222 lines
22 KiB
XML
222 lines
22 KiB
XML
<document ID-DOI="10.1099/ijsem.0.004644" ID-GBIF-Dataset="6b321035-fd9c-4b25-a3b6-79a05a309793" ID-ISSN="1466-5034" ID-PMC="PMC8346765" ID-PubMed="33533708" ID-Zenodo-Dep="6048739" checkinTime="1644597549702" checkinUser="felipe" docAuthor="Li, Fuyong, Cheng, Christopher C., Zheng, Jinshui, Liu, Junhong, Quevedo, Rodrigo Margain, Li, Junjie, Roos, Stefan, Gänzle, Michael G. & Walter, Jens" docDate="2021" docId="CD6F3526FFCA2529443BFCC2FC752197" docLanguage="en" docName="IntJSystEvolMicrobiol.71.2.004644.pdf" docOrigin="International Journal of Systematic and Evolutionary Microbiology (004644) 71 (2)" docSource="http://dx.doi.org/10.1099/ijsem.0.004644" docStyle="DocumentStyle:C64F0A4F4C66F6FC2AD4ED89351C6242.1:IntJSystEvolMicrobiol.2017-.journal_article" docStyleId="C64F0A4F4C66F6FC2AD4ED89351C6242" docStyleName="IntJSystEvolMicrobiol.2017-.journal_article" docStyleVersion="1" docTitle="Limosilactobacillus reuteri SUBSP. PORCINUS 2021, SUBSP. NOV." docType="treatment" docVersion="7" lastPageNumber="18" masterDocId="31564D5EFFDB25384707FFD3FFC62635" masterDocTitle="Limosilactobacillus balticus sp. nov., Limosilactobacillus agrestis sp. nov., Limosilactobacillus albertensis sp. nov., Limosilactobacillus rudii sp. nov. and Limosilactobacillus fastidiosus sp. nov., five novel Limosilactobacillus species isolated from the vertebrate gastrointestinal tract, and proposal of six subspecies of Limosilactobacillus reuteri adapted to the gastrointestinal tract of specific vertebrate hosts" masterLastPageNumber="21" masterPageNumber="1" pageNumber="18" updateTime="1668130802247" updateUser="ExternalLinkService">
|
||
<mods:mods xmlns:mods="http://www.loc.gov/mods/v3">
|
||
<mods:titleInfo>
|
||
<mods:title>Limosilactobacillus balticus sp. nov., Limosilactobacillus agrestis sp. nov., Limosilactobacillus albertensis sp. nov., Limosilactobacillus rudii sp. nov. and Limosilactobacillus fastidiosus sp. nov., five novel Limosilactobacillus species isolated from the vertebrate gastrointestinal tract, and proposal of six subspecies of Limosilactobacillus reuteri adapted to the gastrointestinal tract of specific vertebrate hosts</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:name type="personal">
|
||
<mods:role>
|
||
<mods:roleTerm>Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart>Li, Fuyong</mods:namePart>
|
||
</mods:name>
|
||
<mods:name type="personal">
|
||
<mods:role>
|
||
<mods:roleTerm>Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart>Cheng, Christopher C.</mods:namePart>
|
||
</mods:name>
|
||
<mods:name type="personal">
|
||
<mods:role>
|
||
<mods:roleTerm>Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart>Zheng, Jinshui</mods:namePart>
|
||
</mods:name>
|
||
<mods:name type="personal">
|
||
<mods:role>
|
||
<mods:roleTerm>Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart>Liu, Junhong</mods:namePart>
|
||
</mods:name>
|
||
<mods:name type="personal">
|
||
<mods:role>
|
||
<mods:roleTerm>Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart>Quevedo, Rodrigo Margain</mods:namePart>
|
||
</mods:name>
|
||
<mods:name type="personal">
|
||
<mods:role>
