treatments-xml/data/03/EB/F7/03EBF734A03016240125F9B0FD84F8AD.xml
2024-06-21 12:22:17 +02:00

380 lines
62 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="23E5BE3C3603F1F25BD50A0BA20A6747" ID-DOI="10.1016/j.phytochem.2021.112899" ID-ISSN="1873-3700" ID-Zenodo-Dep="8258212" IM.bibliography_approvedBy="felipe" IM.illustrations_approvedBy="felipe" IM.materialsCitations_approvedBy="juliana" IM.metadata_approvedBy="felipe" IM.taxonomicNames_approvedBy="juliana" IM.treatments_approvedBy="juliana" checkinTime="1692305329346" checkinUser="felipe" docAuthor="Jiang, Yifan, Liu, Guanhua, Zhang, Wanbo, Zhang, Chi, Chen, Xinlu, Chen, Yuchu, Yu, Cuiwei, Yu, Dongbei, Fu, Jianyu &amp; Chen, Feng" docDate="2021" docId="03EBF734A03016240125F9B0FD84F8AD" docLanguage="en" docName="Phytochemistry.191.112899.pdf" docOrigin="Phytochemistry (112899) 191" docSource="http://dx.doi.org/10.1016/j.phytochem.2021.112899" docStyle="DocumentStyle:F36D69FC8B198FBE91029DF9C24697D3.5:Phytochemistry.2020-.journal_article" docStyleId="F36D69FC8B198FBE91029DF9C24697D3" docStyleName="Phytochemistry.2020-.journal_article" docStyleVersion="5" docTitle="Victoria cruziana" docType="treatment" docVersion="1" lastPageNumber="5" masterDocId="FFD28F4CA03216210141FF92FFA4FFEE" masterDocTitle="Biosynthesis and emission of methyl hexanoate, the major constituent of floral scent of a night-blooming water lily Victoria cruziana" masterLastPageNumber="10" masterPageNumber="1" pageNumber="3" updateTime="1692618932685" updateUser="juliana">
<mods:mods id="C65BBCA7CE930F17B20284F6A4481EA4" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="BFCD73B9B36074D5F1C395D567CBB767">
<mods:title id="9E093FD39915B317F22C9D6B916D6A09">Biosynthesis and emission of methyl hexanoate, the major constituent of floral scent of a night-blooming water lily Victoria cruziana</mods:title>
</mods:titleInfo>
<mods:name id="0567AB27C5A4726E364E0F183A78831F" type="personal">
<mods:role id="D3DCD75C0F7045DC7C00B54B17F40BA4">
<mods:roleTerm id="8EE409A06DFBB1B6FE02E420C0ED98EC">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="4557CF6CF596D003B3D6EB0CC35F9831">Jiang, Yifan</mods:namePart>
<mods:affiliation id="42B9F18205D0EBE411CB89C5C9932EF7">College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China</mods:affiliation>
</mods:name>
<mods:name id="6DA5D1F5E8B646F2CC21C7C7AC21F6C2" type="personal">
<mods:role id="EF4BE1401F11FC99E8535133EEF66FCF">
<mods:roleTerm id="CE328DBB1C36A0D5F7C966DAD1FE03DC">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="7AAD6FED421BC8ECAFA482ADD047D727">Liu, Guanhua</mods:namePart>
</mods:name>
<mods:name id="E7BF7D9A84C825F3314F0D0022E07326" type="personal">
<mods:role id="AF53BC783A473A49400DE2389EB18BB6">
<mods:roleTerm id="ED0444FB42B4FC534FB4F3DF0F07BCAD">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="EEDC649BE21BEA1DD146034300A6231F">Zhang, Wanbo</mods:namePart>
</mods:name>
<mods:name id="97CF56805C322AB762214F04CB9822BA" type="personal">
<mods:role id="53CD5881A0235B618AE310438BFD7CFA">
<mods:roleTerm id="C9ACD9DE18F98FEE8B59CF58A49E1D40">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="0B5C201D0567DEED48FFEB3B5805A1E3">Zhang, Chi</mods:namePart>
</mods:name>
<mods:name id="E10C05F48FEA8B73D5EC2A06FF61B7DC" type="personal">
<mods:role id="F03D67363E8E7FA82E35CC41686FD3A7">
<mods:roleTerm id="EBF3641037DB5464BA2767D8EE2CAF67">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="AF6EE52A489B9387DBD3C2F2F2213B81">Chen, Xinlu</mods:namePart>
</mods:name>
<mods:name id="212BB1678C923BD04ED70205766E5C1F" type="personal">
<mods:role id="000EF55E1A57CE65695EBFDCBAF2E36C">
<mods:roleTerm id="48F953C618DA57525DC31174EA44B564">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="B732756B3359F3A7744C0ADA153FE78C">Chen, Yuchu</mods:namePart>
</mods:name>
<mods:name id="FE56967376BE5106D4EE1576F668FC03" type="personal">
<mods:role id="C0C3BDF741B483BEE10C4B68386D0CA1">
<mods:roleTerm id="F1AE244516EA59D04DA116EE4580D821">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="465ACB47CF4B0274264D87E6F74E289A">Yu, Cuiwei</mods:namePart>
</mods:name>
<mods:name id="961E73EAE02F7AF7A2312CF1D9D5F7AC" type="personal">
<mods:role id="8D28EA8027C4B3123B8DC0CF15620A35">
<mods:roleTerm id="E23D1B6CF82EC410CB93A7DD7E697A6D">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="53D980A6E826E75983E60CEEBC0ACCB7">Yu, Dongbei</mods:namePart>
</mods:name>
<mods:name id="0D673FDD461D12477FA967DAF077B8A0" type="personal">
<mods:role id="B984C042E9133E504E245B76D090C4B3">
<mods:roleTerm id="7284964180BF6DF0495C23DAA2543132">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="F69862C374AD6FE0C32041202C1E72E7">Fu, Jianyu</mods:namePart>
</mods:name>
<mods:name id="0161AAA7D8723B771376A60838B1AC7F" type="personal">
<mods:role id="70CFBA98F91982525B5A752CF6952A32">
<mods:roleTerm id="E78162788E6ABC9B5F4042A72348E0B4">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="F326B2F2A8AE868C34D8E364A5455598">Chen, Feng</mods:namePart>
</mods:name>
<mods:typeOfResource id="5978EEF80A0F9F019FE60E71F1E624BC">text</mods:typeOfResource>
<mods:relatedItem id="12DC9241B8BE3839E24F780E5E928B59" type="host">
<mods:titleInfo id="A5C9A4FE3D76951E739A995B46DDFEC6">
<mods:title id="0A6C9468300A1EB18C880ACCC36FDA22">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="FA446EDC6A0F366EB38432D787DB9B5A">
<mods:date id="9394B19E75DA0BC57F0E0D7A5FCBFD4E">2021</mods:date>
<mods:detail id="84F3CD829663A406936AFC8AAE1F7A08" type="series">
<mods:title id="895C270A12B41552791FE3F842DC653E">112899</mods:title>
</mods:detail>
<mods:detail id="D97C9DC94607AE734A29506DD71BDCA4" type="pubDate">
<mods:number id="5B22960853BB66B05BDF09EF804B40BC">2021-11-30</mods:number>
</mods:detail>
<mods:detail id="C413170144AB79F6FBE83F707671C61E" type="volume">
<mods:number id="99A7CF33C1B286F50ED16B839B47F481">191</mods:number>
</mods:detail>
<mods:extent id="F2E9B7A5954BDE0ADF122D844A5995E7" unit="page">
<mods:start id="27269E119CA1F107B39595FE1C82ADC1">1</mods:start>
<mods:end id="1F24154FD689FD45D517D01E736D8CED">10</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="D36A2A81CD211A8581E8A56DD403FCD6">
<mods:url id="9E56C4D4AD2AD28BEFEC143350D1C92D">http://dx.doi.org/10.1016/j.phytochem.2021.112899</mods:url>
</mods:location>
<mods:classification id="6CE9C4D3FC474685E4E6143187EBA4F3">journal article</mods:classification>
<mods:identifier id="857ECFA105B5B0959D56B09E01C984D2" type="DOI">10.1016/j.phytochem.2021.112899</mods:identifier>
<mods:identifier id="8FE5319CC338C124B297D185111A0DF8" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="C6866B3F3E38F0C970EE6A03ADA9A5F4" type="Zenodo-Dep">8258212</mods:identifier>
</mods:mods>
<treatment id="03EBF734A03016240125F9B0FD84F8AD" LSID="urn:lsid:plazi:treatment:03EBF734A03016240125F9B0FD84F8AD" httpUri="http://treatment.plazi.org/id/03EBF734A03016240125F9B0FD84F8AD" lastPageId="5" lastPageNumber="5" pageId="2" pageNumber="3">
<subSubSection id="C35815A9A03016230125F9B0FD56F9DB" box="[100,754,1570,1590]" pageId="2" pageNumber="3" type="nomenclature">
<paragraph id="8BFD4622A03016230125F9B0FD56F9DB" blockId="2.[100,754,1570,1590]" box="[100,754,1570,1590]" pageId="2" pageNumber="3">
<heading id="D0B5F14EA03016230125F9B0FD56F9DB" bold="true" box="[100,754,1570,1590]" centered="true" fontSize="36" level="1" pageId="2" pageNumber="3" reason="1">
<emphasis id="B9369A30A03016230125F9B0FD56F9DB" bold="true" box="[100,754,1570,1590]" italics="true" pageId="2" pageNumber="3">
2.1. Chemical profiling of floral scent from
<taxonomicName id="4C423DA1A030162300ABF9B1FDF4F9DB" ID-CoL="5BD4L" authority="Orbign." box="[490,592,1570,1590]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">V. cruziana</taxonomicName>
during first bloom
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="C35815A9A030162501C5F9C8FAA1F9FD" lastPageId="4" lastPageNumber="5" pageId="2" pageNumber="3" type="description">
<paragraph id="8BFD4622A030162301C5F9C8FD89F84E" blockId="2.[100,771,1626,1952]" pageId="2" pageNumber="3">
Combining headspace collection with gas chromatographymass spectrometry (GC-MS) analysis, four volatile compounds were detected from the fully-opened flowers of
<taxonomicName id="4C423DA1A030162300E8F900FDB7F94B" authority="Orbign." box="[425,531,1682,1701]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A030162300E8F900FDB7F94B" bold="true" box="[425,531,1682,1701]" italics="true" pageId="2" pageNumber="3">V. cruziana</emphasis>
</taxonomicName>
during their first bloom (
