treatments-xml/data/03/84/87/0384878B3B0BFFED3735FDC237CEAB3A.xml
2024-06-21 12:22:17 +02:00

334 lines
45 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document ID-DOI="10.1163/15685381-bja10114" approvedBy="castro_plazi" checkinTime="1669639004723" checkinUser="jonas" docAuthor="Tarkhnishvili, David, Hille, Axel, Waller, Thomas, Todua, Mariam, Murtskhvaladze, Marine &amp; Böhme, Wolfgang" docDate="2022" docId="0384878B3B0BFFED3735FDC237CEAB3A" docLanguage="en" docName="Amphibia-Reptilia.43.2022.379-393.pdf" docOrigin="Amphibia-Reptilia 43 (2022)" docTitle="Eunectes Wagler 1830" docType="treatment" docVersion="1" lastPageNumber="390" masterDocId="FFBDFFF33B02FFE63746FFE63500A911" masterDocTitle="Morphological trends and genetic divergence in anacondas, genus Eunectes Wagler, 1830 (Serpentes: Boidae)" masterLastPageNumber="393" masterPageNumber="379" pageNumber="388" updateTime="1669639007378" updateUser="jonas">
<mods:mods xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo>
<mods:title>Morphological trends and genetic divergence in anacondas, genus Eunectes Wagler, 1830 (Serpentes: Boidae)</mods:title>
</mods:titleInfo>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Tarkhnishvili, David</mods:namePart>
<mods:affiliation>Institute of Ecology, Ilia State University, Cholokashvili Str. 3, 0162 Tbilisi, Georgia</mods:affiliation>
<mods:nameIdentifier type="email">david_tarkhnishvili@iliauni.edu.ge</mods:nameIdentifier>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Hille, Axel</mods:namePart>
<mods:affiliation>Altheider Weg 13, 32805 Horn-Bad Meinberg, Germany</mods:affiliation>
<mods:nameIdentifier type="email">axel.hille@gmx.net</mods:nameIdentifier>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Waller, Thomas</mods:namePart>
<mods:affiliation>Fundación Biodiversidad Argentina (FBA), Suipacha 1311 5 Piso, C 1011 AAC C. Autónoma de Buenos Aires, Argentina</mods:affiliation>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Todua, Mariam</mods:namePart>
<mods:affiliation>Institute of Ecology, Ilia State University, Cholokashvili Str. 3 5, 0162 Tbilisi, Georgia</mods:affiliation>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Murtskhvaladze, Marine</mods:namePart>
<mods:affiliation>Institute of Ecology, Ilia State University, Cholokashvili Str. 3 5, 0162 Tbilisi, Georgia</mods:affiliation>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Böhme, Wolfgang</mods:namePart>
<mods:affiliation>Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany</mods:affiliation>
</mods:name>
<mods:typeOfResource>text</mods:typeOfResource>
<mods:relatedItem type="host">
<mods:titleInfo>
<mods:title>Amphibia-Reptilia</mods:title>
</mods:titleInfo>
<mods:part>
<mods:date>2022</mods:date>
<mods:detail type="pubDate">
<mods:number>2022-11-02</mods:number>
</mods:detail>
<mods:detail type="volume">
<mods:number>43</mods:number>
</mods:detail>
<mods:detail type="issue">
<mods:number>2022</mods:number>
</mods:detail>
<mods:extent unit="page">
<mods:start>379</mods:start>
<mods:end>393</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:classification>journal article</mods:classification>
<mods:identifier type="DOI">10.1163/15685381-bja10114</mods:identifier>
</mods:mods>
<treatment LSID="urn:lsid:plazi:treatment:0384878B3B0BFFED3735FDC237CEAB3A" httpUri="http://treatment.plazi.org/id/0384878B3B0BFFED3735FDC237CEAB3A" lastPageId="11" lastPageNumber="390" pageId="9" pageNumber="388">