|
||
<mods:roleTerm>Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart>Li, Junjie</mods:namePart>
|
||
</mods:name>
|
||
<mods:name type="personal">
|
||
<mods:role>
|
||
<mods:roleTerm>Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart>Roos, Stefan</mods:namePart>
|
||
</mods:name>
|
||
<mods:name type="personal">
|
||
<mods:role>
|
||
<mods:roleTerm>Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart>Gänzle, Michael G.</mods:namePart>
|
||
</mods:name>
|
||
<mods:name type="personal">
|
||
<mods:role>
|
||
<mods:roleTerm>Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart>Walter, Jens</mods:namePart>
|
||
</mods:name>
|
||
<mods:typeOfResource>text</mods:typeOfResource>
|
||
<mods:relatedItem type="host">
|
||
<mods:titleInfo>
|
||
<mods:title>International Journal of Systematic and Evolutionary Microbiology</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:part>
|
||
<mods:date>2021</mods:date>
|
||
<mods:detail type="series">
|
||
<mods:title>004644</mods:title>
|
||
</mods:detail>
|
||
<mods:detail type="pubDate">
|
||
<mods:number>2021-02-01</mods:number>
|
||
</mods:detail>
|
||
<mods:detail type="volume">
|
||
<mods:number>71</mods:number>
|
||
</mods:detail>
|
||
<mods:detail type="issue">
|
||
<mods:number>2</mods:number>
|
||
</mods:detail>
|
||
<mods:extent unit="page">
|
||
<mods:start>1</mods:start>
|
||
<mods:end>21</mods:end>
|
||
</mods:extent>
|
||
</mods:part>
|
||
</mods:relatedItem>
|
||
<mods:location>
|
||
<mods:url>http://dx.doi.org/10.1099/ijsem.0.004644</mods:url>
|
||
</mods:location>
|
||
<mods:classification>journal article</mods:classification>
|
||
<mods:identifier type="DOI">10.1099/ijsem.0.004644</mods:identifier>
|
||
<mods:identifier type="GBIF-Dataset">6b321035-fd9c-4b25-a3b6-79a05a309793</mods:identifier>
|
||
<mods:identifier type="ISSN">1466-5034</mods:identifier>
|
||
<mods:identifier type="PMC">PMC8346765</mods:identifier>
|
||
<mods:identifier type="PubMed">33533708</mods:identifier>
|
||
<mods:identifier type="Zenodo-Dep">6048739</mods:identifier>
|
||
</mods:mods>
|
||
<treatment ID-DOI="http://doi.org/10.5281/zenodo.6310187" ID-GBIF-Taxon="193366148" ID-Zenodo-Dep="6310187" LSID="urn:lsid:plazi:treatment:CD6F3526FFCA2529443BFCC2FC752197" httpUri="http://treatment.plazi.org/id/CD6F3526FFCA2529443BFCC2FC752197" lastPageNumber="18" pageId="17" pageNumber="18">
|
||
<subSubSection pageId="17" pageNumber="18" type="nomenclature">
|
||
<paragraph blockId="17.[826,1473,785,1954]" pageId="17" pageNumber="18">
|
||
<heading allCaps="true" bold="true" fontSize="12" level="2" pageId="17" pageNumber="18" reason="3">
|
||
<emphasis bold="true" pageId="17" pageNumber="18">
|
||
DESCRIPTION OF
|
||
<taxonomicName authority="SUBSP. PORCINUS" authorityName="SUBSP. PORCINUS" authorityYear="2021" class="Bacilli" family="Lactobacillaceae" genus="Limosilactobacillus" higherTaxonomySource="GBIF" kingdom="Bacteria" order="Lactobacillales" pageId="17" pageNumber="18" phylum="Firmicutes" rank="species" species="reuteri" status="SUBSP. NOV.">
|
||
<emphasis bold="true" italics="true" pageId="17" pageNumber="18">LIMOSILACTOBACILLUS REUTERI</emphasis>
|
||
SUBSP.
