treatments-xml/data/8D/65/87/8D6587F8B9480F30024CFC7BFF0DF806.xml
2024-06-21 12:43:33 +02:00

122 lines
13 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="01BF1B86350824046A3475557C5D1B6A" ID-DOI="10.1016/j.phytochem.2021.112654" ID-ISSN="1873-3700" ID-Zenodo-Dep="8292274" IM.bibliography_approvedBy="valdenar" IM.illustrations_approvedBy="felipe" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.taxonomicNames_approvedBy="felipe" IM.treatments_approvedBy="valdenar" checkinTime="1693248286173" checkinUser="felipe" docAuthor="Mastan, Anthati, Rane, Digeshwar, Dastager, Syed G. &amp; Babu, C. S. Vivek" docDate="2021" docId="8D6587F8B9480F30024CFC7BFF0DF806" docLanguage="en" docName="Phytochemistry.184.112654.pdf" docOrigin="Phytochemistry (112654) 184" docSource="http://dx.doi.org/10.1016/j.phytochem.2021.112654" docStyle="DocumentStyle:F36D69FC8B198FBE91029DF9C24697D3.5:Phytochemistry.2020-.journal_article" docStyleId="F36D69FC8B198FBE91029DF9C24697D3" docStyleName="Phytochemistry.2020-.journal_article" docStyleVersion="5" docTitle="Trichoderma viride" docType="treatment" docVersion="3" lastPageNumber="8" masterDocId="715CFF80B94F0F370228FF8DFFA9FFB8" masterDocTitle="Molecular insights of fungal endophyte co-inoculation with Trichoderma viride for the augmentation of forskolin biosynthesis in Coleus forskohlii" masterLastPageNumber="10" masterPageNumber="1" pageNumber="8" updateTime="1693413150873" updateUser="valdenar">
<mods:mods id="8EE2CE900BDF105512F62A57BD6FF2F6" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="0DC057FF0177D9769D53C0396CA0094D">
<mods:title id="BFB953C94DC00A927C56FE19CA703AFC">Molecular insights of fungal endophyte co-inoculation with Trichoderma viride for the augmentation of forskolin biosynthesis in Coleus forskohlii</mods:title>
</mods:titleInfo>
<mods:name id="9221EECC5548254454BC4C19DC0A7E67" type="personal">
<mods:role id="5B8DB9F931F24513C1BF78C16352FA70">
<mods:roleTerm id="3666666277E21EDD2729B113E0F1136B">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="3048A61B5C1DB9C160686CF26AD3DA94">Mastan, Anthati</mods:namePart>
<mods:affiliation id="182B333EDE86A65392A9EAB42201E75C">* &amp; Microbial Technology Laboratory, CSIR- Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore, 560065, India &amp; * &amp; Academy of Scientific and Innovative Research, CSIR-CIMAP Campus, Lucknow, Uttar Pradesh, 226015, India</mods:affiliation>
</mods:name>
<mods:name id="CF692B755D2D8819664295FFDAD26550" type="personal">
<mods:role id="23FC83D303247CAB71D95F371ADE0C71">
<mods:roleTerm id="E4B055F4D9484AF2B0269A38E82DCD2D">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="920B2C91DBB44C5C6F3D74130586346A">Rane, Digeshwar</mods:namePart>
</mods:name>
<mods:name id="C927431A5ACCB0FE46A471041FE6EF43" type="personal">
<mods:role id="47D3E0FB1B16170847C6ACE621776160">
<mods:roleTerm id="339896891B4E6CF7CA71C9D3568FF423">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="1F9B26DDA471BD66ED7091B1519A9FFE">Dastager, Syed G.</mods:namePart>
</mods:name>
<mods:name id="275E570F4B9ED282217E50E382F134AD" type="personal">
<mods:role id="56DDB085DA19965FDB0FD96049F31038">
