingi damarensis (TM9474) are indicated on the tree in bold. The eastern R. darlingi darlingi subspecies forms a single clade together with R. fumigatus, R. eloquens and R. hildebrandti (blue) while R. damarensis damarensis, distributed in the western region of southern Africa, is composed of two very well supported clades that subdivide into northern and southern lineages (red) that diverged in the late Miocene. doi: 10.1371/journal. pone.0082614.g002" figureDoi="http://doi.org/10.5281/zenodo.4265359" httpUri="https://zenodo.org/record/4265359/files/figure.png" pageId="11" pageNumber="12">Figure 2</figureCitation>
; forearm length =
<quantity box="[1201,1293,1332,1355]" metricMagnitude="-2" metricUnit="m" metricValue="5.87" pageId="11" pageNumber="12" unit="mm" value="58.7">58.7 mm</quantity>
; resting frequency = 60.1 kHz [
<bibRefCitation author="Stoffberg S &amp; Jacobs DS &amp; Matthee CA" box="[962,993,1362,1385]" journalOrPublisher="J Mammal Evol" pageId="11" pageNumber="12" pagination="117 - 129" part="18" refId="ref11842" refString="39. Stoffberg S, Jacobs DS, Matthee CA (2011) The divergence of echolocation frequency in Horseshoe Bats: moth hearing, body size or habitat? J Mammal Evol 18: 117 - 129. doi: 10.1007 / s 10914 - 011 - 9158 - x." title="The divergence of echolocation frequency in Horseshoe Bats: moth hearing, body size or habitat?" type="journal article" year="2011">39</bibRefCitation>
]).
</paragraph>
<paragraph blockId="11.[841,1480,734,1919]" lastBlockId="12.[154,792,197,1919]" lastPageId="12" lastPageNumber="13" pageId="11" pageNumber="12">
Such convergence involving morphology and echolocation in non-sibling species deviates from the pattern normally found in cryptic species of bats in general and rhinolophids in particular. All cryptic bat species uncovered so far have similar morphology but divergent echolocation frequencies which differed by up to 13 kHz (e.g. [
<bibRefCitation author="Jones G &amp; van Parijs SM" box="[1182,1208,1540,1563]" journalOrPublisher="Proc Biol Sci" pageId="11" pageNumber="12" pagination="119 - 125" part="251" refId="ref10982" refString="19. Jones G, van Parijs SM (1993) Bimodal echolocation in pipistrelle bats: are cryptic species present? Proc Biol Sci 251: 119 - 125. doi: 10.1098 / rspb. 1993.0017. PubMed: 8096079." title="Bimodal echolocation in pipistrelle bats: are cryptic species present?" type="journal article" year="1993">19</bibRefCitation>
,
<bibRefCitation author="Jacobs DS &amp; Eick GN &amp; Schoeman MC &amp; Matthee CA" box="[1211,1239,1540,1563]" journalOrPublisher="J Mammal" pageId="11" pageNumber="12" pagination="161 - 170" part="87" refId="ref11025" refString="20. Jacobs DS, Eick GN, Schoeman MC, Matthee CA (2006) Cryptic species in an insectivorous bat, Scotophilus dinganii. J Mammal 87: 161 - 170. doi: 10.1644 / 04 - MAMM-A- 132 R 2.1." title="Cryptic species in an insectivorous bat, Scotophilus dinganii" type="journal article" year="2006">20</bibRefCitation>
,
<bibRefCitation author="Thabah A &amp; Rossiter SJ &amp; Kingston T &amp; Zhang S &amp; Parsons S" box="[1242,1270,1540,1563]" journalOrPublisher="Biol J Linn Soc" pageId="11" pageNumber="12" pagination="119 - 130" part="88" refId="ref12755" refString="62. Thabah A, Rossiter SJ, Kingston T, Zhang S, Parsons S et al. (2006) Genetic divergence and echolocation call frequency in cryptic species of Hipposideros larvatus s. l. (Chiroptera: Hipposideridae) from the Indo-Malayan region. Biol J Linn Soc 88: 119 - 130. doi: 10.1111 / j. 1095 - 8312.2006.00602. x." title="Genetic divergence and echolocation call frequency in cryptic species of Hipposideros larvatus s. l. (Chiroptera: Hipposideridae) from the Indo-Malayan region" type="journal article" year="2006">62</bibRefCitation>
], however see 61). These cryptic species all co-occurred and such differences in sensory traits may be important isolating mechanisms between species [
<bibRefCitation author="Jones G" box="[935,960,1629,1652]" journalOrPublisher="Adv Stud Behav" pageId="11" pageNumber="12" pagination="317 - 354" part="26" refId="ref12825" refString="63. Jones G (1997) Acoustic Signals and Speciation: The roles of natural and sexual selection in the evolution of cryptic species. Adv Stud Behav 26: 317 - 354. doi: 10.1016 / S 0065 - 3454 (08) 60383 - 6." title="Acoustic Signals and Speciation: The roles of natural and sexual selection in the evolution of cryptic species" type="journal article" year="1997">63</bibRefCitation>
] leading to resource partitioning and subsequent genetic divergence. At lower echolocation frequencies, where differences in frequency translate into large differences in wavelength [
<bibRefCitation author="Jacobs DS &amp; Barclay RMR &amp; Walker MH" box="[974,999,1718,1741]" journalOrPublisher="Oecologia" pageId="11" pageNumber="12" pagination="583 - 594" part="152" refId="ref12875" refString="64. Jacobs DS, Barclay RMR, Walker MH (2007) The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern? Oecologia 152: 583 - 594. doi: 10.1007 / s 00442 - 007 - 0679 - 1. PubMed: 17345101." title="The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern?" type="journal article" year="2007">64</bibRefCitation>
], habitat and insect prey may be partitioned [27,36,65,66]. At higher frequencies, where differences are unlikely to equate to marked differences in wavelength, resource partitioning may be mediated by the selection for discrete frequency bands to facilitate intraspecific communication [