|
||
<emphasis bold="true" box="[1067,1211,823,852]" italics="true" pageId="17" pageNumber="18">PORCINUS</emphasis>
|
||
</taxonomicName>
|
||
<taxonomicNameLabel box="[1219,1395,823,852]" pageId="17" pageNumber="18" rank="subSpecies">SUBSP. NOV.</taxonomicNameLabel>
|
||
</emphasis>
|
||
</heading>
|
||
</paragraph>
|
||
</subSubSection>
|
||
<subSubSection pageId="17" pageNumber="18" type="etymology">
|
||
<paragraph blockId="17.[826,1473,785,1954]" pageId="17" pageNumber="18">
|
||
<taxonomicName authorityName="Li & Cheng & Zheng & Liu & Quevedo & Li & Roos & Gänzle & Walter" authorityYear="2021" box="[828,1298,866,890]" class="Bacilli" family="Lactobacillaceae" genus="Limosilactobacillus" higherTaxonomySource="GBIF" kingdom="Bacteria" order="Lactobacillales" pageId="17" pageNumber="18" phylum="Firmicutes" rank="subSpecies" species="reuteri" subSpecies="porcinus">
|
||
<emphasis box="[828,1114,866,890]" italics="true" pageId="17" pageNumber="18">Limosilactobacillus reuteri</emphasis>
|
||
subsp.
|
||
<emphasis box="[1208,1298,866,889]" italics="true" pageId="17" pageNumber="18">porcinus</emphasis>
|
||
</taxonomicName>
|
||
(por.ci′ nus. L. masc. adj.
|
||
<taxonomicName authority="Li & Cheng & Zheng & Liu & Quevedo & Li & Roos & Gänzle & Walter, 2021" authorityName="Li & Cheng & Zheng & Liu & Quevedo & Li & Roos & Gänzle & Walter" authorityYear="2021" box="[943,1032,898,921]" pageId="17" pageNumber="18" rank="subSpecies" status="SUBSP. NOV." subSpecies="Porcinus">
|
||
<emphasis box="[943,1032,898,921]" italics="true" pageId="17" pageNumber="18">porcinus</emphasis>
|
||
</taxonomicName>
|
||
of swine, referring to the host origin of most strains of this subspecies being swine).
|
||
</paragraph>
|
||
</subSubSection>
|
||
<subSubSection pageId="17" pageNumber="18" type="reference_group">
|
||
<paragraph blockId="17.[826,1473,785,1954]" pageId="17" pageNumber="18">
|
||
<taxonomicName authorityName="SUBSP. PORCINUS" authorityYear="2021" box="[828,934,977,1000]" class="Bacilli" family="Lactobacillaceae" genus="Limosilactobacillus" higherTaxonomySource="GBIF" kingdom="Bacteria" order="Lactobacillales" pageId="17" pageNumber="18" phylum="Firmicutes" rank="species" species="reuteri">
|
||
<emphasis box="[828,934,977,1000]" italics="true" pageId="17" pageNumber="18">L. reuteri</emphasis>
|
||
</taxonomicName>
|
||
strains clustered in lineage V (
|
||
<figureCitation box="[1304,1370,976,1000]" captionStart="Fig" captionStartId="11.[185,216,1007,1026]" captionTargetBox="[227,1361,181,954]" captionTargetId="figure-462@11.[227,1361,181,954]" captionTargetPageId="11" captionText="Fig. 3. A maximum-likelihood phylogenetic tree reconstructed using core genes (n=100) identified from whole-genome sequences, showing the evolutionary relationships among six L. reuteri subspecies.The tree was reconstructed using 33 L. reuteri genomes available in public databases (n=6 for L. reuteri subsp. kinnaridis, n=2 for L. reuteri subsp. porcinus, n=5 for L. reuteri subsp. murium, n=10 for L. reuteri subsp. reuteri, n=5 for L. reuteri subsp. suis and n=5 for L. reuteri subsp. rodentium) and L. balticus BG-AF3-AT was used as an outgroup. Further information on the involved genome sequences is listed in Table S1. The tree was inferred based on the GTR+G model with 1000 bootstrap replicates and only bootstrap values above 60% are shown. The tree was drawn with iTOL [54]." figureDoi="http://doi.org/10.5281/zenodo.6048749" httpUri="https://zenodo.org/record/6048749/files/figure.png" pageId="17" pageNumber="18">Fig. 3</figureCitation>
|
||
) belong to
|
||
<taxonomicName authorityName="Li & Cheng & Zheng & Liu & Quevedo & Li & Roos & Gänzle & Walter" authorityYear="2021" box="[859,1140,1008,1032]" class="Bacilli" family="Lactobacillaceae" genus="Limosilactobacillus" higherTaxonomySource="GBIF" kingdom="Bacteria" order="Lactobacillales" pageId="17" pageNumber="18" phylum="Firmicutes" rank="subSpecies" species="reuteri" subSpecies="porcinus">
|
||
<emphasis box="[859,962,1009,1032]" italics="true" pageId="17" pageNumber="18">L. reuteri</emphasis>
|
||
subsp.
