treatments-xml/data/03/ED/84/03ED841CFFF3FFD4FFFCFCEE6856F93B.xml
2024-06-21 12:22:17 +02:00

389 lines
41 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="588B2CF7D1AA1641471898082A89E1A3" ID-DOI="10.1016/j.phytochem.2015.08.003" ID-ISSN="1873-3700" ID-Zenodo-Dep="10489001" IM.bibliography_approvedBy="felipe" IM.illustrations_approvedBy="jonas" IM.materialsCitations_approvedBy="jonas" IM.metadata_approvedBy="felipe" IM.taxonomicNames_approvedBy="jonas" IM.treatments_approvedBy="jonas" checkinTime="1704956715174" checkinUser="felipe" docAuthor="Ogorodnikova, Anna V., Mukhitova, Fakhima K. &amp; Grechkin, Alexander N." docDate="2015" docId="03ED841CFFF3FFD4FFFCFCEE6856F93B" docLanguage="en" docName="Phytochemistry.118.42-50.pdf" docOrigin="Phytochemistry 118" docSource="http://dx.doi.org/10.5281/zenodo.8250065" docStyle="DocumentStyle:9E596C34F4E94307D29315B03ACE1007.6:Phytochemistry.2014-2019.journal_article" docStyleId="9E596C34F4E94307D29315B03ACE1007" docStyleName="Phytochemistry.2014-2019.journal_article" docStyleVersion="6" docTitle="Selaginella martensii Spring" docType="treatment" docVersion="1" lastPageNumber="44" masterDocId="FFD4FC64FFF2FFD6FF8EFF9B6C30FFDF" masterDocTitle="Oxylipins in the spikemoss Selaginella martensii: Detection of divinyl ethers, 12 - oxophytodienoic acid and related cyclopentenones" masterLastPageNumber="50" masterPageNumber="42" pageNumber="43" updateTime="1705622638938" updateUser="jonas">
<mods:mods id="0F06B2598F0F8C45849B702384B7EDC1" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="B40306BFBC2EAEA5970541DBD25BC80A">
<mods:title id="B13CC866BA71F93F014AA493B5E05771">Oxylipins in the spikemoss Selaginella martensii: Detection of divinyl ethers, 12 - oxophytodienoic acid and related cyclopentenones</mods:title>
</mods:titleInfo>
<mods:name id="756F5AE3E146CFF60EF3029A487C8BE6" type="personal">
<mods:role id="2A6F91E352321812CF86C7EDB30D181D">
<mods:roleTerm id="50DF63452B9B045501F7299A3177F8A9">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="FB866AE685683D2D35324CCA3BC2CF61">Ogorodnikova, Anna V.</mods:namePart>
</mods:name>
<mods:name id="0C332DD724DF83D54ED7ABC1F67D238E" type="personal">
<mods:role id="449055E95F5D4C49DDAA5650FA20885E">
<mods:roleTerm id="357891A835C68F54195D12A0F77D8488">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="179A60424CDD433035B5723DBD6FD731">Mukhitova, Fakhima K.</mods:namePart>
</mods:name>
<mods:name id="6082D3F608D87E6EBB28A6C4AA5D5F7A" type="personal">
<mods:role id="77534100BCDA461FEB7C40B5A2447D3A">
<mods:roleTerm id="44CDE224912F6D85D5080A3338523AD3">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="7A69B7457D78BAAF9B8BDEBBD952F137">Grechkin, Alexander N.</mods:namePart>
</mods:name>
<mods:typeOfResource id="54A245B27616B8D8A9DCB8256A66606C">text</mods:typeOfResource>
<mods:relatedItem id="4CB56D13B6853E5EF3C92865FDDC6839" type="host">
<mods:titleInfo id="A67E371EE489B1B32BF21EF1F615A5C9">
<mods:title id="07226385A24385A1D58127BD2CC93C66">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="49C074BC07A03AB065F049277B1CF8A4">
<mods:date id="975B2D8A65AE70983F66455A4D5FCE92">2015</mods:date>
<mods:detail id="5F9CC289A8D8380C28394AE5C3606CD2" type="pubDate">
<mods:number id="30427E07A90DE24508A40FAC3CA33FAC">2015-08-12</mods:number>
</mods:detail>
<mods:detail id="914937E8B944011223DCE85C15FFC879" type="volume">
<mods:number id="FC21CE76D1FC2766B5E8AE01CC589EFF">118</mods:number>
</mods:detail>
<mods:extent id="BC80C056C49C3F99DC072A8AAE88CB9B" unit="page">
<mods:start id="09AA22F2FFCCF9DBF17B5431C6A76A49">42</mods:start>
<mods:end id="EF35741A8F38EA9316FED72AA94CAFF6">50</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="ACAF30BC2B4F6DA06F524C0D67697CA0">
<mods:url id="0B99ADDA5FEA48B8B78E00D6F5E29E33">http://dx.doi.org/10.5281/zenodo.8250065</mods:url>
</mods:location>
<mods:classification id="CBAB6C310B00546146316978FC13C92E">journal article</mods:classification>
<mods:identifier id="AD5D0231B6BB283B2813245B20C11571" type="DOI">10.1016/j.phytochem.2015.08.003</mods:identifier>
<mods:identifier id="D307C3389C9DE49806C5FE3A9B4B7EC9" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="293D7E367192B899BFF388460506821E" type="Zenodo-Dep">10489001</mods:identifier>
</mods:mods>
<treatment id="03ED841CFFF3FFD4FFFCFCEE6856F93B" LSID="urn:lsid:plazi:treatment:03ED841CFFF3FFD4FFFCFCEE6856F93B" httpUri="http://treatment.plazi.org/id/03ED841CFFF3FFD4FFFCFCEE6856F93B" lastPageId="2" lastPageNumber="44" pageId="1" pageNumber="43">
<subSubSection id="C35E6681FFF3FFD7FFFCFCEE6DE9FC56" box="[114,473,885,905]" pageId="1" pageNumber="43" type="nomenclature">
<paragraph id="8BFB350AFFF3FFD7FFFCFCEE6DE9FC56" blockId="1.[114,473,885,905]" box="[114,473,885,905]" pageId="1" pageNumber="43">
<heading id="D0B38266FFF3FFD7FFFCFCEE6DE9FC56" box="[114,473,885,905]" fontSize="36" level="2" pageId="1" pageNumber="43" reason="3">
<emphasis id="B930E918FFF3FFD7FFFCFCEE6DE9FC56" box="[114,473,885,905]" italics="true" pageId="1" pageNumber="43">
2.1. Profiling of