<bibRefCitation author="Kingston T &amp; Lara MC &amp; Jones G &amp; Akbar Z &amp; Kunz TH" box="[1014,1042,1866,1889]" journalOrPublisher="Proc Biol Sci" pageId="11" pageNumber="12" pagination="1381 - 1386" part="268" refId="ref11428" refString="29. Kingston T, Lara MC, Jones G, Akbar Z, Kunz TH et al. (2001) Acoustic divergence in two cryptic Hipposideros species: a role for social selection? Proc Biol Sci 268: 1381 - 1386. doi: 10.1098 / rspb. 2001.1630. PubMed: 11429138." title="Acoustic divergence in two cryptic Hipposideros species: a role for social selection?" type="journal article" year="2001">29</bibRefCitation>
,
<bibRefCitation author="Duellman WE &amp; Pyles RA" box="[1044,1072,1866,1889]" journalOrPublisher="Copeia" pageId="11" pageNumber="12" pagination="639 - 649" part="1983" refId="ref11643" refString="33. Duellman WE, Pyles RA (1983) Acoustic resource partitioning in anuran communities. Copeia 1983: 639 - 649" title="Acoustic resource partitioning in anuran communities" type="journal article" year="1983">33</bibRefCitation>
,
<bibRefCitation author="Heller K-G &amp; von Helversen O" box="[1075,1103,1866,1889]" journalOrPublisher="Oecologia" pageId="11" pageNumber="12" pagination="178 - 186" part="80" refId="ref11666" refString="34. Heller K-G, von Helversen O (1989) Resource partitioning of sonar frequency bands in rhinolophoid bats. Oecologia 80: 178 - 186." title="Resource partitioning of sonar frequency bands in rhinolophoid bats" type="journal article" year="1989">34</bibRefCitation>
,
<bibRefCitation author="Jacobs DS &amp; Barclay RMR &amp; Walker MH" box="[1106,1134,1866,1889]" journalOrPublisher="Oecologia" pageId="11" pageNumber="12" pagination="583 - 594" part="152" refId="ref12875" refString="64. Jacobs DS, Barclay RMR, Walker MH (2007) The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern? Oecologia 152: 583 - 594. doi: 10.1007 / s 00442 - 007 - 0679 - 1. PubMed: 17345101." title="The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern?" type="journal article" year="2007">64</bibRefCitation>
]. The call frequency of one or more of the co-existing species may shift so that individuals are more sensitive, and will respond preferentially, to the calls of their own species [
<bibRefCitation author="Kingston T &amp; Rossiter SJ" box="[430,457,227,250]" journalOrPublisher="Nature" pageId="12" pageNumber="13" pagination="654 - 657" part="429" refId="ref11345" refString="27. Kingston T, Rossiter SJ (2004) Harmonic-hopping in Wallacea's bats. Nature 429: 654 - 657. doi: 10.1038 / nature 02487. PubMed: 15190351." title="Harmonic-hopping in Wallacea's bats" type="journal article" year="2004">27</bibRefCitation>
,
<bibRefCitation author="Kingston T &amp; Lara MC &amp; Jones G &amp; Akbar Z &amp; Kunz TH" box="[459,486,227,250]" journalOrPublisher="Proc Biol Sci" pageId="12" pageNumber="13" pagination="1381 - 1386" part="268" refId="ref11428" refString="29. Kingston T, Lara MC, Jones G, Akbar Z, Kunz TH et al. (2001) Acoustic divergence in two cryptic Hipposideros species: a role for social selection? Proc Biol Sci 268: 1381 - 1386. doi: 10.1098 / rspb. 2001.1630. PubMed: 11429138." title="Acoustic divergence in two cryptic Hipposideros species: a role for social selection?" type="journal article" year="2001">29</bibRefCitation>
], facilitating intraspecific communication. Divergence in echolocation calls in sympatry may therefore be a consequence of competition leading to character displacement in at least one phenotypic trait that permits resource partitioning and coexistence. There is at least one example where sympatric bat lineages converge in both morphology and echolocation [
<bibRefCitation author="Sedlock JL &amp; Weyandt SE" box="[480,505,406,429]" journalOrPublisher="J Zool" pageId="12" pageNumber="13" pagination="388 - 395" part="279" refId="ref12709" refString="61. Sedlock JL, Weyandt SE (2009) Genetic divergence between morphologically and acoustically cryptic bats: novel niche partitioning or recent contact? J Zool 279: 388 - 395. doi: 10.1111 / j. 1469 - 7998.2009.00634. x." title="Genetic divergence between morphologically and acoustically cryptic bats: novel niche partitioning or recent contact?" type="journal article" year="2009">61</bibRefCitation>
], attributed to either novel niche partitioning or recent contact. Here lineages within the rhinolophid
<taxonomicName authorityName="Peters" authorityYear="1871" box="[276,397,466,489]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="arcuatus">
<emphasis box="[276,397,466,489]" italics="true" pageId="12" pageNumber="13">R. arcuatus</emphasis>
</taxonomicName>
may have partitioned their niches in novel ways along dimensions not previously considered. Alternatively, convergence may have evolved in allopatry with the two lineages recently making contact [
<bibRefCitation author="Sedlock JL &amp; Weyandt SE" box="[574,602,555,578]" journalOrPublisher="J Zool" pageId="12" pageNumber="13" pagination="388 - 395" part="279" refId="ref12709" refString="61. Sedlock JL, Weyandt SE (2009) Genetic divergence between morphologically and acoustically cryptic bats: novel niche partitioning or recent contact? J Zool 279: 388 - 395. doi: 10.1111 / j. 1469 - 7998.2009.00634. x." title="Genetic divergence between morphologically and acoustically cryptic bats: novel niche partitioning or recent contact?" type="journal article" year="2009">61</bibRefCitation>
].