<subSubSection pageId="9" pageNumber="388" type="nomenclature">
<paragraph blockId="9.[115,571,548,605]" pageId="9" pageNumber="388">
<emphasis box="[115,571,548,571]" italics="true" pageId="9" pageNumber="388">Morphological vs genetic differentiation in</emphasis>
<taxonomicName authorityName="Wagler" authorityYear="1830" box="[115,211,582,605]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="genus">Eunectes</taxonomicName>
</paragraph>
</subSubSection>
<subSubSection lastPageId="10" lastPageNumber="389" pageId="9" pageNumber="388" type="diagnosis">
<paragraph blockId="9.[115,622,636,1766]" lastBlockId="9.[666,1173,182,1766]" pageId="9" pageNumber="388">
The monophyletic genus
<taxonomicName authorityName="Wagler" authorityYear="1830" box="[404,500,636,659]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="genus">
<emphasis box="[404,500,636,659]" italics="true" pageId="9" pageNumber="388">Eunectes</emphasis>
</taxonomicName>
comprises two clades, large-bodied and small-bodied anacondas. According to different authors, the time of this separation varies between five (
<bibRefCitation author="Tonini, J. F. R. &amp; Beard, K. H. &amp; Ferreira, R. B. &amp; Jetz, W. &amp; Pyron, R. A." journalOrPublisher="Biol. Conserv." pageId="9" pageNumber="388" pagination="23 - 31" part="204" refId="ref11305" refString="Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W., Pyron, R. A. (2016): Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biol. Conserv. 204: 23 - 31." title="Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status" type="journal article" year="2016">Tonini et al., 2016</bibRefCitation>
) and 20 (
<bibRefCitation author="Wright, A. M. &amp; Lyons, K. M. &amp; Brandley, M. C. &amp; Hillis, D. M." box="[328,547,774,797]" journalOrPublisher="J. Exp. Zool. Part B: Molecular and Developmental Evolution" pageId="9" pageNumber="388" pagination="504 - 516" part="324" refId="ref11471" refString="Wright, A. M., Lyons, K. M., Brandley, M. C., Hillis, D. M. (2015): Which came first: the lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states. J. Exp. Zool. Part B: Molecular and Developmental Evolution 324: 504 - 516." title="Which came first: the lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states" type="journal article" year="2015">Wright et al., 2015</bibRefCitation>
) Mya, with a median value 10.8 Mya (
<bibRefCitation author="Zheng, Y. &amp; Wiens, J. J." journalOrPublisher="Mol. Phylogenet. Evol." pageId="9" pageNumber="388" pagination="537 - 547" part="94" refId="ref11657" refString="Zheng, Y., Wiens, J. J. (2016): Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 94: 537 - 547." title="Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species" type="journal article" year="2016">Zheng et al., 2016</bibRefCitation>
;
<bibRefCitation author="Kumar, S. &amp; Stecher, G. &amp; Suleski, M. &amp; Hedges, S. B." box="[185,397,844,867]" journalOrPublisher="Mol. Biol. Evol." pageId="9" pageNumber="388" pagination="1812 - 1819" part="34" refId="ref9945" refString="Kumar, S., Stecher, G., Suleski, M., Hedges, S. B. (2017): TimeTree: a resource for timelines, timetrees, and divergence times. Mol. Biol. Evol. 34: 1812 - 1819. DOI: 10. 1093 / molbev / msx 116." title="TimeTree: a resource for timelines, timetrees, and divergence times" type="journal article" year="2017">Kumar et al., 2017</bibRefCitation>
). The first clade has a single species, the Green Anaconda (
