treatments-xml/data/01/39/87/0139879D1C48FFCBFC9FFA9F776A93B2.xml
2024-06-21 12:21:35 +02:00

288 lines
47 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="DFEAC58555BC8DA70D8CE51BCED226ED" ID-DOI="10.1016/j.phytochem.2021.112881" ID-GBIF-Dataset="2ea59e53-b059-41a5-b5b5-30cb32d3aaf0" ID-ISSN="1873-3700" ID-Zenodo-Dep="8270251" IM.bibliography_approvedBy="juliana" IM.illustrations_approvedBy="juliana" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="juliana" IM.tables_approvedBy="juliana" IM.taxonomicNames_approvedBy="juliana" IM.treatments_approvedBy="juliana" checkinTime="1692304096437" checkinUser="felipe" docAuthor="Hýskova, Veronika, Belonozníkov, Katerina, Smeringaiova, Ingrida, Kavan, Daniel, Ingr, Marek &amp; Ryslava, Helena" docDate="2021" docId="0139879D1C48FFCBFC9FFA9F776A93B2" docLanguage="en" docName="Phytochemistry.190.112881.pdf" docOrigin="Phytochemistry (112881) 190" docSource="http://dx.doi.org/10.1016/j.phytochem.2021.112881" docStyle="DocumentStyle:F36D69FC8B198FBE91029DF9C24697D3.5:Phytochemistry.2020-.journal_article" docStyleId="F36D69FC8B198FBE91029DF9C24697D3" docStyleName="Phytochemistry.2020-.journal_article" docStyleVersion="5" docTitle="Petroselinum crispum subsp. root SDH" docType="treatment" docVersion="6" lastPageNumber="9" masterDocId="FD00FFE51C4FFFC3FFADFFE27321920C" masterDocTitle="How is the activity of shikimate dehydrogenase from the root of Petroselinum crispum (parsley) regulated and which side reactions are catalyzed?" masterLastPageNumber="12" masterPageNumber="1" pageNumber="8" updateTime="1692634466674" updateUser="ExternalLinkService">
<mods:mods id="12073C81E1B9A879B1DB068897D571FF" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="286B4EE23E214D51E307B34A72982D57">
<mods:title id="AADAD0CFECE3B0DEB84BED6A18878C29">How is the activity of shikimate dehydrogenase from the root of Petroselinum crispum (parsley) regulated and which side reactions are catalyzed?</mods:title>
</mods:titleInfo>
<mods:name id="4518BD42F4C2A24D0150E65B3E7AEEF5" type="personal">
<mods:role id="974DAC692937AB1F73953BEFFF47695E">
<mods:roleTerm id="DBA39787ED41691F12429EB12C6A91B9">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="AD8BE2F63FF876F831E998D83DA25E84">Hýskova, Veronika</mods:namePart>
<mods:affiliation id="9B586E0237DD714D5A15282F12A4634A">Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic</mods:affiliation>
</mods:name>
<mods:name id="CF22D7AAF028C778EEB400A63C46B3AA" type="personal">
<mods:role id="082B3E9C519F1033FBAD98750CCC1075">
<mods:roleTerm id="522F81E40EA78BDFB53591F2412DC82A">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="644F6F2CA0AC572E3FB8B292AF77E13A">Belonozníkov, Katerina</mods:namePart>
<mods:affiliation id="55965A8412FD92561A5D59B408BAB9DC">Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic</mods:affiliation>
</mods:name>
<mods:name id="61415309EDC36A21178C552567114664" type="personal">
<mods:role id="C93786F2A1BF817626ED048312B37C57">
<mods:roleTerm id="816E70CA6BD3B33E54CBF7F3A32C45BA">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="332A16E0C5A285A44ADD99C3641E8D4E">Smeringaiova, Ingrida</mods:namePart>
<mods:affiliation id="5346FD3E1EBFF1344EC9FDF5AF2F91C1">Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic</mods:affiliation>
</mods:name>
<mods:name id="7AFD69B0C82D4F443301A5CDBF05B2FC" type="personal">
<mods:role id="EEE44095B2405CA9EEB4E0D7596E5A18">
<mods:roleTerm id="43FD10A2DB0A3EBB99FA7807911E71AA">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="5F31DAC011EE62065B847AE8C99F2161">Kavan, Daniel</mods:namePart>
<mods:affiliation id="9F77C2A80305DB4A6D6359F31A56253D">Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic</mods:affiliation>
</mods:name>
<mods:name id="DF8E1BFF536BAC9ABEB2F48727BD25C0" type="personal">
<mods:role id="200736F2F5A7F1BBE048E42B8C3EEBEA">
<mods:roleTerm id="1702E6ADC3B68016DAA719F8F44128F0">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="96E7FB2EDA7BF7E143DBD6602360CEEA">Ingr, Marek</mods:namePart>
<mods:affiliation id="B9EBCF38289A9D506BFB1EBA32D0A4EC">Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic &amp; Tomas Bata University in Zlín, Faculty of Technology, Department of Physics and Materials Engineering, N´am. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic &amp; Tomas Bata University in Zlín, Faculty of Technology, Department of Physics and Materials Engineering, N´am. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic</mods:affiliation>
</mods:name>
<mods:name id="04419A8020F391ECBF7717397B77D653" type="personal">
<mods:role id="3B336F4E874C2F688E741342C83DBA29">
<mods:roleTerm id="838CAA27DBEE569340D8C1389F87F4F8">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="760D214101227E389EC6923CACF96466">Ryslava, Helena</mods:namePart>
<mods:affiliation id="3CDF90D853ED2F103DA8618596DFF96A">Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic</mods:affiliation>
</mods:name>
<mods:typeOfResource id="792C989C9775631A521B6A2FD4E4C30F">text</mods:typeOfResource>
<mods:relatedItem id="A4581DD2C0E0EFF31F42CDBA6FF9F0FD" type="host">
<mods:titleInfo id="DC8B0CEEE7A7BD08FC5F489EED83823A">
<mods:title id="907C44A25CA007C371BF35970A44A9F2">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="4AB0EBC8304761023E4BAB9D5395B12A">
<mods:date id="F0A092963F03607A2F4B55B01FCF41A7">2021</mods:date>
<mods:detail id="267546F2306243DA943B9ED9E1169378" type="series">
<mods:title id="2C5232F2B4A1D0D1C0B3F0134FD6EBE6">112881</mods:title>
</mods:detail>
<mods:detail id="765573CCB1EDDA447EC2090D749C39BF" type="pubDate">
<mods:number id="74CC96C80131BA5F8C43EFD72B34603B">2021-10-31</mods:number>
</mods:detail>
<mods:detail id="7E4190EDD05FEC453E078EFB531CEEE9" type="volume">
<mods:number id="91651591BE92B1922BE0DCA783BF9A6F">190</mods:number>
</mods:detail>
<mods:extent id="B0F2E6EF4C6658F058E150C7C515C709" unit="page">
<mods:start id="F00B1B7549744C72A36883457F80DB08">1</mods:start>
<mods:end id="E1C459717DC4877868BD06D4901CDCCA">12</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="02BDBA45ECA57544305BF7F230D114E4">
<mods:url id="E0135D51B44C8299E33F430A2DCF0A75">http://dx.doi.org/10.1016/j.phytochem.2021.112881</mods:url>
</mods:location>
<mods:classification id="3308B230BC06DDF58BBC57DBB46034E7">journal article</mods:classification>