</paragraph>
<paragraph blockId="12.[154,792,197,1919]" lastBlockId="12.[841,1480,198,1918]" pageId="12" pageNumber="13">
Strong convergence in allopatry may be a consequence of lineages evolving in the absence of competition from ecologically similar species; their phenotypes being the result of neutral evolution or shaped by selection pressures resulting from occupying similar niches albeit in different biomes. The disjunct distribution of
<taxonomicName box="[380,527,734,757]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[380,527,734,757]" italics="true" pageId="12" pageNumber="13">R. damarensis</emphasis>
</taxonomicName>
and
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[579,682,734,757]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[579,682,734,757]" italics="true" pageId="12" pageNumber="13">R. darlingi</emphasis>
</taxonomicName>
may allow their morphology and echolocation to converge because they do not compete for foraging space, prey or discrete frequency bands. Such convergence may result from one or more of several processes including inheritance from a common ancestor, adaptation to similar local environments, random genetic drift and shared constraints [
<bibRefCitation author="Losos JB" box="[535,548,912,935]" journalOrPublisher="Evolution" pageId="12" pageNumber="13" pagination="1927 - 1840" part="65" refId="ref10234" refString="5. Losos JB (2011) Convergence, adaptation and constraint. Evolution 65: 1927 - 1840. doi: 10.1111 / j. 1558 - 5646.2011.01263. x. PubMed: 21729048." title="Convergence, adaptation and constraint" type="journal volume" year="2011">5</bibRefCitation>
,
<bibRefCitation author="Harmon LJ &amp; Kolbe JJ &amp; Cheverud JM &amp; Losos JB" box="[551,579,912,935]" journalOrPublisher="Evolution" pageId="12" pageNumber="13" pagination="409 - 421" part="59" refId="ref13011" refString="67. Harmon LJ, Kolbe JJ, Cheverud JM, Losos JB (2005) Convergence and the multidimensional niche. Evolution 59: 409 - 421. doi: 10.1111 / j. 0014 - 3820.2005. tb 00999. x. PubMed: 15807425." title="Convergence and the multidimensional niche" type="journal article" year="2005">67</bibRefCitation>
]. Inheritance from a recent common ancestor is unlikely to explain the phenotypic convergence between
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[384,487,972,995]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[384,487,972,995]" italics="true" pageId="12" pageNumber="13">R. darlingi</emphasis>
</taxonomicName>
and
<taxonomicName box="[539,686,972,995]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[539,686,972,995]" italics="true" pageId="12" pageNumber="13">R. damarensis</emphasis>
</taxonomicName>
. They are placed in different, albeit sister clades:
<taxonomicName box="[576,727,1002,1025]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[576,727,1002,1025]" italics="true" pageId="12" pageNumber="13">R. damarensis</emphasis>
</taxonomicName>
in its own clade and
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[320,426,1032,1055]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[320,426,1032,1055]" italics="true" pageId="12" pageNumber="13">R. darlingi</emphasis>
</taxonomicName>
in the
<materialsCitation accessionNumber="EU436678" box="[508,606,1032,1055]" country="Kenya" pageId="12" pageNumber="13" specimenCount="1">
<taxonomicName authorityName="Ruppell" authorityYear="1842" box="[508,606,1032,1055]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="fumigatus">
<emphasis box="[508,606,1032,1055]" italics="true" pageId="12" pageNumber="13">fumigatus</emphasis>
</taxonomicName>
</materialsCitation>
clade (
<figureCitation box="[687,777,1032,1055]" captionStart="Figure 2" captionStartId="5.[154,223,1626,1649]" captionTargetBox="[188,1444,218,1588]" captionTargetId="figure-0@5.[176,1456,206,1600]" captionTargetPageId="5" captionText="Figure 2. Bayesian consensus topology of Rhinolophus spp. based on cytochrome b. Values above nodes indicate Bayesian posterior probabilities (&gt; 0.80) and below nodes report parsimony bootstrap support. Branch lengths are proportional to average number of substitutions per site. Divergence times (millions years ago, Mya) were estimated for three nodes of interest: node A = 4.8 Mya (95% HPD; 2.697.52), B = 9.68 Mya (95% HPD; 5.8710.04), C = 10.51 Mya (95% HPD; 6.6515.43). The split between the Hipposideridae (outgroup) and the Rhinolophidae together with fossil dates for R. ferrumequinum were used as calibration points; calibration points are indicated on the tree with an asterisk *. Sequences from the type localities for R. darlingi darlingi (TM2476) and R. darlingi damarensis (TM9474) are indicated on the tree in bold. The eastern R. darlingi darlingi subspecies forms a single clade together with R. fumigatus, R. eloquens and R. hildebrandti (blue) while R. damarensis damarensis, distributed in the western region of southern Africa, is composed of two very well supported clades that subdivide into northern and southern lineages (red) that diverged in the late Miocene. doi: 10.1371/journal. pone.0082614.g002" figureDoi="http://doi.org/10.5281/zenodo.4265359" httpUri="https://zenodo.org/record/4265359/files/figure.png" pageId="12" pageNumber="13">Figure 2</figureCitation>