<mods:roleTerm id="829D815DA3CBB4CDD5B8EED8DD0047E1">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="A48E0B1FB0FB4A622A3795B6C610C174">Babu, C. S. Vivek</mods:namePart>
</mods:name>
<mods:typeOfResource id="CCE6DD4044345BD5D65C6029DA0F5E9B">text</mods:typeOfResource>
<mods:relatedItem id="B853CE1CB18667E83C4F5D7C81422721" type="host">
<mods:titleInfo id="2730E2783094A56C8D02C162DF49524E">
<mods:title id="238DB8B04F22663107C4B20FE9992AC9">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="7E42BA1EEE17A6E7773EED36C36D0BA9">
<mods:date id="ED566A643F210B325A5F1D42C69E2095">2021</mods:date>
<mods:detail id="607AA9A10D70648CB5ECC96C78CE2635" type="series">
<mods:title id="5259A3BDB83A69B3A1C6C4894CDB2341">112654</mods:title>
</mods:detail>
<mods:detail id="17FB7455A9F673AB431DDF997897F5EA" type="pubDate">
<mods:number id="71903BF3C388ECAB0B176E88571E9C8A">2021-04-30</mods:number>
</mods:detail>
<mods:detail id="EA3F809826C49C70BFAADEAEC85853B0" type="volume">
<mods:number id="E6EC38C3080A24C90AAF37E8BE83FF0E">184</mods:number>
</mods:detail>
<mods:extent id="9E09CD88B2DBD066096AE265B2CBD5DA" unit="page">
<mods:start id="94D7B54DB9A94D309D1174890A46F69D">1</mods:start>
<mods:end id="A8BF06515D490AB10B0C9D728CEC5992">10</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="1DA0850C94C1BC69D1F37A04F0539401">
<mods:url id="A42C400AC25AEEF97693C393204A023E">http://dx.doi.org/10.1016/j.phytochem.2021.112654</mods:url>
</mods:location>
<mods:classification id="CDCDBFDD0F32B68E726C50815F9D393A">journal article</mods:classification>
<mods:identifier id="ED992F2C9ABE3C095B7C5071939E13D0" type="DOI">10.1016/j.phytochem.2021.112654</mods:identifier>
<mods:identifier id="F84BA42127EA55A0D34A86E30D384B2D" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="8F58E198B5C66726C9818855EAAC4D14" type="Zenodo-Dep">8292274</mods:identifier>
</mods:mods>
<treatment id="8D6587F8B9480F30024CFC7BFF0DF806" LSID="urn:lsid:plazi:treatment:8D6587F8B9480F30024CFC7BFF0DF806" httpUri="http://treatment.plazi.org/id/8D6587F8B9480F30024CFC7BFF0DF806" lastPageNumber="8" pageId="7" pageNumber="8">
<subSubSection id="4DD66565B9480F30024CFC7BFD0EFBB1" box="[100,679,1014,1033]" pageId="7" pageNumber="8" type="nomenclature">
<paragraph id="057336EEB9480F30024CFC7BFD0EFBB1" blockId="7.[100,679,1014,1033]" box="[100,679,1014,1033]" pageId="7" pageNumber="8">
<heading id="5E3B8182B9480F30024CFC7BFD0EFBB1" bold="true" box="[100,679,1014,1033]" fontSize="36" level="1" pageId="7" pageNumber="8" reason="1">
<emphasis id="37B8EAFCB9480F30024CFC7BFD0EFBB1" bold="true" box="[100,679,1014,1033]" italics="true" pageId="7" pageNumber="8">
5.3. Co-inoculation of endophytic fungi with
<taxonomicName id="C2CC4D6DB9480F3003D6FC7BFD0EFBB1" ID-CoL="58BVB" ID-ENA="230960" box="[510,679,1014,1033]" class="Sordariomycetes" family="Hypocreaceae" genus="Trichoderma" kingdom="Fungi" order="Hypocreales" pageId="7" pageNumber="8" phylum="Ascomycota" rank="species" species="viride">Trichoderma viride</taxonomicName>
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="4DD66565B9480F3002ACFBA3FF0DF806" pageId="7" pageNumber="8" type="description">
<paragraph id="057336EEB9480F3002ACFBA3FF0DF806" blockId="7.[100,771,1070,1982]" pageId="7" pageNumber="8">