<mods:identifier id="E51D290F190BFB50DAB3DB9BE1242B87" type="DOI">10.1016/j.phytochem.2021.112881</mods:identifier>
<mods:identifier id="F48F471F501E7164B743EE6E161CF0BF" type="GBIF-Dataset">2ea59e53-b059-41a5-b5b5-30cb32d3aaf0</mods:identifier>
<mods:identifier id="7D681474608FAFEFEE37C4310B2C33DD" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="BF9377D8D355DF77AECFA3A97DF609B4" type="Zenodo-Dep">8270251</mods:identifier>
</mods:mods>
<treatment id="0139879D1C48FFCBFC9FFA9F776A93B2" ID-DOI="http://doi.org/10.5281/zenodo.8264316" ID-GBIF-Taxon="212439143" ID-Zenodo-Dep="8264316" LSID="urn:lsid:plazi:treatment:0139879D1C48FFCBFC9FFA9F776A93B2" httpUri="http://treatment.plazi.org/id/0139879D1C48FFCBFC9FFA9F776A93B2" lastPageId="8" lastPageNumber="9" pageId="7" pageNumber="8">
<subSubSection id="C18A65001C48FFC4FC9FFA9F773897A7" pageId="7" pageNumber="8" type="nomenclature">
<paragraph id="892F368B1C48FFC4FC9FFA9F773897A7" blockId="7.[818,1353,1404,1451]" pageId="7" pageNumber="8">
<heading id="D26781E71C48FFC4FC9FFA9F773897A7" bold="true" fontSize="36" level="1" pageId="7" pageNumber="8" reason="1">
<emphasis id="BBE4EA991C48FFC4FC9FFA9F773897A7" bold="true" italics="true" pageId="7" pageNumber="8">
3.4.
<taxonomicName id="4E904D081C48FFC4FCCFFA9F70E0979C" ID-CoL="6V8D2" ID-ENA="4043" authority="SDH" authorityName="SDH" box="[866,961,1405,1424]" class="Magnoliopsida" family="Apiaceae" genus="Petroselinum" kingdom="Plantae" order="Apiales" pageId="7" pageNumber="8" phylum="Tracheophyta" rank="species" species="crispum">P. crispum</taxonomicName>
root SDH is regulated by metabolites of the phenylpropanoid pathway
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="C18A65001C48FFCBFCFCFA33776A93B2" lastPageId="8" lastPageNumber="9" pageId="7" pageNumber="8" type="description">
<paragraph id="892F368B1C48FFCBFCFCFA33702193AE" blockId="7.[818,1488,1488,1982]" lastBlockId="8.[100,770,148,1980]" lastPageId="8" lastPageNumber="9" pageId="7" pageNumber="8">
Because the shikimate pathway is absent in mammals, searching and designing inhibitors against enzymes of this pathway may lead to the development of antimicrobials (such as the bacterial
<taxonomicName id="4E904D081C48FFC4FAEBF9EA70B8943B" class="Actinobacteridae" family="Mycobacteriaceae" genus="Mycobacterium" kingdom="Bacteria" order="Actinomycetales" pageId="7" pageNumber="8" phylum="Actinobacteria" rank="species" species="tuberculosis">
<emphasis id="BBE4EA991C48FFC4FAEBF9EA70B8943B" bold="true" italics="true" pageId="7" pageNumber="8">Mycobacterium tuberculosis</emphasis>
</taxonomicName>
and
<taxonomicName id="4E904D081C48FFC4FC78F9C6779D943B" authority="SDH" authorityName="SDH" box="[981,1212,1572,1591]" class="Epsilonproteobacteria" family="Helicobacteraceae" genus="Helicobacter" kingdom="Bacteria" order="Campylobacterales" pageId="7" pageNumber="8" phylum="Proteobacteria" rank="species" species="pylori">
<emphasis id="BBE4EA991C48FFC4FC78F9C677A2943B" bold="true" box="[981,1155,1572,1591]" italics="true" pageId="7" pageNumber="8">Helicobacter pylori</emphasis>
SDH
</taxonomicName>
) and antiparasitic (malaria parasite SDH) and herbicidal (plant SDH) agents, which are harmless to humans (
<bibRefCitation id="ED014B7A1C48FFC4FC24F9BE77499463" author="Diaz-Quiroz, D. C. &amp; Cardona-Felix, C. S. &amp; Viveros-Ceballos, J. L. &amp; Reyes-Gonzalez, M. A. &amp; Bolivar, F. &amp; Ordonez, M. &amp; Escalante, A." box="[905,1128,1628,1647]" pageId="7" pageNumber="8" pagination="397 - 404" refId="ref10639" refString="Diaz-Quiroz, D. C., Cardona-Felix, C. S., Viveros-Ceballos, J. L., Reyes-Gonzalez, M. A., Bolivar, F., Ordonez, M., Escalante, A., 2018. Synthesis, biological activity and molecular modelling studies of shikimic acid derivatives as inhibitors of the shikimate dehydrogenase enzyme of Escherichia coli. J. Enzym. Inhib. Med. Chem. 33, 397 - 404. https: // doi. org / 10.1080 / 14756366.2017.1422125." type="journal article" year="2018">Diaz-Quiroz et al., 2018</bibRefCitation>
). There are 3 strategies for identifying compounds with an inhibitory effect on a particular enzyme: i) analyzing substrate structural analogs (
<bibRefCitation id="ED014B7A1C48FFC4FB1FF976764894AB" author="Baillie, A. C. &amp; Corbett, J. R. &amp; Dowsett, J. R. &amp; McCloskey, P." box="[1202,1385,1684,1703]" pageId="7" pageNumber="8" pagination="113 - 120" refId="ref9804" refString="Baillie, A. C., Corbett, J. R., Dowsett, J. R., McCloskey, P., 1972. Inhibitors of shikimate dehydrogenase as potential herbicides. Pestid. Sci. 3, 113 - 120. https: // doi. org / 10.1002 / ps. 2780030202." type="journal article" year="1972">Baillie et al., 1972</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FAD4F976709294CF" author="Diaz, J. &amp; Merino, F." pageId="7" pageNumber="8" pagination="147 - 152" refId="ref10734" refString="Diaz, J., Merino, F., 1997. Shikimate dehydrogenase from pepper (Capsicum annuum) seedlings. Purification and properties. Physiol. Plantarum 100, 147 - 152. https: // doi. org / 10.1111 / j. 1399 - 3054.1997. tb 03465. x." type="journal article" year="1997">Diaz and Merino, 1997</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FC6CF94D779994CE" author="Fiedler, E. &amp; Schultz, G." box="[961,1208,1711,1730]" pageId="7" pageNumber="8" pagination="212 - 218" refId="ref11036" refString="Fiedler, E., Schultz, G., 1985. Localization, purification, and characterization of shikimate oxidoreductase-dehydroquinate hydrolyase from stroma of spinach chloroplasts. Plant Physiol. 79, 212 - 218. https: // doi. org / 10.1104 / pp. 79.1.212." type="journal article" year="1985">Fiedler and Schultz, 1985</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FB6BF94D766E94CF" author="Koshiba, T." box="[1222,1359,1711,1731]" pageId="7" pageNumber="8" pagination="10 - 18" refId="ref12129" refString="Koshiba, T., 1978. Purification of two forms of the associated 3 - dehydroquinate hydrolyase and shikimate: NADP + oxidoreductase in Phaseolus mungo seedlings. Biochim. Biophys. Acta 522, 10 - 18. https: // doi. org / 10.1016 / 0005 - 2744 (78) 90317 - 0." type="journal article" year="1978">Koshiba, 1978</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FAF0F95270BE94D2" author="Lemos Silva, G. M. &amp; Lourenco, E. J. &amp; Neves, V. A." pageId="7" pageNumber="8" pagination="105 - 116" refId="ref12241" refString="Lemos Silva, G. M., Lourenco, E. J., Neves, V. A., 1985. Inhibition of shikimate dehydrogenase from heart-of-palm (Euterpe oleracea Mart.). J. Food Biochem. 