treatments-xml/data/03/A0/62/03A0625A5E2F9E25FFDAACD423889747.xml
2024-06-21 12:22:17 +02:00

342 lines
40 KiB
XML

<document id="0F4B6BAFF4944DF2774A9BD0DF036184" ID-CLB-Dataset="55397" ID-DOI="10.1016/j.phytochem.2021.112696" ID-GBIF-Dataset="26be6180-2c66-44fb-855c-9c0aa1377cce" ID-ISSN="1873-3700" ID-Zenodo-Dep="8259854" IM.bibliography_approvedBy="carolina" IM.illustrations_approvedBy="felipe" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.taxonomicNames_approvedBy="carolina" IM.treatments_approvedBy="carolina" checkinTime="1692309814311" checkinUser="felipe" docAuthor="Qing, Zhixing, Yan, Fangqin, Huang, Peng &amp; Zeng, Jianguo" docDate="2021" docId="03A0625A5E2F9E25FFDAACD423889747" docLanguage="en" docName="Phytochemistry.185.112696.pdf" docOrigin="Phytochemistry (112696) 185" docSource="http://dx.doi.org/10.1016/j.phytochem.2021.112696" docStyle="DocumentStyle:F36D69FC8B198FBE91029DF9C24697D3.5:Phytochemistry.2020-.journal_article" docStyleId="F36D69FC8B198FBE91029DF9C24697D3" docStyleName="Phytochemistry.2020-.journal_article" docStyleVersion="5" docTitle="Macleaya cordata R. Br." docType="treatment" docVersion="4" lastPageNumber="3" masterDocId="FF991A225E2D9E27FFBEAC18270C956A" masterDocTitle="Establishing the metabolic network of isoquinoline alkaloids from the Macleaya genus" masterLastPageNumber="8" masterPageNumber="1" pageNumber="3" updateTime="1692795788062" updateUser="ExternalLinkService">
<mods:mods id="FC334F56883FCCFBE18ED14495E2C4DF" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="704F8BE3117A04A77ECD1D5CA8A7153B">
<mods:title id="7CD6D9703A51E00EED5EA0C9CBBA660C">Establishing the metabolic network of isoquinoline alkaloids from the Macleaya genus</mods:title>
</mods:titleInfo>
<mods:name id="F8A45F81D4A3BF32165986DA024E9B77" type="personal">
<mods:role id="09CBF78659E27DC8C045AB3FC42332E0">
<mods:roleTerm id="6E50EB3C0A646595494F8648AFD52D45">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="D25A9A86A6797FA41B8E8D02F5323952">Qing, Zhixing</mods:namePart>
<mods:affiliation id="2C9771DB0FB616E27C0AC3DCFB0F4E56">** &amp; * &amp; Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China &amp; School of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China</mods:affiliation>
</mods:name>
<mods:name id="CB95FF67BD2D45E7EB9FBB88E4722485" type="personal">
<mods:role id="794CC26AD17318F96EE7916281315A31">
<mods:roleTerm id="DC358585CDC42494B8BAD58AE645A0DB">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="0780B1FA51946FF861006A6B6273005B">Yan, Fangqin</mods:namePart>
</mods:name>
<mods:name id="FE630F0B12593A9807DE8A7EC411196E" type="personal">
<mods:role id="C895CDFF3B767260837A2255ED00546C">
<mods:roleTerm id="9859987AB278A82AFCD39668822F1404">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="6CBC9435501FEEEA2E83DD1D1C295722">Huang, Peng</mods:namePart>
</mods:name>
<mods:name id="8CF0F438FAD25957CE518EFBBE9DB07B" type="personal">
<mods:role id="33CFBD26B38DB91888EF301484D31D5B">
<mods:roleTerm id="C50DD7411262D9CFDD557F0F6175109F">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="EF9266386405B173937D075A8836FA11">Zeng, Jianguo</mods:namePart>
</mods:name>
<mods:typeOfResource id="32FAA3DF9623E6DD80918D6F9827AD7D">text</mods:typeOfResource>
<mods:relatedItem id="5857285B64629E7EC8B62D36E5D6503F" type="host">
<mods:titleInfo id="90929F7EC447B494D5092BF35479DF23">
<mods:title id="150C683F62746B61C280903D05C6F1C2">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="596980941FEC1B3324C88BF8C8451BDA">
<mods:date id="17A36D28E255A1449644A55094283027">2021</mods:date>
<mods:detail id="C1C18198B65D21BBB4C855239706B3D0" type="series">
<mods:title id="2EE30B4F37CB305ED8C6826B46FD0470">112696</mods:title>
</mods:detail>
<mods:detail id="AB7266106ED19AB70AF0DB7EB61E0E39" type="pubDate">
<mods:number id="EEA2EEDBD6AEDDBB7A978F4DE729F2D2">2021-05-31</mods:number>
</mods:detail>
<mods:detail id="D9AE1EB40DB5C83FFD3F51E634E8ACE0" type="volume">
<mods:number id="4F59D46FC34AEAB7EE33E8EDF5CB8F5D">185</mods:number>
</mods:detail>
<mods:extent id="E4B2F9A3D46E3C251B17B5CD65867B2E" unit="page">
<mods:start id="A6243C452BD2CB2348BAD4CA86CDC89F">1</mods:start>
<mods:end id="AE4C8BACE6B0696141AD71511F7B2DAA">8</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="D62064E673C8FF2B4E58E10B29BD5D3D">
<mods:url id="5858BFAFDE479BA66C9EF0AB1506B6E2">http://dx.doi.org/10.1016/j.phytochem.2021.112696</mods:url>
</mods:location>
<mods:classification id="DC359A703A7665EB9B448E72F9ED2175">journal article</mods:classification>
<mods:identifier id="FE0EB90C36734A3313A6A7E5743E16D1" type="CLB-Dataset">55397</mods:identifier>
<mods:identifier id="1639277125629DB25A73A1272ECFF9A2" type="DOI">10.1016/j.phytochem.2021.112696</mods:identifier>