Prior to co-inoculation studies, compatibility between each fungal endophyte and
<taxonomicName id="C2CC4D6DB9480F3002DDFBC7FE94FBE4" box="[245,317,1097,1117]" class="Sordariomycetes" family="Hypocreaceae" genus="Trichoderma" kingdom="Fungi" order="Hypocreales" pageId="7" pageNumber="8" phylum="Ascomycota" rank="species" species="viride">
<emphasis id="37B8EAFCB9480F3002DDFBC7FE94FBE4" bold="true" box="[245,317,1097,1117]" italics="true" pageId="7" pageNumber="8">T. viride</emphasis>
</taxonomicName>
was tested using dual culture method and found no antagonism between endophytes and
<taxonomicName id="C2CC4D6DB9480F300034FBEBFDD8FBC0" box="[540,625,1125,1145]" class="Sordariomycetes" family="Hypocreaceae" genus="Trichoderma" kingdom="Fungi" order="Hypocreales" pageId="7" pageNumber="8" phylum="Ascomycota" rank="species" species="viride">
<emphasis id="37B8EAFCB9480F300034FBEBFDD8FBC0" bold="true" box="[540,625,1125,1145]" italics="true" pageId="7" pageNumber="8">T. viride</emphasis>
</taxonomicName>
. Further, co-inoculation studies were carried out under field conditions at CSIRCIMAP Research Centre, Bangalore in an experimental plot (3 ×
<quantity id="C2349B0BB9480F3000DEFB13FFDEFB75" metricMagnitude="0" metricUnit="m" metricValue="3.0" pageId="7" pageNumber="8" unit="m" value="3.0">3 m</quantity>
) of red-sandy loom soil (pH 6.2). Thirty-days-old nursery plants of
<taxonomicName id="C2CC4D6DB9480F30024CFB58FF79FB50" box="[100,208,1237,1256]" class="Magnoliopsida" family="Lamiaceae" genus="Coleus" kingdom="Plantae" order="Lamiales" pageId="7" pageNumber="8" phylum="Tracheophyta" rank="species" species="forskohlii">
<emphasis id="37B8EAFCB9480F30024CFB58FF79FB50" bold="true" box="[100,208,1237,1256]" italics="true" pageId="7" pageNumber="8">C. forskohlii</emphasis>
</taxonomicName>
were transplanted into
<quantity id="C2349B0BB9480F300384FB5BFDA1FB51" box="[428,520,1238,1257]" metricMagnitude="-1" metricUnit="m" metricValue="1.1" metricValueMax="1.2" metricValueMin="1.0" pageId="7" pageNumber="8" unit="cm" value="11.0" valueMax="12.0" valueMin="10.0">1012 cm</quantity>
deep holes with spacing of 60 ×
<quantity id="C2349B0BB9480F3002B2FB7CFF7CFABD" box="[154,213,1265,1285]" metricMagnitude="-1" metricUnit="m" metricValue="6.0" pageId="7" pageNumber="8" unit="cm" value="60.0">60 cm</quantity>
between plants. Four rows were maintained in each treatment plot (total of 8 plots) and divided by a guard ridge (
<quantity id="C2349B0BB9480F300046FA80FD01FA99" box="[622,680,1293,1313]" metricMagnitude="-1" metricUnit="m" metricValue="5.0" pageId="7" pageNumber="8" unit="cm" value="50.0">50 cm</quantity>
width) to avoid direct contact with adjacent plots. Each experimental plot was planted with 16 plants in four rows (hence, 4 plants were in the middle surrounded by 12 peripheral plants). The four central plants (four replicates) from each treatment were selected for the measurement of growth parameters. The fungal cultures were grown in 500 mL potato dextrose broth for 7 days at 28
<superScript id="F2B99BA6B9480F3003ABFA3CFE22FA06" attach="right" box="[387,395,1457,1470]" fontSize="6" pageId="7" pageNumber="8"></superScript>