9, 105 - 116. https: // doi. org / 10.1111 / j. 1745 - 4514.1985. tb 00342. x." type="journal article" year="1985">Lemos Silva et al., 1985</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FC00F92E778A94D3" author="Lourenco, E. J. &amp; Neves, V. A." box="[941,1195,1739,1759]" pageId="7" pageNumber="8" pagination="497 - 499" refId="ref12350" refString="Lourenco, E. J., Neves, V. A., 1984. Partial purification and some properties of shikimate dehydrogenase from tomatoes. Phytochemistry 23, 497 - 499. https: // doi. org / 10.1016 / S 0031 - 9422 (00) 80366 - 0." type="journal article" year="1984">Lourenco and Neves, 1984</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FB15F92E76A494D3" author="Lourenco, E. J. &amp; Silva, G. M. &amp; Neves, V. A." box="[1208,1413,1739,1759]" pageId="7" pageNumber="8" pagination="458 - 462" refId="ref12404" refString="Lourenco, E. J., Silva, G. M., Neves, V. A., 1991. Purification and properties of shikimate dehydrogenase from cucumber (Cucumis sativus L.). J. Agric. Food Chem. 39, 458 - 462. https: // doi. org / 10.1021 / jf 00003 a 006." type="journal article" year="1991">Lourenco et al., 1991</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FA3FF929704394F6" author="Rothe, G. M." pageId="7" pageNumber="8" pagination="152 - 159" refId="ref12858" refString="Rothe, G. M., 1974. Intracellular compartmentation and regulation of two shikimate dehydrogenase isoenzymes in Pisum sativum. Z. Pflanzenphysiol. Bd. 74, 152 - 159. https: // doi. org / 10.1016 / S 0044 - 328 X (74) 80168 - 6." type="book chapter" year="1974">Rothe, 1974</bibRefCitation>
), ii) screening thousands of compounds (
<bibRefCitation id="ED014B7A1C48FFC4FB47F9057043951A" author="Avitia-Dominguez, C. &amp; Sierra-Campos, E. &amp; Salas-Pacheco, J. M. &amp; Najera, H. &amp; Dominguez, A. &amp; Cisneros-Martinez, J. &amp; Tellez-Valencia, A." pageId="7" pageNumber="8" pagination="4491 - 4509" refId="ref9727" refString="Avitia-Dominguez, C., Sierra-Campos, E., Salas-Pacheco, J. M., Najera, H., Rojo- Dominguez, A., Cisneros-Martinez, J., Tellez-Valencia, A., 2014. Inhibition and biochemical characterization of methicillin-resistant Staphylococcus aureus shikimate dehydrogenase: an in silico and kinetic study. Molecules 19, 4491 - 4509. https: // doi. org / 10.3390 / molecules 19044491." type="journal article" year="2014">Avitia-Dominguez et al., 2014</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FCC1F8E67721951A" author="Han, C. &amp; Wang, L. &amp; Yu, K. &amp; Chen, L. &amp; Hu, L. &amp; Chen, K. &amp; Jiang, H. &amp; Shen, X." box="[876,1024,1795,1815]" pageId="7" pageNumber="8" refId="ref11436" refString="Han, C., Wang, L., Yu, K., Chen, L., Hu, L., Chen, K., Jiang, H., Shen, X., 2006." type="book" year="2006">Han et al., 2006</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FBA7F8E17782951A" author="Peek, J. &amp; Shi, T. &amp; Christendat, D." box="[1034,1187,1795,1815]" pageId="7" pageNumber="8" pagination="1090 - 1098" refId="ref12807" refString="Peek, J., Shi, T., Christendat, D., 2014. Identification of novel polyphenolic inhibitors of shikimate dehydrogenase (AroE). J. Biomol. Screen 19, 1090 - 1098. https: // doi. org / 10.1177 / 1087057114527127." type="journal article" year="2014">Peek et al., 2014</bibRefCitation>
), and iii) searching for feedback inhibitors among products of the whole pathway. The first strategy has led to the discovery of the herbicide 2,4-dichlorphenoxy acetic acid (2, 4-D) (
<bibRefCitation id="ED014B7A1C48FFC4FCDDF8B5777C9566" author="Diaz, J. &amp; Merino, F." box="[880,1117,1879,1898]" pageId="7" pageNumber="8" pagination="147 - 152" refId="ref10734" refString="Diaz, J., Merino, F., 1997. Shikimate dehydrogenase from pepper (Capsicum annuum) seedlings. Purification and properties. Physiol. Plantarum 100, 147 - 152. https: // doi. org / 10.1111 / j. 1399 - 3054.1997. tb 03465. x." type="journal article" year="1997">Diaz and Merino, 1997</bibRefCitation>
). Concurrently, several studies have demonstrated that PCA (possible byproduct of SDH) inhibits plant SDH (
<bibRefCitation id="ED014B7A1C48FFC4FC97F86D770295AE" author="Diaz, J. &amp; Merino, F." box="[826,1059,1935,1954]" pageId="7" pageNumber="8" pagination="147 - 152" refId="ref10734" refString="Diaz, J., Merino, F., 1997. Shikimate dehydrogenase from pepper (Capsicum annuum) seedlings. Purification and properties. Physiol. Plantarum 100, 147 - 152. https: // doi. org / 10.1111 / j. 1399 - 3054.1997. tb 03465. x." type="journal article" year="1997">Diaz and Merino, 1997</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FB99F86D77E095AE" author="Koshiba, T." box="[1076,1217,1935,1954]" pageId="7" pageNumber="8" pagination="10 - 18" refId="ref12129" refString="Koshiba, T., 1978. Purification of two forms of the associated 3 - dehydroquinate hydrolyase and shikimate: NADP + oxidoreductase in Phaseolus mungo seedlings. Biochim. Biophys. Acta 522, 10 - 18. https: // doi. org / 10.1016 / 0005 - 2744 (78) 90317 - 0." type="journal article" year="1978">Koshiba, 1978</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FB7FF86D76E895AD" author="Lemos Silva, G. M. &amp; Lourenco, E. J. &amp; Neves, V. A." box="[1234,1481,1934,1954]" pageId="7" pageNumber="8" pagination="105 - 116" refId="ref12241" refString="Lemos Silva, G. M., Lourenco, E. J., Neves, V. A., 1985. Inhibition of shikimate dehydrogenase from heart-of-palm (Euterpe oleracea Mart.). J. Food Biochem. 9, 105 - 116. https: // doi. org / 10.1111 / j. 1745 - 4514.1985. tb 00342. x." type="journal article" year="1985">Lemos Silva et al., 1985</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FC9FF849770695B2" author="Lourenco, E. J. &amp; Neves, V. A." box="[818,1063,1963,1982]" pageId="7" pageNumber="8" pagination="497 - 499" refId="ref12350" refString="Lourenco, E. J., Neves, V. A., 1984. Partial purification and some properties of shikimate dehydrogenase from tomatoes. Phytochemistry 23, 497 - 499. https: // doi. org / 10.1016 / S 0031 - 9422 (00) 80366 - 0." type="journal article" year="1984">Lourenco and Neves, 1984</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C48FFC4FB9CF84977D495B2" author="Lourenco, E. J. &amp; Silva, G. M. &amp; Neves, V. A." box="[1073,1269,1963,1982]" pageId="7" pageNumber="8" pagination="458 - 462" refId="ref12404" refString="Lourenco, E. J., Silva, G. M., Neves, V. A., 1991. Purification and properties of shikimate dehydrogenase from cucumber (Cucumis sativus L.). J. Agric. Food Chem. 39, 458 - 462. https: // doi. org / 10.1021 / jf 00003 a 006." type="journal article" year="1991">Lourenco et al., 1991</bibRefCitation>