<mods:identifier id="B142762877BDFAD5A67E45F74CF609BA" type="GBIF-Dataset">26be6180-2c66-44fb-855c-9c0aa1377cce</mods:identifier>
<mods:identifier id="E683745977CB47033ADD7553C59DAEAA" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="7C86600A4D572A1DF7D8122674635B6C" type="Zenodo-Dep">8259854</mods:identifier>
</mods:mods>
<treatment id="03A0625A5E2F9E25FFDAACD423889747" ID-DOI="http://doi.org/10.5281/zenodo.8276655" ID-Zenodo-Dep="8276655" LSID="urn:lsid:plazi:treatment:03A0625A5E2F9E25FFDAACD423889747" httpUri="http://treatment.plazi.org/id/03A0625A5E2F9E25FFDAACD423889747" lastPageNumber="3" pageId="2" pageNumber="3">
<subSubSection id="C31380C75E2F9E25FFDAACD426389596" pageId="2" pageNumber="3" type="nomenclature">
<paragraph id="8BB6D34C5E2F9E25FFDAACD426389596" blockId="2.[100,754,204,224]" lastBlockId="2.[100,308,232,252]" pageId="2" pageNumber="3">
<heading id="D0FE64205E2F9E25FFDAACD425FE958A" bold="true" box="[100,754,204,224]" centered="true" fontSize="36" level="1" pageId="2" pageNumber="3" reason="1">
<emphasis id="B97D0F5E5E2F9E25FFDAACD425FE958A" bold="true" box="[100,754,204,224]" italics="true" pageId="2" pageNumber="3">
2.2. Screening and identifying isoquinoline alkaloids from
<taxonomicName id="4C09A8CF5E2F9E25FDD4ACD425C0958A" ID-CoL="3WZNV" ID-ENA="56857" authority="(Willd) R. Br." authorityName="R. Br." baseAuthorityName="Willd" box="[618,716,204,224]" class="Magnoliopsida" family="Papaveraceae" genus="Macleaya" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cordata">M. cordata</taxonomicName>
and
</emphasis>
</heading>
<heading id="D0FE64205E2F9E25FFDAACF026389596" box="[100,308,232,252]" fontSize="8" level="3" pageId="2" pageNumber="3" reason="8">
<emphasis id="B97D0F5E5E2F9E25FFDAACF026389596" bold="true" box="[100,308,232,252]" italics="true" pageId="2" pageNumber="3">
<taxonomicName id="4C09A8CF5E2F9E25FFDAACF027E49596" authority="(Maxim.) Fedde" authorityName="Fedde" baseAuthorityName="Maxim." box="[100,232,232,252]" class="Magnoliopsida" family="Papaveraceae" genus="Macleaya" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="subSpecies" species="microcarpa" subSpecies="samples">M. microcarpa</taxonomicName>
samples
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="C31380C75E2F9E25FF3AAD3925E09258" pageId="2" pageNumber="3" type="description">
<paragraph id="8BB6D34C5E2F9E25FF3AAD3925469798" blockId="2.[100,771,289,1982]" pageId="2" pageNumber="3">
Screening and identifying as many compounds as possible are critical steps for establishing metabolic networks of isoquinoline alkaloids in the
<taxonomicName id="4C09A8CF5E2F9E25FFDAAD4027B69406" box="[100,186,344,364]" class="Magnoliopsida" family="Papaveraceae" genus="Macleaya" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B97D0F5E5E2F9E25FFDAAD4027B69406" bold="true" box="[100,186,344,364]" italics="true" pageId="2" pageNumber="3">Macleaya</emphasis>
</taxonomicName>
genus. The metabolites were detected by the established screening method, and their structures were identified according to their characteristic MS/MS spectra. In this screening method, 1608 exact theoretical masses were first formed by combining 29 well-known skeletons with five common groups, after which 640 potential candidates were obtained via EIC of the exact theoretical mass on the TICs of 45 different samples. Finally, 392 potential candidates were generated, and 204 of them were further identified by their characteristic MS/MS data (
<figureCitation id="1332CFC95E2F9E25FF25AE2027D79721" box="[155,219,568,587]" captionStart="Fig" captionStartId="5.[498,528,1049,1066]" captionTargetBox="[213,1395,159,1013]" captionTargetId="figure-594@5.[187,1400,148,1021]" captionTargetPageId="5" captionText="Fig. 3. TICs of 0-day (A) and 36-day-old (B) tissue culture seedlings." figureDoi="http://doi.org/10.5281/zenodo.8259860" httpUri="https://zenodo.org/record/8259860/files/figure.png" pageId="2" pageNumber="3">Fig. S3</figureCitation>
) and the fragmentation pathways of isoquinoline alkaloids that have been systematically investigated in previous studies (
<bibRefCitation id="EF98AEBD5E2F9E25FD6AAE4C27C197E9" author="Qing, Z. X. &amp; Cheng, P. &amp; Zeng, J. G." pageId="2" pageNumber="3" pagination="2929 - 2939" refId="ref6780" refString="Qing, Z. X., Cheng, P., Zeng, J. G., 2013. Research progress on mass spectral fragmentation behaviour of alkaloids in Macleaya cordata. Zhong Cao Yao 44 (20), 2929 - 2939. https: // doi. org / 10.7501 / j. issn. 0253 - 2670.2013.20.025." type="journal article" year="2013">Qing et al., 2013</bibRefCitation>
, 2020;