<figureCitation id="13795AA7A0301623012DF93CFF1CF92F" box="[108,184,1710,1729]" captionStart="Fig" captionStartId="1.[100,130,1827,1844]" captionTargetBox="[278,1309,148,1799]" captionTargetPageId="1" captionText="Fig. 1. The identification of volatiles emitted from the flowers of V. cruziana. A, the chromatogram of the volatile emission from the flower during the first bloom. The four peaks were identified as methyl hexanoate (peak 1), benzyl alcohol (peak 2), benzyl 2-methylbutanoate (peak 3), and benzyl tiglate (peak 4). IS stands for internal standard, nonyl acetate. B, chromatogram of three authentic compounds. Peak a1: methyl hexanoate; peak a2: benzyl alcohol (peak 2); peak a3: benzyl tiglate. C. mass spectrum of three compounds from flowers (peaks 1, 2 and 4) and their corresponding authentic standard (peaks a1, a2 and a3)." figureDoi="http://doi.org/10.5281/zenodo.8258214" httpUri="https://zenodo.org/record/8258214/files/figure.png" pageId="2" pageNumber="3">Fig. 1A</figureCitation>
). These four compounds were identified to be methyl hexanoate, benzyl alcohol, benzyl 2-methylbutanoate and benzyl tiglate. Except benzyl 2-methylbutanoate, the chemical identities of the other three compounds were verified by comparing their chromatograms (
<figureCitation id="13795AA7A0301623012DF88FFF14F8DF" box="[108,176,1821,1841]" captionStart="Fig" captionStartId="1.[100,130,1827,1844]" captionTargetBox="[278,1309,148,1799]" captionTargetPageId="1" captionText="Fig. 1. The identification of volatiles emitted from the flowers of V. cruziana. A, the chromatogram of the volatile emission from the flower during the first bloom. The four peaks were identified as methyl hexanoate (peak 1), benzyl alcohol (peak 2), benzyl 2-methylbutanoate (peak 3), and benzyl tiglate (peak 4). IS stands for internal standard, nonyl acetate. B, chromatogram of three authentic compounds. Peak a1: methyl hexanoate; peak a2: benzyl alcohol (peak 2); peak a3: benzyl tiglate. C. mass spectrum of three compounds from flowers (peaks 1, 2 and 4) and their corresponding authentic standard (peaks a1, a2 and a3)." figureDoi="http://doi.org/10.5281/zenodo.8258214" httpUri="https://zenodo.org/record/8258214/files/figure.png" pageId="2" pageNumber="3">Fig. 1B</figureCitation>
) and mass spectra (
<figureCitation id="13795AA7A0301623002FF88FFE16F8DF" box="[366,434,1821,1841]" captionStart="Fig" captionStartId="1.[100,130,1827,1844]" captionTargetBox="[278,1309,148,1799]" captionTargetPageId="1" captionText="Fig. 1. The identification of volatiles emitted from the flowers of V. cruziana. A, the chromatogram of the volatile emission from the flower during the first bloom. The four peaks were identified as methyl hexanoate (peak 1), benzyl alcohol (peak 2), benzyl 2-methylbutanoate (peak 3), and benzyl tiglate (peak 4). IS stands for internal standard, nonyl acetate. B, chromatogram of three authentic compounds. Peak a1: methyl hexanoate; peak a2: benzyl alcohol (peak 2); peak a3: benzyl tiglate. C. mass spectrum of three compounds from flowers (peaks 1, 2 and 4) and their corresponding authentic standard (peaks a1, a2 and a3)." figureDoi="http://doi.org/10.5281/zenodo.8258214" httpUri="https://zenodo.org/record/8258214/files/figure.png" pageId="2" pageNumber="3">Fig. 1C</figureCitation>
) with those of authentic standards. Among these compounds, methyl hexanoate was the most abundant constituent accounting for 45.5 % of the total emission. Benzyl alcohol, benzyl 2-methylbutanoate and benzyl tiglate accounted for 37.8 %, 11.3 %, and 5.4 % of the total emission, respectively.
</paragraph>
<paragraph id="8BFD4622A03016230273FD74FA1BFD17" blockId="2.[818,1471,742,761]" box="[818,1471,742,761]" pageId="2" pageNumber="3">
<heading id="D0B5F14EA03016230273FD74FA1BFD17" bold="true" box="[818,1471,742,761]" centered="true" fontSize="36" level="1" pageId="2" pageNumber="3" reason="1">
<emphasis id="B9369A30A03016230273FD74FA1BFD17" bold="true" box="[818,1471,742,761]" italics="true" pageId="2" pageNumber="3">
2.2. Emission of floral volatiles from different parts of
<taxonomicName id="4C423DA1A03016230454FD74FADFFD17" authority="Orbign." box="[1301,1403,742,761]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">V. cruziana</taxonomicName>
flowers
</emphasis>
</heading>
</paragraph>
<paragraph id="8BFD4622A03016230210FC8CFB01FB59" blockId="2.[818,1487,798,1208]" pageId="2" pageNumber="3">
To determine the contribution of different parts of
<taxonomicName id="4C423DA1A03016230423FC8CFCD3FCA3" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A03016230423FC8CFA6BFCDF" bold="true" box="[1378,1487,798,817]" italics="true" pageId="2" pageNumber="3">V. cruziana</emphasis>
flowers
</taxonomicName>
to floral scent profile, the flowers of
<taxonomicName id="4C423DA1A030162305A2FCA8FAEFFCA3" authority="Orbign." box="[1251,1355,826,845]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A030162305A2FCA8FAEFFCA3" bold="true" box="[1251,1355,826,845]" italics="true" pageId="2" pageNumber="3">V. cruziana</emphasis>
</taxonomicName>
were divided into sepals, petals, stamen and pistils. These four parts were subjected to headspace collection, separately. The four floral volatiles, i.e. methyl hexanoate, benzyl alcohol, benzyl 2-methylbutanoate and benzyl tiglate, were detected from each of the four parts. (
<figureCitation id="13795AA7A0301623045AFC3BFAF5FC53" box="[1307,1361,937,957]" captionStart="Fig" captionStartId="2.[818,848,582,599]" captionTargetBox="[824,1481,148,554]" captionTargetId="graphics-1133@2.[898,1481,155,480]" captionTargetPageId="2" captionText="Fig. 2. Emission of floral volatiles from different of parts of V. cruziana flowers. Intact fully opened flowers were separated into petals, pistils, sepals and stamen, which were subject to headspace collection and GC-MS analysis. In addition to total volatiles (VOCs), the emissions of methyl hexanoate and benzenoids were analyzed separately." figureDoi="http://doi.org/10.5281/zenodo.8258216" httpUri="https://zenodo.org/record/8258216/files/figure.png" pageId="2" pageNumber="3">Fig. 2</figureCitation>
). Of the four parts, stamen showed the highest rates of total emission (36.42 ± 7.6 nmol/g
<superScript id="7C37EB6AA03016230236FC49FCDBFC07" attach="both" box="[887,895,987,1001]" fontSize="6" pageId="2" pageNumber="3">/</superScript>
h). Methyl hexanoate exhibited the highest rates of emission from stamens at 36.31 ± 7.5 nmol/g/h (
<figureCitation id="13795AA7A0301623058BFC6FFAA7FBFE" box="[1226,1283,1021,1040]" captionStart="Fig" captionStartId="2.[818,848,582,599]" captionTargetBox="[824,1481,148,554]" captionTargetId="graphics-1133@2.[898,1481,155,480]" captionTargetPageId="2" captionText="Fig. 2. Emission of floral volatiles from different of parts of V. cruziana flowers. Intact fully opened flowers were separated into petals, pistils, sepals and stamen, which were subject to headspace collection and GC-MS analysis. In addition to total volatiles (VOCs), the emissions of methyl hexanoate and benzenoids were analyzed separately." figureDoi="http://doi.org/10.5281/zenodo.8258216" httpUri="https://zenodo.org/record/8258216/files/figure.png" pageId="2" pageNumber="3">Fig. 2</figureCitation>
), followed by pistils (12.11 ± 3.8 nmol/g
<superScript id="7C37EB6AA030162302B4FB81FC59FBCF" attach="both" box="[1013,1021,1043,1057]" fontSize="6" pageId="2" pageNumber="3">/</superScript>
h), petals (2.09 ±1.6 nmol/g/h) and sepals (1.31 ± 1.24 nmol/g/h). In contrast, the three benzenoids exhibited the highest rates of emission from the petals with the emission rate of 10.99 ±3.3 nmol/g/h (
<figureCitation id="13795AA7A03016230297FBFFFBAFFB6E" box="[982,1035,1133,1152]" captionStart="Fig" captionStartId="2.[818,848,582,599]" captionTargetBox="[824,1481,148,554]" captionTargetId="graphics-1133@2.[898,1481,155,480]" captionTargetPageId="2" captionText="Fig. 2. Emission of floral volatiles from different of parts of V. cruziana flowers. Intact fully opened flowers were separated into petals, pistils, sepals and stamen, which were subject to headspace collection and GC-MS analysis. In addition to total volatiles (VOCs), the emissions of methyl hexanoate and benzenoids were analyzed separately." figureDoi="http://doi.org/10.5281/zenodo.8258216" httpUri="https://zenodo.org/record/8258216/files/figure.png" pageId="2" pageNumber="3">Fig. 2</figureCitation>
). Their emission rates from sepals, stamens and pistils were 3.64 ± 1.9 nmol/g/h, 0.11 ± 0.01 nmol/g/h and pistils (0.01 ± 0.001 nmol/g/h), respectively.