). The two lineages last shared a common ancestor ~9.7Mya, giving rise to numerous lineages comprising individuals that are bigger in size and echolocate at lower frequencies than either
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[154,259,1151,1174]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[154,259,1151,1174]" italics="true" pageId="12" pageNumber="13">R. darlingi</emphasis>
</taxonomicName>
and
<taxonomicName box="[316,466,1151,1174]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[316,466,1151,1174]" italics="true" pageId="12" pageNumber="13">R. damarensis</emphasis>
</taxonomicName>
viz.
<materialsCitation accessionNumber="KF683286" box="[519,650,1151,1174]" country="Namibia" pageId="12" pageNumber="13" specimenCount="1">
<taxonomicName authorityName="Ruppell" authorityYear="1842" box="[519,650,1151,1174]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="fumigatus">
<emphasis box="[519,650,1151,1174]" italics="true" pageId="12" pageNumber="13">R. fumigatus</emphasis>
</taxonomicName>
</materialsCitation>
,
<taxonomicName authorityName="K. Andersen" authorityYear="1905" box="[666,791,1151,1174]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="eloquens">
<emphasis box="[666,791,1151,1174]" italics="true" pageId="12" pageNumber="13">R. eloquens</emphasis>
</taxonomicName>
and
<materialsCitation accessionNumber="FJ171202" box="[206,365,1181,1204]" country="South Africa" pageId="12" pageNumber="13">
<taxonomicName authorityName="Peters" authorityYear="1878" box="[206,365,1181,1204]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="hildebrandtii">
<emphasis box="[206,365,1181,1204]" italics="true" pageId="12" pageNumber="13">R. hildebrandtii</emphasis>
</taxonomicName>
</materialsCitation>
[
<bibRefCitation author="Monadjem A &amp; Taylor PJ &amp; Cotterill FPD &amp; Schoeman MC" bookContentInfo="596 pp." box="[384,411,1181,1204]" journalOrPublisher="Johannesburg: Wits University Press" pageId="12" pageNumber="13" refId="ref11968" refString="42. Monadjem A, Taylor PJ, Cotterill FPD, Schoeman MC (2010) Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis. Johannesburg: Wits University Press. 596 pp. PubMed: 2404026923029517217317494316682." title="Bats of Southern and Central Africa: A Biogeographic and Taxonomic Synthesis" type="book" year="2010">42</bibRefCitation>
]. Similarly, the fact that there are species that share a common ancestor with
<taxonomicName box="[604,751,1210,1233]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[604,751,1210,1233]" italics="true" pageId="12" pageNumber="13">R. damarensis</emphasis>
</taxonomicName>
but that are nevertheless divergent in both morphology and echolocation appears to exclude constraints as an explanation for the convergence. Local adaptation also appears to be an unlikely explanation for the convergence because the two species occur in different biomes and it would be expected that local adaptation would lead to divergence not convergence. It is therefore likely that convergence may be the result of random genetic drift especially since rates of convergence can be high when lineages are diverging only under the influence of genetic drift [
<bibRefCitation author="Stayton CT" box="[285,298,1508,1531]" journalOrPublisher="J Theor Biol" pageId="12" pageNumber="13" pagination="1 - 14" part="252" refId="ref10270" refString="6. Stayton CT (2008) Is convergence surprising? An examination of the frequency of convergence in simulated datasets. J Theor Biol 252: 1 - 14. doi: 10.1016 / j. jtbi. 2008.01.008. PubMed: 18321532." title="Is convergence surprising? An examination of the frequency of convergence in simulated datasets" type="journal article" year="2008">6</bibRefCitation>
]. Testing this hypothesis would require thorough and integrated analyses of genetic and phenotypic variation in both the
<taxonomicName box="[257,374,1568,1591]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[257,374,1568,1591]" italics="true" pageId="12" pageNumber="13">damarensis</emphasis>
</taxonomicName>
and the
<materialsCitation accessionNumber="FJ171201" box="[486,584,1568,1591]" country="Tanzania" pageId="12" pageNumber="13" specimenCount="1">
<taxonomicName authorityName="Ruppell" authorityYear="1842" box="[486,584,1568,1591]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="fumigatus">
<emphasis box="[486,584,1568,1591]" italics="true" pageId="12" pageNumber="13">fumigatus</emphasis>
</taxonomicName>
</materialsCitation>
clades (