<bibRefCitation id="EF98AEBD5E2F9E25FEACAE6826BB97E9" author="Jeong, E. K. &amp; Lee, S. Y. &amp; Yu, S. M. &amp; Park, N. H. &amp; Lee, H. S. &amp; Yim, Y. H. &amp; Hwang, G. S. &amp; Cheong, C. &amp; Jung, J. H. &amp; Hong, J." box="[274,439,624,643]" pageId="2" pageNumber="3" pagination="1661 - 1674" refId="ref6160" refString="Jeong, E. K., Lee, S. Y., Yu, S. M., Park, N. H., Lee, H. S., Yim, Y. H., Hwang, G. S., Cheong, C., Jung, J. H., Hong, J., 2012. Identification of structurally diverse alkaloids in Corydalis species by liquid chromatography / electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 26, 1661 - 1674. https: // doi. org / 10.1002 / rcm. 6272." type="journal article" year="2012">Jeong et al., 2012</bibRefCitation>
). Identifying isoquinoline alkaloids from
<taxonomicName id="4C09A8CF5E2F9E25FF29AE9327F597F5" box="[151,249,651,671]" class="Magnoliopsida" family="Papaveraceae" genus="Macleaya" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cordata">
<emphasis id="B97D0F5E5E2F9E25FF29AE9327F597F5" bold="true" box="[151,249,651,671]" italics="true" pageId="2" pageNumber="3">M. cordata</emphasis>
</taxonomicName>
and
<taxonomicName id="4C09A8CF5E2F9E25FE99AE9326A597F5" box="[295,425,651,671]" class="Magnoliopsida" family="Papaveraceae" genus="Macleaya" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="microcarpa">
<emphasis id="B97D0F5E5E2F9E25FE99AE9326A597F5" bold="true" box="[295,425,651,671]" italics="true" pageId="2" pageNumber="3">M. microcarpa</emphasis>
</taxonomicName>
fruits was performed in detail in our previous studies (
<bibRefCitation id="EF98AEBD5E2F9E25FEB1AEBF26B997D0" author="Qing, Z. X. &amp; Cheng, P. &amp; Liu, X. B. &amp; Liu, Y. S. &amp; Zeng, J. G. &amp; Wang, W." box="[271,437,679,699]" pageId="2" pageNumber="3" pagination="1033 - 1044" refId="ref6843" refString="Qing, Z. X., Cheng, P., Liu, X. B., Liu, Y. S., Zeng, J. G., Wang, W., 2014. Structural speculation and identification of alkaloids in M acleaya cordata fruits by high-performance liquid chromatography / quadrupole-time-of-flight mass spectrometry combined with a screening procedure. Rapid Commun. Mass Spectrom. 28 (9), 1033 - 1044. https: // doi. org / 10.1002 / rcm. 6874." type="journal article" year="2014">Qing et al., 2014</bibRefCitation>
,
<bibRefCitation id="EF98AEBD5E2F9E25FE7AAEBF26F297D0" author="Qing, Z. X. &amp; Cheng, P. &amp; Liu, X. B. &amp; Liu, Y. S. &amp; Zeng, J. G." box="[452,510,679,698]" pageId="2" pageNumber="3" pagination="26 - 34" refId="ref6936" refString="Qing, Z. X., Cheng, P., Liu, X. B., Liu, Y. S., Zeng, J. G., 2015 a. Systematic identification of alkaloids in Macleaya microcarpa fruits by liquid chromatography tandem mass spectrometry combined with the isoquinoline alkaloids biosynthetic pathway. J. Pharmaceut. Biomed. Anal. 103, 26 - 34. https: // doi. org / 10.1016 / j. jpba. 2014.11.002." type="journal article" year="2015">2015a</bibRefCitation>
,
<bibRefCitation id="EF98AEBD5E2F9E25FDB3AEBF254597D0" author="Qing, Z. X. &amp; Liu, X. B. &amp; Wu, H. M. &amp; Cheng, P. &amp; Liu, Y. S. &amp; Zeng, J. G." box="[525,585,679,698]" pageId="2" pageNumber="3" pagination="1633 - 1639" refId="ref7023" refString="Qing, Z. X., Liu, X. B., Wu, H. M., Cheng, P., Liu, Y. S., Zeng, J. G., 2015 b. An improved separation method for classification of Macleaya cordata from different geographical origins. Anal. Methods 7 (5), 1866 - 1871. https: // doi. org / 10.1039 / c 4 ay 02600 d. Qing, Z. X., Yang, P., Yu, K., Yang, X. Y., Liu, J. H., Xiang, F., Cao, H. L., Cheng, P., Zeng, J. G., 2017. Mass spectrometry-guided isolation of two new dihydrobenzophenanthridine alkaloids from Macleaya cordata. Nat. Prod. Res. 31 (14), 1633 - 1639. https: // doi. org / 10.1080 / 14786419.2017.1285300." type="journal article" year="2015">2015b</bibRefCitation>
;
<bibRefCitation id="EF98AEBD5E2F9E25FDE9AEB025F897D0" author="Zuo, Z. &amp; Zheng, Y. J. &amp; Liang, Z. T. &amp; Liu, Y. S. &amp; Tang, Q. &amp; Liu, X. B. &amp; Zhao, Z. Z. &amp; Zeng, J. G." box="[599,756,679,699]" pageId="2" pageNumber="3" pagination="397 - 410" refId="ref8073" refString="Zuo, Z., Zheng, Y. J., Liang, Z. T., Liu, Y. S., Tang, Q., Liu, X. B., Zhao, Z. Z., Zeng, J. G., 2017. Tissue- specific metabolite profiling of benzylisoquinoline alkaloids in the root of Macleaya cordata by combining laser microdissection with ultra-high-performance liquid chromatography / tandem mass spectrometry. Rapid Commun. Mass Spectrom. 31 (5), 397 - 410. https: // doi. org / 10.1002 / rcm. 7804." type="journal article" year="2017">Zuo et al., 2017</bibRefCitation>
). Therefore, in this study, only screening and identifying benzyltetrahydroisoquinoline alkaloids was taken as an example.
