310 lines
39 KiB
XML
310 lines
39 KiB
XML
<document id="D7042F08C29444222FE5FDDADAE1616B" ID-DOI="10.1016/j.phytochem.2020.112272" ID-ISSN="1873-3700" ID-Zenodo-Dep="8294125" IM.bibliography_approvedBy="diego" IM.illustrations_approvedBy="diego" IM.materialsCitations_approvedBy="diego" IM.metadata_approvedBy="felipe" IM.tables_approvedBy="diego" IM.taxonomicNames_approvedBy="diego" IM.treatments_approvedBy="diego" checkinTime="1693255197596" checkinUser="felipe" docAuthor="Castellanos, Leonardo, Naranjo-Gaybor, Sandra Judith, Forero, Abel M., Morales, Gustavo, Wilson, Erica Georgina, Ramos, Freddy A. & Choi, Young Hae" docDate="2020" docId="0947BB4AFFBFFFBEFFDDF94426F3FA98" docLanguage="en" docName="Phytochemistry.172.112272.pdf" docOrigin="Phytochemistry (112272) 172" docSource="http://dx.doi.org/10.1016/j.phytochem.2020.112272" docStyle="DocumentStyle:F36D69FC8B198FBE91029DF9C24697D3.5:Phytochemistry.2020-.journal_article" docStyleId="F36D69FC8B198FBE91029DF9C24697D3" docStyleName="Phytochemistry.2020-.journal_article" docStyleVersion="5" docTitle="Passiflora" docType="treatment" docVersion="3" lastPageNumber="9" masterDocId="F57EC332FFB8FFB7FFB9FFFD2651FFB8" masterDocTitle="Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity" masterLastPageNumber="13" masterPageNumber="1" pageNumber="8" updateTime="1693400110403" updateUser="diego">
|
||
<mods:mods id="A8C5183E3CF78932F53E59C6F366F53E" xmlns:mods="http://www.loc.gov/mods/v3">
|
||
<mods:titleInfo id="1201EB2FEABE3E7F98B9E4EC40F27203">
|
||
<mods:title id="202622C4119CC941A794D964AFB64603">Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:name id="EEAB24C30CBD05EA88DA8B38D9EB07D6" type="personal">
|
||
<mods:role id="58B529A506134DB0B141D2EB69F5EABB">
|
||
<mods:roleTerm id="8C4A1CD7521F4850633EF061B8780CAA">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="35E05F94451DDFF2FE48F9EBF6204693">Castellanos, Leonardo</mods:namePart>
|
||
<mods:affiliation id="357CA5DABC54DC0E7E7FCCB099380A78">∗ & Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45 - 03, Bogotá, D. C., 111321, Colombia & ∗ & Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands</mods:affiliation>
|
||
</mods:name>
|
||
<mods:name id="10B2DA3142DF7FCDF4583CB5F759E63E" type="personal">
|
||
<mods:role id="9F3D123CAD4E074269ECF425EBCD7571">
|
||
<mods:roleTerm id="C1F7235543DD0667E20A0ABA2B6FE755">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="4E6853A217237BD1DB3EDF576F23C1F6">Naranjo-Gaybor, Sandra Judith</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="BB45F970E784E07C074D2734EE2D3627" type="personal">
|
||
<mods:role id="848597B41BB69D1DB5F77731BA042B87">
|
||
<mods:roleTerm id="AFE62C069F3314DAC7EFC52E6D6D2708">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="550EEF7E2561E471DD5B807E48EC51A1">Forero, Abel M.</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="8EA6C1343AC80C02D94FE9D746EC3005" type="personal">
|
||
<mods:role id="C40CCE61C1A67926C214444BEA1E0F9A">
|
||
<mods:roleTerm id="CD88D14EF3B2CE027C30523188EBC816">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="0F1C6D9CC6E35171DC795216A1083463">Morales, Gustavo</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="485BC5919F86AB8513B1590A4E84B0C1" type="personal">
|
||
<mods:role id="81DC616A8E0570EF847478E159DAFF49">
|
||
<mods:roleTerm id="3338E6ECF3188716AA6B9A5470D72F34">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="76B1ECAF494C19E2D8185404067586A5">Wilson, Erica Georgina</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="E1DD69D6FF1B339336AF50C905E8F9CA" type="personal">
|
||
<mods:role id="6500E03BC102061DA1CA08E5FD896D85">
|
||
<mods:roleTerm id="64F4643C4F419CDCAEEAAAE9A64EDF12">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="1DBE12A7FF44FCAD6F1C127BB50A8D40">Ramos, Freddy A.</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="3E375A8654DDAFAD3F2F9443B2A16B3B" type="personal">
|
||
<mods:role id="9769BDBAB3C6592F494937A530DD7804">
|
||
<mods:roleTerm id="AC7E50A9061535B330E0B01D11AA1103">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="EA6A4E6E58A359DEC04C0959BECCF95E">Choi, Young Hae</mods:namePart>
|
||
</mods:name>
|
||
<mods:typeOfResource id="50AC8C53DA881AD15581826A205F9B09">text</mods:typeOfResource>
|
||
<mods:relatedItem id="5ECE74816129495139AA85A5D8C0F9A5" type="host">
|
||
<mods:titleInfo id="2C81752A8E82D09C05AC0413CC98EAA6">
|
||
<mods:title id="AC747E9FFBABD8EFB3D3BC81463C696C">Phytochemistry</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:part id="3C54401955B3C50505261F961390492A">