</paragraph>
<paragraph id="8BFD4622A03016230273FB75FAEDFB14" blockId="2.[818,1353,1254,1274]" box="[818,1353,1254,1274]" pageId="2" pageNumber="3">
<heading id="D0B5F14EA03016230273FB75FAEDFB14" bold="true" box="[818,1353,1254,1274]" fontSize="36" level="1" pageId="2" pageNumber="3" reason="1">
<emphasis id="B9369A30A03016230273FB75FAEDFB14" bold="true" box="[818,1353,1254,1274]" italics="true" pageId="2" pageNumber="3">
2.3. Emission dynamics of floral volatiles from
<taxonomicName id="4C423DA1A030162305A0FB75FAEDFB14" ID-CoL="5BD4L" authority="Orbign." box="[1249,1353,1255,1274]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">V. cruziana</taxonomicName>
</emphasis>
</heading>
</paragraph>
<paragraph id="8BFD4622A03016230210FA8DFB0CF91E" blockId="2.[818,1488,1310,1776]" pageId="2" pageNumber="3">
In our observation, the flowers of
<taxonomicName id="4C423DA1A030162305D7FA8DFB59FADF" authority="Orbign." box="[1174,1277,1310,1330]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A030162305D7FA8DFB59FADF" bold="true" box="[1174,1277,1310,1330]" italics="true" pageId="2" pageNumber="3">V. cruziana</emphasis>
</taxonomicName>
opened fully at 19:00 on the first day, began to close in the following morning and became completely closed between 12:00 and 13:00. The flowers started to reopen between 16: 00 and 17: 00 on the same day. The representative flowers at the four stages were shown in
<figureCitation id="13795AA7A0301623059AFA1CFA82FA4F" box="[1243,1318,1422,1441]" captionStart="Fig" captionStartId="3.[100,130,1827,1844]" captionTargetBox="[260,1327,148,1799]" captionTargetPageId="3" captionText="Fig. 3. Emission dynamic of floral volatiles from V. cruziana flowers during two consecutive days of blooming and closing. A, representative flower at four stages during blooming. B, the emission dynamics of total volatiles. C, the emission dynamcis of benzenoids. D. the emission dynamics of methyl hexanoate. Different letters denote statistically significant differences among the means according to ANOVA analysis (P &lt;0.05)." figureDoi="http://doi.org/10.5281/zenodo.8258218" httpUri="https://zenodo.org/record/8258218/files/figure.png" pageId="2" pageNumber="3">Fig. 3A</figureCitation>
. To examine the emission dynamics, floral volatiles of
<taxonomicName id="4C423DA1A030162305E8FA38FAB0FA53" authority="Orbign." box="[1193,1300,1450,1469]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A030162305E8FA38FAB0FA53" bold="true" box="[1193,1300,1450,1469]" italics="true" pageId="2" pageNumber="3">V. cruziana</emphasis>
</taxonomicName>
were continuously collected (1-h collection followed by a 3-h interval) for two days (12/12 h light/dark) and analyzed by GC-MS. The emission rates of total volatiles remained constant before a significant drop towards the end of second bloom (
<figureCitation id="13795AA7A03016230284F98BFBA8F9C3" box="[965,1036,1561,1581]" captionStart="Fig" captionStartId="3.[100,130,1827,1844]" captionTargetBox="[260,1327,148,1799]" captionTargetPageId="3" captionText="Fig. 3. Emission dynamic of floral volatiles from V. cruziana flowers during two consecutive days of blooming and closing. A, representative flower at four stages during blooming. B, the emission dynamics of total volatiles. C, the emission dynamcis of benzenoids. D. the emission dynamics of methyl hexanoate. Different letters denote statistically significant differences among the means according to ANOVA analysis (P &lt;0.05)." figureDoi="http://doi.org/10.5281/zenodo.8258218" httpUri="https://zenodo.org/record/8258218/files/figure.png" pageId="2" pageNumber="3">Fig. 3B</figureCitation>
). The emission rates of benzenoids and methyl hexanoate were also analyzed separately. The emission patterns of benzenoids were very similar to those of total volatiles (
<figureCitation id="13795AA7A0301623041EF9C3FA0CF98A" box="[1375,1448,1617,1636]" captionStart="Fig" captionStartId="3.[100,130,1827,1844]" captionTargetBox="[260,1327,148,1799]" captionTargetPageId="3" captionText="Fig. 3. Emission dynamic of floral volatiles from V. cruziana flowers during two consecutive days of blooming and closing. A, representative flower at four stages during blooming. B, the emission dynamics of total volatiles. C, the emission dynamcis of benzenoids. D. the emission dynamics of methyl hexanoate. Different letters denote statistically significant differences among the means according to ANOVA analysis (P &lt;0.05)." figureDoi="http://doi.org/10.5281/zenodo.8258218" httpUri="https://zenodo.org/record/8258218/files/figure.png" pageId="2" pageNumber="3">Fig. 3C</figureCitation>
). In contrast, there was a reduction in mission rates of methyl hexanoate towards the end of first closure before increasing during the second bloom (
<figureCitation id="13795AA7A0301623023CF937FC63F956" box="[893,967,1701,1720]" captionStart="Fig" captionStartId="3.[100,130,1827,1844]" captionTargetBox="[260,1327,148,1799]" captionTargetPageId="3" captionText="Fig. 3. Emission dynamic of floral volatiles from V. cruziana flowers during two consecutive days of blooming and closing. A, representative flower at four stages during blooming. B, the emission dynamics of total volatiles. C, the emission dynamcis of benzenoids. D. the emission dynamics of methyl hexanoate. Different letters denote statistically significant differences among the means according to ANOVA analysis (P &lt;0.05)." figureDoi="http://doi.org/10.5281/zenodo.8258218" httpUri="https://zenodo.org/record/8258218/files/figure.png" pageId="2" pageNumber="3">Fig. 3D</figureCitation>
). Like total volatiles, the emission of both benzenoids (
<figureCitation id="13795AA7A0301623027BF953FCD9F93A" box="[826,893,1729,1748]" captionStart="Fig" captionStartId="3.[100,130,1827,1844]" captionTargetBox="[260,1327,148,1799]" captionTargetPageId="3" captionText="Fig. 3. Emission dynamic of floral volatiles from V. cruziana flowers during two consecutive days of blooming and closing. A, representative flower at four stages during blooming. B, the emission dynamics of total volatiles. C, the emission dynamcis of benzenoids. D. the emission dynamics of methyl hexanoate. Different letters denote statistically significant differences among the means according to ANOVA analysis (P &lt;0.05)." figureDoi="http://doi.org/10.5281/zenodo.8258218" httpUri="https://zenodo.org/record/8258218/files/figure.png" pageId="2" pageNumber="3">Fig. 3C</figureCitation>
) and methyl hexanoate (
<figureCitation id="13795AA7A03016230524F953FB0EF93A" box="[1125,1194,1729,1748]" captionStart="Fig" captionStartId="3.[100,130,1827,1844]" captionTargetBox="[260,1327,148,1799]" captionTargetPageId="3" captionText="Fig. 3. Emission dynamic of floral volatiles from V. cruziana flowers during two consecutive days of blooming and closing. A, representative flower at four stages during blooming. B, the emission dynamics of total volatiles. C, the emission dynamcis of benzenoids. D. the emission dynamics of methyl hexanoate. Different letters denote statistically significant differences among the means according to ANOVA analysis (P &lt;0.05)." figureDoi="http://doi.org/10.5281/zenodo.8258218" httpUri="https://zenodo.org/record/8258218/files/figure.png" pageId="2" pageNumber="3">Fig. 3D</figureCitation>
) dropped significantly at the of the end of second bloom and after that.