|
||
<emphasis box="[1048,1140,1009,1032]" italics="true" pageId="17" pageNumber="18">porcinus</emphasis>
|
||
</taxonomicName>
|
||
and they were isolated from pigs [
|
||
<bibRefCitation author="Duar RM & Frese SA & Lin XB & Fernando SC & Burkey TE" box="[888,904,1040,1064]" pageId="17" pageNumber="18" refId="ref15514" refString="5. Duar RM, Frese SA, Lin XB, Fernando SC, Burkey TE et al. Experimental evaluation of host adaptation of Lactobacillus reuteri to different vertebrate species. Appl Environ Microbiol 2017; 83: e 00132 - 17." type="journal volume" year="2017">5</bibRefCitation>
|
||
,
|
||
<bibRefCitation author="Oh PL & Benson AK & Peterson DA & Patil PB & Moriyama EN" box="[916,933,1040,1063]" pageId="17" pageNumber="18" pagination="377 - 387" refId="ref15599" refString="7. Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN et al. Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. Isme J 2010; 4: 377 - 387." type="journal article" year="2010">7</bibRefCitation>
|
||
]. Strains (3c6
|
||
<superScript attach="left" box="[1084,1094,1038,1052]" fontSize="6" pageId="17" pageNumber="18">T</superScript>
|
||
and 20-2) of this subspecies have an ANI value of 99.1% with each other and ANI values of 93.8–96.6% with other
|
||
<taxonomicName authorityName="SUBSP. PORCINUS" authorityYear="2021" box="[1144,1253,1104,1127]" class="Bacilli" family="Lactobacillaceae" genus="Limosilactobacillus" higherTaxonomySource="GBIF" kingdom="Bacteria" order="Lactobacillales" pageId="17" pageNumber="18" phylum="Firmicutes" rank="species" species="reuteri">
|
||
<emphasis box="[1144,1253,1104,1127]" italics="true" pageId="17" pageNumber="18">L. reuteri</emphasis>
|
||
</taxonomicName>
|
||
strains belonging to different subspecies (
|
||
<figureCitation box="[1108,1174,1135,1159]" captionStart="Fig" captionStartId="12.[121,152,788,807]" captionTargetBox="[121,760,181,735]" captionTargetId="figure-792@12.[121,760,181,735]" captionTargetPageId="12" captionText="Fig. 4. Pairwise average nucleotide identity values (ANI; %) of genome sequences belonging to the same or different L. reuteri subspecies. ANI values within the same subspecies and between different subspecies were calculated for 33 L. reuteri genomes available in public databases (n=6 for L. reuteri subsp. kinnaridis, n=2 for L. reuteri subsp. porcinus, n=5 for L. reuteri subsp.murium, n=10for L. reuteri subsp.reuteri, n=5 for L. reuteri subsp. suis and n=5 for L. reuteri subsp. rodentium). Further information on the involved genome sequences is listed in Table S1." figureDoi="http://doi.org/10.5281/zenodo.6048753" httpUri="https://zenodo.org/record/6048753/files/figure.png" pageId="17" pageNumber="18">Fig. 4</figureCitation>
|
||
). Acid is produced from D-ribose, D-galactose, D-glucose, maltose, lactose, melibiose, sucrose, raffinose and potassium gluconate; acid production from methyl-α- D-glucopyranoside is strain-specific; acid is not produced from L-arabinose, D-xylose, D-fructose, D-mannose, aesculin, glycerol, erythritol, D-arabinose,L-xylose,D-adonitol, methyl
|
||
<emphasis box="[1417,1430,1326,1350]" italics="true" pageId="17" pageNumber="18">β</emphasis>
