treatments-xml/data/A7/1B/87/A71B87DC5762FFDAFC45FF35CDD4E59F.xml
2024-06-21 12:46:51 +02:00

151 lines
19 KiB
XML

<document id="37B5B36C0921998C5FF1CCA450C6F358" ID-DOI="10.1093/zoolinnean/zlac104" ID-ISSN="0024-4082" IM.bibliography_approvedBy="juliana" IM.illustrations_approvedBy="juliana" IM.materialsCitations_approvedBy="juliana" IM.metadata_approvedBy="juliana" IM.tables_approvedBy="juliana" IM.taxonomicNames_approvedBy="juliana" IM.treatments_approvedBy="juliana" checkinTime="1683702121869" checkinUser="plazi" docAuthor="Blanco, R Ernesto" docDate="2023" docId="A71B87DC5762FFDAFC45FF35CDD4E59F" docLanguage="en" docName="zlac104.pdf" docOrigin="Zoological Journal of the Linnean Society 198 (1)" docSource="https://academic.oup.com/zoolinnean/article/198/1/202/7153107" docStyle="DocumentStyle:36B3BD6A90C22AB4F7F465C853188CC8.7:ZoolJLinnSoc.2017-.journal_article" docStyleId="36B3BD6A90C22AB4F7F465C853188CC8" docStyleName="ZoolJLinnSoc.2017-.journal_article" docStyleVersion="7" docTitle="Tyrannosaurus rex" docType="treatment" docVersion="2" lastPageNumber="215" masterDocId="5B22FFA4576FFFD4FFDDFFF0CC57E42D" masterDocTitle="Tyrannosaurus rex runs again: a theoretical analysis of the hypothesis that full-grown large theropods had a locomotory advantage to hunt in a shallow-water environment" masterLastPageNumber="219" masterPageNumber="202" pageNumber="215" updateTime="1683833734430" updateUser="juliana">
<mods:mods id="D92332CECE9C31B7204E1695DD44C84F" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="A09F1D0AEE1DA84E34B98701C402C7A4">
<mods:title id="4013EF04B024AB2E02538C86F8F25985">Tyrannosaurus rex runs again: a theoretical analysis of the hypothesis that full-grown large theropods had a locomotory advantage to hunt in a shallow-water environment</mods:title>
</mods:titleInfo>
<mods:name id="2047F4BF7290CE0C95EDE1B10EAE0A5C" type="personal">
<mods:role id="A80B02EEF4EADCB0DB91A98A71109F63">
<mods:roleTerm id="2A89EDFA88E7BDAF6AEFEB576257F755">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="40A8CBFE4CA5DD6BB270A0186F0F291E">Blanco, R Ernesto</mods:namePart>
<mods:affiliation id="16D18B59FB678F5523A78494A814ECA6">Instituto de Física, Facultad de Ciencias, Iguá 4225, MonteƲideo 11400, Uruguay</mods:affiliation>
<mods:nameIdentifier id="657B2BDEF0F2D1C4C546AB0DB566FC24" type="email">ernesto@fisica.edu.uy</mods:nameIdentifier>
</mods:name>
<mods:typeOfResource id="604AF4BDB2B566C5380257E4BFB5C691">text</mods:typeOfResource>
<mods:relatedItem id="E4A655A9B15D42C6CCDA0CCA41CE7E1D" type="host">
<mods:titleInfo id="9623BDE5FC9BE80BC4C6C6440E5447D4">
<mods:title id="640B9827521A642F32C5579C397113C3">Zoological Journal of the Linnean Society</mods:title>
</mods:titleInfo>
<mods:part id="28ECC68D47FF4B3D42B9819421626F54">
<mods:date id="B20D6E0B52753A1ED8A2D860841275A9">2023</mods:date>
<mods:detail id="82039D0C0B0C20599518CDC76B25DC37" type="pubDate">
<mods:number id="0EEF5D366FFCCF704D123C73BB25FBE3">2023-05-01</mods:number>
</mods:detail>
<mods:detail id="12120C7DC8921452EC69A1CB5DAFA15D" type="volume">
<mods:number id="BBB76E027B51EDB38B97CBDF51DD618D">198</mods:number>
</mods:detail>
<mods:detail id="43AABF66699448373AA0214169412938" type="issue">
<mods:number id="5BB5438A53B807C9A43CD0D51B2DC13D">1</mods:number>
</mods:detail>
<mods:extent id="7EE91FE860160B89359027F2A3290B12" unit="page">
<mods:start id="F5941DFB1E5B4828E81D056092BECB58">202</mods:start>
<mods:end id="AB3BDE6D480E0AA924BBE0081A0FF2B3">219</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="A0FF4FE90E3AF3C277B620668DD57743">
<mods:url id="DC29C7E1FB9B4275F76D9C101CBBFB63">https://academic.oup.com/zoolinnean/article/198/1/202/7153107</mods:url>
</mods:location>
<mods:classification id="2DE2EFA251D3928A500CDAE53936B085">journal article</mods:classification>
