treatments-xml/data/03/95/EB/0395EB6D3E71FFA4EEA4E7D77D96F94A.xml
2024-06-21 12:22:17 +02:00

589 lines
108 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="D74B2EBB091688C30AFCC48D42CB9DDB" ID-DOI="10.1093/zoolinnean/zlad001" ID-ISSN="0024-4082" ID-Zenodo-Dep="8141891" IM.bibliography_approvedBy="felipe" IM.illustrations_approvedBy="diego" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.tables_approvedBy="diego" IM.taxonomicNames_approvedBy="diego" IM.treatments_approvedBy="diego" checkinTime="1689234763575" checkinUser="plazi" docAuthor="Surmik, Dawid, Słowiak-Morkovina, Justyna, Szczygielski, Tomasz, Wojtyniak, Marcin, Środek, Dorota, Dulski, Mateusz, Balin, Katarzyna, Krzykawski, Tomasz &amp; Pawlicki, Roman" docDate="2023" docId="0395EB6D3E71FFA4EEA4E7D77D96F94A" docLanguage="en" docName="zlad001.pdf" docOrigin="Zoological Journal of the Linnean Society 198 (3)" docSource="https://academic.oup.com/zoolinnean/article/198/3/747/7076280" docStyle="DocumentStyle:36B3BD6A90C22AB4F7F465C853188CC8.7:ZoolJLinnSoc.2017-.journal_article" docStyleId="36B3BD6A90C22AB4F7F465C853188CC8" docStyleName="ZoolJLinnSoc.2017-.journal_article" docStyleVersion="7" docTitle="Pinacosaurus grangeri Gilmore 1933" docType="treatment" docVersion="3" lastPageNumber="758" masterDocId="FFAC93153E74FFAFEE07E5747F4CFFF8" masterDocTitle="The first record of fossilized soft parts in ossified tendons and implications for the understanding of tendon mineralization" masterLastPageNumber="766" masterPageNumber="747" pageNumber="752" updateTime="1689337557308" updateUser="diego">
<mods:mods id="E1B44DDF8F7BE930EDC51C8B3AD3CF40" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="D1BE713DC227BE73B608FA8BB07189AE">
<mods:title id="016A3FE1C6FEDF1A8BE5206C7AAD588C">The first record of fossilized soft parts in ossified tendons and implications for the understanding of tendon mineralization</mods:title>
</mods:titleInfo>
<mods:name id="0A417517E1EA30A99D597836E9B278F7" type="personal">
<mods:role id="5AB7A894791EE6F8A92437AB6AAB2A8A">
<mods:roleTerm id="4B2CAF1D69BDCB0B8FC5C752B0F2E4D0">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="069A8B69DC55C21B2DCDF54BE8103BC4">Surmik, Dawid</mods:namePart>
</mods:name>
<mods:name id="4B3D721E92B56ACB36E2FB6AA0556EEC" type="personal">
<mods:role id="7FCB17257B24ABC8853E8768DE05B7F6">
<mods:roleTerm id="DA0C559E2EF47C40558A433BF1586EE0">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="5BE74743E4F803FD334C52D083E2031D">Słowiak-Morkovina, Justyna</mods:namePart>
</mods:name>
<mods:name id="3C320B0B4A606E0FEE61DBC796089A37" type="personal">
<mods:role id="E8DBCE3EA6F56E46CE2BF2DAFD9EDDDB">
<mods:roleTerm id="303C2667ABC386F15B663A2554E22462">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="47A26DCF4DA591A785E012692F58A82E">Szczygielski, Tomasz</mods:namePart>
</mods:name>
<mods:name id="55699F601749EB019F7B8100D852F37A" type="personal">
<mods:role id="DD342228708EE698A230D329D512FF78">
<mods:roleTerm id="ED1A0FE07368DDA57B0196CCE2DFC6D0">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="32CBC51A08A34019A015B7FA2F8334E1">Wojtyniak, Marcin</mods:namePart>
</mods:name>
<mods:name id="3018F51131278D0C0C6671AD18F06C5A" type="personal">
<mods:role id="9E5B0E3192A6FCD7D7B84798D7195908">
<mods:roleTerm id="B09677D498CCF43C05C96E14113B61EF">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="4C6014CBBE600D66D3F0DC6A8614DA0B">Środek, Dorota</mods:namePart>
</mods:name>
<mods:name id="81F281AEDBECA0B5C096C50F9CD87F56" type="personal">
<mods:role id="83DEB916ABCD3C8EC4425692EACEF0E1">
<mods:roleTerm id="1F4723230DE168ACB828774F77F7862C">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="3DB2990EF71866AEB267A529D3205B08">Dulski, Mateusz</mods:namePart>
</mods:name>
<mods:name id="49B6908F63A35ED4347441DED43AB4A0" type="personal">
<mods:role id="6824766914918D3064565BB241EF1D8B">
<mods:roleTerm id="577C3A675C0790BD2DB2718B6DB3B7F8">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="6FB8327BBD73F31613CFC8BE3FDD4E54">Balin, Katarzyna</mods:namePart>
</mods:name>
<mods:name id="ACC6C5FAB15A5CCDB20DAA0F1B849BFA" type="personal">
<mods:role id="E646C5056E9EAF95647242CA781D20DB">
<mods:roleTerm id="574DEB9D356D6CC15658F5DB0D29941D">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="615BD3033A2A63C84150A04CF269B323">Krzykawski, Tomasz</mods:namePart>
</mods:name>
<mods:name id="05B57F50F8FBA1CE7AC5B3A42560BB8F" type="personal">
<mods:role id="E8D6CA6B6CE200738B040FF47B21580E">
<mods:roleTerm id="D3AD28D45F757F4E6C9D369F23B6291A">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="8ECEA7D9C8A6C8E3BF54C6238A8A5C01">Pawlicki, Roman</mods:namePart>
</mods:name>
<mods:typeOfResource id="A3DB90370034E105AE072E708DBAF3CC">text</mods:typeOfResource>
<mods:relatedItem id="09BBCB3954ABFFD603523495BC2F80E2" type="host">
<mods:titleInfo id="007E03D3761009F7ECC52BD088D50581">
<mods:title id="69E0805B04A4EB8038FEC142276EAE65">Zoological Journal of the Linnean Society</mods:title>
</mods:titleInfo>
<mods:part id="BBE6DCC27E5758D970FDD6E315C0D83A">
<mods:date id="42FF2088B7CE1D9F0975316C2A2193AF">2023</mods:date>
<mods:detail id="C99F26C508282F0B0D06AC495EA67B4A" type="pubDate">
<mods:number id="E34AF1FC50D92CA50C983DE77670374F">2023-07-01</mods:number>
</mods:detail>
<mods:detail id="096D509D153BD72CD73955D708E47D59" type="volume">
<mods:number id="709E2A60E7C54AF77745059774C2B283">198</mods:number>
</mods:detail>
<mods:detail id="FD03E9E08CFD784636BFF412BB6F9833" type="issue">
<mods:number id="0501B930568F693FF90753174ADA94E0">3</mods:number>
</mods:detail>
<mods:extent id="A183B337632162890C6EED554ADF3B79" unit="page">
<mods:start id="235FBF1BA1D3D0D0B250EAA3190CAD3B">747</mods:start>
<mods:end id="E5BF8615B287429600A317AB3C1C5317">766</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="1D8FD754FE4A63206C3B55283EA334F8">
<mods:url id="7644D8E8AD9208683F2152628EB1E697">https://academic.oup.com/zoolinnean/article/198/3/747/7076280</mods:url>
</mods:location>
<mods:classification id="449E97D47428EB597AC7DD92B6669A9D">journal article</mods:classification>
<mods:identifier id="D81FE4B384DA8ECB29F3E451FFC36E47" type="DOI">10.1093/zoolinnean/zlad001</mods:identifier>
<mods:identifier id="FC5BED99616A2EF7F2A3B54ADC3868CA" type="ISSN">0024-4082</mods:identifier>
<mods:identifier id="0B6EB122A5465065CC5733CA36A8FB31" type="Zenodo-Dep">8141891</mods:identifier>
</mods:mods>
<treatment id="0395EB6D3E71FFA4EEA4E7D77D96F94A" LSID="urn:lsid:plazi:treatment:0395EB6D3E71FFA4EEA4E7D77D96F94A" httpUri="http://treatment.plazi.org/id/0395EB6D3E71FFA4EEA4E7D77D96F94A" lastPageId="11" lastPageNumber="758" pageId="5" pageNumber="752">
<subSubSection id="C32609F03E71FFAAEEA4E7D77BDEFD5E" pageId="5" pageNumber="752" type="nomenclature">
<paragraph id="8B835A7B3E71FFAAEEA4E7D77DE6FD42" blockId="5.[163,682,674,698]" box="[163,682,674,698]" pageId="5" pageNumber="752">
<heading id="D0CBED173E71FFAAEEA4E7D77DE6FD42" box="[163,682,674,698]" centered="true" fontSize="9" level="2" pageId="5" pageNumber="752" reason="2">
<emphasis id="B94886693E71FFAAEEA4E7D77DE6FD42" box="[163,682,674,698]" italics="true" pageId="5" pageNumber="752">
<taxonomicName id="4C3C21F83E71FFAAEEA4E7D77EF6FD42" authority="Gilmore, 1933" authorityName="Gilmore" authorityYear="1933" box="[163,442,675,698]" class="Reptilia" family="Ankylosauridae" genus="Pinacosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="5" pageNumber="752" phylum="Chordata" rank="species" species="grangeri">Pinacosaurus grangeri</taxonomicName>
(ZPAL MgD-II/32)
</emphasis>
</heading>
</paragraph>
<paragraph id="8B835A7B3E71FFAAEEA4E7BE7BDEFD5E" blockId="5.[163,779,714,951]" lastBlockId="5.[827,1444,197,679]" pageId="5" pageNumber="752">
The caudal tendons reveal extensive secondary remodelling, with at least three generations of secondary osteons (
<figureCitation id="130746FE3E71FFAAEF61E67C7E97FCE5" box="[358,475,776,798]" captionStart="Figure 3" captionStartId="6.[144,222,881,903]" captionTargetBox="[147,1424,196,851]" captionTargetId="figure-419@6.[145,1424,195,852]" captionTargetPageId="6" captionText="Figure 3. Light microscopy and SEM of petrographic thin sections and etched surfaces of fossilized ornithischian tendons of Pinacosaurus grangeri: A, cross-section of a larger tendon from the specimen with three associated tendons; B, C, centre of the large, single tendon showing extensive secondary remodelling under normal (B) and polarized (C) light; D, secondary remodelling close to the periphery of the same tendon under transmitted polarized light alpha-compensation mode; E, interfascicular spaces between secondary osteons surrounded by cement lines; F, higher magnification of interfascicular spaces. Note that the fascicles and interfascicular spaces appear to be present in primary tissue only. Green arrows (AE) mark secondary osteons, orange arrows (E, F) point to cement lines, red arrows (B, C, E, F) indicate interfascicular spaces, and yellow (A, B) point at bone cell lacunae." figureDoi="http://doi.org/10.5281/zenodo.8141897" httpUri="https://zenodo.org/record/8141897/files/figure.png" pageId="5" pageNumber="752">Fig. 3AE</figureCitation>
). The cross-section of the flattened, elliptical tendon shows a densely secondary remodelled inner part (
<figureCitation id="130746FE3E71FFAAEFADE6317D5BFCA2" box="[426,535,837,859]" captionStart="Figure 3" captionStartId="6.[144,222,881,903]" captionTargetBox="[147,1424,196,851]" captionTargetId="figure-419@6.[145,1424,195,852]" captionTargetPageId="6" captionText="Figure 3. Light microscopy and SEM of petrographic thin sections and etched surfaces of fossilized ornithischian tendons of Pinacosaurus grangeri: A, cross-section of a larger tendon from the specimen with three associated tendons; B, C, centre of the large, single tendon showing extensive secondary remodelling under normal (B) and polarized (C) light; D, secondary remodelling close to the periphery of the same tendon under transmitted polarized light alpha-compensation mode; E, interfascicular spaces between secondary osteons surrounded by cement lines; F, higher magnification of interfascicular spaces. Note that the fascicles and interfascicular spaces appear to be present in primary tissue only. Green arrows (AE) mark secondary osteons, orange arrows (E, F) point to cement lines, red arrows (B, C, E, F) indicate interfascicular spaces, and yellow (A, B) point at bone cell lacunae." figureDoi="http://doi.org/10.5281/zenodo.8141897" httpUri="https://zenodo.org/record/8141897/files/figure.png" pageId="5" pageNumber="752">Fig. 3B, C</figureCitation>
) in the thickest place and more loosely arranged secondary osteons in the thinner parts of the cross-section and the periphery of the tendon (
<figureCitation id="130746FE3E71FFAAEF2AE6D57ECCFC4E" box="[301,384,929,951]" captionStart="Figure 3" captionStartId="6.[144,222,881,903]" captionTargetBox="[147,1424,196,851]" captionTargetId="figure-419@6.[145,1424,195,852]" captionTargetPageId="6" captionText="Figure 3. Light microscopy and SEM of petrographic thin sections and etched surfaces of fossilized ornithischian tendons of Pinacosaurus grangeri: A, cross-section of a larger tendon from the specimen with three associated tendons; B, C, centre of the large, single tendon showing extensive secondary remodelling under normal (B) and polarized (C) light; D, secondary remodelling close to the periphery of the same tendon under transmitted polarized light alpha-compensation mode; E, interfascicular spaces between secondary osteons surrounded by cement lines; F, higher magnification of interfascicular spaces. Note that the fascicles and interfascicular spaces appear to be present in primary tissue only. Green arrows (AE) mark secondary osteons, orange arrows (E, F) point to cement lines, red arrows (B, C, E, F) indicate interfascicular spaces, and yellow (A, B) point at bone cell lacunae." figureDoi="http://doi.org/10.5281/zenodo.8141897" httpUri="https://zenodo.org/record/8141897/files/figure.png" pageId="5" pageNumber="752">Fig. 3D</figureCitation>
