treatments-xml/data/07/16/88/0716880AFFA434355C34FC30C61B356C.xml
2024-06-21 12:28:44 +02:00

176 lines
21 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="F4E381FC7AE33E892552F1C3F0DE5CA3" ID-DOI="10.1016/j.phytochem.2019.01.016" ID-ISSN="1873-3700" ID-Zenodo-Dep="10482093" IM.bibliography_approvedBy="felipe" IM.illustrations_approvedBy="tatiana" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.tables_approvedBy="tatiana" IM.taxonomicNames_approvedBy="tatiana" IM.treatments_approvedBy="tatiana" checkinTime="1704929549194" checkinUser="felipe" docAuthor="Weston, Paul A., Gurusinghe, Saliya, Birckhead, Emily, Skoneczny, Dominik, Quinn, Jane C. &amp; Weston, Leslie A." docDate="2019" docId="0716880AFFA434355C34FC30C61B356C" docLanguage="en" docName="Phytochemistry.161.1-10.pdf" docOrigin="Phytochemistry 161" docSource="http://dx.doi.org/10.1016/j.phytochem.2019.01.016" docStyle="DocumentStyle:9E596C34F4E94307D29315B03ACE1007.6:Phytochemistry.2014-2019.journal_article" docStyleId="9E596C34F4E94307D29315B03ACE1007" docStyleName="Phytochemistry.2014-2019.journal_article" docStyleVersion="6" docTitle="Amaranthus retroflexus L." docType="treatment" docVersion="1" lastPageNumber="4" masterDocId="FB2FF072FFA734365C50FFA1C2333321" masterDocTitle="Chemometric analysis of Amaranthus retroflexus in relation to livestock toxicity in southern Australia" masterLastPageNumber="10" masterPageNumber="1" pageNumber="4" updateTime="1705421922095" updateUser="tatiana">
<mods:mods id="7A96BDF5C33B199762323CA1C046950B" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="D479CF1C280D4FBD0E6DB5DC9BE1A1C1">
<mods:title id="A41936A32A5DA7674DF23FF81255359A">Chemometric analysis of Amaranthus retroflexus in relation to livestock toxicity in southern Australia</mods:title>
</mods:titleInfo>
<mods:name id="95251D8C4346052F20CC513A42B60A0B" type="personal">
<mods:role id="6907BF4655772BF9C97C891FE008BD8C">
<mods:roleTerm id="A271DC004CC8D59D8382BF3737926C73">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="547763E096E1F24974D2653170F43C23">Weston, Paul A.</mods:namePart>
<mods:affiliation id="B8F8C780D9FDAA24A923C51B5D5671A3"> &amp; Graham Centre for Agricultural Innovation (Charles Sturt University and NSW Department of Primary Industries), Wagga Wagga, NSW, 2650, Australia &amp; &amp; Charles Sturt University, School of Agricultural and Wine Sciences, Wagga Wagga, NSW, 2678, Australia</mods:affiliation>
</mods:name>
<mods:name id="1A7EBD69113EF1D71247FC2BD127F605" type="personal">
<mods:role id="4DCFD76A002B200DFD03918EB2365C27">
<mods:roleTerm id="6FD8F5F6C13AF713261C30139A1294B5">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="DCAF82FA0D8C031D9F7A58B72B177E79">Gurusinghe, Saliya</mods:namePart>
</mods:name>
<mods:name id="5CD360D0BE3702E101ABDB57FC876A64" type="personal">
<mods:role id="55E4A538F1C74D88FA28821A50867BD5">
<mods:roleTerm id="64808B8432D4CE2D230EA35D9CF0870F">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="24FE8461F6CC3A6935463D214E56B0E6">Birckhead, Emily</mods:namePart>
</mods:name>
<mods:name id="192AECE3CE5E9E97124BD44F12979BFE" type="personal">
<mods:role id="894AC1C3AB1637DED6F3915D66E36149">
<mods:roleTerm id="F70996F6B022D92D2508FB0F1B1EEA85">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="390937091E4FC5A815853F79FAF586E2">Skoneczny, Dominik</mods:namePart>
</mods:name>
<mods:name id="9E4490E90DA60041D1C03269D315BB2B" type="personal">