<mods:identifier id="1641D46C4F614A0160336DB7F84C1F5F" type="DOI">10.1093/zoolinnean/zlac104</mods:identifier>
<mods:identifier id="5238CD8FFB828EAA33AE067A88F0C0BF" type="ISSN">0024-4082</mods:identifier>
</mods:mods>
<treatment id="A71B87DC5762FFDAFC45FF35CDD4E59F" LSID="urn:lsid:plazi:treatment:A71B87DC5762FFDAFC45FF35CDD4E59F" httpUri="http://treatment.plazi.org/id/A71B87DC5762FFDAFC45FF35CDD4E59F" lastPageId="14" lastPageNumber="215" pageId="13" pageNumber="215">
<subSubSection id="67A865415762FFD9FC45FF35C976E4F6" box="[920,1313,197,220]" pageId="13" pageNumber="215" type="nomenclature">
<paragraph id="2F0D36CA5762FFD9FC45FF35C976E4F6" blockId="13.[920,1313,197,220]" box="[920,1313,197,220]" pageId="13" pageNumber="215">
<heading id="744581A65762FFD9FC45FF35C976E4F6" box="[920,1313,197,220]" centered="true" fontSize="9" level="2" pageId="13" pageNumber="215" reason="2">
<taxonomicName id="E8B24D495762FFD9FC45FF35C8C6E4F7" authority="Osborn, 1905" box="[920,1169,197,220]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="13" pageNumber="218" phylum="Chordata" rank="species" species="rex">
<emphasis id="1DC6EAD85762FFD9FC45FF35C8C6E4F7" box="[920,1169,197,220]" italics="true" pageId="13" pageNumber="215">
<smallCapsWord id="29EBA0165762FFD9FC45FF35C809E4F1" baselines="214,214" box="[920,1118,197,220]" lowerCaseFontSize="8" mainFontSize="10" normCase="title" normString="Tyrannosaurus" pageId="13" pageNumber="215">TYRANNOSAURUS</smallCapsWord>
<smallCapsWord id="29EBA0165762FFD9FBB8FF38C8C6E4F7" baselines="213" box="[1125,1169,200,218]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="rex" pageId="13" pageNumber="215">REX</smallCapsWord>
</emphasis>
</taxonomicName>
<smallCapsWord id="29EBA0165762FFD9FB45FF37C883E4F6" baselines="214" box="[1176,1236,199,219]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="runs" pageId="13" pageNumber="215">RUNS</smallCapsWord>
<smallCapsWord id="29EBA0165762FFD9FB06FF37C976E4F6" baselines="214" box="[1243,1313,199,219]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="again" pageId="13" pageNumber="215">AGAIN</smallCapsWord>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="67A865415762FFD9FCF4FF1DC9D7E24B" pageId="13" pageNumber="215" type="description">
<paragraph id="2F0D36CA5762FFD9FCF4FF1DC93AE138" blockId="13.[809,1426,236,1638]" pageId="13" pageNumber="215">
An interesting highlight is that, at least in water,
<taxonomicName id="E8B24D495762FFD9FCF4FEFCC854E50C" box="[809,1027,268,289]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="13" pageNumber="215" phylum="Chordata" rank="species" species="rex">
<emphasis id="1DC6EAD85762FFD9FCF4FEFCC854E50C" box="[809,1027,268,289]" italics="true" pageId="13" pageNumber="215">Tyrannosaurus rex</emphasis>
</taxonomicName>
was probably able to adopt a running gait with a suspended phase. To walk in the water with increased buoyancy results in less contact time with the substrate. This effect has been likened to locomotion in a microgravity environment (
<bibRefCitation id="4B234B3B5762FFD9FAFBFE76CF96E594" author="Coughlin BL &amp; Fish FE" pageId="13" pageNumber="215" pagination="675 - 679" refId="ref12522" refString="Coughlin BL, Fish FE. 2009. Hippopotamus underwater locomotion: reduced-gravity movements for a massive mammal. Journal of Mammalogy 90: 675 - 679." type="journal article" year="2009">Coughlin &amp; Fish, 2009</bibRefCitation>
, and references therein). In conditions of reduced gravity, humans switch from a walk to a run at slower speeds, but at approximately the same Froude number (
<bibRefCitation id="4B234B3B5762FFD9FC29FDF1C892E638" author="Kram R &amp; Domingo A &amp; Ferris DP" box="[1012,1221,512,534]" pageId="13" pageNumber="215" pagination="821 - 826" refId="ref13832" refString="Kram R, Domingo A, Ferris DP. 1997. Effect of reduced gravity on the preferred walk - run transition speed. The Journal of Experimental Biology 200: 821 - 826." type="journal article" year="1997">