). In this study, we have shown that
<taxonomicName id="4E904D081C47FFCBFF73FF76725792AB" authority="SDH" authorityName="SDH" box="[222,374,148,167]" class="Magnoliopsida" family="Apiaceae" genus="Petroselinum" kingdom="Plantae" order="Apiales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="crispum">
<emphasis id="BBE4EA991C47FFCBFF73FF76726092AB" bold="true" box="[222,321,148,167]" italics="true" pageId="8" pageNumber="9">P. crispum</emphasis>
SDH
</taxonomicName>
forms PCA in the irreversible reaction (
<figureCitation id="11AB2A0E1C47FFCBFFC1FF52738792CF" box="[108,166,176,195]" captionStart="Fig" captionStartId="5.[818,848,920,937]" captionTargetBox="[824,1483,149,892]" captionTargetId="figure-945@5.[823,1484,148,893]" captionTargetPageId="5" captionText="Fig. 4. Identification of P. crispum SDH products by reversed-phase liquid chromatography coupled to electrospray mass spectrometry. The symbol ∅ indicates that no potential P. crispum SDH byproduct was identified in the reaction mixtures by mass spectrometry. QDH, quinate dehydrogenase; QD, quinate dehydratase; DHSD, dehydroshikimate dehydratase." figureDoi="http://doi.org/10.5281/zenodo.8270261" httpUri="https://zenodo.org/record/8270261/files/figure.png" pageId="8" pageNumber="9">Fig. 4</figureCitation>
). Using a screening strategy, different research groups have identified SDH inhibitors, for example, 5 novel
<taxonomicName id="4E904D081C47FFCBFD84FF29702392D3" authority="SDH" authorityName="SDH" box="[553,770,203,223]" class="Epsilonproteobacteria" family="Helicobacteraceae" genus="Helicobacter" kingdom="Bacteria" order="Campylobacterales" pageId="8" pageNumber="9" phylum="Proteobacteria" rank="species" species="pylori">
<emphasis id="BBE4EA991C47FFCBFD84FF2971F092D2" bold="true" box="[553,721,203,222]" italics="true" pageId="8" pageNumber="9">Helicobacter pylori</emphasis>
SDH
</taxonomicName>
inhibitors, including the natural product curcumin (
<bibRefCitation id="ED014B7A1C47FFCBFDFAFF0A71D592F6" author="Han, C. &amp; Wang, L. &amp; Yu, K. &amp; Chen, L. &amp; Hu, L. &amp; Chen, K. &amp; Jiang, H. &amp; Shen, X." box="[599,756,231,251]" pageId="8" pageNumber="9" refId="ref11436" refString="Han, C., Wang, L., Yu, K., Chen, L., Hu, L., Chen, K., Jiang, H., Shen, X., 2006." type="book" year="2006">Han et al., 2006</bibRefCitation>
), and polyphenolic inhibitors (epigallocatechin gallate and epicatechin gallate) of
<taxonomicName id="4E904D081C47FFCBFF65FEFD725C933E" authorityName="Migula" authorityYear="1895" baseAuthorityName="Trevisan" baseAuthorityYear="1889" box="[200,381,287,306]" class="Betaproteobacteria" family="Burkholderiaceae" genus="Pseudomonas" kingdom="Bacteria" order="Burkholderiales" pageId="8" pageNumber="9" phylum="Proteobacteria" rank="species" species="putida">
<emphasis id="BBE4EA991C47FFCBFF65FEFD725C933E" bold="true" box="[200,381,287,306]" italics="true" pageId="8" pageNumber="9">Pseudomonas putida</emphasis>
</taxonomicName>
and
<taxonomicName id="4E904D081C47FFCBFE07FEFD71AE933E" authority="SDH" authorityName="SDH" box="[426,655,287,306]" class="Magnoliopsida" family="Brassicaceae" genus="Arabidopsis" kingdom="Plantae" order="Brassicales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="thaliana">
<emphasis id="BBE4EA991C47FFCBFE07FEFD7141933E" bold="true" box="[426,608,287,306]" italics="true" pageId="8" pageNumber="9">Arabidopsis thaliana</emphasis>
SDH
</taxonomicName>
(
<bibRefCitation id="ED014B7A1C47FFCBFD31FEFD73B59342" author="Peek, J. &amp; Shi, T. &amp; Christendat, D." pageId="8" pageNumber="9" pagination="1090 - 1098" refId="ref12807" refString="Peek, J., Shi, T., Christendat, D., 2014. Identification of novel polyphenolic inhibitors of shikimate dehydrogenase (AroE). J. Biomol. Screen 19, 1090 - 1098. https: // doi. org / 10.1177 / 1087057114527127." type="journal article" year="2014">Peek et al., 2014</bibRefCitation>
). A limited number of inhibition/activation studies have identified dihydroxybenzoic acid and its derivatives as SDH inhibitors (
<bibRefCitation id="ED014B7A1C47FFCBFD34FEB573C4938A" author="Fiedler, E. &amp; Schultz, G." pageId="8" pageNumber="9" pagination="212 - 218" refId="ref11036" refString="Fiedler, E., Schultz, G., 1985. Localization, purification, and characterization of shikimate oxidoreductase-dehydroquinate hydrolyase from stroma of spinach chloroplasts. Plant Physiol. 79, 212 - 218. https: // doi. org / 10.1104 / pp. 79.1.212." type="journal article" year="1985">Fiedler and Schultz, 1985</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C47FFCBFF5DFE917257938A" author="Koshiba, T." box="[240,374,371,390]" pageId="8" pageNumber="9" pagination="10 - 18" refId="ref12129" refString="Koshiba, T., 1978. Purification of two forms of the associated 3 - dehydroquinate hydrolyase and shikimate: NADP + oxidoreductase in Phaseolus mungo seedlings. Biochim. Biophys. Acta 522, 10 - 18. https: // doi. org / 10.1016 / 0005 - 2744 (78) 90317 - 0." type="journal article" year="1978">Koshiba, 1978</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C47FFCBFE2FFE917153938A" author="Nandy, M. &amp; Ganguli, N. C." box="[386,626,371,390]" pageId="8" pageNumber="9" pagination="399 - 408" refId="ref12695" refString="Nandy, M., Ganguli, N. C., 1961. Studies on 5 - dehydroshikimic reductase from mung bean seedlings (Phaseolus aureus). Arch. Biochem. Biophys. 92, 399 - 408. https: // doi. org / 10.1016 / 0003 - 9861 (61) 90378 - 2." type="journal article" year="1961">Nandy and Ganguli, 1961</bibRefCitation>
), thus showing that SDH inhibitors are not limited to herbicides and organic reagents.