|
||
<mods:date id="CE8E501B2F5E411B6F2D937BD62019DA">2020</mods:date>
|
||
<mods:detail id="2CAD52BC66662142DD1FD2FC5D28D094" type="series">
|
||
<mods:title id="0B937D425F32FC0D2DC4053249ABA6FF">112272</mods:title>
|
||
</mods:detail>
|
||
<mods:detail id="ECC38BD5064145DF7D8DF41A6CEBB0C1" type="pubDate">
|
||
<mods:number id="128F5B3C7AAE3064FA9A79A749C6D917">2020-04-30</mods:number>
|
||
</mods:detail>
|
||
<mods:detail id="1EE0DDDD8184B90936B7D432E1DE5605" type="volume">
|
||
<mods:number id="4ED9108565D92069A99C14627F8E21C2">172</mods:number>
|
||
</mods:detail>
|
||
<mods:extent id="A7A8E8A3B5D37C0F5BD73FDD7E08B646" unit="page">
|
||
<mods:start id="D329F2FA611F33078141156B29271A35">1</mods:start>
|
||
<mods:end id="DD437F041979FD121FE99853AEC9497C">13</mods:end>
|
||
</mods:extent>
|
||
</mods:part>
|
||
</mods:relatedItem>
|
||
<mods:location id="7D17C0777A3E6B7BBEC3AA19C3CD275A">
|
||
<mods:url id="176E45B4683C19EB7D9902FA0EEE72B3">http://dx.doi.org/10.1016/j.phytochem.2020.112272</mods:url>
|
||
</mods:location>
|
||
<mods:classification id="31FD7F0B4F3164AFE602CAADA431A8E3">journal article</mods:classification>
|
||
<mods:identifier id="A16CD81B5EA9E9493B5BEC59DB8F5E73" type="DOI">10.1016/j.phytochem.2020.112272</mods:identifier>
|
||
<mods:identifier id="563A11C0AC2B25520E0D01CC96145857" type="ISSN">1873-3700</mods:identifier>
|
||
<mods:identifier id="4EE120492CEF3EF95C9E5B5294A89BAB" type="Zenodo-Dep">8294125</mods:identifier>
|
||
</mods:mods>
|
||
<treatment id="0947BB4AFFBFFFBEFFDDF94426F3FA98" LSID="urn:lsid:plazi:treatment:0947BB4AFFBFFFBEFFDDF94426F3FA98" httpUri="http://treatment.plazi.org/id/0947BB4AFFBFFFBEFFDDF94426F3FA98" lastPageId="9" lastPageNumber="9" pageId="7" pageNumber="8">
|
||
<subSubSection id="C9F459D7FFBFFFB0FFDDF9442486F974" box="[100,727,1721,1740]" pageId="7" pageNumber="8" type="nomenclature">
|
||
<paragraph id="81510A5CFFBFFFB0FFDDF9442486F974" blockId="7.[100,727,1721,1740]" box="[100,727,1721,1740]" pageId="7" pageNumber="8">
|
||
<heading id="DA19BD30FFBFFFB0FFDDF9442486F974" bold="true" box="[100,727,1721,1740]" fontSize="36" level="1" pageId="7" pageNumber="8" reason="1">
|
||
<emphasis id="B39AD64EFFBFFFB0FFDDF9442486F974" bold="true" box="[100,727,1721,1740]" italics="true" pageId="7" pageNumber="8">
|
||
2.3. Bioprospecting studies of
|
||
<taxonomicName id="46EE71DFFFBFFFB0FECCF944279DF974" ID-CoL="6JGB" ID-ENA="3684" box="[373,460,1721,1740]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="7" pageNumber="8" phylum="Tracheophyta" rank="genus">Passiflora</taxonomicName>
|
||
species related to QQ activity
|
||
</emphasis>
|
||
</heading>
|
||
</paragraph>
|
||
</subSubSection>
|
||
<subSubSection id="C9F459D7FFBFFFBEFF3CF90C26F3FA98" lastPageId="9" lastPageNumber="10" pageId="7" pageNumber="8" type="description">
|
||
<paragraph id="81510A5CFFBFFFB0FF3CF90C253EFAD5" blockId="7.[100,770,1777,1992]" lastBlockId="7.[818,1487,1286,1975]" pageId="7" pageNumber="8">
|
||
Having completed the metabolic profiling of the studied
|
||
<taxonomicName id="46EE71DFFFBFFFB0FD12F90C26F9F898" pageId="7" pageNumber="8">
|
||
<emphasis id="B39AD64EFFBFFFB0FD12F90C2553F8BC" bold="true" box="[683,770,1777,1796]" italics="true" pageId="7" pageNumber="8">Passiflora</emphasis>
|
||
species
|
||
</taxonomicName>
|
||
, the next step was to relate those profiles with the biological activity observed for the extracts in order to identify the compounds responsible for such an activity (
|
||
<bibRefCitation id="E57F77ADFFBFFFB0FE19F8B82464F8E0" author="Wu, C. & Du, C. & Gubbens, J. & Choi, Y. H. & Van Wezel, G. P." box="[416,565,1861,1880]" pageId="7" pageNumber="8" pagination="2355 - 2363" refId="ref14151" refString="Wu, C., Du, C., Gubbens, J., Choi, Y. H., Van Wezel, G. P., 2015. Metabolomics-driven discovery of a prenylated isatin antibiotic produced by Streptomyces species MBT 28. J. Nat. Prod. 78, 2355 - 2363. https: // doi. org / 10.1021 / acs. jnatprod. 5 b 00276." type="journal article" year="2015">Wu et al., 2015</bibRefCitation>
|
||
). The selected bioactivity was quorum sensing inhibitory activity (QSI activity) because the search of anti-pathogenic compounds seemed to be a better strategy than the search for antibiotics, in terms of reducing the damage in the host, without generating induced resistance in the pathogen. Several small molecules including
|
||
<emphasis id="B39AD64EFFBFFFB0FBF7FAFB220AFAA1" bold="true" box="[1102,1115,1286,1305]" italics="true" pageId="7" pageNumber="8">C</emphasis>
|
||