C and the resulting mycelia were diluted with 90 mL of phosphate buffered saline (PBS) (K2HPO4 0.24 g L
<superScript id="F2B99BA6B9480F3000DBFA46FD55FA61" attach="right" box="[755,764,1483,1497]" fontSize="6" pageId="7" pageNumber="8">1</superScript>
, Na2HPO4 1.44 g L
<superScript id="F2B99BA6B9480F300337FA6AFE81FA4D" attach="right" box="[287,296,1511,1525]" fontSize="6" pageId="7" pageNumber="8">1</superScript>
, KCl 0.2 g L
<superScript id="F2B99BA6B9480F30038DFA6AFE07FA4D" attach="right" box="[421,430,1511,1525]" fontSize="6" pageId="7" pageNumber="8">1</superScript>
, NaCl
<quantity id="C2349B0BB9480F3003C5FA61FDA0F9B8" box="[493,521,1516,1536]" metricMagnitude="-3" metricUnit="kg" metricValue="8.0" pageId="7" pageNumber="8" unit="g" value="8.0">8 g</quantity>
L
<superScript id="F2B99BA6B9480F30000EFA6AFD86FA4D" attach="right" box="[550,559,1511,1525]" fontSize="6" pageId="7" pageNumber="8">1</superScript>
and pH 7.40). Finally, fungal suspension was diluted to a density of 1 ×
<superScript id="F2B99BA6B9480F300000F985FDE0F9A8" attach="left" box="[552,585,1538,1563]" fontSize="6" pageId="7" pageNumber="8">108</superScript>
CFU mL
<superScript id="F2B99BA6B9480F30008BF98FFD05F9A8" attach="right" box="[675,684,1538,1552]" fontSize="6" pageId="7" pageNumber="8">1</superScript>
. After 30 days of transplantation, each plant in the experimental plot was treated with 30 mL inoculum of SF1, SF2,
<collectingCountry id="7DDB767EB9480F3003E6F9CDFE45F9EB" box="[462,492,1600,1619]" name="Russia" pageId="7" pageNumber="8">RF</collectingCountry>
1 or TV1 and the untreated experimental plot (
<emphasis id="37B8EAFCB9480F30030DF9D1FE99F9D7" bold="true" box="[293,304,1628,1647]" italics="true" pageId="7" pageNumber="8">n</emphasis>
= 16 plants) was considered as control. Co-inoculation treatments included
<collectingCountry id="7DDB767EB9480F3003BFF9F5FE1CF933" box="[407,437,1656,1675]" name="Russia" pageId="7" pageNumber="8">RF</collectingCountry>
1+TV1, SF1+TV1, and SF2+TV1 at an inoculum of 1:1 ratio (
<bibRefCitation id="615D4B1FB9480F300367F919FDE9F91F" author="Egamberdieva, D. &amp; Wirth, S. J. &amp; Shurigin, V. V. &amp; Hashem, A. &amp; Abd Allah, E. F." box="[335,576,1684,1703]" pageId="7" pageNumber="8" pagination="1887" refId="ref8501" refString="Egamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., Abd Allah, E. F., 2017. Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front. Microbiol. 8, 1887." type="book chapter" year="2017">Egamberdieva et al., 2017</bibRefCitation>
). For each treatment plot, plant growth measurements comprising number of branches and plant height were analyzed for every 30 days until harvest. After 150-days of transplantation, plants were harvested by manually uprooting each plant with utmost care so as to not damage the roots. Fresh weights of roots and shoots were measured at the time of harvest and dry weights of roots and shoots were measured after 4-weeks of drying period; root length and number of tuberous roots per plant were also recorded. The obtained values of endophyte treatments (alone and co-inoculum) were compared with endophyte uninoculated control plants.
</paragraph>
</subSubSection>
</treatment>
</document>