<mods:role id="88740603D1598D6EA5E507E697516003">
<mods:roleTerm id="C530BDE814C2094C7B7C587484B81A19">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="8D795FDBFABD41880EE92C35B8DE1968">Quinn, Jane C.</mods:namePart>
</mods:name>
<mods:name id="7BD475F2CA9E37EADF12A12ADDCED5E0" type="personal">
<mods:role id="F945C8BF007A0F63CAB14025387E310B">
<mods:roleTerm id="99B1359AE899EAE58AE53B2E9DADFD96">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="A08BDD04483BB27BBF109F6B8F826EC6">Weston, Leslie A.</mods:namePart>
</mods:name>
<mods:typeOfResource id="6ECE09C4F80D085A0A28FBD10C635B45">text</mods:typeOfResource>
<mods:relatedItem id="EB9ADCB4BEF074E7D5EC1D2A65C48FCF" type="host">
<mods:titleInfo id="110D9C522DFBF5EDACB0473ECBFEA7AC">
<mods:title id="A725829AB8CCAA76BEB3C21D1A6101FF">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="DEBA06C1C79A4A111437A9E4D5057455">
<mods:date id="EEE4EBBD0AA2736621C1AE7938254BFB">2019</mods:date>
<mods:detail id="0F66CFC7E8CAA36BF037D80FAF010905" type="pubDate">
<mods:number id="2AE6944A7DB0D3A7CED974800686FF20">2019-05-31</mods:number>
</mods:detail>
<mods:detail id="6C05B8D33D6C533E913808B8363FB175" type="volume">
<mods:number id="58B5AF00FEC36BBEAF9E80CCA8565053">161</mods:number>
</mods:detail>
<mods:extent id="874C4090DE99C7F53CAEE0827FA33866" unit="page">
<mods:start id="19375BFF29C96030870A6548790CB49B">1</mods:start>
<mods:end id="0F56FF553CC9E4BB6A5661F8ABB18D0C">10</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="3C54841912BC3C84C6EF1BE399B91E90">
<mods:url id="118F428A0FCEB329541797F3B9AACFC3">http://dx.doi.org/10.1016/j.phytochem.2019.01.016</mods:url>
</mods:location>
<mods:classification id="C3615D8E6CFDDEE1047D95F2DE9FB9A3">journal article</mods:classification>
<mods:identifier id="49DD8BFF8DBE1C078165EF37ABD74321" type="DOI">10.1016/j.phytochem.2019.01.016</mods:identifier>
<mods:identifier id="934FDF407209B934D4C72D4A8E664034" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="D613DA4069C19426373174488DF6DE59" type="Zenodo-Dep">10482093</mods:identifier>
</mods:mods>
<treatment id="0716880AFFA434355C34FC30C61B356C" LSID="urn:lsid:plazi:treatment:0716880AFFA434355C34FC30C61B356C" httpUri="http://treatment.plazi.org/id/0716880AFFA434355C34FC30C61B356C" lastPageNumber="4" pageId="3" pageNumber="4">
<subSubSection id="C7A56A97FFA434355C34FC30C0503085" box="[100,611,912,932]" pageId="3" pageNumber="4" type="nomenclature">
<paragraph id="8F00391CFFA434355C34FC30C0503085" blockId="3.[100,611,912,932]" box="[100,611,912,932]" pageId="3" pageNumber="4">
<heading id="D4488E70FFA434355C34FC30C0503085" bold="true" box="[100,611,912,932]" fontSize="36" level="1" pageId="3" pageNumber="4" reason="1">
<emphasis id="BDCBE50EFFA434355C34FC30C0503085" bold="true" box="[100,611,912,932]" italics="true" pageId="3" pageNumber="4">
2.2. Cytotoxicity of methanolic extracts of
<taxonomicName id="48BF429FFFA434355DBAFC30C0503085" ID-CoL="CH63" authorityName="L." box="[490,611,912,932]" class="Magnoliopsida" family="Amaranthaceae" genus="Amaranthus" kingdom="Plantae" order="Caryophyllales" pageId="3" pageNumber="4" phylum="Tracheophyta" rank="species" species="retroflexus">A. retroflexus</taxonomicName>
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="C7A56A97FFA434355CD5FC69C36437D3" pageId="3" pageNumber="4" type="biology_ecology">
<paragraph id="8F00391CFFA434355CD5FC69C0C03746" blockId="3.[100,770,968,1266]" pageId="3" pageNumber="4">