<figureCitation box="[684,777,1568,1591]" captionStart="Figure 2" captionStartId="5.[154,223,1626,1649]" captionTargetBox="[188,1444,218,1588]" captionTargetId="figure-0@5.[176,1456,206,1600]" captionTargetPageId="5" captionText="Figure 2. Bayesian consensus topology of Rhinolophus spp. based on cytochrome b. Values above nodes indicate Bayesian posterior probabilities (&gt; 0.80) and below nodes report parsimony bootstrap support. Branch lengths are proportional to average number of substitutions per site. Divergence times (millions years ago, Mya) were estimated for three nodes of interest: node A = 4.8 Mya (95% HPD; 2.697.52), B = 9.68 Mya (95% HPD; 5.8710.04), C = 10.51 Mya (95% HPD; 6.6515.43). The split between the Hipposideridae (outgroup) and the Rhinolophidae together with fossil dates for R. ferrumequinum were used as calibration points; calibration points are indicated on the tree with an asterisk *. Sequences from the type localities for R. darlingi darlingi (TM2476) and R. darlingi damarensis (TM9474) are indicated on the tree in bold. The eastern R. darlingi darlingi subspecies forms a single clade together with R. fumigatus, R. eloquens and R. hildebrandti (blue) while R. damarensis damarensis, distributed in the western region of southern Africa, is composed of two very well supported clades that subdivide into northern and southern lineages (red) that diverged in the late Miocene. doi: 10.1371/journal. pone.0082614.g002" figureDoi="http://doi.org/10.5281/zenodo.4265359" httpUri="https://zenodo.org/record/4265359/files/figure.png" pageId="12" pageNumber="13">Figure 2</figureCitation>
). Nevertheless, there is some evidence that founder effect and random genetic drift may be implicated in the evolution of different body sizes during the diversification of the
<taxonomicName authorityName="Peters" authorityYear="1878" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="hildebrandtii">
<emphasis italics="true" pageId="12" pageNumber="13">R. hildebrandtii</emphasis>
</taxonomicName>
species-complex [
<bibRefCitation author="Taylor PJ &amp; Stoffberg S &amp; Monadjem A &amp; Schoeman MC &amp; Bayliss J" box="[471,496,1687,1710]" journalOrPublisher="PLOS ONE" pageId="12" pageNumber="13" pagination="41744" part="7" refId="ref11531" refString="31. Taylor PJ, Stoffberg S, Monadjem A, Schoeman MC, Bayliss J et al. (2012) Four new bat species Rhinolophus hildebrandtii complex reflect plio-pleistocene divergence of dwarfs and giants across an afromontane archipelago. PLOS ONE 7 (9): e 41744. doi: 10.1371 / journal. pone. 0041744. PubMed: 22984399." title="Four new bat species Rhinolophus hildebrandtii complex reflect plio-pleistocene divergence of dwarfs and giants across an afromontane archipelago" type="journal article" year="2012">31</bibRefCitation>
], one of the lineages in the
<taxonomicName authorityName="Ruppell" authorityYear="1842" box="[154,252,1717,1740]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="fumigatus">
<emphasis box="[154,252,1717,1740]" italics="true" pageId="12" pageNumber="13">fumigatus</emphasis>
</taxonomicName>
clade this clade also includes
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[578,679,1717,1740]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[578,679,1717,1740]" italics="true" pageId="12" pageNumber="13">R. darlingi</emphasis>
</taxonomicName>
(
<figureCitation box="[691,780,1717,1740]" captionStart="Figure 2" captionStartId="5.[154,223,1626,1649]" captionTargetBox="[188,1444,218,1588]" captionTargetId="figure-0@5.[176,1456,206,1600]" captionTargetPageId="5" captionText="Figure 2. Bayesian consensus topology of Rhinolophus spp. based on cytochrome b. Values above nodes indicate Bayesian posterior probabilities (&gt; 0.80) and below nodes report parsimony bootstrap support. Branch lengths are proportional to average number of substitutions per site. Divergence times (millions years ago, Mya) were estimated for three nodes of interest: node A = 4.8 Mya (95% HPD; 2.697.52), B = 9.68 Mya (95% HPD; 5.8710.04), C = 10.51 Mya (95% HPD; 6.6515.43). The split between the Hipposideridae (outgroup) and the Rhinolophidae together with fossil dates for R. ferrumequinum were used as calibration points; calibration points are indicated on the tree with an asterisk *. Sequences from the type localities for R. darlingi darlingi (TM2476) and R. darlingi damarensis (TM9474) are indicated on the tree in bold. The eastern R. darlingi darlingi subspecies forms a single clade together with R. fumigatus, R. eloquens and R. hildebrandti (blue) while R. damarensis damarensis, distributed in the western region of southern Africa, is composed of two very well supported clades that subdivide into northern and southern lineages (red) that diverged in the late Miocene. doi: 10.1371/journal. pone.0082614.g002" figureDoi="http://doi.org/10.5281/zenodo.4265359" httpUri="https://zenodo.org/record/4265359/files/figure.png" pageId="12" pageNumber="13">Figure 2</figureCitation>
). If so, smaller body size in
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[416,517,1747,1770]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[416,517,1747,1770]" italics="true" pageId="12" pageNumber="13">R. darlingi</emphasis>
</taxonomicName>