</paragraph>
<paragraph id="8BFD4622A03016230273F88DFC29F8A0" blockId="2.[818,1425,1823,1870]" pageId="2" pageNumber="3">
<heading id="D0B5F14EA03016230273F88DFC29F8A0" bold="true" fontSize="36" level="1" pageId="2" pageNumber="3" reason="1">
<emphasis id="B9369A30A03016230273F88DFC29F8A0" bold="true" italics="true" pageId="2" pageNumber="3">2.4. Identification of candidate genes for the biosynthesis of methyl hexanoate</emphasis>
</heading>
</paragraph>
<paragraph id="8BFD4622A03016250210F8E1FED6FB6A" blockId="2.[818,1488,1907,1982]" lastBlockId="4.[100,770,914,1658]" lastPageId="4" lastPageNumber="5" pageId="2" pageNumber="3">
To understand the molecular basis of floral volatile biosynthesis in
<taxonomicName id="4C423DA1A03016230273F81DFC33F84C" authority="Orbign." box="[818,919,1935,1954]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A03016230273F81DFC33F84C" bold="true" box="[818,919,1935,1954]" italics="true" pageId="2" pageNumber="3">V. cruziana</emphasis>
</taxonomicName>
, an RNA-Seq library using the RNA samples of whole flowers of
<taxonomicName id="4C423DA1A0301623020DF839FC12F850" authority="Orbign." box="[844,950,1963,1982]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A0301623020DF839FC12F850" bold="true" box="[844,950,1963,1982]" italics="true" pageId="2" pageNumber="3">V. cruziana</emphasis>
</taxonomicName>
at full blooming stage was constructed and sequenced. High quality sequencing data was obtained, and the clean bases of flower and leaf were 6.11 G (Table S1). The
<emphasis id="B9369A30A03616250353FC3FFDFDFC2F" bold="true" box="[530,601,941,961]" italics="true" pageId="4" pageNumber="5">de novo</emphasis>
assembly yielded 64,472 unigenes (Table S1). The unigenes longer than 1k bp were 34483 that accounted for 53.49 % of the total unigenes and the N50 was 2476 bp (Table S1). More than 63.51 % unigenes were annotated in at least one database, and 16 % unigenes were annotated in all seven bioinformatics databases (Table S1). The annotated unigenes were clustered in three GO function classification (biological process, cellular component, molecular function,
<figureCitation id="13795AA7A03616250062FBE3FEC2FB6A" box="[291,358,1137,1156]" captionStart="Fig" captionStartId="1.[100,130,1827,1844]" captionTargetBox="[278,1309,148,1799]" captionTargetPageId="1" captionText="Fig. 1. The identification of volatiles emitted from the flowers of V. cruziana. A, the chromatogram of the volatile emission from the flower during the first bloom. The four peaks were identified as methyl hexanoate (peak 1), benzyl alcohol (peak 2), benzyl 2-methylbutanoate (peak 3), and benzyl tiglate (peak 4). IS stands for internal standard, nonyl acetate. B, chromatogram of three authentic compounds. Peak a1: methyl hexanoate; peak a2: benzyl alcohol (peak 2); peak a3: benzyl tiglate. C. mass spectrum of three compounds from flowers (peaks 1, 2 and 4) and their corresponding authentic standard (peaks a1, a2 and a3)." figureDoi="http://doi.org/10.5281/zenodo.8258214" httpUri="https://zenodo.org/record/8258214/files/figure.png" pageId="4" pageNumber="5">Fig. S1</figureCitation>
).
</paragraph>
<caption id="DF3D16AAA03116220125F8B1FC68F889" ID-DOI="http://doi.org/10.5281/zenodo.8258218" ID-Zenodo-Dep="8258218" httpUri="https://zenodo.org/record/8258218/files/figure.png" pageId="3" pageNumber="4" startId="3.[100,130,1827,1844]" targetBox="[260,1327,148,1799]" targetPageId="3" targetType="figure">
<paragraph id="8BFD4622A03116220125F8B1FC68F889" blockId="3.[100,1488,1827,1895]" pageId="3" pageNumber="4">
<emphasis id="B9369A30A03116220125F8B1FF3AF8DA" bold="true" box="[100,158,1827,1844]" pageId="3" pageNumber="4">Fig. 3.</emphasis>
Emission dynamic of floral volatiles from
<taxonomicName id="4C423DA1A0311622034FF8B1FD0BF8DA" box="[526,687,1827,1844]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="3" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A0311622034FF8B1FDCFF8DA" bold="true" box="[526,619,1827,1844]" italics="true" pageId="3" pageNumber="4">V. cruziana</emphasis>
flowers
</taxonomicName>
during two consecutive days of blooming and closing. A, representative flower at four stages during blooming. B, the emission dynamics of total volatiles. C, the emission dynamcis of benzenoids. D. the emission dynamics of methyl hexanoate. Different letters denote statistically significant differences among the means according to ANOVA analysis (
<emphasis id="B9369A30A03116220232F8C4FC37F889" box="[883,915,1878,1895]" italics="true" pageId="3" pageNumber="4">
<emphasis id="B9369A30A03116220232F8C4FCDAF888" bold="true" box="[883,894,1878,1894]" italics="true" pageId="3" pageNumber="4">P</emphasis>
&lt;
</emphasis>
0.05).
</paragraph>
</caption>
<caption id="DF3D16AAA03616250125FC99FF5EFC87" ID-DOI="http://doi.org/10.5281/zenodo.8258220" ID-Zenodo-Dep="8258220" httpUri="https://zenodo.org/record/8258220/files/figure.png" pageId="4" pageNumber="5" startId="4.[100,130,779,796]" targetBox="[114,1473,149,751]" targetPageId="4" targetType="figure">
<paragraph id="8BFD4622A03616250125FC99FF5EFC87" blockId="4.[100,1489,779,873]" pageId="4" pageNumber="5">
<emphasis id="B9369A30A03616250125FC99FF39FCF2" bold="true" box="[100,157,779,796]" pageId="4" pageNumber="5">Fig. 4.</emphasis>
Multiple sequence alignment of VcSABATHs with selected known SABATHs. Conserved residues are in shade with the more conserved the darker. Residues indicated with “&amp;” are
<emphasis id="B9369A30A03616250072FCB7FE99FCD8" bold="true" box="[307,317,805,822]" italics="true" pageId="4" pageNumber="5">S</emphasis>
-adenosyl-L-methionine-binding residues. Residues indicated with “*” are residues that interact with the carboxyl moiety of substrate. CbSAMT,
<taxonomicName id="4C423DA1A036162501F8FCACFE91FCA1" box="[185,309,830,847]" class="Magnoliopsida" family="Onagraceae" genus="Clarkia" kingdom="Plantae" order="Myrtales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="breweri">
<emphasis id="B9369A30A036162501F8FCACFE91FCA1" bold="true" box="[185,309,830,847]" italics="true" pageId="4" pageNumber="5">Clarkia breweri</emphasis>
</taxonomicName>
salicylic acid methyltransferase (accession No. AAF00108.1); NcDEMT,
<taxonomicName id="4C423DA1A036162502DDFCACFB9EFCA1" box="[924,1082,830,847]" class="Magnoliopsida" family="Nymphaeaceae" genus="Nymphaea" kingdom="Plantae" order="Nymphaeales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="colorata">
<emphasis id="B9369A30A036162502DDFCACFB9EFCA1" bold="true" box="[924,1082,830,847]" italics="true" pageId="4" pageNumber="5">Nymphaea colorata</emphasis>
</taxonomicName>
decanoic acid methyltransferase (accession No. NC11G0120830).