Kram
<emphasis id="1DC6EAD85762FFD9FB9CFDF1C82AE638" box="[1089,1149,512,534]" italics="true" pageId="13" pageNumber="215">et al.</emphasis>
, 1997
</bibRefCitation>
). For example, if the
<taxonomicName id="E8B24D495762FFD9FC88FDD0C87AE618" box="[853,1069,544,565]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="13" pageNumber="215" phylum="Chordata" rank="species" species="rex">
<emphasis id="1DC6EAD85762FFD9FC88FDD0C87AE618" box="[853,1069,544,565]" italics="true" pageId="13" pageNumber="215">Tyrannosaurus rex</emphasis>
</taxonomicName>
modelled here had been in the water at a depth of
<quantity id="E84A9B2F5762FFD9FBCBFDCEC80DE67E" box="[1046,1114,574,595]" metricMagnitude="0" metricUnit="m" metricValue="3.2" pageId="13" pageNumber="215" unit="m" value="3.2">3.2 m</quantity>
, the effective acceleration of gravity would have been reduced by approximately one-third. In that case, the change from walk to run would have been at a speed of ~
<quantity id="E84A9B2F5762FFD9FB6FFD6AC8ADE682" box="[1202,1274,666,687]" metricMagnitude="0" metricUnit="m" metricValue="2.4" pageId="13" pageNumber="215" unit="m" value="2.4">2.4 m</quantity>
/s. According to my results, this is a speed easily attainable for
<taxonomicName id="E8B24D495762FFD9FCF4FD28C855E6C0" box="[809,1026,728,749]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="13" pageNumber="215" phylum="Chordata" rank="species" species="rex">
<emphasis id="1DC6EAD85762FFD9FCF4FD28C855E6C0" box="[809,1026,728,749]" italics="true" pageId="13" pageNumber="215">Tyrannosaurus rex</emphasis>
</taxonomicName>
in such a situation. Also, the bone strength limitation for running suggested in previous studies would have lost relevance in this scenario. The ground reaction forces are reduced owing to buoyancy, and new gaits are available at lower speeds (
<bibRefCitation id="4B234B3B5762FFD9FAFFFCA2CF37E7AB" author="Martinez MM" pageId="13" pageNumber="215" pagination="619 - 627" refId="ref13976" refString="Martinez MM. 1996. Issues for aquatic pedestrian locomotion. American Zoologist 36: 619 - 627." type="journal article" year="1996">Martínez, 1996</bibRefCitation>
;
<bibRefCitation id="4B234B3B5762FFD9FCB0FC80C838E7A8" author="Coughlin BL &amp; Fish FE" box="[877,1135,880,902]" pageId="13" pageNumber="215" pagination="675 - 679" refId="ref12522" refString="Coughlin BL, Fish FE. 2009. Hippopotamus underwater locomotion: reduced-gravity movements for a massive mammal. Journal of Mammalogy 90: 675 - 679." type="journal article" year="2009">Coughlin &amp; Fish, 2009</bibRefCitation>
). This effect has been observed in crabs (
<bibRefCitation id="4B234B3B5762FFD9FC3FFC7FC8DAE788" author="Martinez MM" box="[994,1165,911,933]" pageId="13" pageNumber="215" pagination="619 - 627" refId="ref13976" refString="Martinez MM. 1996. Issues for aquatic pedestrian locomotion. American Zoologist 36: 619 - 627." type="journal article" year="1996">Martínez, 1996</bibRefCitation>
;
<bibRefCitation id="4B234B3B5762FFD9FB47FC7FC9D4E789" author="Martinez MM &amp; Full RJ &amp; Koehl MAR" box="[1178,1411,911,933]" pageId="13" pageNumber="215" pagination="2609 - 2623" refId="ref13995" refString="Martinez MM, Full RJ, Koehl MAR. 1998. Underwater floating by an intertidal crab: a novel gait revealed by the kinematics of pedestrian locomotion in air versus water. The Journal of Experimental Biology 201: 2609 - 2623." type="journal article" year="1998">
Martínez
<emphasis id="1DC6EAD85762FFD9FAD5FC60C917E789" box="[1288,1344,911,933]" italics="true" pageId="13" pageNumber="215">et al.</emphasis>
, 1998
</bibRefCitation>
), crocodiles (