</paragraph>
<paragraph id="892F368B1C47FFCBFF29FE4972A29194" blockId="8.[100,770,148,1980]" pageId="8" pageNumber="9">
In this study, we chose the third strategy to identify plant SDH inhibitors among the products of the phenylpropanoid pathway (representative compounds of simple phenols, flavonoid, stilbene, and polyphenols). The strongest
<taxonomicName id="4E904D081C47FFCBFEDBFE1D7129901D" authority="SDH" authorityName="SDH" box="[374,520,510,530]" class="Magnoliopsida" family="Apiaceae" genus="Petroselinum" kingdom="Plantae" order="Apiales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="crispum">
<emphasis id="BBE4EA991C47FFCBFEDBFE1D72F4901D" bold="true" box="[374,469,510,530]" italics="true" pageId="8" pageNumber="9">P. crispum</emphasis>
SDH
</taxonomicName>
inhibitor was tannic acid (
<figureCitation id="11AB2A0E1C47FFCBFFC1FDF873829021" box="[108,163,538,557]" captionStart="Fig" captionStartId="6.[100,130,1818,1835]" captionTargetBox="[264,1323,149,1790]" captionTargetId="figure-7@6.[263,1324,148,1791]" captionTargetPageId="6" captionText="Fig. 5. Inhibition effect of various phenylpropanoids on the activity of P. crispum SDH. The specific activity of the enzyme preparations was 0.17 ± 0.07 μmol. min-1mg-1. Controls in 96 and 50 % ethanol were only slightly different from the distilled water control, with specific activities of 0.18 0.06 and 0.19 0.11 μmol. ± ± min-1mg-1, respectively. IC was calculated from nonlinear regression with Eq. (1). Each determination was done at least 3-times, the average values and standard 50 deviations are shown." figureDoi="http://doi.org/10.5281/zenodo.8270265" httpUri="https://zenodo.org/record/8270265/files/figure.png" pageId="8" pageNumber="9">Fig. 5</figureCitation>
). Tannins have strong astringent properties, which may induce complexation with enzymes and substrates (
<bibRefCitation id="ED014B7A1C47FFCBFDA5FDD4719E9045" author="Tintino, S. R. &amp; Oliveira-Tintino, C. D. &amp; Campina, F. F. &amp; Silva, R. L. &amp; Costa Mdo, S. &amp; Menezes, I. R. &amp; Calixto-Junior, J. T. &amp; Siqueira-Junior, J. P. &amp; Coutinho, H. D. &amp; Leal-Balbino, T. C. &amp; Balbino, V. Q." box="[520,703,566,586]" pageId="8" pageNumber="9" pagination="9 - 13" refId="ref13211" refString="Tintino, S. R., Oliveira-Tintino, C. D., Campina, F. F., Silva, R. L., Costa Mdo, S., Menezes, I. R., Calixto-Junior, J. T., Siqueira-Junior, J. P., Coutinho, H. D., Leal-Balbino, T. C., Balbino, V. Q., 2016. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus. Microb. Pathog. 97, 9 - 13. https: // doi. org / 10.1016 / j. micpath. 2016.04.003." type="journal article" year="2016">Tintino et al., 2016</bibRefCitation>
). They bind to proteins (by hydrophobic, hydrophilic, non-specific, and specific interactions), pigments, low-molecular-weight compounds, and metallic ions (Kato et al., 2017). In microorganisms, interactions between tannic acid and the cell membrane can affect its permeability through the inhibition of the efflux pump, which may be associated with an antimicrobial effect (
<bibRefCitation id="ED014B7A1C47FFCBFF50FD3F72EB90FC" author="Tintino, S. R. &amp; Oliveira-Tintino, C. D. &amp; Campina, F. F. &amp; Silva, R. L. &amp; Costa Mdo, S. &amp; Menezes, I. R. &amp; Calixto-Junior, J. T. &amp; Siqueira-Junior, J. P. &amp; Coutinho, H. D. &amp; Leal-Balbino, T. C. &amp; Balbino, V. Q." box="[253,458,733,753]" pageId="8" pageNumber="9" pagination="9 - 13" refId="ref13211" refString="Tintino, S. R., Oliveira-Tintino, C. D., Campina, F. F., Silva, R. L., Costa Mdo, S., Menezes, I. R., Calixto-Junior, J. T., Siqueira-Junior, J. P., Coutinho, H. D., Leal-Balbino, T. C., Balbino, V. Q., 2016. Evaluation of the tannic acid inhibitory effect against the NorA efflux pump of Staphylococcus aureus. Microb. Pathog. 97, 9 - 13. https: // doi. org / 10.1016 / j. micpath. 2016.04.003." type="journal article" year="2016">Tintino et al., 2016</bibRefCitation>
). Furthermore, the potentially extracellular localization of tannic acid may contribute to this effect because leaf mesophyll cell walls are the typical site of origin and deposition of hydrolysable tannins in oak leaves (
<bibRefCitation id="ED014B7A1C47FFCBFDFFFCD373B5916C" author="Grundhofer, P. &amp; Niemetz, R. &amp; Schilling, G. &amp; Gross, G. G." pageId="8" pageNumber="9" pagination="915 - 927" refId="ref11231" refString="Grundhofer, P., Niemetz, R., Schilling, G., Gross, G. G., 2001. Biosynthesis and subcellular distribution of hydrolyzable tannins. Phytochemistry 57, 915 - 927. https: // doi. org / 10.1016 / s 0031 - 9422 (01) 00099 - 1." type="journal article" year="2001">Grundhofer et al., 2001</bibRefCitation>
). Furthermore, in the outer peels of pomegranate (
<taxonomicName id="4E904D081C47FFCBFDC1FCAF7023916C" box="[620,770,845,864]" class="Magnoliopsida" family="Lythraceae" genus="Punica" kingdom="Plantae" order="Myrtales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="granatum">
<emphasis id="BBE4EA991C47FFCBFDC1FCAF7023916C" bold="true" box="[620,770,845,864]" italics="true" pageId="8" pageNumber="9">Punica granatum</emphasis>
</taxonomicName>
L.), SDHs play a role in controlling the biosynthesis of hydrolysable tannins (
<bibRefCitation id="ED014B7A1C47FFCBFF15FC6772579194" author="Habashi, R. &amp; Hacham, Y. &amp; Dhakarey, R. &amp; Matityahu, I. &amp; Holland, D. &amp; Tian, L. &amp; Amir, R." box="[184,374,901,920]" pageId="8" pageNumber="9" pagination="476 - 491" refId="ref11349" refString="Habashi, R., Hacham, Y., Dhakarey, R., Matityahu, I., Holland, D., Tian, L., Amir, R., 2019. Elucidating the role of shikimate dehydrogenase in controlling the production of anthocyanins and hydrolysable tannins in the outer peels of pomegranate. BMC Plant Biol. 19, 476 - 491. https: // doi. org / 10.1186 / s 12870 - 019 - 2042 - 1." type="journal article" year="2019">Habashi et al., 2019</bibRefCitation>
).