-glycoside flavonoids, vanillin, 3-indolyacetonitrile, among others have been reported to be quorum sensing inhibitors (
|
||
<bibRefCitation id="E57F77ADFFBFFFB0FC69FAC32282FAE9" author="Grandclement, C. & Tannieres, M. & Morera, S. & Dessaux, Y. & Faure, D." box="[976,1235,1342,1361]" pageId="7" pageNumber="8" pagination="86 - 116" refId="ref11950" refString="Grandclement, C., Tannieres, M., Morera, S., Dessaux, Y., Faure, D., 2016. Quorum quenching: role in nature and applied developments. FEMS Microbiol. Rev. 40, 86 - 116. https: // doi. org / 10.1093 / femsre / fuv 038." type="journal article" year="2016">Grandclément et al., 2016</bibRefCitation>
|
||
), (
|
||
<bibRefCitation id="E57F77ADFFBFFFB0FB4DFAC32533FAD5" author="Brango-Vanegas, J. & Costa, G. M. & Ortmann, C. F. & Schenkel, E. P. & Reginatto, F. H. & Ramos, F. A. & Arevalo-Ferro, C. & Castellanos, L." pageId="7" pageNumber="8" pagination="670 - 675" refId="ref10908" refString="Brango-Vanegas, J., Costa, G. M., Ortmann, C. F., Schenkel, E. P., Reginatto, F. H., Ramos, F. A., Arevalo-Ferro, C., Castellanos, L., 2014. Glycosylflavonoids from Cecropia pachystachya Trecul are quorum sensing inhibitors. Phytomedicine 21, 670 - 675. https: // doi. org / 10.1016 / j. phymed. 2014.01.001." type="journal article" year="2014">Brango-Vanegas et al., 2014</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="81510A5CFFBFFFB0FCEAFA8B22E6F988" blockId="7.[818,1487,1286,1975]" pageId="7" pageNumber="8">
|
||
The MeOH/H
|
||
<subScript id="1D6A0819FFBFFFB0FC6FFA83258EFA33" attach="both" box="[982,991,1406,1419]" fontSize="5" pageId="7" pageNumber="8">2</subScript>
|
||
O extracts of
|
||
<taxonomicName id="46EE71DFFFBFFFB0FBD1FA8B235BFA31" box="[1128,1290,1398,1417]" pageId="7" pageNumber="8">
|
||
<emphasis id="B39AD64EFFBFFFB0FBD1FA8B22EEFA31" bold="true" box="[1128,1215,1398,1417]" italics="true" pageId="7" pageNumber="8">Passiflora</emphasis>
|
||
species
|
||
</taxonomicName>
|
||
were tested for the inhibition of violacein production using
|
||
<taxonomicName id="46EE71DFFFBFFFB0FB75FA6F2539FA79" authority="ATCC" authorityName="ATCC" class="Betaproteobacteria" family="Neisseriaceae" genus="Chromobacterium" kingdom="Bacteria" order="Neisseriales" pageId="7" pageNumber="8" phylum="Proteobacteria" rank="species" species="violaceum">
|
||
<emphasis id="B39AD64EFFBFFFB0FB75FA6F239EFA1D" bold="true" box="[1228,1487,1426,1445]" italics="true" pageId="7" pageNumber="8">Chromobacterium violaceum</emphasis>
|
||
ATCC
|
||
</taxonomicName>
|
||
31532 as a biosensor (supporting info table 4). Results showed that
|
||
<taxonomicName id="46EE71DFFFBFFFB0FCE6FA3725FBFA65" box="[863,938,1482,1501]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="7" pageNumber="8" phylum="Tracheophyta" rank="species" species="uribei">
|
||
<emphasis id="B39AD64EFFBFFFB0FCE6FA3725FBFA65" bold="true" box="[863,938,1482,1501]" italics="true" pageId="7" pageNumber="8">P. uribei</emphasis>
|
||
</taxonomicName>
|
||
,
|
||
<taxonomicName id="46EE71DFFFBFFFB0FC01FA372278FA65" box="[952,1065,1482,1501]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="7" pageNumber="8" phylum="Tracheophyta" rank="species" species="lehmannii">
|
||
<emphasis id="B39AD64EFFBFFFB0FC01FA372278FA65" bold="true" box="[952,1065,1482,1501]" italics="true" pageId="7" pageNumber="8">P. lehmannii</emphasis>
|
||
</taxonomicName>
|
||
and
|
||
<taxonomicName id="46EE71DFFFBFFFB0FBE2FA37228EFA65" box="[1115,1247,1482,1501]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="7" pageNumber="8" phylum="Tracheophyta" rank="species" species="cumbalensis">
|
||
<emphasis id="B39AD64EFFBFFFB0FBE2FA37228EFA65" bold="true" box="[1115,1247,1482,1501]" italics="true" pageId="7" pageNumber="8">P. cumbalensis</emphasis>
|
||
</taxonomicName>
|
||
exerted a strong activity (inhibition halo>
|
||
<quantity id="4616A7B9FFBFFFB0FC42FA1B2212FA41" box="[1019,1091,1510,1529]" metricMagnitude="-2" metricUnit="m" metricValue="4.0" pageId="7" pageNumber="8" unit="mm" value="40.0">40 mm</quantity>
|
||
) (Fig. 17 supporting information) while other
|
||
<taxonomicName id="46EE71DFFFBFFFB0FCD3F9FC2590F9AC" box="[874,961,1537,1556]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="7" pageNumber="8" phylum="Tracheophyta" rank="genus">
|
||
<emphasis id="B39AD64EFFBFFFB0FCD3F9FC2590F9AC" bold="true" box="[874,961,1537,1556]" italics="true" pageId="7" pageNumber="8">Passiflora</emphasis>
|
||
</taxonomicName>
|
||
samples showed less or no activity at all. The complete results are summarized in Supp. Table 4.