<bibRefCitation id="4B234B3B5762FFD9FC74FC5DC828E7EE" author="Farlow JO &amp; Robinson NJ &amp; Turner ML &amp; Gatesy SM" box="[937,1151,941,963]" pageId="13" pageNumber="215" pagination="406 - 413" refId="ref12955" refString="Farlow JO, Robinson NJ, Turner ML, Gatesy SM. 2018. Footfall pattern of a bottom walking crocodile (Crocodylus acutus). Palaios 33: 406 - 413." type="journal article" year="2018">
Farlow
<emphasis id="1DC6EAD85762FFD9FBDCFC5EC86DE7EF" box="[1025,1082,941,963]" italics="true" pageId="13" pageNumber="215">et al.</emphasis>
, 2018
</bibRefCitation>
), salamanders (
<bibRefCitation id="4B234B3B5762FFD9FAE7FC5DC870E7CC" author="Ashley-Ross MA &amp; Bechtel BF" pageId="13" pageNumber="215" pagination="461 - 474" refId="ref11840" refString="Ashley-Ross MA, Bechtel BF. 2004. Kinematics of the transition between aquatic and terrestrial locomotion in the newt Taricha torosa. The Journal of Experimental Biology 207: 461 - 474." type="journal article" year="2004">Ashley-Ross &amp; Bechtel, 2004</bibRefCitation>
;
<bibRefCitation id="4B234B3B5762FFD9FBE8FC3CC904E7CC" author="Ashley-Ross M &amp; Lundin R &amp; Johnson K" box="[1077,1363,972,994]" pageId="13" pageNumber="215" pagination="240 - 257" refId="ref11874" refString="Ashley-Ross M, Lundin R, Johnson K. 2009. Kinematics of level terrestrial and underwater walking in the California newt, Taricha torosa. Journal of Experimental Zoology 311: 240 - 257." type="journal article" year="2009">
Ashley-Ross
<emphasis id="1DC6EAD85762FFD9FB12FC3DC95CE7CC" box="[1231,1291,972,994]" italics="true" pageId="13" pageNumber="215">et al.</emphasis>
, 2009
</bibRefCitation>
) and hippopotami (
<bibRefCitation id="4B234B3B5762FFD9FC1BFC1BC893E02D" author="Coughlin BL &amp; Fish FE" box="[966,1220,1003,1025]" pageId="13" pageNumber="215" pagination="675 - 679" refId="ref12522" refString="Coughlin BL, Fish FE. 2009. Hippopotamus underwater locomotion: reduced-gravity movements for a massive mammal. Journal of Mammalogy 90: 675 - 679." type="journal article" year="2009">Coughlin &amp; Fish, 2009</bibRefCitation>
). Observations on large vertebrates, such as the hippopotamus, suggest that with increased buoyancy to maintain stability, galloping can be performed at extremely slow speeds (
<bibRefCitation id="4B234B3B5762FFD9FCEFFB95C815E056" author="Coughlin BL &amp; Fish FE" box="[818,1090,1125,1147]" pageId="13" pageNumber="215" pagination="675 - 679" refId="ref12522" refString="Coughlin BL, Fish FE. 2009. Hippopotamus underwater locomotion: reduced-gravity movements for a massive mammal. Journal of Mammalogy 90: 675 - 679." type="journal article" year="2009">Coughlin &amp; Fish, 2009</bibRefCitation>
). Studies on newts walking underwater and on land show that the submerged gait pattern is closer to a trot, including periods of suspension (
<bibRefCitation id="4B234B3B5762FFD9FC1DFB31C8B6E0FA" author="Ashley-Ross M &amp; Lundin R &amp; Johnson K" box="[960,1249,1217,1239]" pageId="13" pageNumber="215" pagination="240 - 257" refId="ref11874" refString="Ashley-Ross M, Lundin R, Johnson K. 2009. Kinematics of level terrestrial and underwater walking in the California newt, Taricha torosa. Journal of Experimental Zoology 311: 240 - 257." type="journal article" year="2009">
Ashley-Ross
<emphasis id="1DC6EAD85762FFD9FB86FB32C8CFE0FB" box="[1115,1176,1217,1239]" italics="true" pageId="13" pageNumber="215">et al.</emphasis>
, 2009
</bibRefCitation>
). These observations reopen the possibility that, at least in water,
<taxonomicName id="E8B24D495762FFD9FCF4FB0FCFA9E139" box="[809,1022,1279,1300]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="13" pageNumber="215" phylum="Chordata" rank="species" species="rex">
<emphasis id="1DC6EAD85762FFD9FCF4FB0FCFA9E139" box="[809,1022,1279,1300]" italics="true" pageId="13" pageNumber="215">Tyrannosaurus rex</emphasis>
</taxonomicName>
could have used a running gait.