</paragraph>
<paragraph id="8BB6D34C5E2F9E25FF3AAEE3269A9113" blockId="2.[100,771,289,1982]" pageId="2" pageNumber="3">
<materialsCitation id="3B61D9115E2F9E25FF3AAEE3269D9113" collectionCode="M, H, N, O, OH, MS" pageId="2" pageNumber="3" specimenCode="S1, S2" specimenCount="1">
Previous studies indicated that benzyltetrahydroisoquinoline (whose theoretical
<emphasis id="B97D0F5E5E2F9E25FF6EAF0E27F99640" bold="true" box="[208,245,790,810]" italics="true" pageId="2" pageNumber="3">m/z</emphasis>
values is 220.1122 [
<collectionCode id="ED184B895E2F9E25FE05AF0F26DD9640" box="[443,465,791,810]" country="Germany" lsid="urn:lsid:biocol.org:col:15637" name="Botanische Staatssammlung München" pageId="2" pageNumber="3" type="Herbarium">M</collectionCode>
+
<collectionCode id="ED184B895E2F9E25FE5FAF0F26F89640" box="[481,500,791,810]" country="Finland" lsid="urn:lsid:biocol.org:col:15618" name="University of Helsinki" pageId="2" pageNumber="3" type="Herbarium">H</collectionCode>
]
<superScript id="7C7C7E045E2F9E25FE44AF0B250A9675" attach="none" box="[506,518,787,799]" fontSize="6" pageId="2" pageNumber="3">+</superScript>
),
<emphasis id="B97D0F5E5E2F9E25FDA2AF0E25279640" bold="true" box="[540,555,790,810]" italics="true" pageId="2" pageNumber="3">
<collectionCode id="ED184B895E2F9E25FDA2AF0E25279640" box="[540,555,790,810]" country="China" lsid="urn:lsid:biocol.org:col:13092" name="Nanjing University" pageId="2" pageNumber="3" type="Herbarium">N</collectionCode>
</emphasis>
-methyl-benzyltetrahydroisoquinoline (234.1287) and
<emphasis id="B97D0F5E5E2F9E25FE5FAF2A26FC962C" bold="true" box="[481,496,818,838]" italics="true" pageId="2" pageNumber="3">
<collectionCode id="ED184B895E2F9E25FE5FAF2A26FC962C" box="[481,496,818,838]" country="China" lsid="urn:lsid:biocol.org:col:13092" name="Nanjing University" pageId="2" pageNumber="3" type="Herbarium">N</collectionCode>
</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FE48AF2A2509962C" bold="true" box="[502,517,818,838]" italics="true" pageId="2" pageNumber="3">
<collectionCode id="ED184B895E2F9E25FE48AF2A2509962C" box="[502,517,818,838]" country="China" lsid="urn:lsid:biocol.org:col:13092" name="Nanjing University" pageId="2" pageNumber="3" type="Herbarium">N</collectionCode>
</emphasis>
-methyl-benzyl- tetrahydroisoquinoline (248.1435) are the basic skeletons, and OCH
<subScript id="178DD1095E2F9E25FD57AF4E25FE960E" attach="both" box="[745,754,854,868]" fontSize="6" pageId="2" pageNumber="3">2</subScript>
<collectionCode id="ED184B895E2F9E25FD4CAF57240E9608" box="[754,770,847,866]" country="Norway" lsid="urn:lsid:biocol.org:col:13093" name="Botanical Museum - University of Oslo" pageId="2" pageNumber="3" type="Herbarium">O</collectionCode>
(46.0055), OCH
<subScript id="178DD1095E2F9E25FF40AF6A260B96EA" attach="left" box="[254,263,882,896]" fontSize="6" pageId="2" pageNumber="3">3</subScript>
(31.0184),
<collectionCode id="ED184B895E2F9E25FEC0AF7326919614" box="[382,413,875,894]" country="Czech Republic" lsid="urn:lsid:biocol.org:col:12554" name="Agricultural Museum of Praha" pageId="2" pageNumber="3" type="Herbarium">OH</collectionCode>
(17.0027),
<collectionCode id="ED184B895E2F9E25FDABAF7325299614" box="[533,549,875,894]" country="Finland" lsid="urn:lsid:biocol.org:col:15618" name="University of Helsinki" pageId="2" pageNumber="3" type="Herbarium">H</collectionCode>
(1.0078), and glucose (179.0556) are the main substituent groups of this
<typeStatus id="54B26DEE5E2F9E25FDF3AF9F257A96F0" box="[589,630,903,922]" pageId="2" pageNumber="3">type</typeStatus>
of alkaloid. In total, 138 exact theoretical masses (Table
<specimenCode id="DBAF7B375E2F9E25FE52AFBB250F96DC" box="[492,515,931,950]" collectionCode="S" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="2" pageNumber="3" type="Herbarium">S1</specimenCode>
) were generated by adding four substituent groups to the parent skeletons. Using EIC of the formed theoretical masses on the TICs of the 45 different
<taxonomicName id="4C09A8CF5E2F9E25FD82AFC1259E9687" box="[572,658,985,1005]" class="Magnoliopsida" family="Papaveraceae" genus="Macleaya" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B97D0F5E5E2F9E25FD82AFC1259E9687" bold="true" box="[572,658,985,1005]" italics="true" pageId="2" pageNumber="3">Macleaya</emphasis>
</taxonomicName>
genus samples, 80 candidate compounds were generated, and target-MS/
<collectionCode id="ED184B895E2F9E25FD5CAFEE240E9163" box="[738,770,1014,1033]" country="Italy" lsid="urn:lsid:biocol.org:col:14396" name="Herbarium Messanaensis, Università di Messina" pageId="2" pageNumber="3" type="Herbarium">MS</collectionCode>
analysis was performed for each candidate. Finally, 37 benzyltetrahydroisoquinoline alkaloids (
<emphasis id="B97D0F5E5E2F9E25FEDBA836269D912B" bold="true" box="[357,401,1070,1089]" pageId="2" pageNumber="3">1-37</emphasis>
, Table
<specimenCode id="DBAF7B375E2F9E25FE62A83626FF912B" box="[476,499,1070,1089]" collectionCode="S" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="2" pageNumber="3" type="Herbarium">S2</specimenCode>
) were tentatively identified based on their characteristic
<collectionCode id="ED184B895E2F9E25FE36A85226AB9137" box="[392,423,1098,1117]" country="Italy" lsid="urn:lsid:biocol.org:col:14396" name="Herbarium Messanaensis, Università di Messina" pageId="2" pageNumber="3" type="Herbarium">MS</collectionCode>
/
<collectionCode id="ED184B895E2F9E25FE10A85226C19137" box="[430,461,1098,1117]" country="Italy" lsid="urn:lsid:biocol.org:col:14396" name="Herbarium Messanaensis, Università di Messina" pageId="2" pageNumber="3" type="Herbarium">MS</collectionCode>
spectra and the fragmentation pathways of reference alkaloids
</materialsCitation>
.