<taxonomicName id="4C444E89FFF3FFD7FE85FCEE6D4DFC56" ID-CoL="4WC3B" authority="Spring" authorityName="Spring" box="[267,381,885,905]" class="Lycopodiopsida" family="Selaginellaceae" genus="Selaginella" kingdom="Plantae" order="Selaginellales" pageId="1" pageNumber="43" phylum="Tracheophyta" rank="species" species="martensii">S. martensii</taxonomicName>
oxylipins
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="C35E6681FFF3FFD4FF1FFC356856F93B" lastPageId="2" lastPageNumber="44" pageId="1" pageNumber="43" type="biology_ecology">
<paragraph id="8BFB350AFFF3FFD7FF1FFC3569EDFA4A" blockId="1.[113,783,941,1157]" lastBlockId="1.[831,1501,880,2015]" pageId="1" pageNumber="43">
The aerial parts of
<taxonomicName id="4C444E89FFF3FFD7FED5FC366DE0FC1E" box="[347,464,941,961]" class="Lycopodiopsida" family="Selaginellaceae" genus="Selaginella" kingdom="Plantae" order="Selaginellales" pageId="1" pageNumber="43" phylum="Tracheophyta" rank="species" species="martensii">
<emphasis id="B930E918FFF3FFD7FED5FC366DE0FC1E" box="[347,464,941,961]" italics="true" pageId="1" pageNumber="43">S. martensii</emphasis>
</taxonomicName>
plants possessed the complex oxylipins patterns. The structural formulae of two major oxylipins groups, namely the divinyl ethers and cyclopentenones, are presented in
<figureCitation id="137F298FFFF3FFD7FF5DFB996D22FBCA" box="[211,274,1026,1045]" captionStart="Fig" captionStartId="1.[119,145,1999,2013]" captionTargetBox="[127,769,1214,1970]" captionTargetId="figure-823@1.[126,770,1213,1970]" captionTargetPageId="1" captionText="Fig. 1. The structural formulae of divinyl ether oxylipins detected in S. martensii." figureDoi="http://doi.org/10.5281/zenodo.10489007" httpUri="https://zenodo.org/record/10489007/files/figure.png" pageId="1" pageNumber="43">Figs. 1</figureCitation>
and
<figureCitation id="137F298FFFF3FFD7FECCFB996D7FFBCA" box="[322,335,1026,1045]" captionStart="Fig" captionStartId="1.[831,857,763,777]" captionTargetBox="[998,1336,182,733]" captionTargetId="figure-841@1.[995,1337,181,734]" captionTargetPageId="1" captionText="Fig. 2. The structural formulae of cyclopentenone oxylipins detected in S.martensii. Products 4 and 8 were racemates composed of depicted structured and their mirror enantiomers." figureDoi="http://doi.org/10.5281/zenodo.10489003" httpUri="https://zenodo.org/record/10489003/files/figure.png" pageId="1" pageNumber="43">2</figureCitation>
, respectively. Oxylipins were extracted from
<taxonomicName id="4C444E89FFF3FFD7FFFFFB866CD2FBEE" box="[113,226,1053,1073]" class="Lycopodiopsida" family="Selaginellaceae" genus="Selaginella" kingdom="Plantae" order="Selaginellales" pageId="1" pageNumber="43" phylum="Tracheophyta" rank="species" species="martensii">
<emphasis id="B930E918FFF3FFD7FFFFFB866CD2FBEE" box="[113,226,1053,1073]" italics="true" pageId="1" pageNumber="43">S. martensii</emphasis>
</taxonomicName>
tissues, methylated, and trimethylsilylated. The resulting oxylipin derivatives were subjected to the GCMS analyses. The observed total ion current (TIC) oxylipin profile is presented in
<figureCitation id="137F298FFFF3FFD7FFFFFBE96C8CFB5A" box="[113,188,1138,1157]" captionStart="Fig" captionStartId="2.[87,113,745,759]" captionTargetBox="[360,1192,182,714]" captionTargetId="figure-302@2.[359,1193,181,715]" captionTargetPageId="2" captionText="Fig. 3. The GCMS profiling of oxylipins (Me/TMSi) from the aerial parts of S. martensii plants. (A) The total ion current (TIC) chromatogram. (B) Selected ion chromatograms (SIC) at m/z 308 (upper chromatogram) and m/z 306 (lower chromatogram)." figureDoi="http://doi.org/10.5281/zenodo.10489009" httpUri="https://zenodo.org/record/10489009/files/figure.png" pageId="1" pageNumber="43">
Fig. 3
<taxonomicName id="4C444E89FFF3FFD7FF25FBE96C8CFB5A" baseAuthorityName="Heylaerts" baseAuthorityYear="1891" box="[171,188,1138,1157]" class="Magnoliopsida" family="Brassicaceae" genus="Arabidopsis" kingdom="Plantae" order="Brassicales" pageId="1" pageNumber="43" phylum="Tracheophyta" rank="species" species="major">A</taxonomicName>
</figureCitation>
. Major oxylipins
<emphasis id="B930E918FFF3FFD7FEFBFBEA6DACFB5B" bold="true" box="[373,412,1137,1157]" pageId="1" pageNumber="43">13</emphasis>
and
<emphasis id="B930E918FFF3FFD7FE58FBEA6DCCFB5B" bold="true" box="[470,508,1137,1157]" pageId="1" pageNumber="43">49</emphasis>
possessed M
<superScript id="7C319842FFF3FFD7FD07FBF56EA2FBA5" attach="left" box="[649,658,1134,1146]" fontSize="5" pageId="1" pageNumber="43">+</superScript>
at
<emphasis id="B930E918FFF3FFD7FD34FBEA6EFDFB5A" box="[698,717,1137,1157]" italics="true" pageId="1" pageNumber="43">m</emphasis>
/
<emphasis id="B930E918FFF3FFD7FD5BFBEA6EEFFB5A" box="[725,735,1137,1157]" italics="true" pageId="1" pageNumber="43">z</emphasis>
308 and 306, respectively (
<figureCitation id="137F298FFFF3FFD7FBA7FCEB685FFC5C" box="[1065,1135,880,899]" captionStart="Fig" captionStartId="2.[87,113,745,759]" captionTargetBox="[360,1192,182,714]" captionTargetId="figure-302@2.[359,1193,181,715]" captionTargetPageId="2" captionText="Fig. 3. The GCMS profiling of oxylipins (Me/TMSi) from the aerial parts of S. martensii plants. (A) The total ion current (TIC) chromatogram. (B) Selected ion chromatograms (SIC) at m/z 308 (upper chromatogram) and m/z 306 (lower chromatogram)." figureDoi="http://doi.org/10.5281/zenodo.10489009" httpUri="https://zenodo.org/record/10489009/files/figure.png" pageId="1" pageNumber="43">Fig. 3B</figureCitation>