). The latter is mainly composed of bundles of mineralized fibres and few vascular canals. Although, the secondary osteons mainly overlap each other in some places, between them patches of mineralized fibres are present (interfascicular spaces;
<figureCitation id="130746FE3E71FFAAEB7FE4557C3AFEAD" captionStart="Figure 3" captionStartId="6.[144,222,881,903]" captionTargetBox="[147,1424,196,851]" captionTargetId="figure-419@6.[145,1424,195,852]" captionTargetPageId="6" captionText="Figure 3. Light microscopy and SEM of petrographic thin sections and etched surfaces of fossilized ornithischian tendons of Pinacosaurus grangeri: A, cross-section of a larger tendon from the specimen with three associated tendons; B, C, centre of the large, single tendon showing extensive secondary remodelling under normal (B) and polarized (C) light; D, secondary remodelling close to the periphery of the same tendon under transmitted polarized light alpha-compensation mode; E, interfascicular spaces between secondary osteons surrounded by cement lines; F, higher magnification of interfascicular spaces. Note that the fascicles and interfascicular spaces appear to be present in primary tissue only. Green arrows (AE) mark secondary osteons, orange arrows (E, F) point to cement lines, red arrows (B, C, E, F) indicate interfascicular spaces, and yellow (A, B) point at bone cell lacunae." figureDoi="http://doi.org/10.5281/zenodo.8141897" httpUri="https://zenodo.org/record/8141897/files/figure.png" pageId="5" pageNumber="752">Fig. 3E, F</figureCitation>
). The cross-section of the second sample from the same individual shows three circular tendons. The two bigger tendons (2.1 and
<quantity id="4CC4F79E3E71FFAAEA5FE4097BFCFE6B" box="[1112,1200,381,403]" metricMagnitude="-3" metricUnit="m" metricValue="1.7" pageId="5" pageNumber="752" unit="mm" value="1.7">1.7 mm</quantity>
in diameter) are extensively secondarily remodelled (
<figureCitation id="130746FE3E71FFAAEAC5E4E87A5FFE49" box="[1218,1299,412,434]" captionStart="Figure 3" captionStartId="6.[144,222,881,903]" captionTargetBox="[147,1424,196,851]" captionTargetId="figure-419@6.[145,1424,195,852]" captionTargetPageId="6" captionText="Figure 3. Light microscopy and SEM of petrographic thin sections and etched surfaces of fossilized ornithischian tendons of Pinacosaurus grangeri: A, cross-section of a larger tendon from the specimen with three associated tendons; B, C, centre of the large, single tendon showing extensive secondary remodelling under normal (B) and polarized (C) light; D, secondary remodelling close to the periphery of the same tendon under transmitted polarized light alpha-compensation mode; E, interfascicular spaces between secondary osteons surrounded by cement lines; F, higher magnification of interfascicular spaces. Note that the fascicles and interfascicular spaces appear to be present in primary tissue only. Green arrows (AE) mark secondary osteons, orange arrows (E, F) point to cement lines, red arrows (B, C, E, F) indicate interfascicular spaces, and yellow (A, B) point at bone cell lacunae." figureDoi="http://doi.org/10.5281/zenodo.8141897" httpUri="https://zenodo.org/record/8141897/files/figure.png" pageId="5" pageNumber="752">Fig. 3A</figureCitation>
) and almost nonvascular mineralized fibres are present on their periphery. In contrast, the smallest tendon (
<quantity id="4CC4F79E3E71FFAAEB4EE4AD7AEEFE17" box="[1353,1442,473,495]" metricMagnitude="-4" metricUnit="m" metricValue="6.0" pageId="5" pageNumber="752" unit="mm" value="0.6">0.6 mm</quantity>
in diameter) is exclusively composed of mineralized fibres, weakly vascularized. The difference in the structure between the smallest and two larger tendons result from different places of sectioning: the smallest is from the terminal part of the tendon, and the bigger ones closer to the middle part.
</paragraph>
</subSubSection>
<subSubSection id="C32609F03E71FFA4EDA0E7977D96F94A" lastPageId="11" lastPageNumber="758" pageId="5" pageNumber="752" type="description">
<paragraph id="8B835A7B3E71FFAAEDA0E7977A7AFD03" blockId="5.[935,1334,739,764]" box="[935,1334,739,764]" pageId="5" pageNumber="752">
<smallCapsWord id="8D65CCA73E71FFAAEDA0E7977B21FD03" baselines="758,758" box="[935,1133,739,764]" lowerCaseFontSize="8" mainFontSize="10" normCase="title" normString="Nanostructure" pageId="5" pageNumber="752">NANOSTRUCTURE</smallCapsWord>
<smallCapsWord id="8D65CCA73E71FFAAEA72E7937BDEFD03" baselines="758" box="[1141,1170,743,763]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="of" pageId="5" pageNumber="752">OF</smallCapsWord>
<smallCapsWord id="8D65CCA73E71FFAAEA9EE7937B8AFD03" baselines="758" box="[1177,1222,743,763]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="the" pageId="5" pageNumber="752">THE</smallCapsWord>
<smallCapsWord id="8D65CCA73E71FFAAEACAE7937A7AFD03" baselines="758" box="[1229,1334,743,763]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="tendons" pageId="5" pageNumber="752">TENDONS</smallCapsWord>
</paragraph>
<paragraph id="8B835A7B3E71FFA9ED3CE6787EB0FA58" blockId="5.[827,1444,780,955]" lastBlockId="6.[145,762,1172,1900]" lastPageId="6" lastPageNumber="753" pageId="5" pageNumber="752">
Detailed scanning electron microscopy (SEM) observation of vascular canals of fossilized tendons revealed the presence of mostly randomly oriented fibrous matrix in all three studied ornithischian samples (
<figureCitation id="130746FE3E71FFAAEB71E61C7C33FC64" captionStart="Figure 4" captionStartId="7.[162,242,1550,1572]" captionTargetBox="[323,1283,197,1519]" captionTargetId="figure-97@7.[322,1283,196,1520]" captionTargetPageId="7" captionText="Figure 4. SEM images and EDS spectra of fossil and recent tendon samples. AI, fibrous matrix in the vascular canals of: A, B, Edmontosaurus regalis (UAMES 52615); CF, Homalocephale calathocercos (MPC-D 100/1201); G, Pinacosaurus grangeri (ZPAL MgD-II/32); H, I, mineralized tendon of modern turkey (Meleagris gallopaƲo, GIUS-12-3741), note the presence the of fibres both in the vascular canals (white asterisks) and in the bone matrix (black asterisks). JL, EDS spectra of: J, Edmontosaurus regalis (UAMES 52615); K, Homalocephale calathocercos; L, Meleagris gallopaƲo showing calcium, phosphorus and oxygen as dominant components in tendon mineral matrix in fossil and recent tendon samples. Note that carbon signal is omitted in the spectra (see Material and methods)." figureDoi="http://doi.org/10.5281/zenodo.8141899" httpUri="https://zenodo.org/record/8141899/files/figure.png" pageId="5" pageNumber="752">Fig. 4AG</figureCitation>
). Comparative SEM images of modern-day turkey tibialis cranialis tendons (
<figureCitation id="130746FE3E71FFAAEAD3E6D17A0AFC42" box="[1236,1350,933,955]" captionStart="Figure 4" captionStartId="7.[162,242,1550,1572]" captionTargetBox="[323,1283,197,1519]" captionTargetId="figure-97@7.[322,1283,196,1520]" captionTargetPageId="7" captionText="Figure 4. SEM images and EDS spectra of fossil and recent tendon samples. AI, fibrous matrix in the vascular canals of: A, B, Edmontosaurus regalis (UAMES 52615); CF, Homalocephale calathocercos (MPC-D 100/1201); G, Pinacosaurus grangeri (ZPAL MgD-II/32); H, I, mineralized tendon of modern turkey (Meleagris gallopaƲo, GIUS-12-3741), note the presence the of fibres both in the vascular canals (white asterisks) and in the bone matrix (black asterisks). JL, EDS spectra of: J, Edmontosaurus regalis (UAMES 52615); K, Homalocephale calathocercos; L, Meleagris gallopaƲo showing calcium, phosphorus and oxygen as dominant components in tendon mineral matrix in fossil and recent tendon samples. Note that carbon signal is omitted in the spectra (see Material and methods)." figureDoi="http://doi.org/10.5281/zenodo.8141899" httpUri="https://zenodo.org/record/8141899/files/figure.png" pageId="5" pageNumber="752">Fig. 4IH</figureCitation>
) reveal similar fibrous structures. The observed structures exhibit a hierarchic pattern individual fibres are gathered in bundles (or fascicles). The diameters of the bundles range from 0.7 to 2 µm (Supporting Information,
<figureCitation id="130746FE3E72FFA9EF2AE07B7E33FADC" box="[301,383,1295,1317]" captionStart="Figure 1" captionStartId="4.[146,224,1672,1694]" captionTargetBox="[146,1425,973,1642]" captionTargetId="figure-431@4.[145,1425,972,1643]" captionTargetPageId="4" captionText="Figure 1. Light microscopy and SEM of petrographic thin sections and etched surfaces of fossilized ornithischian tendons of Edmontosaurus regalis: A, B, ground section (transverse) of the smaller tendon under transmitted normal light (A) and polarized light alpha-compensation mode (B) exhibiting primary organization of tissue; C, D, ground section (transverse) of the periphery (C) (under transmitted normal light) and centre (D) (under polarized light) of the larger tendon; E, circular backscatter detector (CBS-SEM) image of the etched surface of the tendon shows structures interpreted as vascular canals with vessel-like morphology and attached cell-like structures, well visible branched protrusions (red arrow) are also visible; F, CBS-SEM image longitudinal section of the vessel-like canals with cell-like structures attached to the wall (blue arrow). White arrows indicate young Haversian canals, green mark secondary osteons, and yellow point at bone cell lacunae." figureDoi="http://doi.org/10.5281/zenodo.8141893" httpUri="https://zenodo.org/record/8141893/files/figure.png" pageId="6" pageNumber="753">Fig. S1</figureCitation>
) and the bundles are located in the walls of vascular canals of diameters varying between a dozen and 50 µm. The fibrous structures are visible only in the vascular walls exposed on the surfaces of freshly broken tendons.
</paragraph>
<caption id="DF430AF33E71FFAAEEA2E3D27E8EF894" ID-DOI="http://doi.org/10.5281/zenodo.8141895" ID-Zenodo-Dep="8141895" httpUri="https://zenodo.org/record/8141895/files/figure.png" pageId="5" pageNumber="752" startId="5.[165,243,1702,1724]" targetBox="[165,1445,1033,1672]" targetPageId="5" targetType="figure">
<paragraph id="8B835A7B3E71FFAAEEA2E3D27E8EF894" blockId="5.[164,1444,1702,1900]" pageId="5" pageNumber="752">
<emphasis id="B94886693E71FFAAEEA2E3D27E41F943" bold="true" box="[165,269,1702,1724]" pageId="5" pageNumber="752">Figure 2.</emphasis>
Light microscopy and SEM of petrographic thin sections and etched surfaces of fossilized ornithischian tendons of
<taxonomicName id="4C3C21F83E71FFAAEEBCE3B77EA6F920" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[187,490,1731,1752]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="5" pageNumber="752" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E71FFAAEEBCE3B77EA6F920" box="[187,490,1731,1752]" italics="true" pageId="5" pageNumber="752">Homalocephale calathocercos</emphasis>
</taxonomicName>
: A, B, general view of the cross-sectioned tendon under transmitted normal (A) and polarized (B) light; C, close-up of the middle of the tendon showing a lattice-like pattern of the coarse collagenous fibre bundles under polarized light; D, close-up of secondary osteons with poorly marked cement lines; E, close-up of the periphery of the tendon under normal light; F, longitudinal section of the tendon under polarized light showing the herringbone-like pattern; G, cross-sectioned tendon in the SEM. Green arrows mark primary osteons, yellow arrow points bone cell lacunae, red asterisk indicate secondary osteons.