</paragraph>
<paragraph id="2F0D36CA5762FFD9FC9CFAEDC9D7E24B" blockId="13.[809,1426,236,1638]" pageId="13" pageNumber="215">
Biomechanical models generally suggest that
<taxonomicName id="E8B24D495762FFD9FCF4FACDCFACE17F" box="[809,1019,1341,1362]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="13" pageNumber="215" phylum="Chordata" rank="species" species="rex">
<emphasis id="1DC6EAD85762FFD9FCF4FACDCFACE17F" box="[809,1019,1341,1362]" italics="true" pageId="13" pageNumber="215">Tyrannosaurus rex</emphasis>
</taxonomicName>
could not have run on land. However, several aspects of tyrannosaurid anatomy, such as the long legs and large pelvic limb muscles, which intuitively seem to indicate fast running capacity (
<bibRefCitation id="4B234B3B5762FFD9FAE4FA68CF36E1E0" author="Bakker RT" pageId="13" pageNumber="215" refId="ref11910" refString="Bakker RT. 1986. Dinosaur heresies. New York: William Morrow and Company." type="book" year="1986">Bakker, 1986</bibRefCitation>
; Paul, 1998), are enhanced in
<taxonomicName id="E8B24D495762FFD9FB1AFA47C9C7E1E0" box="[1223,1424,1463,1485]" class="Reptilia" family="Tyrannosauridae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="13" pageNumber="215" phylum="Chordata" rank="family">Tyrannosauridae</taxonomicName>
(and their immediate outgroups) relative to other theropods and within larger-bodied taxa (
<bibRefCitation id="4B234B3B5762FFD9FAC5FA05CFE0E204" author="Persons WI &amp; Currie PJ" pageId="13" pageNumber="215" pagination="19828" refId="ref14258" refString="Persons WI, Currie PJ. 2016. An approach to scoring cursorial limb proportions in carnivorous dinosaurs and an attempt to account for allometry. Scientific Reports 6: 19828." type="journal article" year="2016">Persons &amp; Currie, 2016</bibRefCitation>
; Sively
<emphasis id="1DC6EAD85762FFD9FBCFF9E3C81DE205" box="[1042,1098,1555,1576]" italics="true" pageId="13" pageNumber="215">et al.</emphasis>
, 2019; Deccechi
<emphasis id="1DC6EAD85762FFD9FADBF9E3C968E205" box="[1286,1343,1555,1576]" italics="true" pageId="13" pageNumber="215">et al.</emphasis>
, 2020). Those anatomical features could also be a useful set for hunting swift prey by fast punting-running in water.
</paragraph>
</subSubSection>
<subSubSection id="67A865415762FFDAFBD1F952CDD4E59F" lastPageId="14" lastPageNumber="216" pageId="13" pageNumber="215" type="discussion">
<paragraph id="2F0D36CA5762FFD9FBD1F952C8FAE297" blockId="13.[1036,1197,1698,1723]" box="[1036,1197,1698,1723]" pageId="13" pageNumber="215">
<smallCapsWord id="29EBA0165762FFD9FBD1F952C8FAE297" baselines="1717,1717" box="[1036,1197,1698,1723]" lowerCaseFontSize="8" mainFontSize="10" normCase="title" normString="Conclusions" pageId="13" pageNumber="215">CONCLUSIONS</smallCapsWord>
</paragraph>
<paragraph id="2F0D36CA5762FFDAFCF4F93BCDD4E59F" blockId="13.[809,1426,1739,1914]" lastBlockId="14.[163,779,197,434]" lastPageId="14" lastPageNumber="216" pageId="13" pageNumber="215">Large theropods probably had a locomotory advantage to pursue small prey in a shallow-water environment. Moreover, it is almost certain that the locomotory advantage of small prey on the land would be reduced drastically in aquatic environments. The shallow-water environment hunting scenario proposed here for large theropods could also apply to extant animals and other fossil vertebrate groups. The theoretical approach presented here could help researchers to understand hunting strategies and depict other palaeobiological scenarios involving extremely large predators. The hypothesis presented here raises several issues for further ichnological, functional and biomechanical studies.</paragraph>
</subSubSection>
</treatment>
</document>