|
||
-Dxylopyranoside, L-sorbose,L-rhamnose, dulcitol, inositol, D-mannitol, D-sorbitol, methyl α- D-mannopyranoside,
|
||
<emphasis box="[828,847,1422,1445]" italics="true" pageId="17" pageNumber="18">N</emphasis>
|
||
-acetylglucosamine, amygdalin, arbutin, salicin, cellobiose, trehalose, inulin, melezitose, starch, glycogen, xylitol, gentiobiose, turanose, D-lyxose, D-tagatose, D-fucose, L-fucose,D-arabitol,L-arabitol, potassium 2-ketogluconate or potassium 5-ketogluconate. Phylogenetic analyses based on the core genes identified in this study (
|
||
<figureCitation box="[1392,1457,1581,1605]" captionStart="Fig" captionStartId="11.[185,216,1007,1026]" captionTargetBox="[227,1361,181,954]" captionTargetId="figure-462@11.[227,1361,181,954]" captionTargetPageId="11" captionText="Fig. 3. A maximum-likelihood phylogenetic tree reconstructed using core genes (n=100) identified from whole-genome sequences, showing the evolutionary relationships among six L. reuteri subspecies.The tree was reconstructed using 33 L. reuteri genomes available in public databases (n=6 for L. reuteri subsp. kinnaridis, n=2 for L. reuteri subsp. porcinus, n=5 for L. reuteri subsp. murium, n=10 for L. reuteri subsp. reuteri, n=5 for L. reuteri subsp. suis and n=5 for L. reuteri subsp. rodentium) and L. balticus BG-AF3-AT was used as an outgroup. Further information on the involved genome sequences is listed in Table S1. The tree was inferred based on the GTR+G model with 1000 bootstrap replicates and only bootstrap values above 60% are shown. The tree was drawn with iTOL [54]." figureDoi="http://doi.org/10.5281/zenodo.6048749" httpUri="https://zenodo.org/record/6048749/files/figure.png" pageId="17" pageNumber="18">Fig. 3</figureCitation>
|
||
) and previous studies [
|
||
<bibRefCitation author="Duar RM & Frese SA & Lin XB & Fernando SC & Burkey TE" box="[1075,1091,1612,1636]" pageId="17" pageNumber="18" refId="ref15514" refString="5. Duar RM, Frese SA, Lin XB, Fernando SC, Burkey TE et al. Experimental evaluation of host adaptation of Lactobacillus reuteri to different vertebrate species. Appl Environ Microbiol 2017; 83: e 00132 - 17." type="journal volume" year="2017">5</bibRefCitation>
|
||
,
|
||
<bibRefCitation author="Yu J & Zhao J & Song Y & Zhang J & Yu Z" box="[1104,1132,1613,1637]" pageId="17" pageNumber="18" pagination="1151" refId="ref17050" refString="43. Yu J, Zhao J, Song Y, Zhang J, Yu Z et al. Comparative genomics of the herbivore gut symbiont Lactobacillus reuteri reveals genetic diversity and lifestyle adaptation. Front Microbiol 2018; 9: 1151." type="journal article" year="2018">43</bibRefCitation>
|
||
,
|
||
<bibRefCitation author="Wegmann U & MacKenzie DA & Zheng J & Goesmann A & Roos S" box="[1145,1176,1612,1636]" pageId="17" pageNumber="18" pagination="1023" refId="ref17183" refString="46. Wegmann U, MacKenzie DA, Zheng J, Goesmann A, Roos S et al. The pan-genome of Lactobacillus reuteri strains originating from the pig gastrointestinal tract. BMC Genomics 2015; 16: 1023." type="journal article" year="2015">46</bibRefCitation>
|
||
], AFLP and MLSA (using concatenated sequences of
|
||