</paragraph>
</caption>
<caption id="DF430AF33E72FFA9EE97E6057D17FBAD" ID-DOI="http://doi.org/10.5281/zenodo.8141897" ID-Zenodo-Dep="8141897" httpUri="https://zenodo.org/record/8141897/files/figure.png" pageId="6" pageNumber="753" startId="6.[144,222,881,903]" targetBox="[147,1424,196,851]" targetPageId="6" targetType="figure">
<paragraph id="8B835A7B3E72FFA9EE97E6057D17FBAD" blockId="6.[144,1425,881,1109]" pageId="6" pageNumber="753">
<emphasis id="B94886693E72FFA9EE97E6057FB4FC7F" bold="true" box="[144,248,881,903]" pageId="6" pageNumber="753">Figure 3.</emphasis>
Light microscopy and SEM of petrographic thin sections and etched surfaces of fossilized ornithischian tendons of
<taxonomicName id="4C3C21F83E72FFA9EEADE6FB7EDBFC5D" box="[170,407,911,933]" class="Reptilia" family="Ankylosauridae" genus="Pinacosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="6" pageNumber="753" phylum="Chordata" rank="species" species="grangeri">
<emphasis id="B94886693E72FFA9EEADE6FB7EDBFC5D" box="[170,407,911,933]" italics="true" pageId="6" pageNumber="753">Pinacosaurus grangeri</emphasis>
</taxonomicName>
: A, cross-section of a larger tendon from the specimen with three associated tendons; B, C, centre of the large, single tendon showing extensive secondary remodelling under normal (B) and polarized (C) light; D, secondary remodelling close to the periphery of the same tendon under transmitted polarized light alpha-compensation mode; E, interfascicular spaces between secondary osteons surrounded by cement lines; F, higher magnification of interfascicular spaces. Note that the fascicles and interfascicular spaces appear to be present in primary tissue only. Green arrows (AE) mark secondary osteons, orange arrows (E, F) point to cement lines, red arrows (B, C, E, F) indicate interfascicular spaces, and yellow (A, B) point at bone cell lacunae.
</paragraph>
</caption>
<paragraph id="8B835A7B3E72FFA9EEAEE0DC7B63FA99" blockId="6.[145,762,1172,1900]" lastBlockId="6.[809,1425,1172,1378]" pageId="6" pageNumber="753">
The EDS spectra collected from the fibrous structures and surrounding mineral matrix of all studied tendons reveal oxygen, calcium and phosphorus as the main components in all studied taxa (
<figureCitation id="130746FE3E72FFA9EC9EE3707FEDF9C0" captionStart="Figure 4" captionStartId="7.[162,242,1550,1572]" captionTargetBox="[323,1283,197,1519]" captionTargetId="figure-97@7.[322,1283,196,1520]" captionTargetPageId="7" captionText="Figure 4. SEM images and EDS spectra of fossil and recent tendon samples. AI, fibrous matrix in the vascular canals of: A, B, Edmontosaurus regalis (UAMES 52615); CF, Homalocephale calathocercos (MPC-D 100/1201); G, Pinacosaurus grangeri (ZPAL MgD-II/32); H, I, mineralized tendon of modern turkey (Meleagris gallopaƲo, GIUS-12-3741), note the presence the of fibres both in the vascular canals (white asterisks) and in the bone matrix (black asterisks). JL, EDS spectra of: J, Edmontosaurus regalis (UAMES 52615); K, Homalocephale calathocercos; L, Meleagris gallopaƲo showing calcium, phosphorus and oxygen as dominant components in tendon mineral matrix in fossil and recent tendon samples. Note that carbon signal is omitted in the spectra (see Material and methods)." figureDoi="http://doi.org/10.5281/zenodo.8141899" httpUri="https://zenodo.org/record/8141899/files/figure.png" pageId="6" pageNumber="753">Fig. 4K, L</figureCitation>
), which is a typical elemental signature of modern and fossil bones. To visualize vascular canal shape and geometry, topographic microscope imaging (
<figureCitation id="130746FE3E72FFA9ECCAE3147F9BF96C" captionStart="Figure 5" captionStartId="8.[145,227,1658,1680]" captionTargetBox="[146,1425,197,1628]" captionTargetId="figure-26@8.[145,1425,195,1629]" captionTargetPageId="8" captionText="Figure 5. Structure of Homalocephale calathocercos tendons: A, a colour-scaled topographic image of surface of an individual vascular canal in the tendon (depth profiling); B, reflected light microscopic image of one of the examined vascular canals with lines expressing depth profiles (not to scale); CH, detailed AFM images of one of the fibre bundles (fascicles) demonstrated in lock-in-amplitude (C, E, G) and lock-in-phase (D, F, H) images; I, AFM topographical image presenting fibre bundles and four measuring profiles; J, surface topology of one of the measure profiles (no. 2 in I) suggesting periodicity of about 24 nm expressed in tip displacement (Supporting Information, Data S2)." figureDoi="http://doi.org/10.5281/zenodo.8141903" httpUri="https://zenodo.org/record/8141903/files/figure.png" pageId="6" pageNumber="753">Fig. 5A, B</figureCitation>
) of a
<taxonomicName id="4C3C21F83E72FFA9EF21E30B7DDBF96C" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[294,663,1663,1684]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="6" pageNumber="753" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E72FFA9EF21E30B7DDBF96C" box="[294,663,1663,1684]" italics="true" pageId="6" pageNumber="753">Homalocephale calathocercos</emphasis>
</taxonomicName>
tendon sample was applied. The results indicate that the observed fibrous structures are located deep inside the vascular canals exclusively and incorporated in their walls along their length. In addition to the surface morphology imaging, information of vascular canal topography in the tendon was collected using an atomic force microscope (AFM) in contact mode. The generated images (lock-in amplitude and lockin-phase,
<figureCitation id="130746FE3E72FFA9ED99E1C77B59FB31" box="[926,1045,1203,1225]" captionStart="Figure 5" captionStartId="8.[145,227,1658,1680]" captionTargetBox="[146,1425,197,1628]" captionTargetId="figure-26@8.[145,1425,195,1629]" captionTargetPageId="8" captionText="Figure 5. Structure of Homalocephale calathocercos tendons: A, a colour-scaled topographic image of surface of an individual vascular canal in the tendon (depth profiling); B, reflected light microscopic image of one of the examined vascular canals with lines expressing depth profiles (not to scale); CH, detailed AFM images of one of the fibre bundles (fascicles) demonstrated in lock-in-amplitude (C, E, G) and lock-in-phase (D, F, H) images; I, AFM topographical image presenting fibre bundles and four measuring profiles; J, surface topology of one of the measure profiles (no. 2 in I) suggesting periodicity of about 24 nm expressed in tip displacement (Supporting Information, Data S2)." figureDoi="http://doi.org/10.5281/zenodo.8141903" httpUri="https://zenodo.org/record/8141903/files/figure.png" pageId="6" pageNumber="753">Fig. 5BG</figureCitation>
) show the nanostructure of the fibres. Furthermore, AFM imaging on an individual fibre (
<figureCitation id="130746FE3E72FFA9ED68E1847CABFAFE" box="[879,999,1264,1286]" captionStart="Figure 5" captionStartId="8.[145,227,1658,1680]" captionTargetBox="[146,1425,197,1628]" captionTargetId="figure-26@8.[145,1425,195,1629]" captionTargetPageId="8" captionText="Figure 5. Structure of Homalocephale calathocercos tendons: A, a colour-scaled topographic image of surface of an individual vascular canal in the tendon (depth profiling); B, reflected light microscopic image of one of the examined vascular canals with lines expressing depth profiles (not to scale); CH, detailed AFM images of one of the fibre bundles (fascicles) demonstrated in lock-in-amplitude (C, E, G) and lock-in-phase (D, F, H) images; I, AFM topographical image presenting fibre bundles and four measuring profiles; J, surface topology of one of the measure profiles (no. 2 in I) suggesting periodicity of about 24 nm expressed in tip displacement (Supporting Information, Data S2)." figureDoi="http://doi.org/10.5281/zenodo.8141903" httpUri="https://zenodo.org/record/8141903/files/figure.png" pageId="6" pageNumber="753">Fig. 5G, H</figureCitation>
) reveals its striped pattern and the performed measurements allow estimation of a periodicity measuring about
<quantity id="4CC4F79E3E72FFA9EA40E05A7BC2FABB" box="[1095,1166,1326,1347]" metricMagnitude="-8" metricUnit="m" metricValue="2.4" pageId="6" pageNumber="753" unit="nm" value="24.0">24 nm</quantity>
(
<figureCitation id="130746FE3E72FFA9EA9AE05A7A4EFABB" box="[1181,1282,1325,1348]" captionStart="Figure 5" captionStartId="8.[145,227,1658,1680]" captionTargetBox="[146,1425,197,1628]" captionTargetId="figure-26@8.[145,1425,195,1629]" captionTargetPageId="8" captionText="Figure 5. Structure of Homalocephale calathocercos tendons: A, a colour-scaled topographic image of surface of an individual vascular canal in the tendon (depth profiling); B, reflected light microscopic image of one of the examined vascular canals with lines expressing depth profiles (not to scale); CH, detailed AFM images of one of the fibre bundles (fascicles) demonstrated in lock-in-amplitude (C, E, G) and lock-in-phase (D, F, H) images; I, AFM topographical image presenting fibre bundles and four measuring profiles; J, surface topology of one of the measure profiles (no. 2 in I) suggesting periodicity of about 24 nm expressed in tip displacement (Supporting Information, Data S2)." figureDoi="http://doi.org/10.5281/zenodo.8141903" httpUri="https://zenodo.org/record/8141903/files/figure.png" pageId="6" pageNumber="753">Fig. 5I, J</figureCitation>
; Supporting Information, Data S2).