</paragraph>
</caption>
<paragraph id="8BFD4622A036162501C5FB1FFF0BF994" blockId="4.[100,770,914,1658]" pageId="4" pageNumber="5">
Next, the transcriptome was specifically searched for candidate biosynthetic genes. This study focused on the biosynthesis of methyl hexanoate. Prior to this study, the biosynthesis of fatty acid methyl esters has been studied in another water lily
<taxonomicName id="4C423DA1A036162500B9FB73FDF8FB1D" box="[504,604,1248,1268]" class="Magnoliopsida" family="Nymphaeaceae" genus="Nymphaea" kingdom="Plantae" order="Nymphaeales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="colorata">
<emphasis id="B9369A30A036162500B9FB73FDF8FB1D" bold="true" box="[504,604,1248,1268]" italics="true" pageId="4" pageNumber="5">N. colorata</emphasis>
</taxonomicName>
, in which methyl decanoate and methyl octanoate are biosynthesized by methyltransferases that belong to the SABATH family (
<bibRefCitation id="EFD33BD3A03616250371FA8AFD7BFAC5" author="Zhang, L. &amp; Chen, F. &amp; Zhang, X. &amp; Li, Z. &amp; Zhao, Y. &amp; Lohaus, R. &amp; Chang, X. &amp; Dong, W. &amp; Ho, S. Y. W. &amp; Liu, X. &amp; Song, A. &amp; Chen, J. &amp; Guo, W. &amp; Wang, Z. &amp; Zhuang, Y. &amp; Wang, H. &amp; Chen, X. &amp; Hu, J. &amp; Liu, Y. &amp; Qin, Y. &amp; Wang, K. &amp; Dong, S. &amp; Liu, Y. &amp; Zhang, S. &amp; Yu, X. &amp; Wu, Q. &amp; Wang, L. &amp; Yan, X. &amp; Jiao, Y. &amp; Kong, H. &amp; Zhou, X. &amp; Yu, C. &amp; Chen, Y. &amp; Li, F. &amp; Wang, J. &amp; Chen, W. &amp; Chen, X. &amp; Jia, Q. &amp; Zhang, C. &amp; Jiang, Y. &amp; Zhang, W. &amp; Liu, G. &amp; Fu, J. &amp; Chen, F. &amp; Ma, H. &amp; Van de Peer, Y. &amp; Tang, H." box="[560,735,1304,1324]" pageId="4" pageNumber="5" pagination="79 - 84" refId="ref9030" refString="Zhang, L., Chen, F., Zhang, X., Li, Z., Zhao, Y., Lohaus, R., Chang, X., Dong, W., Ho, S. Y. W., Liu, X., Song, A., Chen, J., Guo, W., Wang, Z., Zhuang, Y., Wang, H., Chen, X., Hu, J., Liu, Y., Qin, Y., Wang, K., Dong, S., Liu, Y., Zhang, S., Yu, X., Wu, Q., Wang, L., Yan, X., Jiao, Y., Kong, H., Zhou, X., Yu, C., Chen, Y., Li, F., Wang, J., Chen, W., Chen, X., Jia, Q., Zhang, C., Jiang, Y., Zhang, W., Liu, G., Fu, J., Chen, F., Ma, H., Van de Peer, Y., Tang, H., 2019. The water lily genome and the early evolution of flowering plants. Nature 577, 79 - 84. https: // doi. org / 10.1038 / s 41586 - 019 - 1852 - 5." type="journal article" year="2019">Zhang et al., 2019</bibRefCitation>
). It was our hypothesis that the formation of methyl hexanoate in
<taxonomicName id="4C423DA1A03616250125FAC2FF68FA8D" authority="Orbign." box="[100,204,1360,1379]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A03616250125FAC2FF68FA8D" bold="true" box="[100,204,1360,1379]" italics="true" pageId="4" pageNumber="5">V. cruziana</emphasis>
</taxonomicName>
is also catalyzed by SABATH enzymes. As such, the flower transcriptome of
<taxonomicName id="4C423DA1A0361625004FFAFEFEDCFA91" authority="Orbign." box="[270,376,1388,1407]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A0361625004FFAFEFEDCFA91" bold="true" box="[270,376,1388,1407]" italics="true" pageId="4" pageNumber="5">V. cruziana</emphasis>
</taxonomicName>
was created (
<figureCitation id="13795AA7A03616250347FAFEFDEFFA91" box="[518,587,1388,1407]" captionStart="Fig" captionStartId="1.[100,130,1827,1844]" captionTargetBox="[278,1309,148,1799]" captionTargetPageId="1" captionText="Fig. 1. The identification of volatiles emitted from the flowers of V. cruziana. A, the chromatogram of the volatile emission from the flower during the first bloom. The four peaks were identified as methyl hexanoate (peak 1), benzyl alcohol (peak 2), benzyl 2-methylbutanoate (peak 3), and benzyl tiglate (peak 4). IS stands for internal standard, nonyl acetate. B, chromatogram of three authentic compounds. Peak a1: methyl hexanoate; peak a2: benzyl alcohol (peak 2); peak a3: benzyl tiglate. C. mass spectrum of three compounds from flowers (peaks 1, 2 and 4) and their corresponding authentic standard (peaks a1, a2 and a3)." figureDoi="http://doi.org/10.5281/zenodo.8258214" httpUri="https://zenodo.org/record/8258214/files/figure.png" pageId="4" pageNumber="5">Fig. S1</figureCitation>
) and searched for
<emphasis id="B9369A30A03616250125FA1AFF10FA75" bold="true" box="[100,180,1416,1435]" italics="true" pageId="4" pageNumber="5">SABATH</emphasis>
genes. Three putative full-length
<emphasis id="B9369A30A036162500BAFA1AFDEFFA75" bold="true" box="[507,587,1416,1435]" italics="true" pageId="4" pageNumber="5">SABATH</emphasis>
genes were identified, which were designated as
<emphasis id="B9369A30A036162500DFFA36FDB6FA59" bold="true" box="[414,530,1444,1463]" italics="true" pageId="4" pageNumber="5">VcSABATH1</emphasis>
,
<emphasis id="B9369A30A03616250360FA36FD30FA59" bold="true" box="[545,660,1444,1463]" italics="true" pageId="4" pageNumber="5">VcSABATH2</emphasis>
and
<emphasis id="B9369A30A0361625038AFA36FF03FA3D" bold="true" italics="true" pageId="4" pageNumber="5">VcSABATH3</emphasis>
with GenBank accession number of MZ541994, MZ541995 and MZ541996, respectively. The proteins they encode are 364 (VcSABATH1), 367 (VcSABATH2), and 362 (
<emphasis id="B9369A30A036162500A8FA65FDF9F9E4" bold="true" box="[489,605,1527,1546]" italics="true" pageId="4" pageNumber="5">VcSABATH3</emphasis>
) amino acids in length. Multiple sequence alignment revealed that all three
<emphasis id="B9369A30A036162503DBF981FCA5F9C8" bold="true" box="[666,769,1555,1574]" italics="true" pageId="4" pageNumber="5">VcSABATH</emphasis>
proteins contain conserved residues for interacting with the carboxyl moiety of the substrate and the methyl donor
<emphasis id="B9369A30A03616250358F9D9FD80F9B0" bold="true" box="[537,548,1611,1630]" italics="true" pageId="4" pageNumber="5">S</emphasis>
-adenosyl-L-methionine (
<figureCitation id="13795AA7A0361625012DF9F5FF06F994" box="[108,162,1639,1658]" captionStart="Fig" captionStartId="4.[100,130,779,796]" captionTargetBox="[114,1473,149,751]" captionTargetId="figure-736@4.[113,1474,148,752]" captionTargetPageId="4" captionText="Fig. 4. Multiple sequence alignment of VcSABATHs with selected known SABATHs. Conserved residues are in shade with the more conserved the darker. Residues indicated with “&amp;” are S-adenosyl-L-methionine-binding residues. Residues indicated with “*” are residues that interact with the carboxyl moiety of substrate. CbSAMT, Clarkia breweri salicylic acid methyltransferase (accession No. AAF00108.1); NcDEMT, Nymphaea colorata decanoic acid methyltransferase (accession No. NC11G0120830)." figureDoi="http://doi.org/10.5281/zenodo.8258220" httpUri="https://zenodo.org/record/8258220/files/figure.png" pageId="4" pageNumber="5">Fig. 4</figureCitation>
).