) in their mass spectra. Products
<emphasis id="B930E918FFF3FFD7FA4DFCEB6F7CFC41" bold="true" pageId="1" pageNumber="43">1 3</emphasis>
had nearly identical mass spectra, see the spectrum of compound
<emphasis id="B930E918FFF3FFD7FCB1FC3C6F7CFC65" bold="true" box="[831,844,935,954]" pageId="1" pageNumber="43">2</emphasis>
(
<figureCitation id="137F298FFFF3FFD7FCD0FC3C6F99FC64" box="[862,937,935,955]" captionStart="Fig" captionStartId="2.[366,392,1523,1537]" captionTargetBox="[360,1190,855,1492]" captionTargetId="figure-348@2.[359,1191,855,1493]" captionTargetPageId="2" captionText="Fig. 4. The electron impact mass spectra and fragmentation schemes of divinyl ethers 2 (a) and 7 (b)." figureDoi="http://doi.org/10.5281/zenodo.10489011" httpUri="https://zenodo.org/record/10489011/files/figure.png" pageId="1" pageNumber="43">Fig. 4A</figureCitation>
) as an example. These spectra fully corresponded to those of etheroleic acid (Me ester) and its geometric isomers (
<bibRefCitation id="EFD548FBFFF3FFD7FCC9FC446811FC2D" author="Grechkin, A. N. &amp; Fazliev, F. N. &amp; Mukhtarova, L. S." box="[839,1057,991,1011]" pageId="1" pageNumber="43" pagination="159 - 162" refId="ref6361" refString="Grechkin, A. N., Fazliev, F. N., Mukhtarova, L. S., 1995. The lipoxygenase pathway in garlic (Allium sativum L.) bulbs: detection of the novel divinyl ether oxylipins. FEBS Lett. 371, 159 - 162." type="journal article" year="1995">Grechkin et al., 1995</bibRefCitation>
,
<bibRefCitation id="EFD548FBFFF3FFD7FBA1FC446852FC2D" author="Grechkin, A. N. &amp; Ilyasov, A. V. &amp; Hamberg, M." box="[1071,1122,991,1010]" pageId="1" pageNumber="43" pagination="137 - 142" refId="ref6414" refString="Grechkin, A. N., Ilyasov, A. V., Hamberg, M., 1997. On the mechanism of biosynthesis of divinyl ether oxylipins by enzyme from garlic bulbs. Eur. J. Biochem. 245, 137 - 142." type="journal article" year="1997">1997</bibRefCitation>
and
<bibRefCitation id="EFD548FBFFF3FFD7FB17FC446907FC2D" author="Hamberg, M." box="[1177,1335,991,1010]" pageId="1" pageNumber="43" pagination="1061 - 1071" refId="ref6462" refString="Hamberg, M., 1998. A pathway for biosynthesis of divinyl ether fatty acids in green leaves. Lipids 33, 1061 - 1071." type="journal article" year="1998">Hamberg, 1998</bibRefCitation>
). Oxylipins
<emphasis id="B930E918FFF3FFD7FA38FC4469ECFC2D" bold="true" box="[1462,1500,991,1011]" pageId="1" pageNumber="43">57</emphasis>
(M
<superScript id="7C319842FFF3FFD7FCD5FC6C6F54FBDC" attach="left" box="[859,868,1015,1027]" fontSize="5" pageId="1" pageNumber="43">+</superScript>
at
<emphasis id="B930E918FFF3FFD7FC05FC616FAEFBD1" box="[907,926,1018,1038]" italics="true" pageId="1" pageNumber="43">m</emphasis>
/
<emphasis id="B930E918FFF3FFD7FC2BFC616F9FFBD1" box="[933,943,1018,1038]" italics="true" pageId="1" pageNumber="43">z</emphasis>
306) also exhibited the identical mass spectral data. The spectrum of product
<emphasis id="B930E918FFF3FFD7FBCDFB8C6860FBF5" bold="true" box="[1091,1104,1047,1066]" pageId="1" pageNumber="43">7</emphasis>
is illustrated in
<figureCitation id="137F298FFFF3FFD7FB74FB8C6970FBF5" box="[1274,1344,1047,1066]" captionStart="Fig" captionStartId="2.[366,392,1523,1537]" captionTargetBox="[360,1190,855,1492]" captionTargetId="figure-348@2.[359,1191,855,1493]" captionTargetPageId="2" captionText="Fig. 4. The electron impact mass spectra and fragmentation schemes of divinyl ethers 2 (a) and 7 (b)." figureDoi="http://doi.org/10.5281/zenodo.10489011" httpUri="https://zenodo.org/record/10489011/files/figure.png" pageId="1" pageNumber="43">Fig. 4B</figureCitation>
. The spectra of products
<emphasis id="B930E918FFF3FFD7FC2FFBA86FF8FB99" bold="true" box="[929,968,1075,1094]" pageId="1" pageNumber="43">57</emphasis>
matched those of etherolenic acid (Me ester) and its geometric isomers (
<bibRefCitation id="EFD548FBFFF3FFD7FBB5FBD46912FBBD" author="Grechkin, A. N. &amp; Fazliev, F. N. &amp; Mukhtarova, L. S." box="[1083,1314,1103,1122]" pageId="1" pageNumber="43" pagination="159 - 162" refId="ref6361" refString="Grechkin, A. N., Fazliev, F. N., Mukhtarova, L. S., 1995. The lipoxygenase pathway in garlic (Allium sativum L.) bulbs: detection of the novel divinyl ether oxylipins. FEBS Lett. 371, 159 - 162." type="journal article" year="1995">Grechkin et al., 1995</bibRefCitation>
,
<bibRefCitation id="EFD548FBFFF3FFD7FABDFBD4695AFBBD" author="Grechkin, A. N. &amp; Ilyasov, A. V. &amp; Hamberg, M." box="[1331,1386,1103,1122]" pageId="1" pageNumber="43" pagination="137 - 142" refId="ref6414" refString="Grechkin, A. N., Ilyasov, A. V., Hamberg, M., 1997. On the mechanism of biosynthesis of divinyl ether oxylipins by enzyme from garlic bulbs. Eur. J. Biochem. 245, 137 - 142." type="journal article" year="1997">1997</bibRefCitation>
;