</paragraph>
<paragraph id="8B835A7B3E72FFA9EDB6E0EA7A45FA4E" blockId="6.[945,1289,1438,1463]" box="[945,1289,1438,1463]" pageId="6" pageNumber="753">
<smallCapsWord id="8D65CCA73E72FFA9EDB6E0EA7B17FA4E" baselines="1457,1457" box="[945,1115,1438,1463]" lowerCaseFontSize="8" mainFontSize="10" normCase="title" normString="Preservation" pageId="6" pageNumber="753">PRESERVATION</smallCapsWord>
<smallCapsWord id="8D65CCA73E72FFA9EA65E0D67B33FA4E" baselines="1457" box="[1122,1151,1442,1462]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="of" pageId="6" pageNumber="753">OF</smallCapsWord>
<smallCapsWord id="8D65CCA73E72FFA9EA81E0D67BF2FA4E" baselines="1457" box="[1158,1214,1442,1462]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="soft" pageId="6" pageNumber="753">SOFT</smallCapsWord>
<smallCapsWord id="8D65CCA73E72FFA9EAC2E0D67A45FA4E" baselines="1457" box="[1221,1289,1442,1462]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="parts" pageId="6" pageNumber="753">PARTS</smallCapsWord>
</paragraph>
<paragraph id="8B835A7B3E72FFA5ED2EE0B37E9CFCFA" blockId="6.[809,1426,1479,1900]" lastBlockId="10.[145,762,197,771]" lastPageId="10" lastPageNumber="757" pageId="6" pageNumber="753">
All fossil tendon samples were demineralized (see Material and methods) to remove the apatite matrix and to assess whether any soft parts were preserved. No fossilized soft parts were obtained from the extract of
<taxonomicName id="4C3C21F83E72FFA9ED42E3367B0BF9AF" box="[837,1095,1602,1623]" class="Reptilia" family="Ankylosauridae" genus="Pinacosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="6" pageNumber="753" phylum="Chordata" rank="species" species="grangeri">
<emphasis id="B94886693E72FFA9ED42E3367B0BF9AF" box="[837,1095,1602,1623]" italics="true" pageId="6" pageNumber="753">Pinacosaurus grangeri</emphasis>
</taxonomicName>
. The demineralization of the tendons of
<taxonomicName id="4C3C21F83E72FFA9EDAEE3147BB1F98D" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[937,1277,1632,1653]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="6" pageNumber="753" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E72FFA9EDAEE3147BB1F98D" box="[937,1277,1632,1653]" italics="true" pageId="6" pageNumber="753">Homalocephale calathocercos</emphasis>
</taxonomicName>
(
<figureCitation id="130746FE3E72FFA9EB0AE3147A2DF98E" box="[1293,1377,1632,1654]" captionStart="Figure 6" captionStartId="9.[163,243,1679,1701]" captionTargetBox="[165,1441,196,1648]" captionTargetId="figure-25@9.[163,1443,195,1650]" captionTargetPageId="9" captionText="Figure 6. Fossilized soft parts released from the demineralized tendons of Homalocephale calathocercos (A, CE) and Edmontosaurus regalis (B, FP). The sample of H. calathocercos (A) and E. regalis (B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of H. calathocercos, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of" figureDoi="http://doi.org/10.5281/zenodo.8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" pageId="6" pageNumber="753">Fig. 6A</figureCitation>
) revealed an extract consisting of individual brown- to orange-coloured tubular structures, as well as a dense network of vascular canals still attached to a translucent layer loosening from the tendon (
<figureCitation id="130746FE3E72FFA9EB15E3AF7AC6F908" box="[1298,1418,1755,1777]" captionStart="Figure 6" captionStartId="9.[163,243,1679,1701]" captionTargetBox="[165,1441,196,1648]" captionTargetId="figure-25@9.[163,1443,195,1650]" captionTargetPageId="9" captionText="Figure 6. Fossilized soft parts released from the demineralized tendons of Homalocephale calathocercos (A, CE) and Edmontosaurus regalis (B, FP). The sample of H. calathocercos (A) and E. regalis (B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of H. calathocercos, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of" figureDoi="http://doi.org/10.5281/zenodo.8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" pageId="6" pageNumber="753">Fig. 6C, D</figureCitation>
; Supporting Information,
<figureCitation id="130746FE3E72FFA9EA51E38E7BE5F8F7" box="[1110,1193,1786,1808]" captionStart="Figure 2" captionStartId="5.[165,243,1702,1724]" captionTargetBox="[165,1445,1033,1672]" captionTargetId="figure-432@5.[163,1445,1031,1673]" captionTargetPageId="5" captionText="Figure 2. Light microscopy and SEM of petrographic thin sections and etched surfaces of fossilized ornithischian tendons of Homalocephale calathocercos: A, B, general view of the cross-sectioned tendon under transmitted normal (A) and polarized (B) light; C, close-up of the middle of the tendon showing a lattice-like pattern of the coarse collagenous fibre bundles under polarized light; D, close-up of secondary osteons with poorly marked cement lines; E, close-up of the periphery of the tendon under normal light; F, longitudinal section of the tendon under polarized light showing the herringbone-like pattern; G, cross-sectioned tendon in the SEM. Green arrows mark primary osteons, yellow arrow points bone cell lacunae, red asterisk indicate secondary osteons." figureDoi="http://doi.org/10.5281/zenodo.8141895" httpUri="https://zenodo.org/record/8141895/files/figure.png" pageId="6" pageNumber="753">Fig. S2</figureCitation>
). Furthermore, the
<taxonomicName id="4C3C21F83E72FFA9ED2EE26C7B79F8D5" authorityName="Lambe" authorityYear="1917" box="[809,1077,1816,1837]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="6" pageNumber="753" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E72FFA9ED2EE26C7B79F8D5" box="[809,1077,1816,1837]" italics="true" pageId="6" pageNumber="753">Edmontosaurus regalis</emphasis>
</taxonomicName>
sample revealed the presence of numerous rust- to brown, dark to translucent, elongated, bifurcated and H-shaped structures (
<figureCitation id="130746FE3E72FFA9EB2BE2227ACDF894" box="[1324,1409,1878,1900]" captionStart="Figure 6" captionStartId="9.[163,243,1679,1701]" captionTargetBox="[165,1441,196,1648]" captionTargetId="figure-25@9.[163,1443,195,1650]" captionTargetPageId="9" captionText="Figure 6. Fossilized soft parts released from the demineralized tendons of Homalocephale calathocercos (A, CE) and Edmontosaurus regalis (B, FP). The sample of H. calathocercos (A) and E. regalis (B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of H. calathocercos, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of" figureDoi="http://doi.org/10.5281/zenodo.8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" pageId="6" pageNumber="753">Fig. 6B</figureCitation>
). Additionally, over a dozen tubular, branched structures (
<figureCitation id="130746FE3E73FFA8EEF4E2607E27F8D1" box="[243,363,1811,1834]" captionStart="Figure 6" captionStartId="9.[163,243,1679,1701]" captionTargetBox="[165,1441,196,1648]" captionTargetId="figure-25@9.[163,1443,195,1650]" captionTargetPageId="9" captionText="Figure 6. Fossilized soft parts released from the demineralized tendons of Homalocephale calathocercos (A, CE) and Edmontosaurus regalis (B, FP). The sample of H. calathocercos (A) and E. regalis (B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of H. calathocercos, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of" figureDoi="http://doi.org/10.5281/zenodo.8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" pageId="7" pageNumber="754">Fig. 6C, D</figureCitation>
) seems to be morphologically consistent with blood vessels or fibril bundle layers lining the vascular canals observed with SEM. Among them, ovate to tent-shaped cell-like structures attached to the surfaces of vessels or bundle layers were found (
<figureCitation id="130746FE3E73FFA8ED43E2467CF1F8B0" box="[836,957,1842,1864]" captionStart="Figure 6" captionStartId="9.[163,243,1679,1701]" captionTargetBox="[165,1441,196,1648]" captionTargetId="figure-25@9.[163,1443,195,1650]" captionTargetPageId="9" captionText="Figure 6. Fossilized soft parts released from the demineralized tendons of Homalocephale calathocercos (A, CE) and Edmontosaurus regalis (B, FP). The sample of H. calathocercos (A) and E. regalis (B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of H. calathocercos, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of" figureDoi="http://doi.org/10.5281/zenodo.8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" pageId="7" pageNumber="754">Fig. 6FK</figureCitation>
). Other cell-like structures, more spindle-shaped, and projecting branching structures (
<figureCitation id="130746FE3E73FFA5EB70E2257F9DFF23" captionStart="Figure 6" captionStartId="9.[163,243,1679,1701]" captionTargetBox="[165,1441,196,1648]" captionTargetId="figure-25@9.[163,1443,195,1650]" captionTargetPageId="9" captionText="Figure 6. Fossilized soft parts released from the demineralized tendons of Homalocephale calathocercos (A, CE) and Edmontosaurus regalis (B, FP). The sample of H. calathocercos (A) and E. regalis (B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of H. calathocercos, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of" figureDoi="http://doi.org/10.5281/zenodo.8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" lastPageId="10" lastPageNumber="757" pageId="7" pageNumber="754">Fig. 6LN</figureCitation>
, black asterisks) were usually observed in isolation (
<figureCitation id="130746FE3E7EFFA5EEE3E5907E14FF01" box="[228,344,228,250]" captionStart="Figure 6" captionStartId="9.[163,243,1679,1701]" captionTargetBox="[165,1441,196,1648]" captionTargetId="figure-25@9.[163,1443,195,1650]" captionTargetPageId="9" captionText="Figure 6. Fossilized soft parts released from the demineralized tendons of Homalocephale calathocercos (A, CE) and Edmontosaurus regalis (B, FP). The sample of H. calathocercos (A) and E. regalis (B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of H. calathocercos, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of" figureDoi="http://doi.org/10.5281/zenodo.8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" pageId="10" pageNumber="757">Fig. 6L, N</figureCitation>
), sometimes attached to the fibrous matrix. The EDS spectra collected from the demineralized parts of the tendons show that their elemental composition is different from the mineral matrix of the tendons. In the case of the external sheath of a partially demineralized tendon of
<taxonomicName id="4C3C21F83E7EFFA5EC28E40A7DBFFE6A" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[559,755,381,403]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7EFFA5EC28E40A7DBFFE6A" box="[559,755,381,403]" italics="true" pageId="10" pageNumber="757">H. calathocercos</emphasis>
</taxonomicName>
, which detached from the tendon, a dense network of vessel-like tubes was observed (
<figureCitation id="130746FE3E7EFFA5EC30E4CE7DFCFE28" box="[567,688,442,464]" captionStart="Figure 6" captionStartId="9.[163,243,1679,1701]" captionTargetBox="[165,1441,196,1648]" captionTargetId="figure-25@9.[163,1443,195,1650]" captionTargetPageId="9" captionText="Figure 6. Fossilized soft parts released from the demineralized tendons of Homalocephale calathocercos (A, CE) and Edmontosaurus regalis (B, FP). The sample of H. calathocercos (A) and E. regalis (B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of H. calathocercos, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of" figureDoi="http://doi.org/10.5281/zenodo.8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" pageId="10" pageNumber="757">Fig. 6C, D</figureCitation>
; compare also: Supporting Information,
<figureCitation id="130746FE3E7EFFA5EC39E4AD7D8AFE17" box="[574,710,473,495]" captionStart="Figure 2" captionStartId="5.[165,243,1702,1724]" captionTargetBox="[165,1445,1033,1672]" captionTargetId="figure-432@5.[163,1445,1031,1673]" captionTargetPageId="5" captionText="Figure 2. Light microscopy and SEM of petrographic thin sections and etched surfaces of fossilized ornithischian tendons of Homalocephale calathocercos: A, B, general view of the cross-sectioned tendon under transmitted normal (A) and polarized (B) light; C, close-up of the middle of the tendon showing a lattice-like pattern of the coarse collagenous fibre bundles under polarized light; D, close-up of secondary osteons with poorly marked cement lines; E, close-up of the periphery of the tendon under normal light; F, longitudinal section of the tendon under polarized light showing the herringbone-like pattern; G, cross-sectioned tendon in the SEM. Green arrows mark primary osteons, yellow arrow points bone cell lacunae, red asterisk indicate secondary osteons." figureDoi="http://doi.org/10.5281/zenodo.8141895" httpUri="https://zenodo.org/record/8141895/files/figure.png" pageId="10" pageNumber="757">Fig. S2A, B</figureCitation>
). In this sample, oxygen, silicon and aluminium dominate (
<figureCitation id="130746FE3E7EFFA5EE9EE7627FA2FDD4" box="[153,238,534,556]" captionStart="Figure 4" captionStartId="7.[162,242,1550,1572]" captionTargetBox="[323,1283,197,1519]" captionTargetId="figure-97@7.[322,1283,196,1520]" captionTargetPageId="7" captionText="Figure 4. SEM images and EDS spectra of fossil and recent tendon samples. AI, fibrous matrix in the vascular canals of: A, B, Edmontosaurus regalis (UAMES 52615); CF, Homalocephale calathocercos (MPC-D 100/1201); G, Pinacosaurus grangeri (ZPAL MgD-II/32); H, I, mineralized tendon of modern turkey (Meleagris gallopaƲo, GIUS-12-3741), note the presence the of fibres both in the vascular canals (white asterisks) and in the bone matrix (black asterisks). JL, EDS spectra of: J, Edmontosaurus regalis (UAMES 52615); K, Homalocephale calathocercos; L, Meleagris gallopaƲo showing calcium, phosphorus and oxygen as dominant components in tendon mineral matrix in fossil and recent tendon samples. Note that carbon signal is omitted in the spectra (see Material and methods)." figureDoi="http://doi.org/10.5281/zenodo.8141899" httpUri="https://zenodo.org/record/8141899/files/figure.png" pageId="10" pageNumber="757">Fig. 4E</figureCitation>
), while remains of phosphates are still present (Supporting Information,
<figureCitation id="130746FE3E7EFFA5EC07E7417D29FDB2" box="[512,613,565,587]" captionStart="Figure 2" captionStartId="5.[165,243,1702,1724]" captionTargetBox="[165,1445,1033,1672]" captionTargetId="figure-432@5.[163,1445,1031,1673]" captionTargetPageId="5" captionText="Figure 2. Light microscopy and SEM of petrographic thin sections and etched surfaces of fossilized ornithischian tendons of Homalocephale calathocercos: A, B, general view of the cross-sectioned tendon under transmitted normal (A) and polarized (B) light; C, close-up of the middle of the tendon showing a lattice-like pattern of the coarse collagenous fibre bundles under polarized light; D, close-up of secondary osteons with poorly marked cement lines; E, close-up of the periphery of the tendon under normal light; F, longitudinal section of the tendon under polarized light showing the herringbone-like pattern; G, cross-sectioned tendon in the SEM. Green arrows mark primary osteons, yellow arrow points bone cell lacunae, red asterisk indicate secondary osteons." figureDoi="http://doi.org/10.5281/zenodo.8141895" httpUri="https://zenodo.org/record/8141895/files/figure.png" pageId="10" pageNumber="757">Fig. S2C</figureCitation>
). The fossilized vascular-like tubular structures with attached cell-like structures (
<figureCitation id="130746FE3E7EFFA5EF7AE7067EBCFD70" box="[381,496,626,648]" captionStart="Figure 6" captionStartId="9.[163,243,1679,1701]" captionTargetBox="[165,1441,196,1648]" captionTargetId="figure-25@9.[163,1443,195,1650]" captionTargetPageId="9" captionText="Figure 6. Fossilized soft parts released from the demineralized tendons of Homalocephale calathocercos (A, CE) and Edmontosaurus regalis (B, FP). The sample of H. calathocercos (A) and E. regalis (B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of H. calathocercos, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of" figureDoi="http://doi.org/10.5281/zenodo.8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" pageId="10" pageNumber="757">Fig. 6FK</figureCitation>
), as well as individual cells (
<figureCitation id="130746FE3E7EFFA5EEDFE7E57E1CFD5F" box="[216,336,657,679]" captionStart="Figure 6" captionStartId="9.[163,243,1679,1701]" captionTargetBox="[165,1441,196,1648]" captionTargetId="figure-25@9.[163,1443,195,1650]" captionTargetPageId="9" captionText="Figure 6. Fossilized soft parts released from the demineralized tendons of Homalocephale calathocercos (A, CE) and Edmontosaurus regalis (B, FP). The sample of H. calathocercos (A) and E. regalis (B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of H. calathocercos, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of" figureDoi="http://doi.org/10.5281/zenodo.8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" pageId="10" pageNumber="757">Fig. 6LN</figureCitation>
) extracted from the samples taken from
<taxonomicName id="4C3C21F83E7EFFA5EED5E7C47E08FD3D" authorityName="Lambe" authorityYear="1917" box="[210,324,688,709]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E7EFFA5EED5E7C47E08FD3D" box="[210,324,688,709]" italics="true" pageId="10" pageNumber="757">E. regalis</emphasis>
</taxonomicName>
and
<taxonomicName id="4C3C21F83E7EFFA5EF84E7C47D0BFD3D" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[387,583,688,709]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7EFFA5EF84E7C47D0BFD3D" box="[387,583,688,709]" italics="true" pageId="10" pageNumber="757">H. calathocercos</emphasis>
</taxonomicName>
, are composed mainly of iron and sulphur with smaller addition of oxygen and silicon (
<figureCitation id="130746FE3E7EFFA5EF76E7997E8DFCFB" box="[369,449,749,771]" captionStart="Figure 6" captionStartId="9.[163,243,1679,1701]" captionTargetBox="[165,1441,196,1648]" captionTargetId="figure-25@9.[163,1443,195,1650]" captionTargetPageId="9" captionText="Figure 6. Fossilized soft parts released from the demineralized tendons of Homalocephale calathocercos (A, CE) and Edmontosaurus regalis (B, FP). The sample of H. calathocercos (A) and E. regalis (B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of H. calathocercos, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of" figureDoi="http://doi.org/10.5281/zenodo.8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" pageId="10" pageNumber="757">Fig. 6P</figureCitation>
).