<taxonomicName baseAuthorityName="Linnaeus" baseAuthorityYear="1758" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="murinus">
<emphasis italics="true" pageId="9" pageNumber="388">E. murinus</emphasis>
</taxonomicName>
), with a continuous distribution range covering a considerable part of South America; the second clade includes three taxa spatially separated from each other by distributional gaps. According to our estimate based on the analysis of mitochondrial Cyt-b gene, the diversification of small-bodied anacondas started ca. 2.4 Mya (fig. 5), i.e., it can be connected with the range fragmentation in the early Pleistocene. The Green Anaconda can easily be distinguished from its small-bodied congeners by higher numbers of head scales and lateral head stripes. These characters show an apparent hiatus between these lineages (table 1, fig. 2). The discrimination of the two clades is supported both by morphological and genetic evidence, and posterior probabilities for monophyly of the small-bodied anacondas vary between 0.67 (ODC) to 0.99-1.00 (Cyt-b and BNDF). However, the analysis of RAG-1 and NT3 genes did not show reciprocal monophyly between the two clades of
<taxonomicName authorityName="Wagler" authorityYear="1830" box="[346,442,1639,1662]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="genus">
<emphasis box="[346,442,1639,1662]" italics="true" pageId="9" pageNumber="388">Eunectes</emphasis>
</taxonomicName>
. This suggests either gene introgression between big-bodied and small-bodied anacondas in the geological past, or low rates of evolution of these two genes, which might hamper identification of the lineages (
<bibRefCitation author="Brito, P. H. &amp; Edwards, S. V." box="[772,1055,217,240]" journalOrPublisher="Genetica" pageId="9" pageNumber="388" pagination="439 - 455" part="135" refId="ref8590" refString="Brito, P. H., Edwards, S. V. (2009): Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135: 439 - 455." title="Multilocus phylogeography and phylogenetics using sequence-based markers" type="journal article" year="2009">Brito and Edwards, 2009</bibRefCitation>
;
<bibRefCitation author="Freitas, I. &amp; Ursenbacher, S. &amp; Mebert, K. &amp; Zinenko, O. &amp; Schweiger, S. &amp; Wuster, W. &amp; Brito, J. C. &amp; Crnobrnja- Isailovic, J. &amp; Halpern, B. &amp; Fahd, S. &amp; Santos, X. &amp; Pleguezuelos, J. M. &amp; Joger, U. &amp; Orlov, N. &amp; Mizsei, E. &amp; Lourdais, O. &amp; Zuffi, M. A. L. &amp; Strugariu, A. &amp; Zamfirescu, S. R. &amp; Martinez-Solano, I. &amp; Velo-Anton, G. &amp; Kaliontzopoulou, A. &amp; Martinez-Freiria, F." journalOrPublisher="Amphibia-Reptilia" pageId="9" pageNumber="388" pagination="285 - 311" part="41" refId="ref9413" refString="Freitas, I., Ursenbacher, S., Mebert, K., Zinenko, O., Schweiger, S., Wuster, W., Brito, J. C., Crnobrnja- Isailovic, J., Halpern, B., Fahd, S., Santos, X., Pleguezuelos, J. M., Joger, U., Orlov, N., Mizsei, E., Lourdais, O., Zuffi, M. A. L., Strugariu, A., Zamfirescu, S. R., Martinez-Solano, I., Velo-Anton, G., Kaliontzopoulou, A., Martinez-Freiria, F. (2020): Evaluating taxonomic inflation: towards evidence-based species delimitation in Eurasian vipers (Serpentes: Viperinae). Amphibia-Reptilia 41: 285 - 311." title="Evaluating taxonomic inflation: towards evidence-based species delimitation in Eurasian vipers (Serpentes: Viperinae)" type="journal article" year="2020">Freitas et al., 2020</bibRefCitation>
).