</paragraph>
<paragraph id="8BFD4622A03616250125F93DFE62F92C" blockId="4.[100,454,1711,1731]" box="[100,454,1711,1731]" pageId="4" pageNumber="5">
<heading id="D0B5F14EA03616250125F93DFE62F92C" bold="true" box="[100,454,1711,1731]" fontSize="36" level="1" pageId="4" pageNumber="5" reason="1">
<emphasis id="B9369A30A03616250125F93DFE62F92C" bold="true" box="[100,454,1711,1731]" italics="true" pageId="4" pageNumber="5">2.5. Biochemical assay of VcSABATHs</emphasis>
</heading>
</paragraph>
<paragraph id="8BFD4622A036162501C5F97AFAC6FB1D" blockId="4.[100,770,1767,1982]" lastBlockId="4.[818,1488,914,1268]" pageId="4" pageNumber="5">
Next,
<emphasis id="B9369A30A036162501FEF975FEA5F914" bold="true" box="[191,257,1767,1786]" italics="true" pageId="4" pageNumber="5">in vitro</emphasis>
methyltransferase enzyme assays were performed to determine which of the three
<emphasis id="B9369A30A036162500C8F891FE54F8F8" bold="true" box="[393,496,1795,1814]" italics="true" pageId="4" pageNumber="5">VcSABATH</emphasis>
genes is responsible for the biosynthesis of methyl hexanoate in
<taxonomicName id="4C423DA1A03616250087F88DFD8BF8DC" box="[454,559,1823,1842]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="4" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A03616250087F88DFD8BF8DC" bold="true" box="[454,559,1823,1842]" italics="true" pageId="4" pageNumber="5">V. cruziana</emphasis>
</taxonomicName>
flowers. A full-length cDNA for each of the three
<emphasis id="B9369A30A036162500C4F8A9FE48F8A0" bold="true" box="[389,492,1851,1870]" italics="true" pageId="4" pageNumber="5">VcSABATH</emphasis>
genes was synthesized and cloned into a protein expression vector (pET32a) and expressed in
<taxonomicName id="4C423DA1A0361625038DF8C5FCA6F887" authorityName="Castellani &amp; Chalmers" authorityYear="1919" baseAuthorityName="Migula" baseAuthorityYear="1895" box="[716,770,1878,1898]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="4" pageNumber="5" phylum="Proteobacteria" rank="species" species="coil">
<emphasis id="B9369A30A0361625038DF8C5FCA6F887" bold="true" box="[716,770,1878,1898]" italics="true" pageId="4" pageNumber="5">E. coil</emphasis>
</taxonomicName>
to produce recombinant enzymes. Individual recombinant VcSABATH proteins were tested in methyltransferase enzyme assays using hexanoic acid as substrate. While VcSABATH2 was inactive, both VcSABATH1 and VcSABATH3 catalyzed the formation of methyl hexanoate (
<figureCitation id="13795AA7A036162504CDFC00FA65FC4B" box="[1420,1473,914,933]" captionStart="Fig" captionStartId="5.[1031,1061,149,166]" captionTargetBox="[100,1488,148,1598]" captionTargetId="graphics-177@5.[220,983,148,1559]" captionTargetPageId="5" captionText="Fig. 5. GC chromatogram of product of methyl- transferase enzyme assays for VcSABATH1-3. The assay conducted with proteins expressed in E. coli with pET32a without any gene insert (empty vector) was used as a negative control. Also shown was the GC chromatogram of the authentic standard methyl hexanoate. Hexanoic acid was used as substrate. While no product was detected from the VcSABATH2 assay, both VcSABATH1 and VcSABATH3 catalyzed the formation of methyl hexanoate (peak 1)." figureDoi="http://doi.org/10.5281/zenodo.8258222" httpUri="https://zenodo.org/record/8258222/files/figure.png" pageId="4" pageNumber="5">Fig. 5</figureCitation>
). Next,
<taxonomicName id="4C423DA1A03616250228FC3CFC3BFC2E" authorityName="Castellani &amp; Chalmers" authorityYear="1919" baseAuthorityName="Migula" baseAuthorityYear="1895" box="[873,927,941,961]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="4" pageNumber="5" phylum="Proteobacteria" rank="species" species="coli">
<emphasis id="B9369A30A03616250228FC3CFC3BFC2E" bold="true" box="[873,927,941,961]" italics="true" pageId="4" pageNumber="5">E. coli</emphasis>
</taxonomicName>
-expressed recombinant VcSABATH1 and VcSABATH3 were purified (
<figureCitation id="13795AA7A036162502CEFC5BFC73FC33" box="[911,983,969,989]" captionStart="Fig" captionStartId="2.[818,848,582,599]" captionTargetBox="[824,1481,148,554]" captionTargetId="graphics-1133@2.[898,1481,155,480]" captionTargetPageId="2" captionText="Fig. 2. Emission of floral volatiles from different of parts of V. cruziana flowers. Intact fully opened flowers were separated into petals, pistils, sepals and stamen, which were subject to headspace collection and GC-MS analysis. In addition to total volatiles (VOCs), the emissions of methyl hexanoate and benzenoids were analyzed separately." figureDoi="http://doi.org/10.5281/zenodo.8258216" httpUri="https://zenodo.org/record/8258216/files/figure.png" pageId="4" pageNumber="5">Fig. S2</figureCitation>
) and the purified proteins used to measure their respective specific activities. The specific activity of VcSABATH1 and VcSABATH3 using hexanoic acid as substrate was determined to be 23.2 ±2.41 pkat/mg protein and 150.4 ±3.6 pkat/mg protein, respectively. To determine substrate specificity of VcSABATH1 and VcSABATH3, they were also tested using three other fatty acids as substrate. The relative activity of VcSABATH1 using octanoic acid, decanoic acid or dodecanoic acid as substrate was 39.4 %, 33.6 % and 16.9 % of that with hexanoic acid respectively. Similarly, the relative activity of VcSABATH3 using octanoic acid, decanoic acid or dodecanoic acid as substrate was 33.5 %, 38.8 % and 17.3 % of that with hexanoic acid respectively.
</paragraph>
<paragraph id="8BFD4622A03616250273FAB2FCC8FABE" blockId="4.[818,1438,1312,1360]" pageId="4" pageNumber="5">
<heading id="D0B5F14EA03616250273FAB2FCC8FABE" bold="true" fontSize="36" level="1" pageId="4" pageNumber="5" reason="1">
<emphasis id="B9369A30A03616250273FAB2FCC8FABE" bold="true" italics="true" pageId="4" pageNumber="5">
2.6. Expression of VcSABATH1 and VcSABATH
<quantity id="4CBAEBC7A036162505ADFAB2FAAAFADD" box="[1260,1294,1312,1331]" metricMagnitude="-2" metricUnit="m" metricValue="7.62" pageId="4" pageNumber="5" unit="in" value="3.0">3 in</quantity>
different flower organs
</emphasis>
</heading>
</paragraph>
<paragraph id="8BFD4622A03616250210FAE6FAA1F9FD" blockId="4.[818,1487,1396,1555]" pageId="4" pageNumber="5">
With
<emphasis id="B9369A30A036162502CBFAE6FC59FA69" bold="true" box="[906,1021,1396,1415]" italics="true" pageId="4" pageNumber="5">VcSABATH3</emphasis>
and
<emphasis id="B9369A30A03616250575FAE6FB0CFA69" bold="true" box="[1076,1192,1396,1415]" italics="true" pageId="4" pageNumber="5">VcSABATH1</emphasis>
demonstrated to encode hexanoic acid methyltransferase, their expression in different parts of
<taxonomicName id="4C423DA1A03616250273FA3EFC01FA51" box="[818,933,1452,1471]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="4" pageNumber="3" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A03616250273FA3EFC01FA51" bold="true" box="[818,933,1452,1471]" italics="true" pageId="4" pageNumber="5">V. cruziana</emphasis>
</taxonomicName>
flowers was measured using reverse transcriptionquantitative PCR (RT-qPCR). The highest level of expression of
<emphasis id="B9369A30A036162504D9FA5AFCD1FA19" bold="true" italics="true" pageId="4" pageNumber="5">VcSABATH1</emphasis>
was detected in stamens (
<figureCitation id="13795AA7A03616250529FA76FB0AFA19" box="[1128,1198,1508,1527]" captionStart="Fig" captionStartId="6.[100,130,1171,1188]" captionTargetBox="[106,733,148,1125]" captionTargetPageId="6" captionText="Fig. 6. Gene expression pattern of VcSABATH1 (A) and VcSABATH3 (B) in four different parts of V. cruziana flowers. Gene transcript levels were measured using RT-qPCR with VcGADPH (glyceraldehyde-3-phosphate dehydrogenase) gene as the internal control. The reactions were performed with three biological repeats, and the data was calculated by 2 ΔΔCT method. The highest levels of expression for each gene were arbitrarily set as 1.0. Different letters denote statistically significant differences among the means according to ANOVA analysis (P &lt;0.05)." figureDoi="http://doi.org/10.5281/zenodo.8258224" httpUri="https://zenodo.org/record/8258224/files/figure.png" pageId="4" pageNumber="5">Fig. 6A</figureCitation>
), whereas
<emphasis id="B9369A30A0361625044EFA76FA27FA19" bold="true" box="[1295,1411,1508,1527]" italics="true" pageId="4" pageNumber="5">VcSABATH3</emphasis>
showed the highest level of expression in pistils (
<figureCitation id="13795AA7A036162505F5F992FB5DF9FD" box="[1204,1273,1536,1555]" captionStart="Fig" captionStartId="6.[100,130,1171,1188]" captionTargetBox="[106,733,148,1125]" captionTargetPageId="6" captionText="Fig. 6. Gene expression pattern of VcSABATH1 (A) and VcSABATH3 (B) in four different parts of V. cruziana flowers. Gene transcript levels were measured using RT-qPCR with VcGADPH (glyceraldehyde-3-phosphate dehydrogenase) gene as the internal control. The reactions were performed with three biological repeats, and the data was calculated by 2 ΔΔCT method. The highest levels of expression for each gene were arbitrarily set as 1.0. Different letters denote statistically significant differences among the means according to ANOVA analysis (P &lt;0.05)." figureDoi="http://doi.org/10.5281/zenodo.8258224" httpUri="https://zenodo.org/record/8258224/files/figure.png" pageId="4" pageNumber="5">Fig. 6B</figureCitation>
).