|
||
</paragraph>
|
||
<paragraph id="81510A5CFFBFFFB0FCEAF9C42521F80F" blockId="7.[818,1487,1286,1975]" pageId="7" pageNumber="8">
|
||
The metabolites that had been detected by
|
||
<superScript id="769BA714FFBFFFB0FB5EF9C922A1F9F9" attach="right" box="[1255,1264,1588,1601]" fontSize="5" pageId="7" pageNumber="8">1</superScript>
|
||
H-NMR were correlated with the bioactivity (QSI) by applying the orthogonal projection to latent structures (OPLS-DA), using the coded QSI activity (20 mm-inhibition zone was coded as 1;>
|
||
<quantity id="4616A7B9FFBFFFB0FBDBF97022F5F918" box="[1122,1188,1677,1696]" metricMagnitude="-2" metricUnit="m" metricValue="3.0" pageId="7" pageNumber="8" unit="mm" value="30.0">30 mm</quantity>
|
||
of inhibition zone was coded as 3) as the Y-variable. Separation of the active groups is observed in the OPLS-DA score plot (R
|
||
<superScript id="769BA714FFBFFFB0FBBDF93D225CF975" attach="left" box="[1028,1037,1728,1741]" fontSize="5" pageId="7" pageNumber="8">2</superScript>
|
||
= 0.425 and Q
|
||
<superScript id="769BA714FFBFFFB0FB1BF93D22FAF975" attach="left" box="[1186,1195,1728,1741]" fontSize="5" pageId="7" pageNumber="8">2</superScript>
|
||
= 0.302, pareto scaling), with the active groups on the negative side along OPLS1 (
|
||
<figureCitation id="19D516D9FFBFFFB0FA98F91C2339F94C" box="[1313,1384,1761,1780]" captionStart="Fig" captionStartId="9.[100,130,1123,1140]" captionTargetBox="[119,1474,158,1098]" captionTargetId="figure-490@9.[112,1476,152,1101]" captionTargetPageId="9" captionText="Fig. 7. Supervised multivariate analysis of NMR data. A) OPLS score plot using Y-variable of QSI activity. The plot showed the separation of active and non-active samples along OPLS1 (left side active samples). B) The corresponding S-plot significant values for QSI activity without P. lehmanii samples. C) The corresponding Splot significant values for QSI activity without P. cumbalensis samples." figureDoi="http://doi.org/10.5281/zenodo.8294139" httpUri="https://zenodo.org/record/8294139/files/figure.png" pageId="7" pageNumber="8">Fig. 7A</figureCitation>
|
||
).
|
||
<taxonomicName id="46EE71DFFFBFFFB0FAC1F91C25CDF8B7" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="7" pageNumber="8" phylum="Tracheophyta" rank="species" species="cumbalensis">
|
||
<emphasis id="B39AD64EFFBFFFB0FAC1F91C25CDF8B7" bold="true" italics="true" pageId="7" pageNumber="8">Passiflora cumbalensis</emphasis>
|
||
</taxonomicName>
|
||
clustered as a well-defined active group, while the other species did not show a clear clustering tendency. Three active groups were identified along the OPLS2 axis, one being on the negative side for
|
||
<taxonomicName id="46EE71DFFFBFFFB0FC8BF8AD25F1F8DB" box="[818,928,1872,1891]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="7" pageNumber="8" phylum="Tracheophyta" rank="species" species="lehmannii">
|
||
<emphasis id="B39AD64EFFBFFFB0FC8BF8AD25F1F8DB" bold="true" box="[818,928,1872,1891]" italics="true" pageId="7" pageNumber="8">P. lehmannii</emphasis>
|
||
</taxonomicName>
|
||
and
|
||
<emphasis id="B39AD64EFFBFFFB0FC77F8AD224CF8DB" bold="true" box="[974,1053,1872,1891]" italics="true" pageId="7" pageNumber="8">
|
||
<taxonomicName id="46EE71DFFFBFFFB0FC77F8AD224BF8DB" box="[974,1050,1872,1891]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="7" pageNumber="8" phylum="Tracheophyta" rank="species" species="uribei">P. uribei</taxonomicName>
|
||
,
|
||
</emphasis>
|
||
one on the positive side for
|
||
<taxonomicName id="46EE71DFFFBFFFB0FA9CF8AD23F6F8DB" box="[1317,1447,1872,1891]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="7" pageNumber="8" phylum="Tracheophyta" rank="species" species="cumbalensis">
|
||
<emphasis id="B39AD64EFFBFFFB0FA9CF8AD23F6F8DB" bold="true" box="[1317,1447,1872,1891]" italics="true" pageId="7" pageNumber="8">P. cumbalensis</emphasis>
|
||
</taxonomicName>
|
||
and a third one for the other species spread out in the middle of the plot, suggesting that the active compounds for these three groups were different.
|
||
</paragraph>
|
||
<caption id="D5915AD4FFB0FFBFFFDDFC7B26F5FC09" ID-DOI="http://doi.org/10.5281/zenodo.8294137" ID-Zenodo-Dep="8294137" httpUri="https://zenodo.org/record/8294137/files/figure.png" pageId="8" pageNumber="9" startId="8.[100,130,902,919]" targetBox="[204,1246,169,873]" targetPageId="8" targetType="figure">
|
||
<paragraph id="81510A5CFFB0FFBFFFDDFC7B26F5FC09" blockId="8.[100,1487,902,945]" pageId="8" pageNumber="9">
|
||
<emphasis id="B39AD64EFFB0FFBFFFDDFC7B26CCFC2F" bold="true" box="[100,157,902,919]" pageId="8" pageNumber="9">Fig. 6.</emphasis>
|
||
PCA plot: The score plot of the principal component analysis (PCA) of 8 different species of banana passion fruits species shows a separation into four main groups.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="81510A5CFFB0FFBFFF3CFC222757FB55" blockId="8.[100,770,991,1986]" pageId="8" pageNumber="9">
|
||
Using two
|
||
<emphasis id="B39AD64EFFB0FFBFFF57FC222778FC4A" bold="true" box="[238,297,991,1010]" italics="true" pageId="8" pageNumber="9">S-plots</emphasis>
|
||
, one excluding
|
||
<taxonomicName id="46EE71DFFFB0FFBFFE7AFC222478FC4A" box="[451,553,991,1010]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="lehmanii">
|
||
<emphasis id="B39AD64EFFB0FFBFFE7AFC222478FC4A" bold="true" box="[451,553,991,1010]" italics="true" pageId="8" pageNumber="9">P. lehmanii</emphasis>