may have evolved through genetic drift resulting in the convergence of body size between it and
<taxonomicName box="[218,365,1806,1829]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[218,365,1806,1829]" italics="true" pageId="12" pageNumber="13">R. damarensis</emphasis>
</taxonomicName>
, assuming that the ancestral body size of
<taxonomicName box="[154,302,1836,1859]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[154,302,1836,1859]" italics="true" pageId="12" pageNumber="13">R. damarensis</emphasis>
</taxonomicName>
is similar to its current body size. Similar body sizes, coupled with the unique flutter-detection system of rhinolophids [
<bibRefCitation author="Neuweiler G" box="[289,314,1896,1919]" journalOrPublisher="Physiol Rev" pageId="12" pageNumber="13" pagination="615 - 641" part="70" refId="ref13059" refString="68. Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70: 615 - 641. PubMed: 2194220." title="Auditory adaptations for prey capture in echolocating bats" type="journal article" year="1990">68</bibRefCitation>
], would require similar detection distances and levels of flight manoeuvrability that could lead to convergence in wing morphology and echolocation frequency and possibly also insect prey
<typeStatus box="[1020,1078,261,284]" pageId="12" pageNumber="13">types</typeStatus>
. This may be especially so given the well-established correlations between body size on the one hand and wing loading, echolocation frequency and bite force, on the other, in bats [63,6971]. Bite force is in turn correlated with diet [
<bibRefCitation author="Jones G" box="[936,966,387,410]" journalOrPublisher="J Exp Biol" pageId="12" pageNumber="13" pagination="3359 - 3367" part="202" refId="ref13118" refString="70. Jones G (1999) Scaling of echolocation call parameters in bats. J Exp Biol 202: 3359 - 3367. PubMed: 10562518." title="Scaling of echolocation call parameters in bats" type="journal article" year="1999">70</bibRefCitation>
].
</paragraph>
<paragraph blockId="12.[841,1480,198,1918]" pageId="12" pageNumber="13">
The split between the two
<taxonomicName box="[1164,1281,418,441]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[1164,1281,418,441]" italics="true" pageId="12" pageNumber="13">damarensis</emphasis>
</taxonomicName>
lineages provides further insight into the role of random genetic drift in the evolution of rhinolophids in southern Africa. The split occurred ~5 Mya (
<figureCitation box="[931,1015,512,535]" captionStart="Figure 2" captionStartId="5.[154,223,1626,1649]" captionTargetBox="[188,1444,218,1588]" captionTargetId="figure-0@5.[176,1456,206,1600]" captionTargetPageId="5" captionText="Figure 2. Bayesian consensus topology of Rhinolophus spp. based on cytochrome b. Values above nodes indicate Bayesian posterior probabilities (&gt; 0.80) and below nodes report parsimony bootstrap support. Branch lengths are proportional to average number of substitutions per site. Divergence times (millions years ago, Mya) were estimated for three nodes of interest: node A = 4.8 Mya (95% HPD; 2.697.52), B = 9.68 Mya (95% HPD; 5.8710.04), C = 10.51 Mya (95% HPD; 6.6515.43). The split between the Hipposideridae (outgroup) and the Rhinolophidae together with fossil dates for R. ferrumequinum were used as calibration points; calibration points are indicated on the tree with an asterisk *. Sequences from the type localities for R. darlingi darlingi (TM2476) and R. darlingi damarensis (TM9474) are indicated on the tree in bold. The eastern R. darlingi darlingi subspecies forms a single clade together with R. fumigatus, R. eloquens and R. hildebrandti (blue) while R. damarensis damarensis, distributed in the western region of southern Africa, is composed of two very well supported clades that subdivide into northern and southern lineages (red) that diverged in the late Miocene. doi: 10.1371/journal. pone.0082614.g002" figureDoi="http://doi.org/10.5281/zenodo.4265359" httpUri="https://zenodo.org/record/4265359/files/figure.png" pageId="12" pageNumber="13">Figure 2</figureCitation>
) which is similar to divergence times reported in many co-distributed taxa including the African four-striped mouse (
<taxonomicName baseAuthorityName="Sparrman" baseAuthorityYear="1784" box="[928,1132,575,598]" class="Mammalia" family="Muridae" genus="Rhabdomys" kingdom="Animalia" order="Rodentia" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="pumilio">
<emphasis box="[928,1132,575,598]" italics="true" pageId="12" pageNumber="13">Rhabdomys pumilio</emphasis>
</taxonomicName>
, [
<bibRefCitation author="du Toit N &amp; Jansen van Vuuren B &amp; Matthee S &amp; Matthee CA" box="[1155,1180,575,598]" journalOrPublisher="Mol Phylogenet Evol" pageId="12" pageNumber="13" pagination="75 - 86" part="65" refId="ref13198" refString="72. du Toit N, Jansen van Vuuren B, Matthee S, Matthee CA (2012) Biome specificity of distinct lineages within the four-striped mouse Rhabodomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy. Mol Phylogenet Evol 65: 75 - 86. doi: 10.1016 / j. ympev. 2012.05.036. PubMed: 22728170." title="Biome specificity of distinct lineages within the four-striped mouse Rhabodomys pumilio (Rodentia: Muridae) from southern Africa with implications for taxonomy" type="journal article" year="2012">72</bibRefCitation>