</paragraph>
<caption id="DF430AF33E73FFA8EEA5E37A7C86F92C" ID-DOI="http://doi.org/10.5281/zenodo.8141899" ID-Zenodo-Dep="8141899" httpUri="https://zenodo.org/record/8141899/files/figure.png" pageId="7" pageNumber="754" startId="7.[162,242,1550,1572]" targetBox="[323,1283,197,1519]" targetPageId="7" targetType="figure">
<paragraph id="8B835A7B3E73FFA8EEA5E37A7C86F92C" blockId="7.[162,1443,1550,1748]" pageId="7" pageNumber="754">
<emphasis id="B94886693E73FFA8EEA5E37A7E40F9DB" bold="true" box="[162,268,1550,1572]" pageId="7" pageNumber="754">Figure 4.</emphasis>
SEM images and EDS spectra of fossil and recent tendon samples. AI, fibrous matrix in the vascular canals of: A, B,
<taxonomicName id="4C3C21F83E73FFA8EEFEE35F7EA2F9B9" authorityName="Lambe" authorityYear="1917" box="[249,494,1579,1601]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="7" pageNumber="754" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E73FFA8EEFEE35F7EA2F9B9" box="[249,494,1579,1601]" italics="true" pageId="7" pageNumber="754">Edmontosaurus regalis</emphasis>
</taxonomicName>
(UAMES 52615); CF,
<taxonomicName id="4C3C21F83E73FFA8ECE3E35F7B54F9B9" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[740,1048,1579,1601]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="7" pageNumber="754" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E73FFA8ECE3E35F7B54F9B9" box="[740,1048,1579,1601]" italics="true" pageId="7" pageNumber="754">Homalocephale calathocercos</emphasis>
</taxonomicName>
(
<emphasis id="B94886693E73FFA8EA21E35F7BAEF9B9" box="[1062,1250,1579,1601]" italics="true" pageId="7" pageNumber="754">MPC-D 100/1201</emphasis>
); G,
<taxonomicName id="4C3C21F83E73FFA8EB14E35F7FB2F9A7" class="Reptilia" family="Ankylosauridae" genus="Pinacosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="7" pageNumber="754" phylum="Chordata" rank="species" species="grangeri">
<emphasis id="B94886693E73FFA8EB14E35F7FB2F9A7" italics="true" pageId="7" pageNumber="754">Pinacosaurus grangeri</emphasis>
</taxonomicName>
(ZPAL MgD-II/32); H, I, mineralized tendon of modern turkey (
<taxonomicName id="4C3C21F83E73FFA8EDB3E33D7BC0F9A7" box="[948,1164,1609,1631]" class="Aves" family="Phasianidae" genus="Meleagris" kingdom="Animalia" order="Galliformes" pageId="7" pageNumber="754" phylum="Chordata" rank="species" species="gallopavo">
<emphasis id="B94886693E73FFA8EDB3E33D7BC0F9A7" box="[948,1164,1609,1631]" italics="true" pageId="7" pageNumber="754">Meleagris gallopavo</emphasis>
</taxonomicName>
, GIUS-12-3741), note the presence the of fibres both in the vascular canals (white asterisks) and in the bone matrix (black asterisks). JL, EDS spectra of: J,
<taxonomicName id="4C3C21F83E73FFA8EF37E3F77D64F961" authorityName="Lambe" authorityYear="1917" box="[304,552,1667,1689]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="7" pageNumber="754" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E73FFA8EF37E3F77D64F961" box="[304,552,1667,1689]" italics="true" pageId="7" pageNumber="754">Edmontosaurus regalis</emphasis>
</taxonomicName>
(UAMES 52615); K,
<taxonomicName id="4C3C21F83E73FFA8ED0DE3F77B0FF961" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[778,1091,1667,1689]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="7" pageNumber="754" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E73FFA8ED0DE3F77B0FF961" box="[778,1091,1667,1689]" italics="true" pageId="7" pageNumber="754">Homalocephale calathocercos</emphasis>
</taxonomicName>
; L,
<taxonomicName id="4C3C21F83E73FFA8EA6BE3F77A0FF961" box="[1132,1347,1667,1689]" class="Aves" family="Phasianidae" genus="Meleagris" kingdom="Animalia" order="Galliformes" pageId="7" pageNumber="754" phylum="Chordata" rank="species" species="gallopavo">
<emphasis id="B94886693E73FFA8EA6BE3F77A0FF961" box="[1132,1347,1667,1689]" italics="true" pageId="7" pageNumber="754">Meleagris gallopavo</emphasis>
</taxonomicName>
showing calcium, phosphorus and oxygen as dominant components in tendon mineral matrix in fossil and recent tendon samples. Note that carbon signal is omitted in the spectra (see Material and methods).
</paragraph>
</caption>
<caption id="DF430AF33E7CFFA7EE96E30E7C8BF8DB" ID-DOI="http://doi.org/10.5281/zenodo.8141903" ID-Zenodo-Dep="8141903" httpUri="https://zenodo.org/record/8141903/files/figure.png" pageId="8" pageNumber="755" startId="8.[145,227,1658,1680]" targetBox="[146,1425,197,1628]" targetPageId="8" targetType="figure">
<paragraph id="8B835A7B3E7CFFA7EE96E30E7C8BF8DB" blockId="8.[145,1425,1658,1827]" pageId="8" pageNumber="755">
<emphasis id="B94886693E7CFFA7EE96E30E7FB2F968" bold="true" box="[145,254,1658,1680]" pageId="8" pageNumber="755">Figure 5.</emphasis>
Structure of
<taxonomicName id="4C3C21F83E7CFFA7EF9EE30F7D97F969" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[409,731,1659,1681]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="8" pageNumber="755" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7CFFA7EF9EE30F7D97F969" box="[409,731,1659,1681]" italics="true" pageId="8" pageNumber="755">Homalocephale calathocercos</emphasis>
</taxonomicName>
tendons: A, a colour-scaled topographic image of surface of an individual vascular canal in the tendon (depth profiling); B, reflected light microscopic image of one of the examined vascular canals with lines expressing depth profiles (not to scale); CH, detailed AFM images of one of the fibre bundles (fascicles) demonstrated in lock-in-amplitude (C, E, G) and lock-in-phase (D, F, H) images; I, AFM topographical image presenting fibre bundles and four measuring profiles; J, surface topology of one of the measure profiles (no. 2 in I) suggesting periodicity of about 24 nm expressed in tip displacement (Supporting Information, Data S2).
</paragraph>
</caption>
<caption id="DF430AF33E7DFFA6EEA4E3FB7AEEF88B" ID-DOI="http://doi.org/10.5281/zenodo.8141905" ID-Zenodo-Dep="8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" pageId="9" pageNumber="756" startId="9.[163,243,1679,1701]" targetBox="[165,1441,196,1648]" targetPageId="9" targetType="figure">
<paragraph id="8B835A7B3E7DFFA6EEA4E3FB7AEEF88B" blockId="9.[163,1443,1679,1907]" pageId="9" pageNumber="756">
<emphasis id="B94886693E7DFFA6EEA4E3FB7E42F95C" bold="true" box="[163,270,1679,1701]" pageId="9" pageNumber="756">Figure 6.</emphasis>
Fossilized soft parts released from the demineralized tendons of
<taxonomicName id="4C3C21F83E7DFFA6EDD0E3E47A5DF95E" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[983,1297,1680,1702]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="9" pageNumber="756" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7DFFA6EDD0E3E47A5DF95E" box="[983,1297,1680,1702]" italics="true" pageId="9" pageNumber="756">Homalocephale calathocercos</emphasis>
</taxonomicName>
(A, CE) and
<taxonomicName id="4C3C21F83E7DFFA6EEA4E3D97ED4F93B" authorityName="Lambe" authorityYear="1917" box="[163,408,1709,1731]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="9" pageNumber="756" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E7DFFA6EEA4E3D97ED4F93B" box="[163,408,1709,1731]" italics="true" pageId="9" pageNumber="756">Edmontosaurus regalis</emphasis>
</taxonomicName>
(B, FP). The sample of
<taxonomicName id="4C3C21F83E7DFFA6EC99E3DA7C05F93B" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[670,841,1709,1731]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="9" pageNumber="756" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7DFFA6EC99E3DA7C05F93B" box="[670,841,1709,1731]" italics="true" pageId="9" pageNumber="756">H. calathocercos</emphasis>
</taxonomicName>
(A) and
<taxonomicName id="4C3C21F83E7DFFA6EDA1E3DA7B46F93B" authorityName="Lambe" authorityYear="1917" box="[934,1034,1709,1731]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="9" pageNumber="756" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E7DFFA6EDA1E3DA7B46F93B" box="[934,1034,1709,1731]" italics="true" pageId="9" pageNumber="756">E. regalis</emphasis>
</taxonomicName>
(B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of
<taxonomicName id="4C3C21F83E7DFFA6EC46E2727DBCF8E3" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[577,752,1797,1819]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="9" pageNumber="756" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7DFFA6EC46E2727DBCF8E3" box="[577,752,1797,1819]" italics="true" pageId="9" pageNumber="756">H. calathocercos</emphasis>
</taxonomicName>
, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of
</paragraph>
</caption>
<paragraph id="8B835A7B3E7EFFA5EF21E64B7D28FCAF" blockId="10.[294,612,831,856]" box="[294,612,831,856]" pageId="10" pageNumber="757">
<smallCapsWord id="8D65CCA73E7EFFA5EF21E64B7EC2FCAF" baselines="850,850" box="[294,398,831,856]" lowerCaseFontSize="8" mainFontSize="10" normCase="title" normString="Organic" pageId="10" pageNumber="757">ORGANIC</smallCapsWord>
<smallCapsWord id="8D65CCA73E7EFFA5EF92E6377EA3FCAF" baselines="850" box="[405,495,835,855]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="matter" pageId="10" pageNumber="757">MATTER</smallCapsWord>
<smallCapsWord id="8D65CCA73E7EFFA5EFF1E6377D28FCAF" baselines="850" box="[502,612,835,855]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="residues" pageId="10" pageNumber="757">RESIDUES</smallCapsWord>
</paragraph>
<paragraph id="8B835A7B3E7EFFA5EE96E61C7E99FB15" blockId="10.[145,762,872,1262]" pageId="10" pageNumber="757">
Total carbon (TC), total organic carbon (TOC) and total inorganic carbon (TIC), as well as total sulphur (TS), contents were measured (see Material and methods) to document the preservation of organic matter in all studied fossil samples. Obtained results demonstrate TOC values equal to 1.28 wt% for
<taxonomicName id="4C3C21F83E7EFFA5EC38E1757E7CFBCD" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7EFFA5EC38E1757E7CFBCD" italics="true" pageId="10" pageNumber="757">Homalocephale calathocercos</emphasis>
</taxonomicName>
, 2.57 wt% for
<taxonomicName id="4C3C21F83E7EFFA5EFE6E1547DBFFBCD" box="[481,755,1056,1077]" class="Reptilia" family="Ankylosauridae" genus="Pinacosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="grangeri">
<emphasis id="B94886693E7EFFA5EFE6E1547DBFFBCD" box="[481,755,1056,1077]" italics="true" pageId="10" pageNumber="757">Pinacosaurus grangeri</emphasis>
</taxonomicName>
, and 2.81 wt% for
<taxonomicName id="4C3C21F83E7EFFA5EF5DE14A7D2FFBAB" authorityName="Lambe" authorityYear="1917" box="[346,611,1086,1107]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E7EFFA5EF5DE14A7D2FFBAB" box="[346,611,1086,1107]" italics="true" pageId="10" pageNumber="757">Edmontosaurus regalis</emphasis>
</taxonomicName>
tendon samples. An elevated level of total sulphur (4.54 wt%) was also reported for the latter. Furthermore, the control sample of sediment associated with
<taxonomicName id="4C3C21F83E7EFFA5EC2BE1EF7DD4FB57" authorityName="Lambe" authorityYear="1917" box="[556,664,1178,1200]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E7EFFA5EC2BE1EF7D72FB48" box="[556,574,1179,1200]" italics="true" pageId="10" pageNumber="757">E</emphasis>
.