</paragraph>
<paragraph id="8BB6D34C5E2F9E25FF3AA89A25E09258" blockId="2.[100,771,289,1982]" pageId="2" pageNumber="3">
Take alkaloid
<emphasis id="B97D0F5E5E2F9E25FEB0A89A261691FF" bold="true" box="[270,282,1154,1173]" pageId="2" pageNumber="3">1</emphasis>
as an example. The exact theoretical mass at
<emphasis id="B97D0F5E5E2F9E25FD63A899240E91FF" bold="true" box="[733,770,1153,1173]" italics="true" pageId="2" pageNumber="3">m/z</emphasis>
272.1281 (Table S1) was formed by combining the skeletons with substituent groups. The candidate (alkaloid
<emphasis id="B97D0F5E5E2F9E25FE61A8A126E791A6" bold="true" box="[479,491,1209,1228]" pageId="2" pageNumber="3">1</emphasis>
, t
<emphasis id="B97D0F5E5E2F9E25FE40A8D8250491A5" bold="true" box="[510,520,1216,1231]" italics="true" pageId="2" pageNumber="3">
<subScript id="178DD1095E2F9E25FE40A8D8250491A5" attach="left" box="[510,520,1216,1231]" fontSize="6" pageId="2" pageNumber="3">R</subScript>
</emphasis>
3.39 min) was found from the TICs of 0- to 90-day tissue culture seedlings,
<taxonomicName id="4C09A8CF5E2F9E25FD8BA8CC25949182" box="[565,664,1236,1256]" class="Magnoliopsida" family="Papaveraceae" genus="Macleaya" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cordata">
<emphasis id="B97D0F5E5E2F9E25FD8BA8CC25949182" bold="true" box="[565,664,1236,1256]" italics="true" pageId="2" pageNumber="3">M. cordata</emphasis>
</taxonomicName>
fruits (III), and
<taxonomicName id="4C09A8CF5E2F9E25FF30A8E827FC906E" box="[142,240,1264,1284]" class="Magnoliopsida" family="Papaveraceae" genus="Macleaya" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cordata">
<emphasis id="B97D0F5E5E2F9E25FF30A8E827FC906E" bold="true" box="[142,240,1264,1284]" italics="true" pageId="2" pageNumber="3">M. cordata</emphasis>
</taxonomicName>
roots (IV) via EIC of the formed theoretical mass on the TICs of the 45
<taxonomicName id="4C09A8CF5E2F9E25FF56A9142632904A" box="[232,318,1292,1312]" class="Magnoliopsida" family="Papaveraceae" genus="Macleaya" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B97D0F5E5E2F9E25FF56A9142632904A" bold="true" box="[232,318,1292,1312]" italics="true" pageId="2" pageNumber="3">Macleaya</emphasis>
</taxonomicName>
genus samples. The MS/MS spectrum of alkaloid
<emphasis id="B97D0F5E5E2F9E25FFDAA931277C9056" bold="true" box="[100,112,1321,1340]" pageId="2" pageNumber="3">1</emphasis>
was obtained using the relatively high-content 0-day-old sample (
<figureCitation id="1332CFC95E2F9E25FD61A93127C49032" captionStart="Fig" captionStartId="6.[303,333,1046,1063]" captionTargetBox="[117,1471,149,1018]" captionTargetId="figure-559@6.[116,1472,148,1019]" captionTargetPageId="6" captionText="Fig. 4. Proposed new biosynthesis pathways for protoberberine (97), sanguinarine (144) and chelerythrine (145)." figureDoi="http://doi.org/10.5281/zenodo.8259862" httpUri="https://zenodo.org/record/8259862/files/figure.png" pageId="2" pageNumber="3">Fig. S4 A and B</figureCitation>
). In the MS/MS spectrum of alkaloid
<emphasis id="B97D0F5E5E2F9E25FD9DA95D25239032" bold="true" box="[547,559,1349,1368]" pageId="2" pageNumber="3">1</emphasis>
(
<figureCitation id="1332CFC95E2F9E25FD83A95D25859032" box="[573,649,1349,1368]" captionStart="Fig" captionStartId="6.[303,333,1046,1063]" captionTargetBox="[117,1471,149,1018]" captionTargetId="figure-559@6.[116,1472,148,1019]" captionTargetPageId="6" captionText="Fig. 4. Proposed new biosynthesis pathways for protoberberine (97), sanguinarine (144) and chelerythrine (145)." figureDoi="http://doi.org/10.5281/zenodo.8259862" httpUri="https://zenodo.org/record/8259862/files/figure.png" pageId="2" pageNumber="3">Fig.S4 C</figureCitation>
), the neutral loss of the NH
<subScript id="178DD1095E2F9E25FF59A97027FC901C" attach="left" box="[231,240,1384,1398]" fontSize="6" pageId="2" pageNumber="3">3</subScript>
moiety from the protonated exact mass at
<emphasis id="B97D0F5E5E2F9E25FDC0A97825AF901E" bold="true" box="[638,675,1376,1396]" italics="true" pageId="2" pageNumber="3">m/z</emphasis>
272.1293 and formation of the fragment ion at
<emphasis id="B97D0F5E5E2F9E25FE72A96426FC90FA" bold="true" box="[460,496,1404,1424]" italics="true" pageId="2" pageNumber="3">m/z</emphasis>
255.1073 were observed. In addition, the relatively highly abundant fragment ions at
<emphasis id="B97D0F5E5E2F9E25FDC7A980259190C6" bold="true" box="[633,669,1432,1452]" italics="true" pageId="2" pageNumber="3">m/z</emphasis>
107.0486, 143.0483, and 161.0604 were also formed. Both fragmentation behaviors indicated that alkaloid
<emphasis id="B97D0F5E5E2F9E25FED3A9C826759089" bold="true" box="[365,377,1488,1507]" pageId="2" pageNumber="3">1</emphasis>
was a benzyltetrahydroisoquinoline-type alkaloid according to previous studies (