</paragraph>
<paragraph id="892F368B1C47FFCBFF29FC43729B9589" blockId="8.[100,770,148,1980]" pageId="8" pageNumber="9">
Our results also showed that
<taxonomicName id="4E904D081C47FFCBFE38FC43710391B8" authority="SDH" authorityName="SDH" box="[405,546,929,948]" class="Magnoliopsida" family="Apiaceae" genus="Petroselinum" kingdom="Plantae" order="Apiales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="crispum">
<emphasis id="BBE4EA991C47FFCBFE38FC4372D391B8" bold="true" box="[405,498,929,948]" italics="true" pageId="8" pageNumber="9">P. crispum</emphasis>
SDH
</taxonomicName>
is inhibited at 0.15 and 0.19 mM IC
<subScript id="151434CE1C47FFCBFF7AFC2673C891DE" attach="left" box="[215,233,964,978]" fontSize="6" pageId="8" pageNumber="9">50</subScript>
by caffeic acid and chlorogenic acid (with 2 and 5 hydroxyl groups in the structure), respectively. Chlorogenic acids are esters formed between caffeic acid and quinic acid, which are strong antioxidants found in many vegetable species and coffee beans (
<bibRefCitation id="ED014B7A1C47FFCBFD66FBF272259633" author="Colon, M. &amp; Nerin, C." pageId="8" pageNumber="9" pagination="211 - 220" refId="ref10418" refString="Colon, M., Nerin, C., 2016. Synergistic, antagonistic and additive interactions of green tea polyphenols. Eur. Food Res. Technol. 242, 211 - 220. https: // doi. org / 10.1007 / s 00217 - 015 - 2532 - 9." type="journal article" year="2016">Colon and Nerin, 2016</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C47FFCBFEBEFBCE72959633" author="Guo, J. &amp; Carrington, Y. &amp; Alber, A. &amp; Ehlting, J." box="[275,436,1068,1088]" pageId="8" pageNumber="9" pagination="23846 - 23858" refId="ref11290" refString="Guo, J., Carrington, Y., Alber, A., Ehlting, J., 2014. Molecular characterization of quinate and shikimate metabolism in Populus trichocarpa. J. Biol. Chem. 289, 23846 - 23858. https: // doi. org / 10.1074 / jbc. M 114.558536." type="journal article" year="2014">Guo et al., 2014</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C47FFCBFE6EFBCE71B79633" author="Liang, N. &amp; Kitts, D. D." box="[451,662,1068,1087]" pageId="8" pageNumber="9" refId="ref12309" refString="Liang, N., Kitts, D. D., 2015. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8. https: // doi. org / 10.3390 / nu 8010016." type="journal volume" year="2015">Liang and Kitts, 2015</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C47FFCBFD08FBCE73EC9657" author="Niggeweg, R. &amp; Michael, A. J. &amp; Martin, C." pageId="8" pageNumber="9" pagination="746 - 754" refId="ref12755" refString="Niggeweg, R., Michael, A. J., Martin, C., 2004. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat. Biotechnol. 22, 746 - 754. https: // doi. org / 10.1038 / nbt 966." type="journal article" year="2004">Niggeweg et al., 2004</bibRefCitation>
). In plants, chlorogenic acids serve as protecting compounds against stress, e.g., viral infection (
<bibRefCitation id="ED014B7A1C47FFCBFE04FB867156967B" author="Spoustova, P. &amp; Hyskova, V. &amp; Muller, K. &amp; Schnablova, R. &amp; Ryslava, H. &amp; Cerovska, N. &amp; Malbeck, J. &amp; Cvikrova, M. &amp; Synkova, H." box="[425,631,1124,1143]" pageId="8" pageNumber="9" pagination="25 - 36" refId="ref13049" refString="Spoustova, P., Hyskova, V., Muller, K., Schnablova, R., Ryslava, H., Cerovska, N., Malbeck, J., Cvikrova, M., Synkova, H., 2015. Tobacco susceptibility to Potato virus Y - NTN infection is affected by grafting and endogenous cytokinin content. Plant Sci. 235, 25 - 36. https: // doi. org / 10.1016 / j. plantsci. 2015.02.017." type="journal article" year="2015">Spoustova et al., 2015</bibRefCitation>
), or as feeding deterrents (
<bibRefCitation id="ED014B7A1C47FFCBFF7AFB6272BA969F" author="Ikonen, A. &amp; Tahvanainen, J. &amp; Roininen, H." box="[215,411,1152,1171]" pageId="8" pageNumber="9" pagination="47 - 54" refId="ref11812" refString="Ikonen, A., Tahvanainen, J., Roininen, H., 2001. Chlorogenic acid as an antiherbivore defence of willows against leaf beetles. Entomol. Exp. Appl. 99, 47 - 54. https: // doi. org / 10.1046 / j. 1570 - 7458.2001.00800. x." type="journal article" year="2001">Ikonen et al., 2001</bibRefCitation>
). The
<emphasis id="BBE4EA991C47FFCBFE49FB6272CF969F" bold="true" box="[484,494,1152,1171]" italics="true" pageId="8" pageNumber="9">p</emphasis>
-coumaric,
<emphasis id="BBE4EA991C47FFCBFDF3FB627145969F" bold="true" box="[606,612,1152,1171]" italics="true" pageId="8" pageNumber="9">t</emphasis>
-ferulic, sinapic, syringic, and salicylic acids, all with only one hydroxyl group, were milder SDH inhibitors, with IC
<subScript id="151434CE1C47FFCBFED2FB5D72B096C1" attach="left" box="[383,401,1215,1229]" fontSize="6" pageId="8" pageNumber="9">50</subScript>
above 5 mM, and they are not involved in regulation under physiological conditions. On the other hand, our preliminary results indicate the presence of 0.1 μM
<emphasis id="BBE4EA991C47FFCBFDE6FB127174970F" bold="true" box="[587,597,1264,1283]" italics="true" pageId="8" pageNumber="9">p</emphasis>
-coumaric, 1.7 μM
<emphasis id="BBE4EA991C47FFCBFFC9FAEE734B9713" bold="true" box="[100,106,1292,1311]" italics="true" pageId="8" pageNumber="9">t</emphasis>
-ferulic, and 0.5 μM chlorogenic acid in
<taxonomicName id="4E904D081C47FFCBFDAEFAEE71459712" box="[515,612,1291,1311]" class="Magnoliopsida" family="Apiaceae" genus="Petroselinum" kingdom="Plantae" order="Apiales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="crispum">