</paragraph>
</subSubSection>
<subSubSection id="C35815A9A03616240273F9D2FD84F8AD" lastPageId="5" lastPageNumber="6" pageId="4" pageNumber="5" type="discussion">
<paragraph id="8BFD4622A03616250273F9D2FBBBF9BD" blockId="4.[818,1055,1600,1619]" box="[818,1055,1600,1619]" pageId="4" pageNumber="5">
<heading id="D0B5F14EA03616250273F9D2FBBBF9BD" bold="true" box="[818,1055,1600,1619]" fontSize="36" level="1" pageId="4" pageNumber="5" reason="1">
<emphasis id="B9369A30A03616250273F9D2FBBBF9BD" bold="true" box="[818,1055,1600,1619]" italics="true" pageId="4" pageNumber="5">2.7. Phylogenetic analysis</emphasis>
</heading>
</paragraph>
<paragraph id="8BFD4622A03616240210F9EAFD84F8AD" blockId="4.[818,1488,1656,1982]" lastBlockId="5.[100,770,1728,1859]" lastPageId="5" lastPageNumber="6" pageId="4" pageNumber="5">
Prior to this study, the SABATH family of methyltransferases in plants has been relatively well studied with a number of members characterized (
<bibRefCitation id="EFD33BD3A03616250281F922FB2EF92D" author="D' Auria, J. C. &amp; Chen, F. &amp; Pichersky, E." box="[960,1162,1711,1731]" pageId="4" pageNumber="5" pagination="253 - 283" refId="ref6797" refString="D' Auria, J. C., Chen, F., Pichersky, E., 2003. The SABATH family of MTS in Arabidopsis thaliana and other plant species. In: Romeo, J. T. (Ed.), Recent Advances in Phytochemistry, vol. 37. Elsevier, Amsterdam, pp. 253 - 283. https: // doi. org / 10.1016 / S 0079 - 9920 (03) 80026 - 6." type="book chapter" year="2003">D Auria et al., 2003</bibRefCitation>
). These include salicylic acid MT (
<bibRefCitation id="EFD33BD3A0361625027BF95EFC74F931" author="Ross, J. R. &amp; Nam, K. H. &amp; D' Auria, J. C. &amp; Pichersky, E." box="[826,976,1739,1759]" pageId="4" pageNumber="5" pagination="9 - 16" refId="ref7956" refString="Ross, J. R., Nam, K. H., D' Auria, J. C., Pichersky, E., 1999. S-Adenosyl-L-methionine: salicylic acid carboxyl methyltransferase, an enzyme involved in floral scent production and plant defense, represents a new class of plant methyl- transferases. Arch. Biochem. Biophys. 367, 9 - 16. https: // doi. org / 10.1006 / abbi. 1999.1255." type="journal article" year="1999">Ross et al., 1999</bibRefCitation>
;
<bibRefCitation id="EFD33BD3A0361625029BF959FBD1F931" author="Chen, F. &amp; D' Auria, J. C. &amp; Tholl, D. &amp; Ross, J. R. &amp; Gershenzon, J. &amp; Noel, J. P. &amp; Pichersky, E." box="[986,1141,1739,1759]" pageId="4" pageNumber="5" pagination="577 - 588" refId="ref6558" refString="Chen, F., D' Auria, J. C., Tholl, D., Ross, J. R., Gershenzon, J., Noel, J. P., Pichersky, E., 2003. An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J. 36, 577 - 588. https: // doi. org / 10.1046 / j. 1365 - 313 X. 2003.01902. x." type="journal article" year="2003">Chen et al., 2003</bibRefCitation>
,
<bibRefCitation id="EFD33BD3A036162505C1F959FABEF931" author="Zhao, N. &amp; Guan, J. &amp; Ferrer, J. L. &amp; Engle, N. &amp; Chern, M. &amp; Ronald, P. &amp; Tschaplinski, T. J. &amp; Chen, F." box="[1152,1306,1739,1759]" pageId="4" pageNumber="5" pagination="279 - 287" refId="ref9403" refString="Zhao, N., Guan, J., Ferrer, J. L., Engle, N., Chern, M., Ronald, P., Tschaplinski, T. J., Chen, F., 2010. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. Plant Physiol. Biochem. 48, 279 - 287. https: // doi. org / 10.1016 / j. plaphy. 2010.01.023." type="journal article" year="2010">Zhao et al., 2010</bibRefCitation>
), jasmonic acid MT (
<bibRefCitation id="EFD33BD3A0361625027BF975FC6FF914" author="Seo, H. S. &amp; Song, J. T. &amp; Cheong, J. J. &amp; Lee, Y. H. &amp; Lee, Y. W. &amp; Hwang, I. &amp; Lee, J. S. &amp; Choi, Y. D." box="[826,971,1767,1787]" pageId="4" pageNumber="5" pagination="4788 - 4793" refId="ref8092" refString="Seo, H. S., Song, J. T., Cheong, J. J., Lee, Y. H., Lee, Y. W., Hwang, I., Lee, J. S., Choi, Y. D., 2001. Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonateregulated plant responses. Proc. NatI. Acad. Sci. U. S. A. 98, 4788 - 4793. https: // doi. org / 10.1073 / pnas. 081557298." type="journal article" year="2001">Seo et al., 2001</bibRefCitation>
;
<bibRefCitation id="EFD33BD3A03616250297F975FBD1F914" author="Zhao, N. &amp; Yao, J. &amp; Chaiprasongsuk, M. &amp; Li, G. &amp; Guan, J. &amp; Tschaplinski, T. J. &amp; Guo, H. &amp; Chen, F." box="[982,1141,1767,1787]" pageId="4" pageNumber="5" pagination="74 - 81" refId="ref9547" refString="Zhao, N., Yao, J., Chaiprasongsuk, M., Li, G., Guan, J., Tschaplinski, T. J., Guo, H., Chen, F., 2013. Molecular and biochemical characterization of the jasmonic acid methyltransferase gene from black cottonwood (Populus trichocarpa). Phytochemistry 94, 74 - 81. https: // doi. org / 10.1016 / j. phytochem. 2013.06.014." type="journal article" year="2013">Zhao et al., 2013</bibRefCitation>
), indole-3 acetic acid MT (
<bibRefCitation id="EFD33BD3A03616250432F975FCC6F8F8" author="Qin, G. &amp; Gu, H. &amp; Zhao, Y. &amp; Ma, Z. &amp; Shi, G. &amp; Yang, Y. &amp; Pichersky, E. &amp; Chen, H. &amp; Liu, M. &amp; Chen, Z. &amp; Qu, L. J." pageId="4" pageNumber="5" pagination="2693 - 2704" refId="ref7863" refString="Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., Pichersky, E., Chen, H., Liu, M., Chen, Z., Qu, L. J., 2005. An indole- 3 - acetic acid carboxyl methyltransferase regulates Arabidopsis leaf development. Plant Cell 17, 2693 - 2704. https: // doi. org / 10.1105 / tpc. 105.034959." type="journal article" year="2005">Qin et al., 2005</bibRefCitation>
;
<bibRefCitation id="EFD33BD3A0361625022EF891FBB6F8F8" author="Zhao, N. &amp; Guan, J. &amp; Lin, H. &amp; Chen, F." box="[879,1042,1795,1815]" pageId="4" pageNumber="5" pagination="1537 - 1544" refId="ref9488" refString="Zhao, N., Guan, J., Lin, H., Chen, F., 2007. Molecular cloning and biochemical characterization of indole- 3 - acetic acid methyltransferase from poplar. Phytochemistry 68, 1537 - 1544. https: // doi. org / 10.1016 / j. phytochem. 2007.03.041." type="journal article" year="2007">Zhao et al., 2007</bibRefCitation>
,
<bibRefCitation id="EFD33BD3A0361625055EF891FBEBF8F8" author="Zhao, N. &amp; Ferrer, J. L. &amp; Ross, J. &amp; Guan, J. &amp; Yang, Y. &amp; Pichersky, E. &amp; Noel, J. P. &amp; Chen, F." box="[1055,1103,1795,1814]" pageId="4" pageNumber="5" pagination="455 - 467" refId="ref9310" refString="Zhao, N., Ferrer, J. L., Ross, J., Guan, J., Yang, Y., Pichersky, E., Noel, J. P., Chen, F., 2008. Structural, biochemical, and phylogenetic analyses suggest that indole- 3 - acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. Plant Physiol. 146, 455 - 467. https: // doi. org / 10.1104 / pp. 107.110049." type="journal article" year="2008">2008</bibRefCitation>
), gibberellic acid MT (