<bibRefCitation id="EF98AEBD5E2F9E25FE5AA9F425869095" author="Qing, Z. X. &amp; Cheng, P. &amp; Zeng, J. G." box="[484,650,1516,1536]" pageId="2" pageNumber="3" pagination="2929 - 2939" refId="ref6780" refString="Qing, Z. X., Cheng, P., Zeng, J. G., 2013. Research progress on mass spectral fragmentation behaviour of alkaloids in Macleaya cordata. Zhong Cao Yao 44 (20), 2929 - 2939. https: // doi. org / 10.7501 / j. issn. 0253 - 2670.2013.20.025." type="journal article" year="2013">Qing et al., 2013</bibRefCitation>
, 2020). The structure of alkaloid
<emphasis id="B97D0F5E5E2F9E25FE98AA10263E9371" bold="true" box="[294,306,1544,1563]" pageId="2" pageNumber="3">1</emphasis>
was combined by a benzyltetrahydroisoquinoline skeleton, three hydroxyls, and one hydrogen, as shown in Table S1. The base peak ion at
<emphasis id="B97D0F5E5E2F9E25FEB5AA27263C9339" bold="true" box="[267,304,1599,1619]" italics="true" pageId="2" pageNumber="3">m/z</emphasis>
107.0486 indicated that one hydroxyl was connected to the C-ring of the benzyltetrahydroisoquinoline skeleton. The fragmentation ions at
<emphasis id="B97D0F5E5E2F9E25FE89AA6F265093E1" bold="true" box="[311,348,1655,1675]" italics="true" pageId="2" pageNumber="3">m/z</emphasis>
143.0483, 161.0604, and 255.1073 demonstrated that the remaining two hydroxyls were connected to the A-ring. Therefore, alkaloid
<emphasis id="B97D0F5E5E2F9E25FE9FAAB7262193A8" bold="true" box="[289,301,1711,1730]" pageId="2" pageNumber="3">1</emphasis>
was tentatively identified as higenamine (
<figureCitation id="1332CFC95E2F9E25FD76AAB7277D93B5" captionStart="Fig" captionStartId="6.[303,333,1046,1063]" captionTargetBox="[117,1471,149,1018]" captionTargetId="figure-559@6.[116,1472,148,1019]" captionTargetPageId="6" captionText="Fig. 4. Proposed new biosynthesis pathways for protoberberine (97), sanguinarine (144) and chelerythrine (145)." figureDoi="http://doi.org/10.5281/zenodo.8259862" httpUri="https://zenodo.org/record/8259862/files/figure.png" pageId="2" pageNumber="3">Fig.S4 C</figureCitation>
). Moreover, the structure of alkaloid
<emphasis id="B97D0F5E5E2F9E25FE52AAD326F493B4" bold="true" box="[492,504,1739,1758]" pageId="2" pageNumber="3">1</emphasis>
was unambiguously determined by comparing the retention time, exact MS and MS/MS data with the standard. The remaining 36 benzyltetrahydroisoquinoline alkaloids were also screened and identified using a similar method (Table S2).
</paragraph>
</subSubSection>
<subSubSection id="C31380C75E2F9E25FF3AAB2323889747" pageId="2" pageNumber="3" type="materials_examined">
<paragraph id="8BB6D34C5E2F9E25FF3AAB23240E92D4" blockId="2.[100,771,289,1982]" pageId="2" pageNumber="3">
<materialsCitation id="3B61D9115E2F9E25FF3AAB2325F192D4" collectionCode="N" pageId="2" pageNumber="3" specimenCount="11">
In addition to benzyltetrahydroisoquinoline, 28 other
<typeStatus id="54B26DEE5E2F9E25FD33AB2325B29224" box="[653,702,1851,1870]" pageId="2" pageNumber="3">types</typeStatus>
of isoquinoline alkaloids (
<figureCitation id="1332CFC95E2F9E25FE95AB4F26629200" box="[299,366,1879,1898]" captionStart="Fig" captionStartId="1.[100,130,1939,1956]" captionTargetBox="[155,1437,1006,1905]" captionTargetId="figure-537@1.[150,1438,1005,1911]" captionTargetPageId="1" captionText="Fig. 1. Diagram of systematic screening of isoquinoline alkaloids by HPLC-Q-TOF-MS combined with a screening method. (a) X, Y, Z, M, and N represent the number of OCH2O, OCH3, OH, glucose, and H groups, respectively. (b) The number of substituent groups connected to the target skeleton is no more than four." figureDoi="http://doi.org/10.5281/zenodo.8259856" httpUri="https://zenodo.org/record/8259856/files/figure.png" pageId="2" pageNumber="3">Fig. S1</figureCitation>
) were screened from the
<taxonomicName id="4C09A8CF5E2F9E25FDD3AB4E25CF9200" box="[621,707,1878,1898]" class="Magnoliopsida" family="Papaveraceae" genus="Macleaya" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B97D0F5E5E2F9E25FDD3AB4E25CF9200" bold="true" box="[621,707,1878,1898]" italics="true" pageId="2" pageNumber="3">Macleaya</emphasis>
</taxonomicName>
genus (
<figureCitation id="1332CFC95E2F9E25FFD2AB6B27AE92EC" box="[108,162,1907,1926]" captionStart="Fig" captionStartId="1.[100,130,1939,1956]" captionTargetBox="[155,1437,1006,1905]" captionTargetId="figure-537@1.[150,1438,1005,1911]" captionTargetPageId="1" captionText="Fig. 1. Diagram of systematic screening of isoquinoline alkaloids by HPLC-Q-TOF-MS combined with a screening method. (a) X, Y, Z, M, and N represent the number of OCH2O, OCH3, OH, glucose, and H groups, respectively. (b) The number of substituent groups connected to the target skeleton is no more than four." figureDoi="http://doi.org/10.5281/zenodo.8259856" httpUri="https://zenodo.org/record/8259856/files/figure.png" pageId="2" pageNumber="3">Fig. 1</figureCitation>
). However, only
<specimenCount id="9D0F18C55E2F9E25FEF6AB6B269492EC" box="[328,408,1907,1926]" pageId="2" pageNumber="3" type="generic" typeStatus="types">11 types</specimenCount>