<emphasis box="[1129,1164,1644,1668]" italics="true" pageId="17" pageNumber="18">ddl</emphasis>
|
||
,
|
||
<emphasis box="[1178,1212,1644,1668]" italics="true" pageId="17" pageNumber="18">pkt</emphasis>
|
||
,
|
||
<emphasis box="[1226,1271,1644,1668]" italics="true" pageId="17" pageNumber="18">leuS</emphasis>
|
||
,
|
||
<emphasis box="[1286,1337,1645,1668]" italics="true" pageId="17" pageNumber="18">gyrB</emphasis>
|
||
,
|
||
<emphasis box="[1350,1397,1644,1668]" italics="true" pageId="17" pageNumber="18">dltA</emphasis>
|
||
,
|
||
<emphasis box="[1411,1466,1645,1668]" italics="true" pageId="17" pageNumber="18">rpoA</emphasis>
|
||
and
|
||
<emphasis box="[877,926,1676,1699]" italics="true" pageId="17" pageNumber="18">recA</emphasis>
|
||
genes) [
|
||
<bibRefCitation author="Oh PL & Benson AK & Peterson DA & Patil PB & Moriyama EN" box="[1023,1039,1677,1700]" pageId="17" pageNumber="18" pagination="377 - 387" refId="ref15599" refString="7. Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN et al. Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. Isme J 2010; 4: 377 - 387." type="journal article" year="2010">7</bibRefCitation>
|
||
] indicate that strains clustered in this lineage are pig-specific. Both 3c6
|
||
<superScript attach="left" box="[1210,1220,1707,1721]" fontSize="6" pageId="17" pageNumber="18">T</superScript>
|
||
and 20-2 possess the
|
||
<emphasis box="[828,1011,1740,1764]" italics="true" pageId="17" pageNumber="18">pdu-cbi-cob-hem</emphasis>
|
||
cluster (
|
||
<emphasis box="[1105,1146,1740,1764]" italics="true" pageId="17" pageNumber="18">pdu</emphasis>
|
||
cluster) [
|
||
<bibRefCitation author="Duar RM & Frese SA & Lin XB & Fernando SC & Burkey TE" box="[1248,1264,1739,1763]" pageId="17" pageNumber="18" refId="ref15514" refString="5. Duar RM, Frese SA, Lin XB, Fernando SC, Burkey TE et al. Experimental evaluation of host adaptation of Lactobacillus reuteri to different vertebrate species. Appl Environ Microbiol 2017; 83: e 00132 - 17." type="journal volume" year="2017">5</bibRefCitation>
|
||
,
|
||
<bibRefCitation author="Wegmann U & MacKenzie DA & Zheng J & Goesmann A & Roos S" box="[1275,1306,1740,1764]" pageId="17" pageNumber="18" pagination="1023" refId="ref17183" refString="46. Wegmann U, MacKenzie DA, Zheng J, Goesmann A, Roos S et al. The pan-genome of Lactobacillus reuteri strains originating from the pig gastrointestinal tract. BMC Genomics 2015; 16: 1023." type="journal article" year="2015">46</bibRefCitation>
|
||
], which equips them with the ability to utilize 1,2-propanediol and glycerol as electron acceptors [
|
||
<bibRefCitation author="Cheng CC & Duar RM & Lin X & Perez-Munoz ME & Tollenaar S" box="[1126,1156,1803,1827]" pageId="17" pageNumber="18" refId="ref16011" refString="16. Cheng CC, Duar RM, Lin X, Perez-Munoz ME, Tollenaar S et al. Ecological importance of cross-feeding of the intermediate metabolite 1,2 - propanediol between bacterial gut symbionts. Appl Environ Microbiol 2020; 86: e 00190 - 20." type="journal volume" year="2020">16</bibRefCitation>
|
||
,
|
||