Exposure to
<taxonomicName id="48BF429FFFA434355CAEFC69C34B30FA" box="[254,376,968,987]" class="Magnoliopsida" family="Amaranthaceae" genus="Amaranthus" kingdom="Plantae" order="Caryophyllales" pageId="3" pageNumber="4" phylum="Tracheophyta" rank="species" species="retroflexus">
<emphasis id="BDCBE50EFFA434355CAEFC69C34B30FA" bold="true" box="[254,376,968,987]" italics="true" pageId="3" pageNumber="4">A. retroflexus</emphasis>
</taxonomicName>
leaf extracts induced rapid cell death in NIH3T3 cells within two hours following treatment, with cells exhibiting typical apoptotic features including nuclear condensation and cell shrinkage (
<figureCitation id="17842599FFA434355CA2FBBDC314370E" box="[242,295,1052,1071]" captionStart="Fig" captionStartId="3.[818,848,1368,1385]" captionTargetBox="[824,1481,154,1344]" captionTargetId="figure-865@3.[822,1483,152,1345]" captionTargetPageId="3" captionText="Fig. 5. Typical morphology of mouse fibroblast cell line NIH3T3 48 h after treatment with Amaranthus retroflexus extract. Methanol-only treatments served as a negative control for each concentration. Scale bar = 50 μm." figureDoi="http://doi.org/10.5281/zenodo.10482103" httpUri="https://zenodo.org/record/10482103/files/figure.png" pageId="3" pageNumber="4">Fig. 5</figureCitation>
). Control cultures treated with equivalent volumes of methanol (MeOH) showed very limited evidence of apoptosis, displaying characteristic fibroblast morphology and active cell division.
</paragraph>
<paragraph id="8F00391CFFA434355CD5FBD1C36437D3" blockId="3.[100,770,968,1266]" pageId="3" pageNumber="4">
Exposure of NIH3T3 cells to extracts of
<taxonomicName id="48BF429FFFA434355DAAFBD1C04137A2" box="[506,626,1136,1155]" class="Magnoliopsida" family="Amaranthaceae" genus="Amaranthus" kingdom="Plantae" order="Caryophyllales" pageId="3" pageNumber="4" phylum="Tracheophyta" rank="species" species="retroflexus">
<emphasis id="BDCBE50EFFA434355DAAFBD1C04137A2" bold="true" box="[506,626,1136,1155]" italics="true" pageId="3" pageNumber="4">A. retroflexus</emphasis>
</taxonomicName>
leaves from all three plant collections resulted in significantly higher cytotoxicity than extracts of other tissues obtained from the same plants. Cytotoxicity of leaf tissue extracts was observed at both concentrations examined (0.25 and
<quantity id="484794F9FFA434355CDEFB7EC2EF37D3" box="[142,220,1247,1266]" metricMagnitude="-7" metricUnit="kg" metricValue="5.0" pageId="3" pageNumber="4" unit="mg" value="0.5">0.50 mg</quantity>
/ml) (
<figureCitation id="17842599FFA434355D43FB7EC37A37D3" box="[275,329,1247,1266]" captionStart="Fig" captionStartId="4.[100,130,1286,1303]" captionTargetBox="[107,765,154,1262]" captionTargetId="figure-49@4.[105,766,152,1263]" captionTargetPageId="4" captionText="Fig. 6. Cell viability relative to methanol-only vehicle control following treatment with extracts of Amaranthus retroflexus collected on three separate occasions in a) Wagga Wagga, 2014; b) Wagga Wagga, 2015 and c) Uranquinty, 2015. Values are means ± SEM. Cell viability was significantly lower in leaf extracts at both 0.25 mg/ml and 0.50 mg/ml compared to other tissue types and vehicle controls (*, P &lt;0.05)." figureDoi="http://doi.org/10.5281/zenodo.10482105" httpUri="https://zenodo.org/record/10482105/files/figure.png" pageId="3" pageNumber="4">Fig. 6</figureCitation>
).