<emphasis id="B94886693E7EFFA5EC4CE1EE7DD4FB57" box="[587,664,1178,1199]" italics="true" pageId="10" pageNumber="757">regalis</emphasis>
</taxonomicName>
tendons reveals the highest level of TOC, up to 6 wt% with sulphur content below 0.5 wt%.
</paragraph>
<paragraph id="8B835A7B3E7EFFA5EE98E05E7DA6FABA" blockId="10.[159,746,1322,1347]" box="[159,746,1322,1347]" pageId="10" pageNumber="757">
<smallCapsWord id="8D65CCA73E7EFFA5EE98E05E7E19FABA" baselines="1341,1341" box="[159,341,1322,1347]" lowerCaseFontSize="8" mainFontSize="10" normCase="title" normString="Spectroscopic" pageId="10" pageNumber="757">SPECTROSCOPIC</smallCapsWord>
<smallCapsWord id="8D65CCA73E7EFFA5EF5AE05A7EF7FABA" baselines="1341" box="[349,443,1326,1346]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="studies" pageId="10" pageNumber="757">STUDIES</smallCapsWord>
<smallCapsWord id="8D65CCA73E7EFFA5EFC5E05A7EBDFABA" baselines="1341" box="[450,497,1326,1346]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="and" pageId="10" pageNumber="757">AND</smallCapsWord>
<smallCapsWord id="8D65CCA73E7EFFA5EFFFE05A7D7FFABA" baselines="1341" box="[504,563,1326,1346]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="mass" pageId="10" pageNumber="757">MASS</smallCapsWord>
<smallCapsWord id="8D65CCA73E7EFFA5EC3DE05A7DA6FABA" baselines="1341" box="[570,746,1326,1346]" lowerCaseFontSize="8" mainFontSize="10" normCase="lower" normString="spectrometry" pageId="10" pageNumber="757">SPECTROMETRY</smallCapsWord>
</paragraph>
<paragraph id="8B835A7B3E7EFFA5EE96E0277A5BFB69" blockId="10.[145,761,1362,1599]" lastBlockId="10.[809,1426,197,1599]" pageId="10" pageNumber="757">
FTIR spectroscopic studies, intended mainly to identify organic residues in the fossil samples, were performed only on the selected tendon samples that were never glued or treated with any organicbased materials (e.g. consolidants). Therefore, the
<taxonomicName id="4C3C21F83E7EFFA5EE96E0987EE4F9F9" box="[145,424,1516,1537]" class="Reptilia" family="Ankylosauridae" genus="Pinacosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="grangeri">
<emphasis id="B94886693E7EFFA5EE96E0987EE4F9F9" box="[145,424,1516,1537]" italics="true" pageId="10" pageNumber="757">Pinacosaurus grangeri</emphasis>
</taxonomicName>
tendon sample was not included (Supporting Information, Data S3). A modern-day turkey (
<taxonomicName id="4C3C21F83E7EFFA5EF18E35D7D44F9C6" box="[287,520,1577,1598]" class="Aves" family="Phasianidae" genus="Meleagris" kingdom="Animalia" order="Galliformes" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="gallopavo">
<emphasis id="B94886693E7EFFA5EF18E35D7D44F9C6" box="[287,520,1577,1598]" italics="true" pageId="10" pageNumber="757">Meleagris gallopavo</emphasis>
</taxonomicName>
, GIUS-12-3741) was a control sample. FTIR studies of
<taxonomicName id="4C3C21F83E7EFFA5EAB7E5B27A20FF22" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[1200,1388,197,219]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7EFFA5EAB7E5B27A20FF22" box="[1200,1388,197,219]" italics="true" pageId="10" pageNumber="757">H. calathocercos</emphasis>
</taxonomicName>
,
<taxonomicName id="4C3C21F83E7EFFA5EB7EE5B27C35FF01" authorityName="Lambe" authorityYear="1917" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E7EFFA5EB7EE5B27C35FF01" italics="true" pageId="10" pageNumber="757">E. regalis</emphasis>
</taxonomicName>
and
<taxonomicName id="4C3C21F83E7EFFA5EDB1E5907B03FF01" box="[950,1103,228,249]" class="Aves" family="Phasianidae" genus="Meleagris" kingdom="Animalia" order="Galliformes" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="gallopavo">
<emphasis id="B94886693E7EFFA5EDB1E5907C81FF01" box="[950,973,228,249]" italics="true" pageId="10" pageNumber="757">M</emphasis>
.
<emphasis id="B94886693E7EFFA5EDDAE5907B03FF01" box="[989,1103,228,249]" italics="true" pageId="10" pageNumber="757">gallopavo</emphasis>
</taxonomicName>
show a band arrangement pointing to co-association of various minerals, including phosphate (PO 4)
<superScript id="7C49F7333E7EFFA5EA45E4547B1EFED4" attach="right" box="[1090,1106,288,300]" fontSize="5" pageId="10" pageNumber="757">3</superScript>
, carbonate (CO 3)
<superScript id="7C49F7333E7EFFA5EB1FE4547A64FED4" attach="left" box="[1304,1320,288,300]" fontSize="5" pageId="10" pageNumber="757">2</superScript>
and iron oxide (FeO
<subScript id="17B8583E3E7EFFA5EDAEE43B7CFDFEA3" attach="left" box="[937,945,335,347]" fontSize="5" pageId="10" pageNumber="757">4</subScript>
)
<superScript id="7C49F7333E7EFFA5EDBCE44B7C87FEB3" attach="right" box="[955,971,319,331]" fontSize="5" pageId="10" pageNumber="757">5</superScript>
, as well as silicon dioxide (SiO
<subScript id="17B8583E3E7EFFA5EB44E43B7A07FEA3" attach="left" box="[1347,1355,335,347]" fontSize="5" pageId="10" pageNumber="757">2</subScript>
) moieties, suggesting the presence of carbonate apatite, goethite and silicates (
<figureCitation id="130746FE3E7EFFA5EA39E4097BCEFE6B" box="[1086,1154,381,403]" captionStart="Figure 7" captionStartId="11.[163,242,1382,1404]" captionTargetBox="[163,1443,197,1353]" captionTargetId="figure-171@11.[163,1443,195,1353]" captionTargetPageId="11" captionText="Figure 7. FTIR spectra of studied tendon samples of ornithischian dinosaurs: A, powdered samples of a fossilized tendon of Homalocephale calathocercos; B, powdered samples of the extract obtained after demineralization of H. calathocercos tendon; C, powdered samples of a fossilized tendon of Edmontosaurus regalis; D, powdered samples of the extract obtained after demineralization of E. regalis tendon; E, powdered sample of demineralized tendon of Meleagris gallopaƲo, note that phosphate (PO)3 and carbonate (CO)2 signals are masked by the high input of organic residues; F, amide I region of 4 3 samples extract after demineralization of H. calathocercos as well as (G) E. regalis and (H) M. gallopaƲo ossified tendons." figureDoi="http://doi.org/10.5281/zenodo.8141907" httpUri="https://zenodo.org/record/8141907/files/figure.png" pageId="10" pageNumber="757">Fig. 7</figureCitation>
). The results are thus consistent with the EDS spectra (
<figureCitation id="130746FE3E7EFFA5EAAEE4E87A7AFE49" box="[1193,1334,412,434]" captionStart="Figure 4" captionStartId="7.[162,242,1550,1572]" captionTargetBox="[323,1283,197,1519]" captionTargetId="figure-97@7.[322,1283,196,1520]" captionTargetPageId="7" captionText="Figure 4. SEM images and EDS spectra of fossil and recent tendon samples. AI, fibrous matrix in the vascular canals of: A, B, Edmontosaurus regalis (UAMES 52615); CF, Homalocephale calathocercos (MPC-D 100/1201); G, Pinacosaurus grangeri (ZPAL MgD-II/32); H, I, mineralized tendon of modern turkey (Meleagris gallopaƲo, GIUS-12-3741), note the presence the of fibres both in the vascular canals (white asterisks) and in the bone matrix (black asterisks). JL, EDS spectra of: J, Edmontosaurus regalis (UAMES 52615); K, Homalocephale calathocercos; L, Meleagris gallopaƲo showing calcium, phosphorus and oxygen as dominant components in tendon mineral matrix in fossil and recent tendon samples. Note that carbon signal is omitted in the spectra (see Material and methods)." figureDoi="http://doi.org/10.5281/zenodo.8141899" httpUri="https://zenodo.org/record/8141899/files/figure.png" pageId="10" pageNumber="757">Fig. 4H, L, P</figureCitation>
) for the same samples. The FTIR measurements of demineralized parts of tendon samples from
<taxonomicName id="4C3C21F83E7EFFA5EAD3E4AE7ADCFE16" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[1236,1424,473,495]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7EFFA5EAD3E4AE7ADCFE16" box="[1236,1424,473,495]" italics="true" pageId="10" pageNumber="757">H. calathocercos</emphasis>
</taxonomicName>
and
<taxonomicName id="4C3C21F83E7EFFA5ED5AE48C7C82FDF5" authorityName="Lambe" authorityYear="1917" box="[861,974,504,525]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E7EFFA5ED5AE48C7C82FDF5" box="[861,974,504,525]" italics="true" pageId="10" pageNumber="757">E. regalis</emphasis>
</taxonomicName>
revealed also signals associated with organic residues (
<figureCitation id="130746FE3E7EFFA5EDF9E7627B38FDD4" box="[1022,1140,534,556]" captionStart="Figure 5" captionStartId="8.[145,227,1658,1680]" captionTargetBox="[146,1425,197,1628]" captionTargetId="figure-26@8.[145,1425,195,1629]" captionTargetPageId="8" captionText="Figure 5. Structure of Homalocephale calathocercos tendons: A, a colour-scaled topographic image of surface of an individual vascular canal in the tendon (depth profiling); B, reflected light microscopic image of one of the examined vascular canals with lines expressing depth profiles (not to scale); CH, detailed AFM images of one of the fibre bundles (fascicles) demonstrated in lock-in-amplitude (C, E, G) and lock-in-phase (D, F, H) images; I, AFM topographical image presenting fibre bundles and four measuring profiles; J, surface topology of one of the measure profiles (no. 2 in I) suggesting periodicity of about 24 nm expressed in tip displacement (Supporting Information, Data S2)." figureDoi="http://doi.org/10.5281/zenodo.8141903" httpUri="https://zenodo.org/record/8141903/files/figure.png" pageId="10" pageNumber="757">Fig. 5B, D</figureCitation>
), especially well visible due to several bands in the
<quantity id="4CC4F79E3E7EFFA5EA7CE7417A6AFDB3" box="[1147,1318,565,587]" metricMagnitude="1" metricUnit="m" metricValue="1.675" metricValueMax="1.8" metricValueMin="1.55" pageId="10" pageNumber="757" unit="cm" value="1675.0" valueMax="1800.0" valueMin="1550.0">15501800 cm</quantity>
<superScript id="7C49F7333E7EFFA5EB21E7407A7BFDB8" attach="left" box="[1318,1335,564,576]" fontSize="5" pageId="10" pageNumber="757">1</superScript>
corresponding to the amide I (
<figureCitation id="130746FE3E7EFFA5EA38E7207BE2FD91" box="[1087,1198,596,618]" captionStart="Figure 7" captionStartId="11.[163,242,1382,1404]" captionTargetBox="[163,1443,197,1353]" captionTargetId="figure-171@11.[163,1443,195,1353]" captionTargetPageId="11" captionText="Figure 7. FTIR spectra of studied tendon samples of ornithischian dinosaurs: A, powdered samples of a fossilized tendon of Homalocephale calathocercos; B, powdered samples of the extract obtained after demineralization of H. calathocercos tendon; C, powdered samples of a fossilized tendon of Edmontosaurus regalis; D, powdered samples of the extract obtained after demineralization of E. regalis tendon; E, powdered sample of demineralized tendon of Meleagris gallopaƲo, note that phosphate (PO)3 and carbonate (CO)2 signals are masked by the high input of organic residues; F, amide I region of 4 3 samples extract after demineralization of H. calathocercos as well as (G) E. regalis and (H) M. gallopaƲo ossified tendons." figureDoi="http://doi.org/10.5281/zenodo.8141907" httpUri="https://zenodo.org/record/8141907/files/figure.png" pageId="10" pageNumber="757">Fig. 7F, G</figureCitation>
). A percentage proportion of each component in the amide I band was computed as a ratio of a fractional area of the suitable peak after the band fitting and the sum of the areas of the peaks belonging to the amide I band (