|
||
</taxonomicName>
|
||
samples (
|
||
<figureCitation id="19D516D9FFB0FFBFFD32FC222481FC4A" box="[651,720,991,1010]" captionStart="Fig" captionStartId="9.[100,130,1123,1140]" captionTargetBox="[119,1474,158,1098]" captionTargetId="figure-490@9.[112,1476,152,1101]" captionTargetPageId="9" captionText="Fig. 7. Supervised multivariate analysis of NMR data. A) OPLS score plot using Y-variable of QSI activity. The plot showed the separation of active and non-active samples along OPLS1 (left side active samples). B) The corresponding S-plot significant values for QSI activity without P. lehmanii samples. C) The corresponding Splot significant values for QSI activity without P. cumbalensis samples." figureDoi="http://doi.org/10.5281/zenodo.8294139" httpUri="https://zenodo.org/record/8294139/files/figure.png" pageId="8" pageNumber="9">Fig. 7B</figureCitation>
|
||
) and the other excluding
|
||
<taxonomicName id="46EE71DFFFB0FFBFFE9CFC0627F9FBB6" box="[293,424,1019,1038]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="cumbalensis">
|
||
<emphasis id="B39AD64EFFB0FFBFFE9CFC0627F9FBB6" bold="true" box="[293,424,1019,1038]" italics="true" pageId="8" pageNumber="9">P. cumbalensis</emphasis>
|
||
</taxonomicName>
|
||
samples (
|
||
<figureCitation id="19D516D9FFB0FFBFFDB0FC06241EFBB6" box="[521,591,1019,1038]" captionStart="Fig" captionStartId="9.[100,130,1123,1140]" captionTargetBox="[119,1474,158,1098]" captionTargetId="figure-490@9.[112,1476,152,1101]" captionTargetPageId="9" captionText="Fig. 7. Supervised multivariate analysis of NMR data. A) OPLS score plot using Y-variable of QSI activity. The plot showed the separation of active and non-active samples along OPLS1 (left side active samples). B) The corresponding S-plot significant values for QSI activity without P. lehmanii samples. C) The corresponding Splot significant values for QSI activity without P. cumbalensis samples." figureDoi="http://doi.org/10.5281/zenodo.8294139" httpUri="https://zenodo.org/record/8294139/files/figure.png" pageId="8" pageNumber="9">Fig. 7C</figureCitation>
|
||
) it was possible to identify the active compounds. The variables important for the projection (VIPs) were selected, and the chemical shifts responsible for the QSI activity were highlighted. These highlighted chemical shifts were found to correspond mostly to the glycosylated flavonoids because the signals could be assigned to aromatic protons such as those of the A and B rings from flavonoids as well as signals for sugar moieties, including those of the anomeric protons close to 5 ppm (Tables 5 and 6, Supporting info).
|
||
</paragraph>
|
||
<paragraph id="81510A5CFFB0FFBFFF3CFB0B247FFA08" blockId="8.[100,770,991,1986]" pageId="8" pageNumber="9">
|
||
The quality and robustness of the OPLS-DA model was validated by a permutation test (n = 100). The Q
|
||
<superScript id="769BA714FFB0FFBFFE63FAF027B2FAA2" attach="left" box="[474,483,1293,1306]" fontSize="5" pageId="8" pageNumber="9">2</superScript>
|
||
intercept value was −0.504 (below 0.05), showing that the original model was statistically effective (Fig. 18 Supporting info). The model was validated by calculating the area under the receiver operating characteristic (
|
||
<collectingCountry id="F9F94ACCFFB0FFBFFD95FA98240AFAC0" box="[556,603,1381,1400]" name="Taiwan" pageId="8" pageNumber="9">ROC</collectingCountry>
|
||
) curve. The value of the area under the curve (AUC) was 0.9565 providing added confidence to the model (Fig. 18B supporting info).
|
||
</paragraph>
|
||
<paragraph id="81510A5CFFB0FFBFFF3CFA442426F97F" blockId="8.[100,770,991,1986]" pageId="8" pageNumber="9">
|
||
Pure compounds
|
||
<emphasis id="B39AD64EFFB0FFBFFE91FA442765FA74" bold="true" box="[296,308,1465,1484]" pageId="8" pageNumber="9">1</emphasis>
|
||
and
|
||
<emphasis id="B39AD64EFFB0FFBFFEDDFA442721FA74" bold="true" box="[356,368,1465,1484]" pageId="8" pageNumber="9">2</emphasis>
|
||
were tested for their QS inhibition against
|
||
<taxonomicName id="46EE71DFFFB0FFBFFFDDFA282689FA50" box="[100,216,1493,1512]" class="Betaproteobacteria" family="Neisseriaceae" genus="Chromobacterium" kingdom="Bacteria" order="Neisseriales" pageId="8" pageNumber="9" phylum="Proteobacteria" rank="species" species="violaceum">
|
||
<emphasis id="B39AD64EFFB0FFBFFFDDFA282689FA50" bold="true" box="[100,216,1493,1512]" italics="true" pageId="8" pageNumber="9">C. violaceum</emphasis>
|
||
</taxonomicName>
|
||
at five concentrations in the range of 50 μM–400 μM in a 96 well-plate. The QS inhibition of compound
|
||
<emphasis id="B39AD64EFFB0FFBFFD9BFA0C247FF9BC" bold="true" box="[546,558,1521,1540]" pageId="8" pageNumber="9">1</emphasis>
|
||
and compound
|
||
<emphasis id="B39AD64EFFB0FFBFFD73FA0C2487F9BC" bold="true" box="[714,726,1521,1540]" pageId="8" pageNumber="9">2</emphasis>
|
||
was detected at concentrations of 100 μg/mL (0.13 mM) and 300 μg/mL (0.47 mM) respectively. In order to establish whether the observed inhibition was due solely to QS inhibition and not to growth inhibition, samples were submitted to a growth inhibition test (Fig. 19 supporting information). Results of the assays showed not only the absence of growth inhibition but an increase in bacterial cell densities, indicating that the flavonoids likely inhibited cell communication.