<bibRefCitation id="EFD548FBFFF3FFD7FAF5FBD46F42FBA1" author="Hamberg, M." pageId="1" pageNumber="43" pagination="1061 - 1071" refId="ref6462" refString="Hamberg, M., 1998. A pathway for biosynthesis of divinyl ether fatty acids in green leaves. Lipids 33, 1061 - 1071." type="journal article" year="1998">Hamberg, 1998</bibRefCitation>
). The equivalent chain length (ECL) values 19.03, 19.56 and 19.80 (respectively) of peaks
<emphasis id="B930E918FFF3FFD7FBE5FB1D6848FB46" bold="true" box="[1131,1144,1158,1177]" pageId="1" pageNumber="43">1</emphasis>
,
<emphasis id="B930E918FFF3FFD7FB0AFB1D68A1FB46" bold="true" box="[1156,1169,1158,1177]" pageId="1" pageNumber="43">2</emphasis>
and
<emphasis id="B930E918FFF3FFD7FB4BFB1D68E2FB46" bold="true" box="[1221,1234,1158,1177]" pageId="1" pageNumber="43">3</emphasis>
were ca. 0.20 bigger than those of (ω5
<emphasis id="B930E918FFF3FFD7FC46FB3A6FE3FB6A" box="[968,979,1185,1205]" italics="true" pageId="1" pageNumber="43">Z</emphasis>
)-etheroleic, etheroleic and (11
<emphasis id="B930E918FFF3FFD7FA92FB3A6918FB6A" box="[1308,1320,1185,1205]" italics="true" pageId="1" pageNumber="43">Z</emphasis>
)-etheroleic acids (Me esters) (
<bibRefCitation id="EFD548FBFFF3FFD7FC30FB256869FB0D" author="Hamberg, M." box="[958,1113,1214,1234]" pageId="1" pageNumber="43" pagination="1061 - 1071" refId="ref6462" refString="Hamberg, M., 1998. A pathway for biosynthesis of divinyl ether fatty acids in green leaves. Lipids 33, 1061 - 1071." type="journal article" year="1998">Hamberg, 1998</bibRefCitation>
,
<bibRefCitation id="EFD548FBFFF3FFD7FBEDFB2468A5FB0D" author="Hamberg, M." box="[1123,1173,1215,1234]" pageId="1" pageNumber="43" pagination="565 - 569" refId="ref6513" refString="Hamberg, M., 2004. Isolation and structures of two divinyl ether fatty acids from Clematis vitalba. Lipids 39, 565 - 569." type="journal article" year="2004">2004</bibRefCitation>
), measured on a methylsiloxane GLC column. Peak
<emphasis id="B930E918FFF3FFD7FB8DFB416820FB32" bold="true" box="[1027,1040,1242,1261]" pageId="1" pageNumber="43">7</emphasis>
corresponded to (11
<emphasis id="B930E918FFF3FFD7FB64FB4268C6FB32" box="[1258,1270,1241,1261]" italics="true" pageId="1" pageNumber="43">Z</emphasis>
)-etherolenic acid (Me ester), ECL value 20.22. Etherolenic and (ω5
<emphasis id="B930E918FFF3FFD7FA97FB6E6915FAD6" box="[1305,1317,1269,1289]" italics="true" pageId="1" pageNumber="43">Z</emphasis>
)-etherolenic acid Me esters (
<emphasis id="B930E918FFF3FFD7FC23FA896F8AFAFA" bold="true" box="[941,954,1298,1317]" pageId="1" pageNumber="43">5</emphasis>
and
<emphasis id="B930E918FFF3FFD7FC64FA896FC7FAFA" bold="true" box="[1002,1015,1298,1317]" pageId="1" pageNumber="43">6</emphasis>
) appeared as a single peak on 5% phenylmethylsiloxane columns (ECL 20.05). For final structural identification, the individual divinyl ethers were separated at micro-preparative scale and purified by HPLC. Then the NMR spectral data were recorded for each of isomers
<emphasis id="B930E918FFF3FFD7FB86FA1A681EFA4B" bold="true" box="[1032,1070,1409,1429]" pageId="1" pageNumber="43">13</emphasis>
and
<emphasis id="B930E918FFF3FFD7FBECFA1968B8FA4A" bold="true" box="[1122,1160,1410,1429]" pageId="1" pageNumber="43">57</emphasis>
. These data are presented below.
</paragraph>
<paragraph id="8BFB350AFFF3FFD7FCD0FA056FC5F801" blockId="1.[831,1501,880,2015]" pageId="1" pageNumber="43">
Mass spectra of products
<emphasis id="B930E918FFF3FFD7FBE7FA066846FA6F" bold="true" box="[1129,1142,1437,1456]" pageId="1" pageNumber="43">4</emphasis>
,
<emphasis id="B930E918FFF3FFD7FB0AFA0668A1FA6F" bold="true" box="[1156,1169,1437,1456]" pageId="1" pageNumber="43">8</emphasis>
and
<emphasis id="B930E918FFF3FFD7FB46FA0668E5FA6F" bold="true" box="[1224,1237,1437,1456]" pageId="1" pageNumber="43">9</emphasis>
also exhibited M
<superScript id="7C319842FFF3FFD7FA04FA0169A3FA79" attach="left" box="[1418,1427,1434,1446]" fontSize="5" pageId="1" pageNumber="43">+</superScript>
at
<emphasis id="B930E918FFF3FFD7FA36FA0669FBFA6E" box="[1464,1483,1437,1457]" italics="true" pageId="1" pageNumber="43">m</emphasis>
/
<emphasis id="B930E918FFF3FFD7FA5CFA0669ECFA6E" box="[1490,1500,1437,1457]" italics="true" pageId="1" pageNumber="43">z</emphasis>
306. Products
<emphasis id="B930E918FFF3FFD7FC5EFA226FEDFA13" bold="true" box="[976,989,1465,1484]" pageId="1" pageNumber="43">4</emphasis>
and
<emphasis id="B930E918FFF3FFD7FB9FFA22682EFA13" bold="true" box="[1041,1054,1465,1484]" pageId="1" pageNumber="43">8</emphasis>
have nearly identical spectral patterns. The mass spectrum of compound
<emphasis id="B930E918FFF3FFD7FBE1FA4E684CFA37" bold="true" box="[1135,1148,1493,1512]" pageId="1" pageNumber="43">8</emphasis>
is presented in
<figureCitation id="137F298FFFF3FFD7FAADFA4E695BFA36" box="[1315,1387,1493,1513]" captionStart="Fig" captionStartId="3.[113,139,1072,1086]" captionTargetBox="[387,1219,182,1041]" captionTargetId="figure-207@3.[386,1220,181,1042]" captionTargetPageId="3" captionText="Fig. 5. The electron impact mass spectra and fragmentation schemes (insets) of cyclopentenone oxylipins detected in S. martensii. a, b and c, spectra of products 8, 9 and 10, respectively." figureDoi="http://doi.org/10.5281/zenodo.10489013" httpUri="https://zenodo.org/record/10489013/files/figure.png" pageId="1" pageNumber="43">Fig. 5A</figureCitation>