<bibRefCitation id="EFAD278A3E7EFFA5EB32E7BA7CEDFCFB" author="Byler DM &amp; Susi H" pageId="10" pageNumber="757" pagination="469 - 487" refId="ref11729" refString="Byler DM, Susi H. 1986. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25: 469 - 487." type="journal article" year="1986">Byler &amp; Susi, 1986</bibRefCitation>
;
<bibRefCitation id="EFAD278A3E7EFFA5EDA8E7997B96FCFB" author="Jackson M &amp; Mantsch HH" box="[943,1242,749,771]" pageId="10" pageNumber="757" pagination="95 - 120" refId="ref12490" refString="Jackson M, Mantsch HH. 1995. The use and misuse of FTIR spectroscopy in the determination of protein structure. Critical ReVieaes in Biochemistry and Molecular Biology 30: 95 - 120." type="journal article" year="1995">Jackson &amp; Mantsch, 1995</bibRefCitation>
;
<bibRefCitation id="EFAD278A3E7EFFA5EAEFE7997C2DFCD9" author="Litvinov RI &amp; Faizullin DA &amp; Zuev YF &amp; Weisel JW" pageId="10" pageNumber="757" pagination="1020 - 1027" refId="ref12796" refString="Litvinov RI, Faizullin DA, Zuev YF, Weisel JW. 2012. The α- helix to β- sheet transition in stretched and compressed hydrated fibrin clots. Biophysical Journal 103: 1020 - 1027." type="journal article" year="2012">
Litvinov
<emphasis id="B94886693E7EFFA5EB56E79A7AC7FCFA" box="[1361,1419,749,771]" italics="true" pageId="10" pageNumber="757">et al.</emphasis>
, 2012
</bibRefCitation>
). As a result, two intensive bands were observed at 1633 and
<quantity id="4CC4F79E3E7EFFA5EDC6E65E7B69FCB8" box="[961,1061,810,832]" metricMagnitude="1" metricUnit="m" metricValue="1.668" pageId="10" pageNumber="757" unit="cm" value="1668.0">1668 cm</quantity>
<superScript id="7C49F7333E7EFFA5EA21E65E7B7AFCCE" attach="left" box="[1062,1078,810,822]" fontSize="5" pageId="10" pageNumber="757">1</superScript>
with 64 and 36% proportion between β- sheet structures and turns (
<bibRefCitation id="EFAD278A3E7EFFA5EAEDE63D7C2DFC85" author="Litvinov RI &amp; Faizullin DA &amp; Zuev YF &amp; Weisel JW" pageId="10" pageNumber="757" pagination="1020 - 1027" refId="ref12796" refString="Litvinov RI, Faizullin DA, Zuev YF, Weisel JW. 2012. The α- helix to β- sheet transition in stretched and compressed hydrated fibrin clots. Biophysical Journal 103: 1020 - 1027." type="journal article" year="2012">
Litvinov
<emphasis id="B94886693E7EFFA5EB55E63E7AC7FCA6" box="[1362,1419,841,863]" italics="true" pageId="10" pageNumber="757">et al.</emphasis>
, 2012
</bibRefCitation>
) for
<taxonomicName id="4C3C21F83E7EFFA5ED9DE61D7B16FC85" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[922,1114,872,894]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7EFFA5ED9DE61D7B16FC85" box="[922,1114,872,894]" italics="true" pageId="10" pageNumber="757">H. calathocercos</emphasis>
</taxonomicName>
, as well as three bands at 1630, 1663 and
<quantity id="4CC4F79E3E7EFFA5EDEBE6F27B1DFC64" box="[1004,1105,902,924]" metricMagnitude="1" metricUnit="m" metricValue="1.69" pageId="10" pageNumber="757" unit="cm" value="1690.0">1690 cm</quantity>
<superScript id="7C49F7333E7EFFA5EA55E6F27B2EFC6A" attach="left" box="[1106,1122,902,914]" fontSize="5" pageId="10" pageNumber="757">1</superScript>
with 56, 25 and 19% for
<taxonomicName id="4C3C21F83E7EFFA5ED2EE6D27CD0FC42" authorityName="Lambe" authorityYear="1917" box="[809,924,933,955]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E7EFFA5ED2EE6D27CD0FC42" box="[809,924,933,955]" italics="true" pageId="10" pageNumber="757">E. regalis</emphasis>
</taxonomicName>
. Two other marginal bands (at 1594 and
<quantity id="4CC4F79E3E7EFFA5ED2EE6B07CC1FC21" box="[809,909,964,985]" metricMagnitude="1" metricUnit="m" metricValue="1.714" pageId="10" pageNumber="757" unit="cm" value="1714.0">1714 cm</quantity>
<superScript id="7C49F7333E7EFFA5ED89E6B77CD2FC37" attach="left" box="[910,926,963,975]" fontSize="5" pageId="10" pageNumber="757">1</superScript>
) were also detected in both samples and correspond to the lipid signal, including fatty acids. The comparison of the fossilized tendons with the turkey tendon (
<figureCitation id="130746FE3E7EFFA5EDE7E1547B14FBCD" box="[992,1112,1056,1078]" captionStart="Figure 7" captionStartId="11.[163,242,1382,1404]" captionTargetBox="[163,1443,197,1353]" captionTargetId="figure-171@11.[163,1443,195,1353]" captionTargetPageId="11" captionText="Figure 7. FTIR spectra of studied tendon samples of ornithischian dinosaurs: A, powdered samples of a fossilized tendon of Homalocephale calathocercos; B, powdered samples of the extract obtained after demineralization of H. calathocercos tendon; C, powdered samples of a fossilized tendon of Edmontosaurus regalis; D, powdered samples of the extract obtained after demineralization of E. regalis tendon; E, powdered sample of demineralized tendon of Meleagris gallopaƲo, note that phosphate (PO)3 and carbonate (CO)2 signals are masked by the high input of organic residues; F, amide I region of 4 3 samples extract after demineralization of H. calathocercos as well as (G) E. regalis and (H) M. gallopaƲo ossified tendons." figureDoi="http://doi.org/10.5281/zenodo.8141907" httpUri="https://zenodo.org/record/8141907/files/figure.png" pageId="10" pageNumber="757">Fig. 7E, H</figureCitation>
) strongly support the possibility of organic (proteinaceous) preservation in the fossil samples, especially based on the comparison of the amide I fingerprint region (
<figureCitation id="130746FE3E7EFFA5EA93E1087A44FB69" box="[1172,1288,1148,1170]" captionStart="Figure 7" captionStartId="11.[163,242,1382,1404]" captionTargetBox="[163,1443,197,1353]" captionTargetId="figure-171@11.[163,1443,195,1353]" captionTargetPageId="11" captionText="Figure 7. FTIR spectra of studied tendon samples of ornithischian dinosaurs: A, powdered samples of a fossilized tendon of Homalocephale calathocercos; B, powdered samples of the extract obtained after demineralization of H. calathocercos tendon; C, powdered samples of a fossilized tendon of Edmontosaurus regalis; D, powdered samples of the extract obtained after demineralization of E. regalis tendon; E, powdered sample of demineralized tendon of Meleagris gallopaƲo, note that phosphate (PO)3 and carbonate (CO)2 signals are masked by the high input of organic residues; F, amide I region of 4 3 samples extract after demineralization of H. calathocercos as well as (G) E. regalis and (H) M. gallopaƲo ossified tendons." figureDoi="http://doi.org/10.5281/zenodo.8141907" httpUri="https://zenodo.org/record/8141907/files/figure.png" pageId="10" pageNumber="757">Fig. 7FH</figureCitation>
).
</paragraph>
<paragraph id="8B835A7B3E7EFFA5ED46E1EF7BC5F894" blockId="10.[809,1426,197,1599]" lastBlockId="10.[145,1427,1702,1900]" pageId="10" pageNumber="757">
Mass spectra (Supporting Information, Data S4) were collected both from the demineralized sample of
<taxonomicName id="4C3C21F83E7EFFA5ED41E1AC7B48FB15" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[838,1028,1240,1261]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7EFFA5ED41E1AC7B48FB15" box="[838,1028,1240,1261]" italics="true" pageId="10" pageNumber="757">H. calathocercos</emphasis>
</taxonomicName>
and
<taxonomicName id="4C3C21F83E7EFFA5EA38E1AC7BE3FB15" authorityName="Lambe" authorityYear="1917" box="[1087,1199,1240,1261]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="10" pageNumber="757" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E7EFFA5EA38E1AC7BE3FB15" box="[1087,1199,1240,1261]" italics="true" pageId="10" pageNumber="757">E. regalis</emphasis>
</taxonomicName>
tendons across the regions of interest with a mass-to-charge ratio (
<emphasis id="B94886693E7EFFA5EB58E1837A39FAF4" box="[1375,1397,1271,1292]" italics="true" pageId="10" pageNumber="757">m</emphasis>
/
<emphasis id="B94886693E7EFFA5EB7AE1837AC4FAF4" box="[1405,1416,1271,1292]" italics="true" pageId="10" pageNumber="757">z</emphasis>
) range of 1150 Da, the fingerprint region for lower mass amino acid anions (
<bibRefCitation id="EFAD278A3E7EFFA5EA56E0407A7DFAB1" author="Surmik D &amp; Rothschild BM &amp; Pawlicki R" box="[1105,1329,1332,1354]" pageId="10" pageNumber="757" pagination="25" refId="ref13632" refString="Surmik D, Rothschild BM, Pawlicki R. 2017. Unusual intraosseous fossilized soft tissues from the middle triassic nothosaurus bone. The Science of Nature 104: 25." type="journal article" year="2017">
Surmik
<emphasis id="B94886693E7EFFA5EAB6E0407BA7FAB1" box="[1201,1259,1332,1353]" italics="true" pageId="10" pageNumber="757">et al.</emphasis>
, 2017
</bibRefCitation>
). There, various non-organic (Si-containing and Fe-containing), as well as organic (N-containing), species were identified. The detected ions
<collectingCountry id="F32B1AEB3E7EFFA5EA22E0E47B07FA5D" box="[1061,1099,1424,1445]" name="Switzerland" pageId="10" pageNumber="757">CH</collectingCountry>
<subScript id="17B8583E3E7EFFA5EA4CE0EB7B1FFA53" attach="both" box="[1099,1107,1439,1451]" fontSize="5" pageId="10" pageNumber="757">4</subScript>
N
<superScript id="7C49F7333E7EFFA5EA6FE0FB7B3DFA63" attach="left" box="[1128,1137,1423,1435]" fontSize="5" pageId="10" pageNumber="757">+</superScript>
(at
<emphasis id="B94886693E7EFFA5EA9DE0E57BFCFA5E" box="[1178,1200,1425,1446]" italics="true" pageId="10" pageNumber="757">m</emphasis>
/
<emphasis id="B94886693E7EFFA5EAB1E0E57B8DFA5E" box="[1206,1217,1425,1446]" italics="true" pageId="10" pageNumber="757">z</emphasis>
30.03 Da), C
<subScript id="17B8583E3E7EFFA5EB48E0EB7A1BFA53" attach="both" box="[1359,1367,1439,1451]" fontSize="5" pageId="10" pageNumber="757">2</subScript>
H
<subScript id="17B8583E3E7EFFA5EB6BE0EB7A38FA53" attach="both" box="[1388,1396,1439,1451]" fontSize="5" pageId="10" pageNumber="757">3</subScript>
N
<superScript id="7C49F7333E7EFFA5EB8FE0FB7ADDFA63" attach="left" box="[1416,1425,1423,1435]" fontSize="5" pageId="10" pageNumber="757">+</superScript>
(at
<emphasis id="B94886693E7EFFA5ED55E0DB7C24FA3C" box="[850,872,1455,1476]" italics="true" pageId="10" pageNumber="757">m</emphasis>
/
<emphasis id="B94886693E7EFFA5ED68E0DB7C36FA3C" box="[879,890,1455,1476]" italics="true" pageId="10" pageNumber="757">z</emphasis>
41.03 Da), C 2 H 6 N
<superScript id="7C49F7333E7EFFA5EA57E0DA7B15FA42" attach="left" box="[1104,1113,1454,1466]" fontSize="5" pageId="10" pageNumber="757">+</superScript>
(at
<emphasis id="B94886693E7EFFA5EA8DE0DB7BECFA3C" box="[1162,1184,1455,1476]" italics="true" pageId="10" pageNumber="757">m</emphasis>
/
<emphasis id="B94886693E7EFFA5EAA0E0DB7BFEFA3C" box="[1191,1202,1455,1476]" italics="true" pageId="10" pageNumber="757">z</emphasis>
44.05 Da), C 3 H 3 N
<superScript id="7C49F7333E7EFFA5EB8FE0DA7ADDFA42" attach="right" box="[1416,1425,1454,1466]" fontSize="5" pageId="10" pageNumber="757">+</superScript>
(
<emphasis id="B94886693E7EFFA5ED36E0BA7C0BFA1B" box="[817,839,1486,1507]" italics="true" pageId="10" pageNumber="757">m</emphasis>
/
<emphasis id="B94886693E7EFFA5ED48E0BA7C16FA1B" box="[847,858,1486,1507]" italics="true" pageId="10" pageNumber="757">z</emphasis>
53.02 Da), C 3 H 6 N
<superScript id="7C49F7333E7EFFA5EA2BE0B87B79FA20" attach="left" box="[1068,1077,1484,1496]" fontSize="5" pageId="10" pageNumber="757">+</superScript>
(at
<emphasis id="B94886693E7EFFA5EA62E0BA7B37FA1B" box="[1125,1147,1486,1507]" italics="true" pageId="10" pageNumber="757">m</emphasis>
/
<emphasis id="B94886693E7EFFA5EA85E0BA7BC1FA1B" box="[1154,1165,1486,1507]" italics="true" pageId="10" pageNumber="757">z</emphasis>