<bibRefCitation author="Luthi-Peng Q & Dileme FB & Puhan Z." box="[1169,1197,1803,1827]" pageId="17" pageNumber="18" pagination="289 - 296" refId="ref16896" refString="39. Luthi-Peng Q, Dileme FB, Puhan Z. Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol 2002; 59: 289 - 296." type="journal article" year="2002">39</bibRefCitation>
|
||
,
|
||
<bibRefCitation author="Dishisha T & Pereyra LP & Pyo SH & Britton RA & Hatti-Kaul R." box="[1210,1239,1803,1827]" pageId="17" pageNumber="18" pagination="76" refId="ref16928" refString="40. Dishisha T, Pereyra LP, Pyo SH, Britton RA, Hatti-Kaul R. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3 - hydroxypropionaldehyde, 3 - hydroxypropionic acid and 1,3 - propanediol from glycerol. Microb Cell Fact 2014; 13: 76." type="journal article" year="2014">40</bibRefCitation>
|
||
] and to produce the antimicrobial compound reuterin [
|
||
<bibRefCitation author="Walter J & Britton RA & Roos S." box="[1209,1225,1835,1859]" pageId="17" pageNumber="18" pagination="4645 - 4652" refId="ref15642" refString="8. Walter J, Britton RA, Roos S. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc Natl Acad Sci U S A 2011; 108 Suppl 1: 4645 - 4652." type="journal article" year="2011">8</bibRefCitation>
|
||
].
|
||
</paragraph>
|
||
</subSubSection>
|
||
<subSubSection pageId="17" pageNumber="18" type="reference_group">
|
||
<paragraph blockId="17.[826,1473,785,1954]" pageId="17" pageNumber="18">
|
||
<materialsCitation ID-GBIF-Occurrence="3465844301" pageId="17" pageNumber="18" typeStatus="holotype">
|
||
The
|
||
<typeStatus box="[1293,1340,1836,1860]" pageId="17" pageNumber="18">type</typeStatus>
|
||
strain, 3c6
|
||
<superScript attach="left" box="[1457,1466,1834,1848]" fontSize="6" pageId="17" pageNumber="18">T</superScript>
|
||
(=DSM 110571
|
||
<superScript attach="right" box="[996,1006,1866,1880]" fontSize="6" pageId="17" pageNumber="18">T</superScript>
|
||
=
|
||
<accessionNumber box="[1020,1152,1867,1891]" httpUri="http://www.ncbi.nlm.nih.gov/protein/LMG31635" pageId="17" pageNumber="18">LMG 31635</accessionNumber>
|
||
<superScript attach="none" box="[1152,1162,1866,1880]" fontSize="6" pageId="17" pageNumber="18">T</superScript>
|
||
), was isolated from porcine gastrointestinal tract [
|
||
<bibRefCitation author="Oh PL & Benson AK & Peterson DA & Patil PB & Moriyama EN" box="[1073,1089,1899,1922]" pageId="17" pageNumber="18" pagination="377 - 387" refId="ref15599" refString="7. Oh PL, Benson AK, Peterson DA, Patil PB, Moriyama EN et al. Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution. Isme J 2010; 4: 377 - 387." type="journal article" year="2010">7</bibRefCitation>
|
||
,
|
||
<bibRefCitation author="Wegmann U & MacKenzie DA & Zheng J & Goesmann A & Roos S" box="[1102,1133,1899,1923]" pageId="17" pageNumber="18" pagination="1023" refId="ref17183" refString="46. Wegmann U, MacKenzie DA, Zheng J, Goesmann A, Roos S et al. The pan-genome of Lactobacillus reuteri strains originating from the pig gastrointestinal tract. BMC Genomics 2015; 16: 1023." type="journal article" year="2015">46</bibRefCitation>
|
||
], with a DNA G+C content of 38.6mol%
|
||
</materialsCitation>
|
||
.
|
||
</paragraph>
|
||
</subSubSection>
|
||
</treatment>
|
||
</document> |