|
||
</paragraph>
|
||
<paragraph id="81510A5CFFB0FFBFFF3CF92D22E9FAF9" blockId="8.[100,770,991,1986]" lastBlockId="8.[818,1488,991,1986]" pageId="8" pageNumber="9">
|
||
A second model,
|
||
<taxonomicName id="46EE71DFFFB0FFBFFE91F92D27B0F95B" box="[296,481,1744,1763]" class="Betaproteobacteria" family="Burkholderiaceae" genus="Burkholderia" kingdom="Bacteria" order="Burkholderiales" pageId="8" pageNumber="9" phylum="Proteobacteria" rank="species" species="glumae">
|
||
<emphasis id="B39AD64EFFB0FFBFFE91F92D27B0F95B" bold="true" box="[296,481,1744,1763]" italics="true" pageId="8" pageNumber="9">Burkholderia glumae</emphasis>
|
||
</taxonomicName>
|
||
, a well-known phytopathogen that causes rice grain rot and wilt in various field crops was also used to evaluate QSI (
|
||
<bibRefCitation id="E57F77ADFFB0FFBFFF56F8F527ECF8A3" author="Compant, S. & Nowak, J. & Coenye, T. & Clement, C. & Ait Barka, E." box="[239,445,1800,1819]" pageId="8" pageNumber="9" pagination="607 - 626" refId="ref11237" refString="Compant, S., Nowak, J., Coenye, T., Clement, C., Ait Barka, E., 2008. Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol. Rev. 32, 607 - 626. https: // doi. org / 10.1111 / j. 1574 - 6976.2008.00113. x." type="journal article" year="2008">Compant et al., 2008</bibRefCitation>
|
||
). In
|
||
<taxonomicName id="46EE71DFFFB0FFBFFE56F8F5241BF8A3" box="[495,586,1800,1819]" class="Betaproteobacteria" family="Burkholderiaceae" genus="Burkholderia" kingdom="Bacteria" order="Burkholderiales" pageId="8" pageNumber="9" phylum="Proteobacteria" rank="species" species="glumae">
|
||
<emphasis id="B39AD64EFFB0FFBFFE56F8F5241BF8A3" bold="true" box="[495,586,1800,1819]" italics="true" pageId="8" pageNumber="9">B. glumae</emphasis>
|
||
</taxonomicName>
|
||
, the production of toxoflavin (a bright yellow pigment) is known to be one of the major virulence factors (
|
||
<bibRefCitation id="E57F77ADFFB0FFBFFEAEF8BD279AF8EB" author="Jeong, Y. & Kim, J. & Kim, S. & Kang, Y. & Nagamatsu, T. & Hwang, I." box="[279,459,1856,1875]" pageId="8" pageNumber="9" pagination="890 - 895" refId="ref12255" refString="Jeong, Y., Kim, J., Kim, S., Kang, Y., Nagamatsu, T., Hwang, I., 2003. Toxoflavin produced by Burkholderia glumae causing rice grain rot is responsible for inducing bacterial wilt in many field crops. Plant Dis. 87, 890 - 895. https: // doi. org / 10.1094 / PDIS. 2003.87.8.890." type="journal article" year="2003">Jeong et al., 2003</bibRefCitation>
|
||
; J.
|
||
<bibRefCitation id="E57F77ADFFB0FFBFFE4CF8BD24C9F8EB" author="Kim, J. & Kim, J. - G. & Kang, Y. & Jang, J. Y. & Jog, G. J. & Lim, J. Y. & Kim, S. & Suga, H. & Nagamatsu, T. & Hwang, I." box="[501,664,1856,1875]" pageId="8" pageNumber="9" pagination="921 - 934" refId="ref12382" refString="Kim, J., Kim, J. - G., Kang, Y., Jang, J. Y., Jog, G. J., Lim, J. Y., Kim, S., Suga, H., Nagamatsu, T., Hwang, I., 2004. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol. Microbiol. 54, 921 - 934. https: // doi. org / 10.1111 / j. 1365 - 2958.2004.04338. x." type="journal article" year="2004">Kim et al., 2004</bibRefCitation>
|
||
). The biosynthesis of toxoflavin is controlled by ToxR, a LysR-type transcriptional regulator and this toxin also activates the expression of the
|
||
<emphasis id="B39AD64EFFB0FFBFFD5CF88A2550F832" bold="true" box="[741,769,1911,1930]" italics="true" pageId="8" pageNumber="9">tox</emphasis>
|
||
operons (J.
|
||
<bibRefCitation id="E57F77ADFFB0FFBFFF6BF86E2736F81E" author="Kim, J. & Kim, J. - G. & Kang, Y. & Jang, J. Y. & Jog, G. J. & Lim, J. Y. & Kim, S. & Suga, H. & Nagamatsu, T. & Hwang, I." box="[210,359,1939,1958]" pageId="8" pageNumber="9" pagination="921 - 934" refId="ref12382" refString="Kim, J., Kim, J. - G., Kang, Y., Jang, J. Y., Jog, G. J., Lim, J. Y., Kim, S., Suga, H., Nagamatsu, T., Hwang, I., 2004. Quorum sensing and the LysR-type transcriptional activator ToxR regulate toxoflavin biosynthesis and transport in Burkholderia glumae. Mol. Microbiol. 54, 921 - 934. https: // doi. org / 10.1111 / j. 1365 - 2958.2004.04338. x." type="journal article" year="2004">Kim et al., 2004</bibRefCitation>
|
||
). For this reason, the search for compounds that are able to inhibit toxoflavin production is an important target for the control of this phytopathogen. Two strains were chosen to determine the toxoflavin inhibitory activity of extracts and pure compounds.