<bibRefCitation id="EFD33BD3A0361625046DF891FCC6F8DC" author="Varbanova, M. &amp; Yamaguchi, S. &amp; Yang, Y. &amp; McKelvey, K. &amp; Hanada, A. &amp; Borochov, R. &amp; Yu, F. &amp; Jikumaru, Y. &amp; Ross, J. &amp; Cortes, D. &amp; Ma, C. J. &amp; Noel, J. P. &amp; Mander, L. &amp; Shulaev, V. &amp; Kamiya, Y. &amp; Rodermel, S. &amp; Weiss, D. &amp; Pichersky, E." pageId="4" pageNumber="5" pagination="32 - 45" refId="ref8579" refString="Varbanova, M., Yamaguchi, S., Yang, Y., McKelvey, K., Hanada, A., Borochov, R., Yu, F., Jikumaru, Y., Ross, J., Cortes, D., Ma, C. J., Noel, J. P., Mander, L., Shulaev, V., Kamiya, Y., Rodermel, S., Weiss, D., Pichersky, E., 2007. Methylation of gibberellins by Arabidopsis GAMT 1 and GAMT 2. Plant Cell 19, 32 - 45. https: // doi. org / 10.1105 / tpc. 106.044602." type="journal article" year="2007">Varbanova et al., 2007</bibRefCitation>
;
<bibRefCitation id="EFD33BD3A0361625022DF88DFBB7F8DC" author="Zhang, C. &amp; Chaiprasongsuk, M. &amp; Chanderbali, A. S. &amp; Chen, X. &amp; Fu, J. &amp; Soltis, D. E. &amp; Chen, F." box="[876,1043,1823,1842]" pageId="4" pageNumber="5" pagination="00287" refId="ref8961" refString="Zhang, C., Chaiprasongsuk, M., Chanderbali, A. S., Chen, X., Fu, J., Soltis, D. E., Chen, F., 2020. Origin and evolution of a gibberellin-deactivating enzyme GAMT. Plant Direct 4, e 00287. https: // doi. org / 10.1002 / pld 3.287." type="journal article" year="2020">Zhang et al., 2020</bibRefCitation>
). To understand the evolutionary relatedness of the two fatty acid methyltransferases from
<taxonomicName id="4C423DA1A03616250581F8A9FA81F8A0" authority="Orbign." box="[1216,1317,1851,1870]" class="Magnoliopsida" family="Nymphaeaceae" genus="Victoria" kingdom="Plantae" order="Nymphaeales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="cruziana">
<emphasis id="B9369A30A03616250581F8A9FA81F8A0" bold="true" box="[1216,1317,1851,1870]" italics="true" pageId="4" pageNumber="5">V. cruziana</emphasis>
</taxonomicName>
(VcSABATH1 and VcSABATH3) with known SABATH proteins, phylogenetic analyses were performed. Three VcSABATHs form a water lily-specific cluster with 6 full-length SABATH members from
<taxonomicName id="4C423DA1A036162505F9F81DFABEF84F" box="[1208,1306,1934,1954]" class="Magnoliopsida" family="Nymphaeaceae" genus="Nymphaea" kingdom="Plantae" order="Nymphaeales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="colorata">
<emphasis id="B9369A30A036162505F9F81DFABEF84F" bold="true" box="[1208,1306,1934,1954]" italics="true" pageId="4" pageNumber="5">N. colorata</emphasis>
</taxonomicName>
except the putative IAMT (Nc8G0124910-1) (
<figureCitation id="13795AA7A03616250564F839FBFEF850" box="[1061,1114,1963,1982]" captionStart="Fig" captionStartId="7.[818,848,148,165]" captionTargetBox="[125,745,150,1886]" captionTargetId="figure-531@7.[124,746,148,1889]" captionTargetPageId="7" captionText="Fig. 7. The phylogenetic analysis of VcSABATHs with the SABATH genes identified from N. corolata, non-seed and model species. 39 full-length proteins starting with “Os” are from rice, 24 proteins starting with “At” are from Arabidopsis, seven full-length proteins starting with “NC” are from Nymphaea colorata, five proteins starting with “Pa” are from Picea abies, three proteins starting with “Pt” are from poplar and three proteins starting with “Vc” are from V. cruziana. IAMT: indole-3-acetic acid MT; SAMT: salicylic acid MT; JAMT: jasmonic acid MT; GAMT: gibberellic acid MT; BSMT: benzoic acid/salicylic acid MT; FAMT: farnesoic acid MT. PpSABATH1 from the moss Physcomitrella patterns (Zhao et al., 2012) was used as an outgroup. Bootstrap values of 50 % or higher are indicated. The water lily-specific cluster was shaded." figureDoi="http://doi.org/10.5281/zenodo.8258226" httpUri="https://zenodo.org/record/8258226/files/figure.png" pageId="4" pageNumber="5">Fig. 7</figureCitation>
). VcSABATH1 was most closely related to three NcSABATHs including Nc11G0120830-1 which was characterized to be decanoic acid methyltransferase (
<bibRefCitation id="EFD33BD3A0371624037BF94EFD50F901" author="Zhang, L. &amp; Chen, F. &amp; Zhang, X. &amp; Li, Z. &amp; Zhao, Y. &amp; Lohaus, R. &amp; Chang, X. &amp; Dong, W. &amp; Ho, S. Y. W. &amp; Liu, X. &amp; Song, A. &amp; Chen, J. &amp; Guo, W. &amp; Wang, Z. &amp; Zhuang, Y. &amp; Wang, H. &amp; Chen, X. &amp; Hu, J. &amp; Liu, Y. &amp; Qin, Y. &amp; Wang, K. &amp; Dong, S. &amp; Liu, Y. &amp; Zhang, S. &amp; Yu, X. &amp; Wu, Q. &amp; Wang, L. &amp; Yan, X. &amp; Jiao, Y. &amp; Kong, H. &amp; Zhou, X. &amp; Yu, C. &amp; Chen, Y. &amp; Li, F. &amp; Wang, J. &amp; Chen, W. &amp; Chen, X. &amp; Jia, Q. &amp; Zhang, C. &amp; Jiang, Y. &amp; Zhang, W. &amp; Liu, G. &amp; Fu, J. &amp; Chen, F. &amp; Ma, H. &amp; Van de Peer, Y. &amp; Tang, H." box="[570,756,1756,1775]" pageId="5" pageNumber="6" pagination="79 - 84" refId="ref9030" refString="Zhang, L., Chen, F., Zhang, X., Li, Z., Zhao, Y., Lohaus, R., Chang, X., Dong, W., Ho, S. Y. W., Liu, X., Song, A., Chen, J., Guo, W., Wang, Z., Zhuang, Y., Wang, H., Chen, X., Hu, J., Liu, Y., Qin, Y., Wang, K., Dong, S., Liu, Y., Zhang, S., Yu, X., Wu, Q., Wang, L., Yan, X., Jiao, Y., Kong, H., Zhou, X., Yu, C., Chen, Y., Li, F., Wang, J., Chen, W., Chen, X., Jia, Q., Zhang, C., Jiang, Y., Zhang, W., Liu, G., Fu, J., Chen, F., Ma, H., Van de Peer, Y., Tang, H., 2019. The water lily genome and the early evolution of flowering plants. Nature 577, 79 - 84. https: // doi. org / 10.1038 / s 41586 - 019 - 1852 - 5." type="journal article" year="2019">Zhang et al., 2019</bibRefCitation>
). VcSABATH2 and VcSABATH3 were most closely related to each other and together with two NcSABATHs of unknown functions they form a subcluster in water lily-specific cluster (
<figureCitation id="13795AA7A0371624009CF8A2FDB7F8AD" box="[477,531,1840,1859]" captionStart="Fig" captionStartId="7.[818,848,148,165]" captionTargetBox="[125,745,150,1886]" captionTargetId="figure-531@7.[124,746,148,1889]" captionTargetPageId="7" captionText="Fig. 7. The phylogenetic analysis of VcSABATHs with the SABATH genes identified from N. corolata, non-seed and model species. 39 full-length proteins starting with “Os” are from rice, 24 proteins starting with “At” are from Arabidopsis, seven full-length proteins starting with “NC” are from Nymphaea colorata, five proteins starting with “Pa” are from Picea abies, three proteins starting with “Pt” are from poplar and three proteins starting with “Vc” are from V. cruziana. IAMT: indole-3-acetic acid MT; SAMT: salicylic acid MT; JAMT: jasmonic acid MT; GAMT: gibberellic acid MT; BSMT: benzoic acid/salicylic acid MT; FAMT: farnesoic acid MT. PpSABATH1 from the moss Physcomitrella patterns (Zhao et al., 2012) was used as an outgroup. Bootstrap values of 50 % or higher are indicated. The water lily-specific cluster was shaded." figureDoi="http://doi.org/10.5281/zenodo.8258226" httpUri="https://zenodo.org/record/8258226/files/figure.png" pageId="5" pageNumber="6">Fig. 7</figureCitation>
).
</paragraph>
</subSubSection>
</treatment>
</document>