</paragraph>
<paragraph blockId="9.[666,1173,182,1766]" pageId="9" pageNumber="388">
Neither of the analyzed datasets showed reciprocal monophyly or full discrimination between three nominal species of the smallbodied anacondas. Moreover, the initial split between the nominal species of small-bodied anacondas, judging from the mt-DNA sequence divergence, happened even later than the basal split between the current lineages of
<taxonomicName baseAuthorityName="Linnaeus" baseAuthorityYear="1758" box="[1056,1172,529,552]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="murinus">
<emphasis box="[1056,1172,529,552]" italics="true" pageId="9" pageNumber="388">E. murinus</emphasis>
</taxonomicName>
(fig. 5a). Simultaneously, there are some diagnostic characters for the studied species. E.g. the number of dorsal blotches do not overlap between the studied
<taxonomicName authorityName="Cope" authorityYear="1862" box="[891,1005,668,691]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="notaeus">
<emphasis box="[891,1005,668,691]" italics="true" pageId="9" pageNumber="388">E. notaeus</emphasis>
</taxonomicName>
and
<taxonomicName authorityName="Dirksen" authorityYear="2002" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="beniensis">
<emphasis italics="true" pageId="9" pageNumber="388">E. beniensis</emphasis>
</taxonomicName>
; RAPD profiles fully separate
<taxonomicName authorityName="Cope" authorityYear="1862" box="[1017,1129,703,726]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="notaeus">
<emphasis box="[1017,1129,703,726]" italics="true" pageId="9" pageNumber="388">E. notaeus</emphasis>
</taxonomicName>
and
<taxonomicName authorityName="Dunn and Conant" authorityYear="1936" box="[666,855,737,760]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="deschauenseei">
<emphasis box="[666,855,737,760]" italics="true" pageId="9" pageNumber="388">E. deschauenseei</emphasis>
</taxonomicName>
; there is a diagnostic mitochondrial haplogroup of
<taxonomicName authorityName="Dirksen" authorityYear="2002" box="[929,1057,772,795]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="beniensis">
<emphasis box="[929,1057,772,795]" italics="true" pageId="9" pageNumber="388">E. beniensis</emphasis>
</taxonomicName>
(but not in two other small-bodied species).
</paragraph>
<paragraph blockId="9.[666,1173,182,1766]" pageId="9" pageNumber="388">
The incongruence of unlinked gene-based trees and paraphyly of individual species suggest either incomplete lineage sorting in sense Avise (1999), or gene introgression. Concerning small-bodied species, the former scenario looks reasonable, assuming their relatively recent divergence. Gene introgression can continue millions of years after the initial split of the lineages (
<bibRefCitation author="Kronforst, M. R." box="[738,912,1119,1142]" journalOrPublisher="BMC Evol. Biol." pageId="9" pageNumber="388" pagination="1 - 8" part="8" refId="ref9912" refString="Kronforst, M. R. (2008): Gene flow persists millions of years after speciation in Heliconius butterflies. BMC Evol. Biol. 8: 1 - 8." title="Gene flow persists millions of years after speciation in Heliconius butterflies" type="journal article" year="2008">Kronforst, 2008</bibRefCitation>
), which could also cause limited gene flow between
<taxonomicName baseAuthorityName="Linnaeus" baseAuthorityYear="1758" box="[986,1110,1154,1177]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="murinus">
<emphasis box="[986,1110,1154,1177]" italics="true" pageId="9" pageNumber="388">E. murinus</emphasis>
</taxonomicName>
with coexisting species of the small-bodied anacondas. In any event, neither of the small-bodied anaconda species reached the stage of genealogical concordance (Avise, 1999, 2000), although they show signs of both phenotypic and genotypic distinctness.
</paragraph>
<paragraph blockId="9.[666,1173,182,1766]" lastBlockId="10.[115,622,182,666]" lastPageId="10" lastPageNumber="389" pageId="9" pageNumber="388">
The question remains as to the consequences of divergence events in small anacondas. The analysis of morphology indicates a higher similarity between
<taxonomicName authorityName="Cope" authorityYear="1862" box="[825,938,1500,1523]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="notaeus">
<emphasis box="[825,938,1500,1523]" italics="true" pageId="9" pageNumber="388">E. notaeus</emphasis>
</taxonomicName>
and
<taxonomicName authorityName="Dunn and Conant" authorityYear="1936" box="[990,1172,1500,1523]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="deschauenseei">