. This spectrum matches that of
<emphasis id="B930E918FFF3FFD7FBABFA6B680EF9DB" box="[1061,1086,1520,1540]" italics="true" pageId="1" pageNumber="43">cis</emphasis>
-12-oxo-10,15(
<emphasis id="B930E918FFF3FFD7FB58FA6B68D1F9DB" box="[1238,1249,1520,1540]" italics="true" pageId="1" pageNumber="43">Z</emphasis>
)-phytodienoic acid (12- oxo-PDA) Me ester (
<bibRefCitation id="EFD548FBFFF3FFD7FB87F99668DCF9FF" author="Chechetkin, I. R. &amp; Blufard, A. &amp; Hamberg, M. &amp; Grechkin, A. N." box="[1033,1260,1549,1569]" pageId="1" pageNumber="43" pagination="2008 - 2015" refId="ref6018" refString="Chechetkin, I. R., Blufard, A., Hamberg, M., Grechkin, A. N., 2008. A lipoxygenasedivinyl ether synthase pathway in flax (Linum usitatissimum L.) leaves. Phytochemistry 69, 2008 - 2015." type="journal article" year="2008">Chechetkin et al., 2008</bibRefCitation>
). Both the mass spectra and the retention times of products
<emphasis id="B930E918FFF3FFD7FB25F9B26888F9E3" bold="true" box="[1195,1208,1577,1596]" pageId="1" pageNumber="43">4</emphasis>
and
<emphasis id="B930E918FFF3FFD7FB67F9B268C6F9E3" bold="true" box="[1257,1270,1577,1596]" pageId="1" pageNumber="43">8</emphasis>
corresponded to those of
<emphasis id="B930E918FFF3FFD7FCD7F9DF6FBAF987" box="[857,906,1604,1624]" italics="true" pageId="1" pageNumber="43">trans</emphasis>
-12-oxo-PDA and
<emphasis id="B930E918FFF3FFD7FBB1F9DF6868F987" box="[1087,1112,1604,1624]" italics="true" pageId="1" pageNumber="43">cis</emphasis>
-12-oxo-PDA (Me esters), respectively. Compound
<emphasis id="B930E918FFF3FFD7FC3DF9FA6FF0F9AB" bold="true" box="[947,960,1633,1652]" pageId="1" pageNumber="43">9</emphasis>
possessed the distinct, recognizable mass fragmentation patterns (
<figureCitation id="137F298FFFF3FFD7FC43F9E66820F94F" box="[973,1040,1661,1680]" captionStart="Fig" captionStartId="3.[113,139,1072,1086]" captionTargetBox="[387,1219,182,1041]" captionTargetId="figure-207@3.[386,1220,181,1042]" captionTargetPageId="3" captionText="Fig. 5. The electron impact mass spectra and fragmentation schemes (insets) of cyclopentenone oxylipins detected in S. martensii. a, b and c, spectra of products 8, 9 and 10, respectively." figureDoi="http://doi.org/10.5281/zenodo.10489013" httpUri="https://zenodo.org/record/10489013/files/figure.png" pageId="1" pageNumber="43">Fig. 5B</figureCitation>
) of 12-oxo-9(13),15(
<emphasis id="B930E918FFF3FFD7FB6FF9E768DDF94F" box="[1249,1261,1660,1680]" italics="true" pageId="1" pageNumber="43">Z</emphasis>
)-phytodienoic acid (Me ester) (
<bibRefCitation id="EFD548FBFFF3FFD7FC08F9026817F973" author="Vick, B. A. &amp; Zimmerman, D. C. &amp; Weisleder, D." box="[902,1063,1689,1708]" pageId="1" pageNumber="43" pagination="734 - 740" refId="ref7767" refString="Vick, B. A., Zimmerman, D. C., Weisleder, D., 1979. Thermal alteration of a cyclic fatty acid produced by a flaxseed extract. Lipids 14, 734 - 740." type="journal article" year="1979">Vick et al., 1979</bibRefCitation>
). Catalytic hydrogenation turned product
<emphasis id="B930E918FFF3FFD7FA41F90269ECF973" bold="true" box="[1487,1500,1689,1708]" pageId="1" pageNumber="43">9</emphasis>
to a nearly equimolar mixture of
<emphasis id="B930E918FFF3FFD7FB1BF92868F6F918" box="[1173,1222,1715,1735]" italics="true" pageId="1" pageNumber="43">trans</emphasis>
and
<emphasis id="B930E918FFF3FFD7FB75F9286924F918" box="[1275,1300,1715,1735]" italics="true" pageId="1" pageNumber="43">cis</emphasis>
isomers of 12-oxophytonoic acid (Me). Their mass spectra exhibited M
<superScript id="7C319842FFF3FFD7FAD0F9566957F906" attach="left" box="[1374,1383,1741,1753]" fontSize="5" pageId="1" pageNumber="43">+</superScript>
at
<emphasis id="B930E918FFF3FFD7FA04F95469ADF93C" box="[1418,1437,1743,1763]" italics="true" pageId="1" pageNumber="43">m</emphasis>
/
<emphasis id="B930E918FFF3FFD7FA2BF954699FF93C" box="[1445,1455,1743,1763]" italics="true" pageId="1" pageNumber="43">z</emphasis>
310 (0.1%), [M
<superScript id="7C319842FFF3FFD7FC2AF9726F9DF92A" attach="left" box="[932,941,1769,1781]" fontSize="5" pageId="1" pageNumber="43">+</superScript>
<emphasis id="B930E918FFF3FFD7FC23F9776F8EF920" box="[941,958,1772,1791]" italics="true" pageId="1" pageNumber="43"></emphasis>
MeO] at
<emphasis id="B930E918FFF3FFD7FB97F970681CF920" box="[1049,1068,1771,1791]" italics="true" pageId="1" pageNumber="43">m</emphasis>
/
<emphasis id="B930E918FFF3FFD7FBBAF970680EF920" box="[1076,1086,1771,1791]" italics="true" pageId="1" pageNumber="43">z</emphasis>
279 (1%), [M
<superScript id="7C319842FFF3FFD7FB46F97268E1F92A" attach="left" box="[1224,1233,1769,1781]" fontSize="5" pageId="1" pageNumber="43">+</superScript>
<emphasis id="B930E918FFF3FFD7FB5FF97768D2F920" box="[1233,1250,1772,1791]" italics="true" pageId="1" pageNumber="43"></emphasis>
Me(
<collectingCountry id="F353759AFFF3FFD7FA89F9776917F920" box="[1287,1319,1772,1791]" name="Switzerland" pageId="1" pageNumber="43">CH</collectingCountry>