]), the southern rock
<taxonomicName authorityName="Daudin" authorityYear="1802" box="[1407,1479,575,598]" class="Reptilia" family="Agamidae" genus="Agama" kingdom="Animalia" order="Squamata" pageId="12" pageNumber="13" phylum="Chordata" rank="genus">Agama</taxonomicName>
(
<taxonomicName authorityName="Daudin" authorityYear="1802" box="[849,967,607,630]" class="Reptilia" family="Agamidae" genus="Agama" kingdom="Animalia" order="Squamata" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="atra">
<emphasis box="[849,967,607,630]" italics="true" pageId="12" pageNumber="13">Agama atra</emphasis>
</taxonomicName>
, [
<bibRefCitation author="Matthee CA &amp; Flemming AF" box="[987,1012,607,630]" journalOrPublisher="Mol Ecol" pageId="12" pageNumber="13" pagination="465 - 471" part="11" refId="ref13264" refString="73. Matthee CA, Flemming AF (2002) Population fragmentation in the southern rock agama, Agama atra: more evidence for vicariance in southern Africa. Mol Ecol 11: 465 - 471. doi: 10.1046 / j. 0962 - 1083.2001.01458. x. PubMed: 11918781." title="Population fragmentation in the southern rock agama, Agama atra: more evidence for vicariance in southern Africa" type="journal article" year="2002">73</bibRefCitation>
]) and the gecko,
<taxonomicName authorityName="Smith" authorityYear="1849" box="[1193,1427,607,630]" class="Reptilia" family="Gekkonidae" genus="Pachydactylus" kingdom="Animalia" order="Squamata" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="rugosus">
<emphasis box="[1193,1427,607,630]" italics="true" pageId="12" pageNumber="13">Pachydactylus rugosus</emphasis>
</taxonomicName>
[
<bibRefCitation author="Lamb T &amp; Bauer AM" box="[1440,1470,607,630]" journalOrPublisher="Afr Zool" pageId="12" pageNumber="13" pagination="55 - 67" part="35" refId="ref13317" refString="74. Lamb T, Bauer AM (2000) Relationships of the Pachydactylus rugosus group of geckos (Reptilia: Squamata: Gekkonidae). Afr Zool 35 (1): 55 - 67." title="Relationships of the Pachydactylus rugosus group of geckos (Reptilia: Squamata: Gekkonidae)" type="journal article" year="2000">74</bibRefCitation>
]. Similarity in the timing of evolutionary diversification amongst co-distributed but diverse taxa is likely a consequence of vicariant evolution [
<bibRefCitation author="Arbogast BS &amp; Kenagy GJ" box="[1045,1070,701,724]" journalOrPublisher="J Biogeogr" pageId="12" pageNumber="13" pagination="819 - 825" part="28" refId="ref13354" refString="75. Arbogast BS, Kenagy GJ (2001) Comparative phylogeography as an integrative approach to historical biogeography. J Biogeogr 28: 819 - 825. doi: 10.1046 / j. 1365 - 699.2001.00594. x." title="Comparative phylogeography as an integrative approach to historical biogeography" type="journal article" year="2001">75</bibRefCitation>
] and in southern Africa this has been attributed to climate change and subsequent vegetation shifts during the Plio-Pleistocene and Miocene [7274,76] together with the Plio-Pleistocene uplift of southern Africas great escarpment and interior plateau [
<bibRefCitation author="Baker BH &amp; Wohlenberg J" box="[1204,1229,827,850]" journalOrPublisher="Nature" pageId="12" pageNumber="13" pagination="538 - 542" part="229" refId="ref13461" refString="77. Baker BH, Wohlenberg J (1971) Structure and evolution of the Kenya rift valley. Nature 229: 538 - 542. doi: 10.1038 / 229538 a 0. PubMed: 16059342." title="Structure and evolution of the Kenya rift valley" type="journal article" year="1971">77</bibRefCitation>
]. Diversification across these lineages coincided with a period of increased aridity in southern Africa as a result of the interaction in the Miocene between global cooling [
<bibRefCitation author="Bauer FU &amp; Glasmacher UA &amp; Ring U &amp; Schumann A &amp; Nagudi B" box="[1086,1111,921,944]" journalOrPublisher="Int J Earth Sci" pageId="12" pageNumber="13" pagination="1575 - 1597" part="99" refId="ref13499" refString="78. Bauer FU, Glasmacher UA, Ring U, Schumann A, Nagudi B (2010) Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda. Int J Earth Sci 99: 1575 - 1597. doi: 10.1007 / s 00531 - 010 - 0549 - 7." title="Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda" type="journal article" year="2010">78</bibRefCitation>
] and tectonic uplift that resulted in a topography which sloped from east to west causing a rainshadow effect across the region [
<bibRefCitation author="Coetzee JA" box="[1177,1204,984,1007]" journalOrPublisher="Palaeoecol Afr" pageId="12" pageNumber="13" pagination="13 - 29" part="10" refId="ref13562" refString="79. Coetzee JA (1978) Climate and biological changes in south-western Africa during the Late Caenozoic. Palaeoecol Afr 10: 13 - 29." title="Climate and biological changes in south-western Africa during the Late Caenozoic" type="journal article" year="1978">79</bibRefCitation>