56.04 Da), C 4 H 6 N
<superScript id="7C49F7333E7EFFA5EB67E0B87A25FA20" attach="left" box="[1376,1385,1484,1496]" fontSize="5" pageId="10" pageNumber="757">+</superScript>
(at
<emphasis id="B94886693E7EFFA5ED2EE0997C73F9FA" box="[809,831,1517,1538]" italics="true" pageId="10" pageNumber="757">m</emphasis>
/
<emphasis id="B94886693E7EFFA5ED41E0997C1DF9FA" box="[838,849,1517,1538]" italics="true" pageId="10" pageNumber="757">z</emphasis>
68.05 Da), C
<subScript id="17B8583E3E7EFFA5EDEDE08F7CBEF9FF" attach="both" box="[1002,1010,1531,1543]" fontSize="5" pageId="10" pageNumber="757">4</subScript>
H
<subScript id="17B8583E3E7EFFA5EA00E08F7B43F9FF" attach="both" box="[1031,1039,1531,1543]" fontSize="5" pageId="10" pageNumber="757">8</subScript>
N
<superScript id="7C49F7333E7EFFA5EA23E09F7B61FA0F" attach="left" box="[1060,1069,1515,1527]" fontSize="5" pageId="10" pageNumber="757">+</superScript>
(at
<emphasis id="B94886693E7EFFA5EA5AE0997B3FF9FA" box="[1117,1139,1517,1538]" italics="true" pageId="10" pageNumber="757">m</emphasis>
/
<emphasis id="B94886693E7EFFA5EA7DE0997BC9F9FA" box="[1146,1157,1517,1538]" italics="true" pageId="10" pageNumber="757">z</emphasis>
70.07 Da), C
<subScript id="17B8583E3E7EFFA5EB19E08F7A6AF9FF" attach="both" box="[1310,1318,1531,1543]" fontSize="5" pageId="10" pageNumber="757">4</subScript>
H
<subScript id="17B8583E3E7EFFA5EB3CE08F7A07F9FF" attach="both" box="[1339,1355,1531,1543]" fontSize="5" pageId="10" pageNumber="757">10</subScript>
N
<superScript id="7C49F7333E7EFFA5EB67E09F7A25FA0F" attach="left" box="[1376,1385,1515,1527]" fontSize="5" pageId="10" pageNumber="757">+</superScript>
(at
<emphasis id="B94886693E7EFFA5ED2EE37F7C73F9D8" box="[809,831,1547,1568]" italics="true" pageId="10" pageNumber="757">m</emphasis>
/
<emphasis id="B94886693E7EFFA5ED41E37F7C1DF9D8" box="[838,849,1547,1568]" italics="true" pageId="10" pageNumber="757">z</emphasis>
72.08 Da) and C 5 H 10 N
<superScript id="7C49F7333E7EFFA5EA5AE37E7B2AF9EE" attach="left" box="[1117,1126,1546,1558]" fontSize="5" pageId="10" pageNumber="757">+</superScript>
(at
<emphasis id="B94886693E7EFFA5EA90E37F7BE1F9D8" box="[1175,1197,1547,1568]" italics="true" pageId="10" pageNumber="757">m</emphasis>
/
<emphasis id="B94886693E7EFFA5EAB3E37F7BF3F9D8" box="[1204,1215,1547,1568]" italics="true" pageId="10" pageNumber="757">z</emphasis>
84.08 Da) are related to amino-acids (
<bibRefCitation id="EFAD278A3E7EFFA5EA37E35D7A54F9C6" author="Surmik D &amp; Rothschild BM &amp; Pawlicki R" box="[1072,1304,1577,1599]" pageId="10" pageNumber="757" pagination="25" refId="ref13632" refString="Surmik D, Rothschild BM, Pawlicki R. 2017. Unusual intraosseous fossilized soft tissues from the middle triassic nothosaurus bone. The Science of Nature 104: 25." type="journal article" year="2017">
Surmik
<emphasis id="B94886693E7EFFA5EA94E35E7B83F9C6" box="[1171,1231,1577,1599]" italics="true" pageId="10" pageNumber="757">et al.</emphasis>
, 2017
</bibRefCitation>
) (see also fibrous matrix (white arrow) and cell-like structures attached to the surface (yellow arrows); H, group of cells-like structures attached to the surface; I, lateral view of a cell-like structures (white arrow) attached to the fibrous surface of the vessel-like structures; J, K, examples of cells on the fibrous surface of vessels; LN, osteocyte-like cells with branching cytoplasmic processes (white arrows) attached to the fibrous matrix (yellow arrow); O, example of isolated vessel-like tubular structure with attached cells (yellow asterisk indicate spot for EDS survey); P, AFM 3D height profile of an individual cell (rectangle in O) documenting the height difference between the cell and the surface of the vessel; the EDS spectrum revealing the elemental composition of the studied cell as iron and sulphur with addition of oxygen and silicon.
</paragraph>
<caption id="DF430AF33E7FFFA4EEA4E0127AD8F9F7" ID-DOI="http://doi.org/10.5281/zenodo.8141907" ID-Zenodo-Dep="8141907" httpUri="https://zenodo.org/record/8141907/files/figure.png" pageId="11" pageNumber="758" startId="11.[163,242,1382,1404]" targetBox="[163,1443,197,1353]" targetPageId="11" targetType="figure">
<paragraph id="8B835A7B3E7FFFA4EEA4E0127AD8F9F7" blockId="11.[163,1443,1382,1551]" pageId="11" pageNumber="758">
<emphasis id="B94886693E7FFFA4EEA4E0127E47FA84" bold="true" box="[163,267,1382,1404]" pageId="11" pageNumber="758">Figure 7.</emphasis>
FTIR spectra of studied tendon samples of ornithischian dinosaurs: A, powdered samples of a fossilized tendon of
<taxonomicName id="4C3C21F83E7FFFA4EEBAE0F07EB8FA62" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[189,500,1412,1434]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="11" pageNumber="758" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7FFFA4EEBAE0F07EB8FA62" box="[189,500,1412,1434]" italics="true" pageId="11" pageNumber="758">Homalocephale calathocercos</emphasis>
</taxonomicName>
; B, powdered samples of the extract obtained after demineralization of
<taxonomicName id="4C3C21F83E7FFFA4EAF1E0F17AEEFA62" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[1270,1442,1412,1434]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="11" pageNumber="758" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7FFFA4EAF1E0F17A45FA62" box="[1270,1289,1413,1434]" italics="true" pageId="11" pageNumber="758">H</emphasis>
.
<emphasis id="B94886693E7FFFA4EB12E0F07AEEFA62" box="[1301,1442,1412,1434]" italics="true" pageId="11" pageNumber="758">calathocercos</emphasis>
</taxonomicName>
tendon; C, powdered samples of a fossilized tendon of
<taxonomicName id="4C3C21F83E7FFFA4ECD3E0D57C8AFA4F" authorityName="Lambe" authorityYear="1917" box="[724,966,1441,1463]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="11" pageNumber="758" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E7FFFA4ECD3E0D57C8AFA4F" box="[724,966,1441,1463]" italics="true" pageId="11" pageNumber="758">Edmontosaurus regalis</emphasis>
</taxonomicName>
; D, powdered samples of the extract obtained after demineralization of
<taxonomicName id="4C3C21F83E7FFFA4EFA8E0CB7D5EFA2D" authorityName="Lambe" authorityYear="1917" box="[431,530,1471,1493]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="11" pageNumber="758" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E7FFFA4EFA8E0CB7EF3FA2C" box="[431,447,1471,1492]" italics="true" pageId="11" pageNumber="758">E</emphasis>
.
<emphasis id="B94886693E7FFFA4EFCCE0CB7D5EFA2D" box="[459,530,1471,1493]" italics="true" pageId="11" pageNumber="758">regalis</emphasis>
</taxonomicName>
tendon; E, powdered sample of demineralized tendon of
<taxonomicName id="4C3C21F83E7FFFA4EA62E0CB7A7AFA2D" box="[1125,1334,1471,1493]" class="Aves" family="Phasianidae" genus="Meleagris" kingdom="Animalia" order="Galliformes" pageId="11" pageNumber="758" phylum="Chordata" rank="species" species="gallopavo">
<emphasis id="B94886693E7FFFA4EA62E0CB7A7AFA2D" box="[1125,1334,1471,1493]" italics="true" pageId="11" pageNumber="758">Meleagris gallopavo</emphasis>
</taxonomicName>
, note that phosphate (PO)
<superScript id="7C49F7333E7FFFA4EF55E0AF7E2DFA10" attach="left" box="[338,353,1499,1512]" fontSize="5" pageId="11" pageNumber="758">3</superScript>
and carbonate (CO)
<superScript id="7C49F7333E7FFFA4EC43E0AF7D1FFA10" attach="left" box="[580,595,1499,1512]" fontSize="5" pageId="11" pageNumber="758">2</superScript>
signals are masked by the high input of organic residues; F, amide I region of
<subScript id="17B8583E3E7FFFA4EF44E09E7D70FA0F" attach="right" box="[323,572,1514,1527]" fontSize="5" pageId="11" pageNumber="758">4 3</subScript>
samples extract after demineralization of
<taxonomicName id="4C3C21F83E7FFFA4EC5EE08E7C4EF9F7" authorityName="Maryanska &amp; Osmolska" authorityYear="1974" box="[601,770,1529,1551]" class="Reptilia" family="Homalocephalidae" genus="Homalocephale" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="11" pageNumber="758" phylum="Chordata" rank="species" species="calathocercos">
<emphasis id="B94886693E7FFFA4EC5EE08E7D20F9F7" box="[601,620,1530,1551]" italics="true" pageId="11" pageNumber="758">H</emphasis>
.
<emphasis id="B94886693E7FFFA4EC7FE08D7C4EF9F7" box="[632,770,1529,1551]" italics="true" pageId="11" pageNumber="758">calathocercos</emphasis>
</taxonomicName>
as well as (G)
<taxonomicName id="4C3C21F83E7FFFA4ED9BE08E7CB2F9F7" authorityName="Lambe" authorityYear="1917" box="[924,1022,1529,1551]" class="Reptilia" family="Hadrosauridae" genus="Edmontosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ornithischia" pageId="11" pageNumber="758" phylum="Chordata" rank="species" species="regalis">
<emphasis id="B94886693E7FFFA4ED9BE08E7CE0F9F7" box="[924,940,1530,1551]" italics="true" pageId="11" pageNumber="758">E</emphasis>
.
<emphasis id="B94886693E7FFFA4EDBFE08D7CB2F9F7" box="[952,1022,1529,1551]" italics="true" pageId="11" pageNumber="758">regalis</emphasis>
</taxonomicName>
and (H)
<taxonomicName id="4C3C21F83E7FFFA4EA5CE08E7BADF9F7" box="[1115,1249,1529,1551]" class="Aves" family="Phasianidae" genus="Meleagris" kingdom="Animalia" order="Galliformes" pageId="11" pageNumber="758" phylum="Chordata" rank="species" species="gallopavo">
<emphasis id="B94886693E7FFFA4EA5CE08E7B3CF9F7" box="[1115,1136,1530,1551]" italics="true" pageId="11" pageNumber="758">M</emphasis>
.
<emphasis id="B94886693E7FFFA4EA7BE08D7BADF9F7" box="[1148,1249,1529,1551]" italics="true" pageId="11" pageNumber="758">gallopavo</emphasis>
</taxonomicName>
ossified tendons.
</paragraph>
</caption>
<paragraph id="8B835A7B3E7FFFA4EEA4E3347D96F94A" blockId="11.[163,779,1600,1714]" pageId="11" pageNumber="758">
Supporting Information, Data S4). The presence of the Si- and Fe-containing species correlates with the results of the EDS surveys (
<figureCitation id="130746FE3E7FFFA4EFCBE30A7D77F96B" box="[460,571,1662,1684]" captionStart="Figure 6" captionStartId="9.[163,243,1679,1701]" captionTargetBox="[165,1441,196,1648]" captionTargetId="figure-25@9.[163,1443,195,1650]" captionTargetPageId="9" captionText="Figure 6. Fossilized soft parts released from the demineralized tendons of Homalocephale calathocercos (A, CE) and Edmontosaurus regalis (B, FP). The sample of H. calathocercos (A) and E. regalis (B) during demineralization. Note the presence of tubular structures released from the mineral phosphate matrix of the fossilized tendons. Dense network of blood vessels forming a mesh-like structure with thicker and thinner vessel-like tubes adjacent to the surface sheath of the partially demineralized tendon of H. calathocercos, visible in: C, transmitted light; D, SEM image (yellow asterisk indicate spot for EDS survey); E, EDS spectrum collected from the blood vessel-like structures reveals the presence of alumino-silicates (Al, Si, O) as the main components; F, tubular structure resembling blood vessels released during the demineralization process; G, the surface of the tubular structure released after demineralization, note the presence of" figureDoi="http://doi.org/10.5281/zenodo.8141905" httpUri="https://zenodo.org/record/8141905/files/figure.png" pageId="11" pageNumber="758">Fig. 6E, P</figureCitation>
) and confirms the mineralogical composition of the studied samples.
</paragraph>
</subSubSection>
</treatment>
</document>