<subScript id="17C0374FFFF3FFD7FAA9F96E6900F8DE" attach="left" box="[1319,1328,1781,1793]" fontSize="5" pageId="1" pageNumber="43">2</subScript>
)
<subScript id="17C0374FFFF3FFD7FAB6F96E6971F8DE" attach="none" box="[1336,1345,1781,1793]" fontSize="5" pageId="1" pageNumber="43">4</subScript>
+H] at
<emphasis id="B930E918FFF3FFD7FA04F97069ADF920" box="[1418,1437,1771,1791]" italics="true" pageId="1" pageNumber="43">m</emphasis>
/
<emphasis id="B930E918FFF3FFD7FA2AF970699EF920" box="[1444,1454,1771,1791]" italics="true" pageId="1" pageNumber="43">z</emphasis>
240 (4%), [M
<superScript id="7C319842FFF3FFD7FC1AF89F6FADF8CF" attach="left" box="[916,925,1796,1808]" fontSize="5" pageId="1" pageNumber="43">+</superScript>
<emphasis id="B930E918FFF3FFD7FC12F8936F9DF8C4" box="[924,941,1800,1819]" italics="true" pageId="1" pageNumber="43"></emphasis>
(
<collectingCountry id="F353759AFFF3FFD7FC3DF8936FE3F8C4" box="[947,979,1800,1819]" name="Switzerland" pageId="1" pageNumber="43">CH</collectingCountry>
<subScript id="17C0374FFFF3FFD7FC5DF88A6FECF8C2" attach="left" box="[979,988,1809,1821]" fontSize="5" pageId="1" pageNumber="43">2</subScript>
)
<subScript id="17C0374FFFF3FFD7FC6AF88A6FDDF8C2" attach="right" box="[996,1005,1809,1821]" fontSize="5" pageId="1" pageNumber="43">7</subScript>
COOMe] at
<emphasis id="B930E918FFF3FFD7FBE9F89C684AF8C4" box="[1127,1146,1799,1819]" italics="true" pageId="1" pageNumber="43">m</emphasis>
/
<emphasis id="B930E918FFF3FFD7FB0CF89C68BCF8C4" box="[1154,1164,1799,1819]" italics="true" pageId="1" pageNumber="43">z</emphasis>
153 (14%), 83 (100%). Similarly, the hydrogenation turned compounds
<emphasis id="B930E918FFF3FFD7FB48F8BF68E3F8E8" bold="true" box="[1222,1235,1828,1847]" pageId="1" pageNumber="43">4</emphasis>
and
<emphasis id="B930E918FFF3FFD7FA8BF8BF6922F8E8" bold="true" box="[1285,1298,1828,1847]" pageId="1" pageNumber="43">8</emphasis>
to
<emphasis id="B930E918FFF3FFD7FABDF8B86954F8E8" box="[1331,1380,1827,1847]" italics="true" pageId="1" pageNumber="43">trans</emphasis>
and
<emphasis id="B930E918FFF3FFD7FA19F8B86980F8E8" box="[1431,1456,1827,1847]" italics="true" pageId="1" pageNumber="43">cis</emphasis>
isomers of 12-oxophytonoic acid (Me), respectively. The obtained results allowed us to assign the structures of Me esters of
<emphasis id="B930E918FFF3FFD7FA2CF8C069E3F8B0" box="[1442,1491,1883,1903]" italics="true" pageId="1" pageNumber="43">trans</emphasis>
- 12-oxo-PDA,
<emphasis id="B930E918FFF3FFD7FC47F8EC6FD2F854" box="[969,994,1911,1931]" italics="true" pageId="1" pageNumber="43">cis</emphasis>
-12-oxo-PDA and 12-oxo-9(13)-PDA to products
<emphasis id="B930E918FFF3FFD7FCB1F8086F7CF879" bold="true" box="[831,844,1939,1958]" pageId="1" pageNumber="43">4</emphasis>
,
<emphasis id="B930E918FFF3FFD7FCD6F8086F55F879" bold="true" box="[856,869,1939,1958]" pageId="1" pageNumber="43">8</emphasis>
and
<emphasis id="B930E918FFF3FFD7FC17F8086F96F879" bold="true" box="[921,934,1939,1958]" pageId="1" pageNumber="43">9</emphasis>
, respectively. Steric analysis of purified
<emphasis id="B930E918FFF3FFD7FACFF808696AF878" box="[1345,1370,1939,1959]" italics="true" pageId="1" pageNumber="43">cis</emphasis>
-12-oxo-PDA (
<emphasis id="B930E918FFF3FFD7FCC9F8346F64F81D" bold="true" box="[839,852,1967,1986]" pageId="1" pageNumber="43">8</emphasis>
, Me ester) revealed that it was composed of 45% (
<emphasis id="B930E918FFF3FFD7FAD4F8346957F81C" box="[1370,1383,1967,1987]" italics="true" pageId="1" pageNumber="43">R</emphasis>
,
<emphasis id="B930E918FFF3FFD7FAE2F8346949F81C" box="[1388,1401,1967,1987]" italics="true" pageId="1" pageNumber="43">R</emphasis>
) and 55% (
<emphasis id="B930E918FFF3FFD7FCC9F8516F62F801" box="[839,850,1994,2014]" italics="true" pageId="1" pageNumber="43">S</emphasis>
,
<emphasis id="B930E918FFF3FFD7FCD8F8516F51F801" box="[854,865,1994,2014]" italics="true" pageId="1" pageNumber="43">S</emphasis>
) enantiomers.
</paragraph>
<caption id="DF3B6582FFF3FFD7FFF9F8546F39F802" ID-DOI="http://doi.org/10.5281/zenodo.10489007" ID-Zenodo-Dep="10489007" box="[119,777,1998,2013]" httpUri="https://zenodo.org/record/10489007/files/figure.png" pageId="1" pageNumber="43" startId="1.[119,145,1999,2013]" targetBox="[127,769,1214,1970]" targetPageId="1" targetType="figure">
<paragraph id="8BFB350AFFF3FFD7FFF9F8546F39F802" blockId="1.[119,777,1998,2013]" box="[119,777,1998,2013]" pageId="1" pageNumber="43">
<emphasis id="B930E918FFF3FFD7FFF9F8546C99F802" bold="true" box="[119,169,1999,2013]" pageId="1" pageNumber="43">Fig. 1.</emphasis>
The structural formulae of divinyl ether oxylipins detected in
<taxonomicName id="4C444E89FFF3FFD7FD24F8556F36F802" box="[682,774,1998,2013]" class="Lycopodiopsida" family="Selaginellaceae" genus="Selaginella" kingdom="Plantae" order="Selaginellales" pageId="1" pageNumber="43" phylum="Tracheophyta" rank="species" species="martensii">
<emphasis id="B930E918FFF3FFD7FD24F8556F36F802" box="[682,774,1998,2013]" italics="true" pageId="1" pageNumber="43">S. martensii</emphasis>
</taxonomicName>
.