</paragraph>
</subSubSection>
<subSubSection id="C7A56A97FFA434355C34FAB6C61B356C" pageId="3" pageNumber="4" type="discussion">
<paragraph id="8F00391CFFA434355C34FAB6C29A3667" blockId="3.[100,713,1303,1322]" lastBlockId="3.[100,169,1331,1350]" pageId="3" pageNumber="4">
<heading id="D4488E70FFA434355C34FAB6C29A3667" bold="true" fontSize="36" level="1" pageId="3" pageNumber="4" reason="1">
<emphasis id="BDCBE50EFFA434355C34FAB6C29A3667" bold="true" italics="true" pageId="3" pageNumber="4">
2.3. Identification of the toxic constituents of
<taxonomicName id="48BF429FFFA434355E53FAB6C0FA360B" ID-CoL="CH63" box="[515,713,1303,1322]" class="Magnoliopsida" family="Amaranthaceae" genus="Amaranthus" kingdom="Plantae" order="Caryophyllales" pageId="3" pageNumber="4" phylum="Tracheophyta" rank="species" species="retroflexus">Amarathus retroflexus</taxonomicName>
extracts
</emphasis>
</heading>
</paragraph>
<caption id="DBC06994FFA434355F62FAF9C76A36BD" ID-DOI="http://doi.org/10.5281/zenodo.10482103" ID-Zenodo-Dep="10482103" httpUri="https://zenodo.org/record/10482103/files/figure.png" pageId="3" pageNumber="4" startId="3.[818,848,1368,1385]" targetBox="[824,1481,154,1344]" targetPageId="3" targetType="figure">
<paragraph id="8F00391CFFA434355F62FAF9C76A36BD" blockId="3.[818,1487,1368,1436]" pageId="3" pageNumber="4">
<emphasis id="BDCBE50EFFA434355F62FAF9C15D3648" bold="true" box="[818,878,1368,1385]" pageId="3" pageNumber="4">Fig. 5.</emphasis>
Typical morphology of mouse fibroblast cell line NIH3T3 48 h after treatment with
<taxonomicName id="48BF429FFFA434355FE4FAD3C64336A2" box="[948,1136,1393,1411]" class="Magnoliopsida" family="Amaranthaceae" genus="Amaranthus" kingdom="Plantae" order="Caryophyllales" pageId="3" pageNumber="4" phylum="Tracheophyta" rank="species" species="retroflexus">
<emphasis id="BDCBE50EFFA434355FE4FAD3C64336A2" bold="true" box="[948,1136,1393,1411]" italics="true" pageId="3" pageNumber="4">Amaranthus retroflexus</emphasis>
</taxonomicName>
extract. Methanol-only treatments served as a negative control for each concentration. Scale bar = 50 μm.
</paragraph>
</caption>
<paragraph id="8F00391CFFA434355CD5FACAC61B356C" blockId="3.[100,770,1387,1992]" lastBlockId="3.[818,1487,1482,1613]" pageId="3" pageNumber="4">
Despite the predominance of numerous nitrogen-containing compounds and chlorophyll derivatives in methanolic extracts of
<taxonomicName id="48BF429FFFA434355EE5FA26C2AB3697" class="Magnoliopsida" family="Amaranthaceae" genus="Amaranthus" kingdom="Plantae" order="Caryophyllales" pageId="3" pageNumber="4" phylum="Tracheophyta" rank="species" species="retroflexus">
<emphasis id="BDCBE50EFFA434355EE5FA26C2AB3697" bold="true" italics="true" pageId="3" pageNumber="4">A. retroflexus</emphasis>
</taxonomicName>
, these compounds were not significantly or positively correlated with cytotoxicity. Stepwise linear regression using the relative abundance of compounds against
<emphasis id="BDCBE50EFFA434355D2DFA7BC38D36CC" bold="true" box="[381,446,1498,1517]" italics="true" pageId="3" pageNumber="4">in vitro</emphasis>
cytotoxicity revealed no appreciable correlation between any components separated via HILIC chromatography and bioactivity. However, the cytotoxic activity in
<taxonomicName id="48BF429FFFA434355EBEF9B3C2F13560" class="Magnoliopsida" family="Amaranthaceae" genus="Amaranthus" kingdom="Plantae" order="Caryophyllales" pageId="3" pageNumber="4" phylum="Tracheophyta" rank="species" species="retroflexus">
<emphasis id="BDCBE50EFFA434355EBEF9B3C2F13560" bold="true" italics="true" pageId="3" pageNumber="4">A. retroflexus</emphasis>
</taxonomicName>
leaf extracts was highly correlated at both concentrations examined [