of isoquinoline alkaloids, i.e., benzyltetrahydroisoquinoline (
<emphasis id="B97D0F5E5E2F9E25FEF1AB97267792C8" bold="true" box="[335,379,1935,1954]" pageId="2" pageNumber="3">1-37</emphasis>
), tetrahydroprotoberberine (
<emphasis id="B97D0F5E5E2F9E25FD27AB9725DE92C8" bold="true" box="[665,722,1935,1954]" pageId="2" pageNumber="3">38-53</emphasis>
),
<emphasis id="B97D0F5E5E2F9E25FD52AB9625F792C8" bold="true" box="[748,763,1934,1954]" italics="true" pageId="2" pageNumber="3">
<collectionCode id="ED184B895E2F9E25FD52AB9625F792C8" box="[748,763,1934,1954]" country="China" lsid="urn:lsid:biocol.org:col:13092" name="Nanjing University" pageId="2" pageNumber="3" type="Herbarium">N</collectionCode>
</emphasis>
- methyltetrahydroproto -berberine (
<emphasis id="B97D0F5E5E2F9E25FE65ABB2251892D7" bold="true" box="[475,532,1962,1982]" pageId="2" pageNumber="3">54-67</emphasis>
), protopine (
<emphasis id="B97D0F5E5E2F9E25FD05ABB225F892D7" bold="true" box="[699,756,1962,1982]" pageId="2" pageNumber="3">68-90</emphasis>
)
</materialsCitation>
,
</paragraph>
<paragraph id="8BB6D34C5E2F9E25FC8CAC8C23889747" blockId="2.[818,1488,148,558]" pageId="2" pageNumber="3">
berberine (
<emphasis id="B97D0F5E5E2F9E25FC25AC8C24EC95CD" bold="true" box="[923,992,148,167]" pageId="2" pageNumber="3">91-107</emphasis>
), 7,8-dihydroberberine (
<emphasis id="B97D0F5E5E2F9E25FB73AC8C221295CD" bold="true" box="[1229,1310,148,167]" pageId="2" pageNumber="3">108-114</emphasis>
), aporphine (
<emphasis id="B97D0F5E5E2F9E25FA1DAC8C245B95A9" bold="true" pageId="2" pageNumber="3">115- 117</emphasis>
), benzophenanthridine (
<emphasis id="B97D0F5E5E2F9E25FBEEACA823AD95A9" bold="true" box="[1104,1185,176,195]" pageId="2" pageNumber="3">118-167</emphasis>
), dihydrobenzophenanthridine (
<emphasis id="B97D0F5E5E2F9E25FC84ACD3248795B4" bold="true" box="[826,907,203,223]" pageId="2" pageNumber="3">168-201</emphasis>
), benzoquinoline (
<emphasis id="B97D0F5E5E2F9E25FB81ACD3239C95B4" bold="true" box="[1087,1168,203,223]" pageId="2" pageNumber="3">202-203</emphasis>
) and arnottianamide (
<emphasis id="B97D0F5E5E2F9E25FAD9ACD3228095B4" bold="true" box="[1383,1420,203,222]" pageId="2" pageNumber="3">204</emphasis>
), were found and identified (
<figureCitation id="1332CFC95E2F9E25FBBAACFF234A9591" box="[1028,1094,231,251]" captionStart="Fig" captionStartId="5.[498,528,1049,1066]" captionTargetBox="[213,1395,159,1013]" captionTargetId="figure-594@5.[187,1400,148,1021]" captionTargetPageId="5" captionText="Fig. 3. TICs of 0-day (A) and 36-day-old (B) tissue culture seedlings." figureDoi="http://doi.org/10.5281/zenodo.8259860" httpUri="https://zenodo.org/record/8259860/files/figure.png" pageId="2" pageNumber="3">Fig. S3</figureCitation>
; Table S2). Interestingly, among the 204 identified isoquinoline alkaloids, 40 glycosylated alkaloids (
<emphasis id="B97D0F5E5E2F9E25FAD4AD1B22AF947C" bold="true" box="[1386,1443,259,279]" pageId="2" pageNumber="3">21-26</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FA11AD1B24479458" bold="true" pageId="2" pageNumber="3">34- 36</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FCE9AD07249C9458" bold="true" box="[855,912,287,307]" pageId="2" pageNumber="3">42-44</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FC22AD0724B99458" bold="true" box="[924,949,287,306]" pageId="2" pageNumber="3">49</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FC7FAD0724D69458" bold="true" box="[961,986,287,306]" pageId="2" pageNumber="3">52</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FC58AD0724F39458" bold="true" box="[998,1023,287,306]" pageId="2" pageNumber="3">53</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FBB5AD0723289458" bold="true" box="[1035,1060,287,306]" pageId="2" pageNumber="3">63</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FB8EAD0723459458" bold="true" box="[1072,1097,287,306]" pageId="2" pageNumber="3">64</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FBEBAD0723629458" bold="true" box="[1109,1134,287,306]" pageId="2" pageNumber="3">67</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FBC4AD07239F9458" bold="true" box="[1146,1171,287,306]" pageId="2" pageNumber="3">74</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FB1EAD0723B59458" bold="true" box="[1184,1209,287,306]" pageId="2" pageNumber="3">93</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FB7BAD0723D29458" bold="true" box="[1221,1246,287,306]" pageId="2" pageNumber="3">94</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FB54AD07220F9458" bold="true" box="[1258,1283,287,306]" pageId="2" pageNumber="3">99</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FAB1AD0722389458" bold="true" box="[1295,1332,287,306]" pageId="2" pageNumber="3">100</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FAFFAD07226A9458" bold="true" box="[1345,1382,287,306]" pageId="2" pageNumber="3">103</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