</paragraph>
</caption>
<caption id="DF3B6582FFF0FFD4FFD9FD726EF6FCD1" ID-DOI="http://doi.org/10.5281/zenodo.10489009" ID-Zenodo-Dep="10489009" httpUri="https://zenodo.org/record/10489009/files/figure.png" pageId="2" pageNumber="44" startId="2.[87,113,745,759]" targetBox="[360,1192,182,714]" targetPageId="2" targetType="figure">
<paragraph id="8BFB350AFFF0FFD4FFD9FD726EF6FCD1" blockId="2.[87,1474,744,782]" pageId="2" pageNumber="44">
<emphasis id="B930E918FFF0FFD4FFD9FD726CB8FD28" bold="true" box="[87,136,745,759]" pageId="2" pageNumber="44">Fig. 3.</emphasis>
The GCMS profiling of oxylipins (Me/TMSi) from the aerial parts of
<taxonomicName id="4C444E89FFF0FFD4FD3BFD736F20FD28" box="[693,784,744,759]" class="Lycopodiopsida" family="Selaginellaceae" genus="Selaginella" kingdom="Plantae" order="Selaginellales" pageId="2" pageNumber="44" phylum="Tracheophyta" rank="species" species="martensii">
<emphasis id="B930E918FFF0FFD4FD3BFD736F20FD28" box="[693,784,744,759]" italics="true" pageId="2" pageNumber="44">S. martensii</emphasis>
</taxonomicName>
plants. (A) The total ion current (TIC) chromatogram. (B) Selected ion chromatograms (SIC) at
<emphasis id="B930E918FFF0FFD4FF16FD646C97FCD1" box="[152,167,767,782]" italics="true" pageId="2" pageNumber="44">m</emphasis>
/
<emphasis id="B930E918FFF0FFD4FF23FD646C85FCD1" box="[173,181,767,782]" italics="true" pageId="2" pageNumber="44">z</emphasis>
308 (upper chromatogram) and
<emphasis id="B930E918FFF0FFD4FE4CFD646DE1FCD1" box="[450,465,767,782]" italics="true" pageId="2" pageNumber="44">m</emphasis>
/
<emphasis id="B930E918FFF0FFD4FE59FD646DEFFCD1" box="[471,479,767,782]" italics="true" pageId="2" pageNumber="44">z</emphasis>
306 (lower chromatogram).
</paragraph>
</caption>
<caption id="DF3B6582FFF0FFD4FEE0FA68689CF9DE" ID-DOI="http://doi.org/10.5281/zenodo.10489011" ID-Zenodo-Dep="10489011" box="[366,1196,1523,1537]" httpUri="https://zenodo.org/record/10489011/files/figure.png" pageId="2" pageNumber="44" startId="2.[366,392,1523,1537]" targetBox="[360,1190,855,1492]" targetPageId="2" targetType="figure">
<paragraph id="8BFB350AFFF0FFD4FEE0FA68689CF9DE" blockId="2.[366,1196,1523,1537]" box="[366,1196,1523,1537]" pageId="2" pageNumber="44">
<emphasis id="B930E918FFF0FFD4FEE0FA686D90F9DE" bold="true" box="[366,416,1523,1537]" pageId="2" pageNumber="44">Fig. 4.</emphasis>
The electron impact mass spectra and fragmentation schemes of divinyl ethers
<emphasis id="B930E918FFF0FFD4FBBFFA68680BF9DE" bold="true" box="[1073,1083,1523,1537]" pageId="2" pageNumber="44">2</emphasis>
(a) and
<emphasis id="B930E918FFF0FFD4FB0EFA6868BAF9DE" bold="true" box="[1152,1162,1523,1537]" pageId="2" pageNumber="44">7</emphasis>
(b).
</paragraph>
</caption>
<paragraph id="8BFB350AFFF0FFD4FFF8F9DE6EA8F854" blockId="2.[87,757,1605,2015]" pageId="2" pageNumber="44">
Peak of one more related minor product
<emphasis id="B930E918FFF0FFD4FD9CF9DE6E1BF987" bold="true" box="[530,555,1605,1624]" pageId="2" pageNumber="44">10</emphasis>
eluted shortly after the methyl stearate (not illustrated). Despite its relative minority, it is of substantial interest. Its mass spectrum is presented in
<figureCitation id="137F298FFFF0FFD4FFD9F9026CAFF973" box="[87,159,1689,1708]" captionStart="Fig" captionStartId="3.[113,139,1072,1086]" captionTargetBox="[387,1219,182,1041]" captionTargetId="figure-207@3.[386,1220,181,1042]" captionTargetPageId="3" captionText="Fig. 5. The electron impact mass spectra and fragmentation schemes (insets) of cyclopentenone oxylipins detected in S. martensii. a, b and c, spectra of products 8, 9 and 10, respectively." figureDoi="http://doi.org/10.5281/zenodo.10489013" httpUri="https://zenodo.org/record/10489013/files/figure.png" pageId="2" pageNumber="44">Fig. 5C</figureCitation>
. It possessed M
<superScript id="7C319842FFF0FFD4FECFF90E6D7AF97E" attach="left" box="[321,330,1685,1697]" fontSize="5" pageId="2" pageNumber="44">+</superScript>
at
<emphasis id="B930E918FFF0FFD4FEE3F9036DB0F973" box="[365,384,1688,1708]" italics="true" pageId="2" pageNumber="44">m</emphasis>
/
<emphasis id="B930E918FFF0FFD4FE09F9036DA1F973" box="[391,401,1688,1708]" italics="true" pageId="2" pageNumber="44">z</emphasis>
278 and characteristic fragmentation patterns shown in the scheme (
<figureCitation id="137F298FFFF0FFD4FE54F92F6E23F918" box="[474,531,1716,1735]" captionStart="Fig" captionStartId="3.[113,139,1072,1086]" captionTargetBox="[387,1219,182,1041]" captionTargetId="figure-207@3.[386,1220,181,1042]" captionTargetPageId="3" captionText="Fig. 5. The electron impact mass spectra and fragmentation schemes (insets) of cyclopentenone oxylipins detected in S. martensii. a, b and c, spectra of products 8, 9 and 10, respectively." figureDoi="http://doi.org/10.5281/zenodo.10489013" httpUri="https://zenodo.org/record/10489013/files/figure.png" pageId="2" pageNumber="44">Fig. 5</figureCitation>
, inset). Product
<emphasis id="B930E918FFF0FFD4FD4FF92F6EEAF918" bold="true" box="[705,730,1716,1735]" pageId="2" pageNumber="44">10</emphasis>
is the
<emphasis id="B930E918FFF0FFD4FFF1F9546CA8F93C" box="[127,152,1743,1763]" italics="true" pageId="2" pageNumber="44">cis</emphasis>
-2,3-dinor-12-oxo-PDA, a lower homologue of compound
<emphasis id="B930E918FFF0FFD4FD66F94B6EC5F93C" bold="true" box="[744,757,1744,1763]" pageId="2" pageNumber="44">8</emphasis>
(