<quantity id="484794F9FFA434355C87F9EBC316357C" box="[215,293,1610,1629]" metricMagnitude="-7" metricUnit="kg" metricValue="2.5" pageId="3" pageNumber="4" unit="mg" value="0.25">0.25 mg</quantity>
/mL (
<emphasis id="BDCBE50EFFA434355D38F9EBC343357C" bold="true" box="[360,368,1610,1629]" italics="true" pageId="3" pageNumber="4">r</emphasis>
<superScript id="78CA9454FFA434355D3FF9E4C34B3573" attach="left" box="[367,376,1605,1618]" fontSize="5" pageId="3" pageNumber="4">2</superScript>
= 0.928,
<emphasis id="BDCBE50EFFA434355DB4F9EBC3C3357C" bold="true" box="[484,496,1610,1629]" italics="true" pageId="3" pageNumber="4">P</emphasis>
&lt;0.001) and
<quantity id="484794F9FFA434355ECBF9EBC0E9357C" box="[667,730,1610,1629]" metricMagnitude="-7" metricUnit="kg" metricValue="5.0" pageId="3" pageNumber="4" unit="mg" value="0.5">0.5 mg</quantity>
/mL (
<emphasis id="BDCBE50EFFA434355C3CF9C7C2473558" bold="true" box="[108,116,1638,1657]" italics="true" pageId="3" pageNumber="4">r</emphasis>
<superScript id="78CA9454FFA434355C24F9C0C24E354F" attach="left" box="[116,125,1633,1646]" fontSize="5" pageId="3" pageNumber="4">2</superScript>
= 0.840,
<emphasis id="BDCBE50EFFA434355CB3F9C7C2DC3558" bold="true" box="[227,239,1638,1657]" italics="true" pageId="3" pageNumber="4">P</emphasis>
&lt;0.001)] with the presence of a single compound eluting on C
<subScript id="133B3B59FFA434355CB0F92BC2C135B6" attach="left" box="[224,242,1674,1687]" fontSize="5" pageId="3" pageNumber="4">18</subScript>
with
<emphasis id="BDCBE50EFFA434355D61F923C36535B4" bold="true" box="[305,342,1666,1685]" italics="true" pageId="3" pageNumber="4">m/z</emphasis>
of 824.3300 (
<figureCitation id="17842599FFA434355DB9F923C01135B4" box="[489,546,1666,1685]" captionStart="Fig" captionStartId="4.[100,130,1872,1889]" captionTargetBox="[106,764,1471,1849]" captionTargetId="figure-122@4.[105,766,1470,1850]" captionTargetPageId="4" captionText="Fig. 7. Relationship between the abundance of the putative active compound from Amaranthus retroflexus extracts (m/z 824) and cytotoxicity as measured by inhibition of growth of murine fibroblast cells." figureDoi="http://doi.org/10.5281/zenodo.10482109" httpUri="https://zenodo.org/record/10482109/files/figure.png" pageId="3" pageNumber="4">Fig. 7</figureCitation>
). Given the very high coefficient of determination (
<emphasis id="BDCBE50EFFA434355D2DF93FC3BD3587" bold="true" box="[381,398,1689,1713]" italics="true" pageId="3" pageNumber="4">
r
<superScript id="78CA9454FFA434355DD5F938C3BD3587" attach="left" box="[389,398,1689,1702]" fontSize="5" pageId="3" pageNumber="4">2</superScript>
</emphasis>
) and the statistical significance of this match, we attempted to determine the structure of this potential toxin or toxicity biomarker by examining MS-MS spectra. The predicted molecular formula of this constituent was C
<subScript id="133B3B59FFA434355E4AF95BC01F3426" attach="both" box="[538,556,1786,1799]" fontSize="5" pageId="3" pageNumber="4">35</subScript>
H
<subScript id="133B3B59FFA434355E6CF95BC07D3426" attach="both" box="[572,590,1786,1799]" fontSize="5" pageId="3" pageNumber="4">49</subScript>
N
<subScript id="133B3B59FFA434355E0DF95BC0553426" attach="both" box="[605,614,1786,1799]" fontSize="5" pageId="3" pageNumber="4">7</subScript>
O
<subScript id="133B3B59FFA434355E26F95BC0BB3426" attach="left" box="[630,648,1786,1799]" fontSize="5" pageId="3" pageNumber="4">16</subScript>
. The use of Agilent Molecular Structure Correlator (MSC) applied to MS-MS spectra of this compound yielded a predicted 83% match with a small modified peptide, N-acetyl-L-α- aspartyl-L-alanyl-L-α- aspartyl-L-α- glutamyl-O- (carboxymethyl)-L-tyrosyl-L-leucinamide (structure 1a,