|
||
<taxonomicName id="46EE71DFFFB0FFBFFC38FBEA2221FB92" authority="COK" authorityName="COK" box="[897,1136,1047,1066]" class="Betaproteobacteria" family="Burkholderiaceae" genus="Burkholderia" kingdom="Bacteria" order="Burkholderiales" pageId="8" pageNumber="9" phylum="Proteobacteria" rank="species" species="glumae">
|
||
<emphasis id="B39AD64EFFB0FFBFFC38FBEA226BFB92" bold="true" box="[897,1082,1047,1066]" italics="true" pageId="8" pageNumber="9">Burkholderia glumae</emphasis>
|
||
COK
|
||
</taxonomicName>
|
||
71, is a biosensor strain, that is highly specific for toxoflavin based on β- galactosidase activity on X gal substrate that produces a blue pigment, and the
|
||
<taxonomicName id="46EE71DFFFB0FFBFFB49FBB323DBFBD9" authority="ATCC" authorityName="ATCC" box="[1264,1418,1102,1121]" class="Betaproteobacteria" family="Burkholderiaceae" genus="Burkholderia" kingdom="Bacteria" order="Burkholderiales" pageId="8" pageNumber="9" phylum="Proteobacteria" rank="species" species="glumae">
|
||
<emphasis id="B39AD64EFFB0FFBFFB49FBB3231AFBD9" bold="true" box="[1264,1355,1102,1121]" italics="true" pageId="8" pageNumber="9">B. glumae</emphasis>
|
||
ATCC
|
||
</taxonomicName>
|
||
33617 strain as a toxoflavin producer. In this test, the levels of the blue pigment are used to determine toxoflavin inhibitory activity (
|
||
<bibRefCitation id="E57F77ADFFB0FFBFFADCFB7B2533FB0D" author="Choi, O. & Lee, Y. & Han, I. & Kim, H. & Goo, E. & Kim, J. & Hwang, I." pageId="8" pageNumber="9" refId="ref11161" refString="Choi, O., Lee, Y., Han, I., Kim, H., Goo, E., Kim, J., Hwang, I., 2013. A simple and sensitive biosensor strain for detecting toxoflavin using β- galactosidase activity. Biosens." type="book" year="2013">Choi et al., 2013</bibRefCitation>
|
||
). Our results indicated that toxoflavin productions was inhibited by concentrations of 6.76 μM and 7.87 μM of compounds
|
||
<emphasis id="B39AD64EFFB0FFBFFAE4FB432338FB69" bold="true" box="[1373,1385,1214,1233]" pageId="8" pageNumber="9">1</emphasis>
|
||
and
|
||
<emphasis id="B39AD64EFFB0FFBFFA22FB4323FFFB69" bold="true" box="[1435,1454,1214,1233]" pageId="8" pageNumber="9">2,</emphasis>
|
||
respectively, while the positive control, 2-
|
||
<emphasis id="B39AD64EFFB0FFBFFB07FB272298FB55" bold="true" box="[1214,1225,1242,1261]" italics="true" pageId="8" pageNumber="9">n</emphasis>
|
||
-propyl-9-hydroxy-4H-pyrid [1,2-a] pyrimidin-4-one was active at 80 μM, showing the potential of these flavonoids to control toxin production by the phytopathogen,
|
||
<taxonomicName id="46EE71DFFFB0FFBFFA05FAEF2520FAF9" class="Betaproteobacteria" family="Burkholderiaceae" genus="Burkholderia" kingdom="Bacteria" order="Burkholderiales" pageId="8" pageNumber="9" phylum="Proteobacteria" rank="species" species="glumae">
|
||
<emphasis id="B39AD64EFFB0FFBFFA05FAEF2520FAF9" bold="true" italics="true" pageId="8" pageNumber="9">B. glumae</emphasis>
|
||
</taxonomicName>
|
||
(Fig. 20, supporting information).
|
||
</paragraph>
|
||
<paragraph id="81510A5CFFB0FFBEFCEAFAB426F3FA98" blockId="8.[818,1488,991,1986]" lastBlockId="9.[100,770,1237,1312]" lastPageId="9" lastPageNumber="10" pageId="8" pageNumber="9">
|
||
The presence of flavonoids in plant extracts has been previously related to their QS inhibition activity. Phytochemical screening of
|
||
<taxonomicName id="46EE71DFFFB0FFBFFC8BFA7C2592FA2C" box="[818,963,1409,1428]" class="Magnoliopsida" family="Apiaceae" genus="Centella" kingdom="Plantae" order="Apiales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="asiatica">
|
||
<emphasis id="B39AD64EFFB0FFBFFC8BFA7C2592FA2C" bold="true" box="[818,963,1409,1428]" italics="true" pageId="8" pageNumber="9">Centella asiatica</emphasis>
|
||
</taxonomicName>
|
||
has revealed that flavonoids can disrupt AHL-mediated QS-controlled systems in
|
||
<taxonomicName id="46EE71DFFFB0FFBFFB93FA6022F1FA08" box="[1066,1184,1437,1456]" class="Betaproteobacteria" family="Neisseriaceae" genus="Chromobacterium" kingdom="Bacteria" order="Neisseriales" pageId="8" pageNumber="9" phylum="Proteobacteria" rank="species" species="violaceum">
|
||
<emphasis id="B39AD64EFFB0FFBFFB93FA6022F1FA08" bold="true" box="[1066,1184,1437,1456]" italics="true" pageId="8" pageNumber="9">C. violaceum</emphasis>
|
||
</taxonomicName>
|
||
and
|
||
<taxonomicName id="46EE71DFFFB0FFBFFB6FFA602300FA08" box="[1238,1361,1437,1456]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="aeruginosa">
|
||
<emphasis id="B39AD64EFFB0FFBFFB6FFA602300FA08" bold="true" box="[1238,1361,1437,1456]" italics="true" pageId="8" pageNumber="9">P. aeruginosa</emphasis>
|
||
</taxonomicName>
|
||
while major constituents such as the triterpene, asiatic acid, did not show an anti-QS activity (
|
||
<bibRefCitation id="E57F77ADFFB0FFBFFC3FFA282262FA50" author="Vasavi, H. S. & Arun, A. B. & Rekha, P. D." box="[902,1075,1493,1512]" pageId="8" pageNumber="9" pagination="8 - 15" refId="ref13865" refString="Vasavi, H. S., Arun, A. B., Rekha, P. D., 2016. Anti-quorum sensing activity of flavonoidrich fraction from Centella asiatica L. against Pseudomonas aeruginosa PAO 1. J. Microbiol. Immunol. Infect. 49, 8 - 15. https: // doi. org / 10.1016 / j. jmii. 2014.03.012." type="journal article" year="2016">Vasavi et al., 2016</bibRefCitation>