<bibRefCitation id="EFD548FBFFF0FFD4FFD1F9776D12F920" author="Weber, H. &amp; Vick, B. A. &amp; Farmer, E. E." box="[95,290,1772,1792]" pageId="2" pageNumber="44" pagination="10473 - 10478" refId="ref7808" refString="Weber, H., Vick, B. A., Farmer, E. E., 1997. Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc. Natl. Acad. Sci. U. S. A. 94, 10473 - 10478." type="journal article" year="1997">Weber et al., 1997</bibRefCitation>
). Catalytic hydrogenation turned product
<emphasis id="B930E918FFF0FFD4FD55F9776EC4F920" bold="true" box="[731,756,1772,1791]" pageId="2" pageNumber="44">10</emphasis>
to nearly equimolar mixture of
<emphasis id="B930E918FFF0FFD4FE17F89C6DFAF8C4" box="[409,458,1799,1819]" italics="true" pageId="2" pageNumber="44">trans</emphasis>
and
<emphasis id="B930E918FFF0FFD4FE70F89C6E27F8C4" box="[510,535,1799,1819]" italics="true" pageId="2" pageNumber="44">cis</emphasis>
isomers of 2,3-dinor-12-oxophytonoic acid (Me). Their mass spectra exhibited [M
<superScript id="7C319842FFF0FFD4FFFAF8A76C4DF897" attach="left" box="[116,125,1852,1864]" fontSize="5" pageId="2" pageNumber="44">+</superScript>
<emphasis id="B930E918FFF0FFD4FFF2F8DB6CBDF88C" box="[124,141,1856,1875]" italics="true" pageId="2" pageNumber="44"></emphasis>
MeO] at
<emphasis id="B930E918FFF0FFD4FF62F8A46CCFF88C" box="[236,255,1855,1875]" italics="true" pageId="2" pageNumber="44">m</emphasis>
/
<emphasis id="B930E918FFF0FFD4FE89F8A46D21F88C" box="[263,273,1855,1875]" italics="true" pageId="2" pageNumber="44">z</emphasis>
279 (1%), [M
<superScript id="7C319842FFF0FFD4FE2FF8A76D9AF897" attach="left" box="[417,426,1852,1864]" fontSize="5" pageId="2" pageNumber="44">+</superScript>
<emphasis id="B930E918FFF0FFD4FE24F8DB6D8BF88C" box="[426,443,1856,1875]" italics="true" pageId="2" pageNumber="44"></emphasis>
Me(
<collectingCountry id="F353759AFFF0FFD4FE6EF8DB6E30F88C" box="[480,512,1856,1875]" name="Switzerland" pageId="2" pageNumber="44">CH</collectingCountry>
<subScript id="17C0374FFFF0FFD4FD8EF8D26E39F88A" attach="left" box="[512,521,1865,1877]" fontSize="5" pageId="2" pageNumber="44">2</subScript>
)
<subScript id="17C0374FFFF0FFD4FD9FF8D26E2AF88A" attach="none" box="[529,538,1865,1877]" fontSize="5" pageId="2" pageNumber="44">4</subScript>
+H] at
<emphasis id="B930E918FFF0FFD4FDE9F8A46E4AF88C" box="[615,634,1855,1875]" italics="true" pageId="2" pageNumber="44">m</emphasis>
/
<emphasis id="B930E918FFF0FFD4FD0FF8A46EBBF88C" box="[641,651,1855,1875]" italics="true" pageId="2" pageNumber="44">z</emphasis>
212 (7%), [M
<superScript id="7C319842FFF0FFD4FFFAF8C36C4DF8BB" attach="left" box="[116,125,1880,1892]" fontSize="5" pageId="2" pageNumber="44">+</superScript>
<emphasis id="B930E918FFF0FFD4FFF2F8C76CBDF8B0" box="[124,141,1884,1903]" italics="true" pageId="2" pageNumber="44"></emphasis>
(
<collectingCountry id="F353759AFFF0FFD4FF1DF8C76C83F8B0" box="[147,179,1884,1903]" name="Switzerland" pageId="2" pageNumber="44">CH</collectingCountry>
<subScript id="17C0374FFFF0FFD4FF3DF8FE6C8CF8AE" attach="left" box="[179,188,1893,1905]" fontSize="5" pageId="2" pageNumber="44">2</subScript>
)
<subScript id="17C0374FFFF0FFD4FF4AF8FE6CFDF8AE" attach="right" box="[196,205,1893,1905]" fontSize="5" pageId="2" pageNumber="44">7</subScript>
COOMe] at
<emphasis id="B930E918FFF0FFD4FEC6F8C06D6BF8B0" box="[328,347,1883,1903]" italics="true" pageId="2" pageNumber="44">m</emphasis>
/
<emphasis id="B930E918FFF0FFD4FEEDF8C06D5DF8B0" box="[355,365,1883,1903]" italics="true" pageId="2" pageNumber="44">z</emphasis>
153 (15%), 83 (100%). The
<emphasis id="B930E918FFF0FFD4FD1EF8C06E99F8B0" box="[656,681,1883,1903]" italics="true" pageId="2" pageNumber="44">cis</emphasis>
-2,3-dinor-12-oxophytonoic acid (Me) had the ECL value 18.22.
</paragraph>
<paragraph id="8BFB350AFFF0FFD4FFF8F80F6856F93B" blockId="2.[87,757,1605,2015]" lastBlockId="2.[805,1475,1605,1764]" pageId="2" pageNumber="44">
Along with the above mentioned DES and AOS products, some minor oxylipins have been detected. These are 9-oxononanoic acid, azelaic acid and (3
<emphasis id="B930E918FFF0FFD4FEA6F8516D04F801" box="[296,308,1994,2014]" italics="true" pageId="2" pageNumber="44">Z</emphasis>
)-traumatic acid. Their physical data (not presented) were identical to those described in our recent paper (
<bibRefCitation id="EFD548FBFFF0FFD4FCA3F9FA6814F9AB" author="Mukhtarova, L. S. &amp; Mukhitova, F. K. &amp; Gogolev, Y. V. &amp; Grechkin, A. N." box="[813,1060,1633,1652]" pageId="2" pageNumber="44" pagination="356 - 364" refId="ref6937" refString="Mukhtarova, L. S., Mukhitova, F. K., Gogolev, Y. V., Grechkin, A. N., 2011. Hydroperoxide lyase cascade in pea seedlings: non-volatile oxylipins and their age and stress dependent alterations. Phytochemistry 72, 356 - 364." type="journal article" year="2011">Mukhtarova et al., 2011</bibRefCitation>
). Appearance of these chain fragmentation products is apparently related to the HPL activity. Besides, the Oi- ketol, 12-oxo-13-hydroxy-9,15-octadecadienoic acid (Me/ TMS) was detected. However, it was much less abundant than the cyclopentenones
<emphasis id="B930E918FFF0FFD4FC72F94B6839F93C" bold="true" box="[1020,1033,1744,1763]" pageId="2" pageNumber="44">4</emphasis>
,
<emphasis id="B930E918FFF0FFD4FB9BF94B6812F93C" bold="true" box="[1045,1058,1744,1763]" pageId="2" pageNumber="44">8</emphasis>
and
<emphasis id="B930E918FFF0FFD4FBDBF94B6852F93C" bold="true" box="[1109,1122,1744,1763]" pageId="2" pageNumber="44">9</emphasis>
.
</paragraph>
</subSubSection>
</treatment>
</document>