,
<bibRefCitation author="Scott L &amp; Anderson HM &amp; Anderson JM" box="[1207,1234,984,1007]" journalOrPublisher="Cambridge: Cambridge University Press" pageId="12" pageNumber="13" pagination="62 - 84" refId="ref13589" refString="80. Scott L, Anderson HM, Anderson JM (1997) Vegetation history. In: RM CowlingDM RichardsonSM Pierce. Vegetation of southern Africa. Cambridge: Cambridge University Press. pp. 62 - 84." title="Vegetation history" type="book chapter" volumeTitle="RM CowlingDM RichardsonSM Pierce. Vegetation of southern Africa" year="1997">80</bibRefCitation>
]. This in turn resulted in an east-west gradient of rainfall and subsequent changes in vegetation which included the contraction of forests, and the expansion of savanna woodlands, grasslands and shrublands [
<bibRefCitation author="Janis CM" box="[846,870,1109,1132]" journalOrPublisher="Annu Rev Ecol Syst" pageId="12" pageNumber="13" pagination="467 - 500" part="24" refId="ref13629" refString="81. Janis CM (1993) Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu Rev Ecol Syst 24: 467 - 500. doi: 10.1146 / annurev. es. 24.110193.002343." title="Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events" type="journal article" year="1993">81</bibRefCitation>
<bibRefCitation author="deMenocal PB" box="[882,910,1109,1132]" journalOrPublisher="Science" pageId="12" pageNumber="13" pagination="540 - 542" part="331" refId="ref13716" refString="83. deMenocal PB (2011) Climate and human evolution. Science 331: 540 - 542. doi: 10.1126 / science. 1190683. PubMed: 21292958." title="Climate and human evolution" type="journal article" year="2011">83</bibRefCitation>
] towards the end of the Miocene (75Mya). Such climatic oscillations and habitat fluctuation/fragmentation promote diversification of lineages. The diversification of
<taxonomicName class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="damarensis">
<emphasis italics="true" pageId="12" pageNumber="13">R. damarensis</emphasis>
</taxonomicName>
into two distinct mitochondrial lineages may have been caused by disruption to gene flow associated with these changes in biomes especially since the lineages currently occupy separate geographic regions. Given that rates of convergence can be high when lineages diverge under the influence of genetic drift [
<bibRefCitation author="Stayton CT" box="[1108,1121,1361,1384]" journalOrPublisher="J Theor Biol" pageId="12" pageNumber="13" pagination="1 - 14" part="252" refId="ref10270" refString="6. Stayton CT (2008) Is convergence surprising? An examination of the frequency of convergence in simulated datasets. J Theor Biol 252: 1 - 14. doi: 10.1016 / j. jtbi. 2008.01.008. PubMed: 18321532." title="Is convergence surprising? An examination of the frequency of convergence in simulated datasets" type="journal article" year="2008">6</bibRefCitation>
] convergence in phenotype in the two
<taxonomicName box="[883,1000,1392,1415]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="damarensis">
<emphasis box="[883,1000,1392,1415]" italics="true" pageId="12" pageNumber="13">damarensis</emphasis>
</taxonomicName>
lineages would not be surprising if drift was the dominant process acting during their initial divergence. Testing this hypothesis and the relative influence of the different processes that could bring about convergence can only be elucidated through thorough and integrated analyses of both genetic and phenotypic variation using multiple rapidly and slowly evolving genetic markers, within the context of historical biogeography.
</paragraph>
<paragraph blockId="12.[841,1480,198,1918]" pageId="12" pageNumber="13">
In conclusion, cryptic lineages in
<taxonomicName authorityName="Andersen" authorityYear="1905" box="[1231,1340,1643,1666]" class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="darlingi">
<emphasis box="[1231,1340,1643,1666]" italics="true" pageId="12" pageNumber="13">R. darlingi</emphasis>
</taxonomicName>
(
<emphasis box="[1360,1471,1643,1666]" italics="true" pageId="12" pageNumber="13">sensu lato</emphasis>
) appear to have arisen independently and in isolation of each other allowing convergence in both morphology and echolocation. Similarly, cryptic lineage diversification within
<taxonomicName class="Mammalia" family="Rhinolophidae" genus="Rhinolophus" kingdom="Animalia" order="Chiroptera" pageId="12" pageNumber="13" phylum="Chordata" rank="species" species="damarensis">
<emphasis italics="true" pageId="12" pageNumber="13">R. damarensis</emphasis>
</taxonomicName>
also appears to have arisen more recently in response to changes in biome boundaries during the Miocene. Although this might be due to vicariant evolution the role of other processes such as adaptation as a result of occupying similar niches cannot be excluded at this stage.
</paragraph>
</treatment>
</document>