<emphasis id="BBE4EA991C47FFCBFDAEFAEE71459712" bold="true" box="[515,612,1291,1311]" italics="true" pageId="8" pageNumber="9">P. crispum</emphasis>
</taxonomicName>
roots (data not shown) and recently
<bibRefCitation id="ED014B7A1C47FFCBFE9DFAC571279736" author="Derouich, M. &amp; Bouhlali, E. D. T. &amp; Bammou, M. &amp; Hmidani, A. &amp; Sellam, K. &amp; Alem, C" box="[304,518,1319,1339]" pageId="8" pageNumber="9" refId="ref10516" refString="Derouich, M., Bouhlali, E. D. T., Bammou, M., Hmidani, A., Sellam, K., Alem, C, 2020. Bioactive compounds and antioxidant, antiperoxidative, and antihemolytic properties investigation of three Apiaceae species grown in the Southeast of Morocco. Hindawi Scientifica. https: // doi. org / 10.1155 / 2020 / 3971041." type="book" year="2020">Derouich et al. (2020)</bibRefCitation>
published a wide scale of phenolic compounds (including chlorogenic acid as the most abundant and then
<emphasis id="BBE4EA991C47FFCBFF13FABD73E9977E" bold="true" box="[190,200,1375,1394]" italics="true" pageId="8" pageNumber="9">p</emphasis>
-coumaric, caffeic, gallic, ferulic, vanillic, and syringic acid) in aerial parts of
<taxonomicName id="4E904D081C47FFCBFEAAFA9972449782" box="[263,357,1403,1422]" class="Magnoliopsida" family="Apiaceae" genus="Petroselinum" kingdom="Plantae" order="Apiales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="crispum">
<emphasis id="BBE4EA991C47FFCBFEAAFA9972449782" bold="true" box="[263,357,1403,1422]" italics="true" pageId="8" pageNumber="9">P. crispum</emphasis>
</taxonomicName>
plants and discussed their high antioxidant power (
<bibRefCitation id="ED014B7A1C47FFCBFF1FFA7572A997A6" author="Derouich, M. &amp; Bouhlali, E. D. T. &amp; Bammou, M. &amp; Hmidani, A. &amp; Sellam, K. &amp; Alem, C" box="[178,392,1431,1450]" pageId="8" pageNumber="9" refId="ref10516" refString="Derouich, M., Bouhlali, E. D. T., Bammou, M., Hmidani, A., Sellam, K., Alem, C, 2020. Bioactive compounds and antioxidant, antiperoxidative, and antihemolytic properties investigation of three Apiaceae species grown in the Southeast of Morocco. Hindawi Scientifica. https: // doi. org / 10.1155 / 2020 / 3971041." type="book" year="2020">Derouich et al., 2020</bibRefCitation>
). Considering the localization, simple phenolic compounds are probably not stored in plastids in huge amounts, modifications of cinnamic acid to
<emphasis id="BBE4EA991C47FFCBFDBDFA2D713B97EE" bold="true" box="[528,538,1487,1506]" italics="true" pageId="8" pageNumber="9">p</emphasis>
-coumaric,
<emphasis id="BBE4EA991C47FFCBFD2AFA2D71AC97EE" bold="true" box="[647,653,1487,1506]" italics="true" pageId="8" pageNumber="9">t</emphasis>
-ferulic, and sinapic acid take place at the membranes of the endoplasmic reticulum, flavonoids are believed to be synthetized in the cytosol and stored in vacuoles (
<bibRefCitation id="ED014B7A1C47FFCBFF66F9C072469439" author="Kitamura, S." box="[203,359,1570,1589]" pageId="8" pageNumber="9" pagination="123 - 146" refId="ref12026" refString="Kitamura, S., 2006. Transport of flavonoids from cytosolic synthesis to vacuolar accumulation. In: Grotewold, E. (Ed.), The Science of Flavonoids. Springer, New York, pp. 123 - 146." type="book chapter" year="2006">Kitamura, 2006</bibRefCitation>
) together with monolignols derivatives, which are synthesized in the cytosol with some enzymes exhibiting membrane attachment and the bulk of the monolignol pool is targeted to the apoplast for polymerization to lignin (
<bibRefCitation id="ED014B7A1C47FFCBFDA5F99471D59485" author="Dixon, R. A. &amp; Barros, J." box="[520,756,1654,1673]" pageId="8" pageNumber="9" refId="ref10789" refString="Dixon, R. A., Barros, J., 2019. Lignin biosynthesis: old roads revisited and new roads explored. Open Biol. 9 https: // doi. org / 10.1098 / rsob. 190215." type="book" year="2019">Dixon and Barros, 2019</bibRefCitation>
). Salicylic acid is an important signal molecule; however, its concentration does not reach the value of the experimentally determined IC
<subScript id="151434CE1C47FFCBFD47F95771DD94CF" attach="left" box="[746,764,1717,1731]" fontSize="6" pageId="8" pageNumber="9">50</subScript>
, even during stress (
<bibRefCitation id="ED014B7A1C47FFCBFEB6F928713494D1" author="Belonoznikova, K. &amp; Vaverova, K. &amp; Vanek, T. &amp; Kolarik, M. &amp; Hyskova, V. &amp; Vankova, R. &amp; Dobrev, P. &amp; Krizek, T. &amp; Hodek, O. &amp; Cokrtova, K. &amp; Stipek, A. &amp; Ryslava, H." box="[283,533,1738,1757]" pageId="8" pageNumber="9" refId="ref9967" refString="Belonoznikova, K., Vaverova, K., Vanek, T., Kolarik, M., Hyskova, V., Vankova, R., Dobrev, P., Krizek, T., Hodek, O., Cokrtova, K., Stipek, A., Ryslava, H., 2020. Novel insights into the effect of Pythium strains on rapeseed metabolism. Microorganisms 8. https: // doi. org / 10.3390 / microorganisms 8101472." type="journal volume" year="2020">Belonoznikova et al., 2020</bibRefCitation>
). In their study, Belinsky and Davies (1961) concluded that the both carbonyl group at the C1 position and a hydroxyl group at the 4-OH position are significant determinants of ligand binding. This is true for syringic acid with IC
<subScript id="151434CE1C47FFCBFD61F8C671FF953E" attach="left" box="[716,734,1828,1842]" fontSize="6" pageId="8" pageNumber="9">50</subScript>
5.1 ± 1.0 mM. Tannic acid contains several hydroxyl groups on phenyl rings; thus, their hydroxyl groups may interact with the amino acid residue in the enzyme active center.