<figureCitation id="17842599FFA434355ED3F8C0C08C3455" box="[643,703,1889,1908]" captionStart="Fig" captionStartId="4.[818,848,1735,1752]" captionTargetBox="[824,1481,154,1710]" captionTargetId="figure-157@4.[822,1483,152,1712]" captionTargetPageId="4" captionText="Fig. 8. Structure of the best three matches to the MS-MS spectrum of the putative cytotoxic compound from Amaranthus retroflexus extracts. The best match was with 1a (N-acetyl-L-α-aspartyl-L-alanyl-L-α-aspartyl-L-α-glutamyl-O-(carboxymethyl)-L-tyrosyl-L-leucinamide)." figureDoi="http://doi.org/10.5281/zenodo.10482107" httpUri="https://zenodo.org/record/10482107/files/figure.png" pageId="3" pageNumber="4">Fig. 8</figureCitation>
). Two related modified peptides (1b and 1c,
<figureCitation id="17842599FFA434355D9CF8DCC03234B1" box="[460,513,1917,1936]" captionStart="Fig" captionStartId="4.[818,848,1735,1752]" captionTargetBox="[824,1481,154,1710]" captionTargetId="figure-157@4.[822,1483,152,1712]" captionTargetPageId="4" captionText="Fig. 8. Structure of the best three matches to the MS-MS spectrum of the putative cytotoxic compound from Amaranthus retroflexus extracts. The best match was with 1a (N-acetyl-L-α-aspartyl-L-alanyl-L-α-aspartyl-L-α-glutamyl-O-(carboxymethyl)-L-tyrosyl-L-leucinamide)." figureDoi="http://doi.org/10.5281/zenodo.10482107" httpUri="https://zenodo.org/record/10482107/files/figure.png" pageId="3" pageNumber="4">Fig. 8</figureCitation>
) also produced high scores via MSC, but their scores were somewhat lower (81 and 79%, respectively). The various software packages and libraries used for assistance with structural elucidation indicated that all candidate molecules as potential matches for the putatively active compound contained nitrogen and were small modified peptides. The MS-MS spectra of the putatively active compound under collision energies of 10, 20 and 40 eV is shown in
<figureCitation id="17842599FFA434355FB1F99BC61B356C" box="[993,1064,1594,1613]" captionStart-0="Fig" captionStart-1="Fig" captionStart-2="Fig" captionStartId-0="1.[818,848,542,559]" captionStartId-1="1.[818,848,1838,1855]" captionStartId-2="2.[100,130,617,634]" captionTargetBox-0="[824,1481,154,518]" captionTargetBox-1="[823,1482,1367,1815]" captionTargetBox-2="[106,765,153,594]" captionTargetId-0="figure-940@1.[822,1483,152,519]" captionTargetId-1="graphics-971@1.[823,1482,1367,1815]" captionTargetId-2="figure-436@2.[105,766,152,595]" captionTargetPageId-0="1" captionTargetPageId-1="1" captionTargetPageId-2="2" captionText-0="Fig. 1. Analysis of Amaranthus retroflexus plant material for crude protein (%), total N (%) and nitrate N (mg/kg) in inflorescence/seeds, leaves and stems/ shoots." captionText-1="Fig. 2. Nitrate content of Amaranthus retroflexus inflorescence, stem, leaf and root tissues collected from two field locations in Wagga Wagga and Uranquinty, NSW in 2015 as measured by ion exchange and HPLC. Nitrate concentration is expressed in units of mg per g of extract; values are means ± SD. Results of factorial ANOVA is shown in the figure; * = significance at P &lt;0.05, *** = significance at P &lt;0.001." captionText-2="Fig. 3. Relative abundance of nitrogen (N)-containing (black bars), chlorophyll (Chl) derivatives (medium grey bars) and other plant metabolites (light grey bars) in crude extracts of four tissue types of Amaranthus retroflexus analysed by HILIC chromatography interfaced with quadrupole time-of-flight mass spectrometry (HPLC-MS-QTOF)." figureDoi-0="http://doi.org/10.5281/zenodo.10482095" figureDoi-1="http://doi.org/10.5281/zenodo.10482097" figureDoi-2="http://doi.org/10.5281/zenodo.10482099" httpUri-0="https://zenodo.org/record/10482095/files/figure.png" httpUri-1="https://zenodo.org/record/10482097/files/figure.png" httpUri-2="https://zenodo.org/record/10482099/files/figure.png" pageId="3" pageNumber="4">Fig. S1.</figureCitation>
</paragraph>
</subSubSection>
</treatment>
</document>