FACCAD07229B9458" bold="true" box="[1394,1431,287,306]" pageId="2" pageNumber="3">116</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FA1AAD0722C59458" bold="true" box="[1444,1481,287,306]" pageId="2" pageNumber="3">117</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FC8CAD23248F9424" bold="true" box="[818,899,315,334]" pageId="2" pageNumber="3">130-135</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FC28AD2324B79424" bold="true" box="[918,955,315,334]" pageId="2" pageNumber="3">158</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FC73AD2324FE9424" bold="true" box="[973,1010,315,334]" pageId="2" pageNumber="3">159</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FBBBAD2323269424" bold="true" box="[1029,1066,315,334]" pageId="2" pageNumber="3">161</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FB83AD23236E9424" bold="true" box="[1085,1122,315,334]" pageId="2" pageNumber="3">167</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FBCBAD2323969424" bold="true" box="[1141,1178,315,334]" pageId="2" pageNumber="3">170</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FB12AD2323DD9424" bold="true" box="[1196,1233,315,334]" pageId="2" pageNumber="3">174</emphasis>
,
<emphasis id="B97D0F5E5E2F9E25FB5AAD2322059424" bold="true" box="[1252,1289,315,334]" pageId="2" pageNumber="3">180</emphasis>
, and
<emphasis id="B97D0F5E5E2F9E25FAF5AD23227C9424" bold="true" box="[1355,1392,315,334]" pageId="2" pageNumber="3">181</emphasis>
,
<figureCitation id="1332CFC95E2F9E25FA3DAD2322C59424" box="[1411,1481,315,334]" captionStart="Fig" captionStartId="5.[498,528,1049,1066]" captionTargetBox="[213,1395,159,1013]" captionTargetId="figure-594@5.[187,1400,148,1021]" captionTargetPageId="5" captionText="Fig. 3. TICs of 0-day (A) and 36-day-old (B) tissue culture seedlings." figureDoi="http://doi.org/10.5281/zenodo.8259860" httpUri="https://zenodo.org/record/8259860/files/figure.png" pageId="2" pageNumber="3">Fig. S3</figureCitation>
; Table S2), which have rarely been reported in the
<taxonomicName id="4C09A8CF5E2F9E25FAB3AD4F22819400" box="[1293,1421,343,362]" class="Magnoliopsida" family="Papaveraceae" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="family">Papaveraceae</taxonomicName>
family and may have excellent bioactivities, were detected and characterized from the
<taxonomicName id="4C09A8CF5E2F9E25FC36AD9624D294C8" box="[904,990,398,418]" class="Magnoliopsida" family="Papaveraceae" genus="Macleaya" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B97D0F5E5E2F9E25FC36AD9624D294C8" bold="true" box="[904,990,398,418]" italics="true" pageId="2" pageNumber="3">Macleaya</emphasis>
</taxonomicName>
genus. In addition, some addictive compounds, such as morphine and codeine, which have been found within the
<taxonomicName id="4C09A8CF5E2F9E25FAC2ADB3246A94B0" class="Magnoliopsida" family="Papaveraceae" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="family">Papaveraceae</taxonomicName>
family, were not detected in either plant species in the present study (
<bibRefCitation id="EF98AEBD5E2F9E25FCCBADFA2300949C" author="Liu, X. B. &amp; Liu, Y. S. &amp; Huang, P. &amp; Ma, Y. S. &amp; Qing, Z. X. &amp; Tang, Q. &amp; Cao, H. F. &amp; Cheng, P. &amp; Zheng, Y. J. &amp; Yuan, Z. J. &amp; Zhou, Y. &amp; Liu, J. F. &amp; Tang, Z. S. &amp; Zhuo, Y. X. &amp; Zhang, Y. C. &amp; Yu, L. L. &amp; Huang, J. L. &amp; Yang, P. &amp; Peng, Q. &amp; Zhang, J. B. &amp; Jiang, W. K. &amp; Zhang, Z. H. &amp; Lin, K. &amp; Ro, D. K. &amp; Chen, X. Y. &amp; Xiong, X. Y. &amp; Shang, Y. &amp; Huang, S. W. &amp; Zeng, J. G." box="[885,1036,482,502]" pageId="2" pageNumber="3" pagination="975 - 989" refId="ref6370" refString="Liu, X. B., Liu, Y. S., Huang, P., Ma, Y. S., Qing, Z. X., Tang, Q., Cao, H. F., Cheng, P., Zheng, Y. J., Yuan, Z. J., Zhou, Y., Liu, J. F., Tang, Z. S., Zhuo, Y. X., Zhang, Y. C., Yu, L. L., Huang, J. L., Yang, P., Peng, Q., Zhang, J. B., Jiang, W. K., Zhang, Z. H., Lin, K., Ro, D. K., Chen, X. Y., Xiong, X. Y., Shang, Y., Huang, S. W., Zeng, J. G., 2017. The genome of medicinal plant Macleaya cordata provides new insights into benzylisoquinoline alkaloids metabolism. Mol. Plant 10 (7), 975 - 989. https: // doi. org / 10.1016 / j. molp. 2017.05.007." type="journal article" year="2017">Liu et al., 2017</bibRefCitation>
; Poeaknapo et al., 2004). Finally, a metabolic network of isoquinoline alkaloids in the
<taxonomicName id="4C09A8CF5E2F9E25FB19ADE523F1977B" box="[1191,1277,509,529]" class="Magnoliopsida" family="Papaveraceae" genus="Macleaya" kingdom="Plantae" order="Ranunculales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B97D0F5E5E2F9E25FB19ADE523F1977B" bold="true" box="[1191,1277,509,529]" italics="true" pageId="2" pageNumber="3">Macleaya</emphasis>
</taxonomicName>
genus was established based on the identified metabolites.
</paragraph>
</subSubSection>
</treatment>
</document>