</paragraph>
<paragraph id="892F368B1C47FFCBFF29F86F767792F6" blockId="8.[100,770,148,1980]" lastBlockId="8.[818,1487,148,446]" pageId="8" pageNumber="9">
Under non-stress conditions, plant SDH may be inhibited by some phenylpropanoid compounds. In our previous study, we found significant chlorogenic and quinic acid depletion in tobacco plants exposed to potyviral stress and heat shock (
<bibRefCitation id="ED014B7A1C47FFCBFB6FFF5276A192CF" author="Hyskova, V. &amp; Belonoznikova, K. &amp; Doricova, V. &amp; Kavan, D. &amp; Gillarova, S. &amp; Henke, S. &amp; Synkova, H. &amp; Ryslava, H. &amp; Cerovska, N." box="[1218,1408,176,195]" pageId="8" pageNumber="9" refId="ref11671" refString="Hyskova, V., Belonoznikova, K., Doricova, V., Kavan, D., Gillarova, S., Henke, S., Synkova, H., Ryslava, H., Cerovska, N., 2021. Effects of heat treatment on metabolism of tobacco plants infected with Potato virus. Y. Plant Biol. https: // doi." type="book" year="2021">Hyskova et al., 2021</bibRefCitation>
). Such a depletion could in turn favor the shikimate pathway, producing precursors of defense compounds by enhancing SDH activity.
</paragraph>
<paragraph id="892F368B1C47FFCBFCFCFEE1776A93B2" blockId="8.[818,1487,148,446]" pageId="8" pageNumber="9">
Plant SDH inhibition by divalent metal ions, particularly Zn
<superScript id="7EE59BC31C47FFCBFA3DFF1C76839307" attach="left" box="[1424,1442,254,268]" fontSize="6" pageId="8" pageNumber="9">2+</superScript>
and Cu
<superScript id="7EE59BC31C47FFCBFCE6FEFB707F932B" attach="left" box="[843,862,281,295]" fontSize="6" pageId="8" pageNumber="9">2+</superScript>
, is known and correlated with the inactivation of functional sulfhydryl groups of SDH and also confirmed with the inhibition of plant SDH by
<emphasis id="BBE4EA991C47FFCBFC2CFEB570AA9366" bold="true" box="[897,907,343,362]" italics="true" pageId="8" pageNumber="9">p</emphasis>
-chloromercuribenzoate which could be reversed by cysteine (
<bibRefCitation id="ED014B7A1C47FFCBFC97FE91770E938A" author="Balinsky, D. &amp; Davies, D. D." box="[826,1071,371,390]" pageId="8" pageNumber="9" pagination="292 - 296" refId="ref9863" refString="Balinsky, D., Davies, D. D., 1961. Aromatic biosynthesis in higher plants. 1. Preparation and properties of dehydroshikimic reductase. Biochem. J. 80, 292 - 296. https: // doi. org / 10.1042 / bj 0800292." type="journal article" year="1961">Balinsky and Davies, 1961</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C47FFCBFB97FE9177E1938A" author="Koshiba, T." box="[1082,1216,371,390]" pageId="8" pageNumber="9" pagination="10 - 18" refId="ref12129" refString="Koshiba, T., 1978. Purification of two forms of the associated 3 - dehydroquinate hydrolyase and shikimate: NADP + oxidoreductase in Phaseolus mungo seedlings. Biochim. Biophys. Acta 522, 10 - 18. https: // doi. org / 10.1016 / 0005 - 2744 (78) 90317 - 0." type="journal article" year="1978">Koshiba, 1978</bibRefCitation>
;
<bibRefCitation id="ED014B7A1C47FFCBFB66FE9176E0938A" author="Lourenco, E. J. &amp; Neves, V. A." box="[1227,1473,371,390]" pageId="8" pageNumber="9" pagination="497 - 499" refId="ref12350" refString="Lourenco, E. J., Neves, V. A., 1984. Partial purification and some properties of shikimate dehydrogenase from tomatoes. Phytochemistry 23, 497 - 499. https: // doi. org / 10.1016 / S 0031 - 9422 (00) 80366 - 0." type="journal article" year="1984">Lourenco and Neves, 1984</bibRefCitation>
). SDH from
<taxonomicName id="4E904D081C47FFCBFC3BFE6D770093AE" box="[918,1057,399,418]" class="Magnoliopsida" family="Apiaceae" genus="Petroselinum" kingdom="Plantae" order="Apiales" pageId="8" pageNumber="8" phylum="Tracheophyta" rank="subSpecies" species="crispum" subSpecies="root">
<emphasis id="BBE4EA991C47FFCBFC3BFE6D70D593AE" bold="true" box="[918,1012,399,418]" italics="true" pageId="8" pageNumber="9">P. crispum</emphasis>
root
</taxonomicName>
was also inhibited by Zn
<superScript id="7EE59BC31C47FFCBFABCFE6B7605939B" attach="left" box="[1297,1316,393,407]" fontSize="6" pageId="8" pageNumber="9">2+</superScript>
and Cu
<superScript id="7EE59BC31C47FFCBFADDFE6B76A2939B" attach="left" box="[1392,1411,393,407]" fontSize="6" pageId="8" pageNumber="9">2+</superScript>
, particularly by Cu
<superScript id="7EE59BC31C47FFCBFC0BFE47709893BF" attach="left" box="[934,953,421,435]" fontSize="6" pageId="8" pageNumber="9">2+</superScript>
ions (
<tableCitation id="C41203301C47FFCBFC5BFE49771C93B2" box="[1014,1085,427,446]" captionStart="Table 4" captionStartId="7.[209,259,150,166]" captionTargetPageId="7" captionText="Table 4 The effect of various ions on P. crispum SDH activity. Screening was performed spectrophotometrically at 340 nm in the presence of 3 mM SA, 0.2 mM NADP and 5 mM*, 0.1 mM**, or 0.01 mM*** concentration of potential modulator. Each determination was done at least 3-times, the average values and S.D. are shown." httpUri="http://table.plazi.org/id/DDEF66031C48FFC4FF7CFF74722E9356" pageId="8" pageNumber="9" tableUuid="DDEF66031C48FFC4FF7CFF74722E9356">Table 4</tableCitation>
).
</paragraph>
</subSubSection>
</treatment>
</document>