|
||
). Concentrations of 100 μg/mL of quercetin and kaempferol have been reported to exhibit anti-QS activity against
|
||
<taxonomicName id="46EE71DFFFB0FFBFFC8BF9F025F6F998" box="[818,935,1549,1568]" class="Betaproteobacteria" family="Neisseriaceae" genus="Chromobacterium" kingdom="Bacteria" order="Neisseriales" pageId="8" pageNumber="9" phylum="Proteobacteria" rank="species" species="violaceum">
|
||
<emphasis id="B39AD64EFFB0FFBFFC8BF9F025F6F998" bold="true" box="[818,935,1549,1568]" italics="true" pageId="8" pageNumber="9">C. violaceum</emphasis>
|
||
</taxonomicName>
|
||
and
|
||
<taxonomicName id="46EE71DFFFB0FFBFFC62F9F022C1F998" authority="PAO" authorityName="PAO" box="[987,1168,1549,1568]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="aeruginosa">
|
||
<emphasis id="B39AD64EFFB0FFBFFC62F9F02204F998" bold="true" box="[987,1109,1549,1568]" italics="true" pageId="8" pageNumber="9">P. aeruginosa</emphasis>
|
||
PAO
|
||
</taxonomicName>
|
||
1. The anti-QS activity of
|
||
<taxonomicName id="46EE71DFFFB0FFBFFA30F9F02526F984" class="Magnoliopsida" family="Myrtaceae" genus="Psidium" kingdom="Plantae" order="Myrtales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="guajava">
|
||
<emphasis id="B39AD64EFFB0FFBFFA30F9F02526F984" bold="true" italics="true" pageId="8" pageNumber="9">Psidium guajava</emphasis>
|
||
</taxonomicName>
|
||
leaf extract has been determined with a biosensor bioassay using
|
||
<taxonomicName id="46EE71DFFFB0FFBFFCD5F9B822C2F9E0" authority="CV" authorityName="CV" box="[876,1171,1605,1624]" class="Betaproteobacteria" family="Neisseriaceae" genus="Chromobacterium" kingdom="Bacteria" order="Neisseriales" pageId="8" pageNumber="9" phylum="Proteobacteria" rank="species" species="violaceum">
|
||
<emphasis id="B39AD64EFFB0FFBFFCD5F9B8223AF9E0" bold="true" box="[876,1131,1605,1624]" italics="true" pageId="8" pageNumber="9">Chromobacterium violaceum</emphasis>
|
||
CV
|
||
</taxonomicName>
|
||
026, and quercetin and quercetin 3-
|
||
<emphasis id="B39AD64EFFB0FFBFFCFDF99D2502F9CB" bold="true" box="[836,851,1632,1651]" italics="true" pageId="8" pageNumber="9">O</emphasis>
|
||
-arabinoside were identified as the QQ compounds in the extract, against
|
||
<taxonomicName id="46EE71DFFFB0FFBFFCC4F98125A3F937" box="[893,1010,1660,1679]" class="Betaproteobacteria" family="Neisseriaceae" genus="Chromobacterium" kingdom="Bacteria" order="Neisseriales" pageId="8" pageNumber="9" phylum="Proteobacteria" rank="species" species="violaceum">
|
||
<emphasis id="B39AD64EFFB0FFBFFCC4F98125A3F937" bold="true" box="[893,1010,1660,1679]" italics="true" pageId="8" pageNumber="9">C. violaceum</emphasis>
|
||
</taxonomicName>
|
||
12,472, at concentrations of 50 and 100 μg/mL, respectively (
|
||
<bibRefCitation id="E57F77ADFFB0FFBFFC0BF9652234F913" author="Vasavi, H. S. & Arun, A. B. & Rekha, P. - D." box="[946,1125,1688,1707]" pageId="8" pageNumber="9" pagination="286 - 293" refId="ref13798" refString="Vasavi, H. S., Arun, A. B., Rekha, P. - D., 2014. Anti-quorum sensing activity of Psidium guajava L. flavonoids against Chromobacterium violaceum and Pseudomonas aeruginosa PAO 1. Microbiol. Immunol. 58, 286 - 293. https: // doi. org / 10.1111 / 1348 - 0421. 12150." type="journal article" year="2014">Vasavi et al., 2014</bibRefCitation>
|
||
). Similarly, Paczkowski et al. studied the QS inhibition mechanism of flavonoids, establishing that they are inhibitors of the QS transcriptional regulator LasR and that they specifically inhibit quorum sensing via antagonism with the transcriptional regulator LasR/RhlR. Further structure-activity relationship analyses suggest that the presence of two hydroxyl moieties in the flavone A-ring backbone are essential for potent inhibition of LasR/RhlR. Biochemical analyses also revealed that flavonoids function non-competitively to prevent LasR/RhlR DNA-binding. The administration of the flavonoids to
|
||
<taxonomicName id="46EE71DFFFB0FFBFFCF2F86E2592F81E" box="[843,963,1939,1958]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="aeruginosa">
|
||
<emphasis id="B39AD64EFFB0FFBFFCF2F86E2592F81E" bold="true" box="[843,963,1939,1958]" italics="true" pageId="8" pageNumber="9">P. aeruginosa</emphasis>
|
||
</taxonomicName>
|
||
was found to alter transcription of the quorum-sensing controlled target promoters and suppress virulence factor production, confirming their potential as antimicrobials which do not function by traditional bactericidal or bacteriostatic mechanisms (
|
||
<bibRefCitation id="E57F77ADFFB1FFBEFDE5FB0C26C5FA98" author="Paczkowski, J. E. & Mukherjee, S. & McCready, A. R. & Cong, J. - P. & Aquino, C. J. & Kim, H. & Henke, B. R. & Smith, C. D. & Bassler, B. L." pageId="9" pageNumber="10" pagination="4064 - 4076" refId="ref12959" refString="Paczkowski, J. E., Mukherjee, S., McCready, A. R., Cong, J. - P., Aquino, C. J., Kim, H., Henke, B. R., Smith, C. D., Bassler, B. L., 2017. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J. Biol. Chem. 292, 4064 - 4076. https: // doi. org / 10.1074 / jbc. M 116.770552." type="journal article" year="2017">Paczkowski et al., 2017</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
</subSubSection>
|
||
</treatment>
|
||
</document> |