<emphasis box="[990,1172,1500,1523]" italics="true" pageId="9" pageNumber="388">E. deschauenseei</emphasis>
</taxonomicName>
than between these two and
<taxonomicName authorityName="Dirksen" authorityYear="2002" box="[979,1110,1535,1558]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="beniensis">
<emphasis box="[979,1110,1535,1558]" italics="true" pageId="9" pageNumber="388">E. beniensis</emphasis>
</taxonomicName>
. This is in contrast with RAPD analysis which places Beni anaconda in the same cluster as
<taxonomicName authorityName="Cope" authorityYear="1862" box="[1055,1166,1605,1628]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="notaeus">
<emphasis box="[1055,1166,1605,1628]" italics="true" pageId="9" pageNumber="388">E. notaeus</emphasis>
</taxonomicName>
. However, the mitochondrial topology is consistent with the morphological analysis and supports a more distant position of
<taxonomicName authorityName="Dirksen" authorityYear="2002" box="[1038,1173,1709,1732]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="9" pageNumber="388" phylum="Chordata" rank="species" species="beniensis">
<emphasis box="[1038,1173,1709,1732]" italics="true" pageId="9" pageNumber="388">E. beniensis</emphasis>
</taxonomicName>
from two other small- bodied anaconda species than that of
<taxonomicName authorityName="Cope" authorityYear="1862" box="[254,370,182,205]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="10" pageNumber="389" phylum="Chordata" rank="species" species="notaeus">
<emphasis box="[254,370,182,205]" italics="true" pageId="10" pageNumber="389">E. notaeus</emphasis>
</taxonomicName>
and
<taxonomicName authorityName="Dunn and Conant" authorityYear="1936" box="[428,614,182,205]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="10" pageNumber="389" phylum="Chordata" rank="species" species="deschauenseei">
<emphasis box="[428,614,182,205]" italics="true" pageId="10" pageNumber="389">E. deschauenseei</emphasis>
</taxonomicName>
. We should acknowledge here the limitation of RAPD approach, which helped to distinguish between the small and large-bodied anacondas and confirmed probability of incomplete lineage sorting between the small-bodied species; however, the method can hardly be used for building a topology with a high resolution between the studied taxa. In future, genomic data can shed light on the evolution of small-bodied
<taxonomicName authorityName="Wagler" authorityYear="1830" box="[115,211,537,560]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="10" pageNumber="389" phylum="Chordata" rank="genus">
<emphasis box="[115,211,537,560]" italics="true" pageId="10" pageNumber="389">Eunectes</emphasis>
</taxonomicName>
, and provide a clear reply on the questions on the relative time of divergence, present or past gene flow between the individual species.
</paragraph>
</subSubSection>
<subSubSection pageId="10" pageNumber="389" type="biology_ecology">
<paragraph blockId="10.[115,621,722,746]" box="[115,621,722,746]" pageId="10" pageNumber="389">
<emphasis box="[115,246,723,746]" italics="true" pageId="10" pageNumber="389">Evolution of</emphasis>
<taxonomicName authorityName="Wagler" authorityYear="1830" box="[256,352,722,745]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="10" pageNumber="389" phylum="Chordata" rank="genus">Eunectes</taxonomicName>
<emphasis box="[358,621,723,746]" italics="true" pageId="10" pageNumber="389">in biogeographic context</emphasis>
</paragraph>
<paragraph blockId="10.[115,622,786,1766]" pageId="10" pageNumber="389">
All anaconda species are dependent on seasonally flooded wetland areas (
<bibRefCitation author="Pizzatto, L. &amp; Marques, O. A. V. &amp; Martins, M." editor="Henderson, R. W. &amp; Powell, R." journalOrPublisher="Eagle Mountain Publishing, LC, Utah" pageId="10" pageNumber="389" pagination="35 - 48" refId="ref10432" refString="Pizzatto, L., Marques, O. A. V., Martins, M. (2007): Ecomorphology of boine snakes, with emphasis on South American forms. In: Biology of Boas and Pythons, pp. 35 - 48. Henderson, R. W., Powell, R., Eds, Eagle Mountain Publishing, LC, Utah." title="Ecomorphology of boine snakes, with emphasis on South American forms" type="book chapter" volumeTitle="Biology of Boas and Pythons" year="2007">Pizzatto et al., 2007</bibRefCitation>
). However, they are found in different landscapes and climates. The central part of the range of Green Anacondas coincides with the distribution of tropical rainforests, whereas the ranges of all three small-bodied anacondas lay in tropical moist and dry forests and seasonally flooded savannah and treeless grassland, which emerged in lowland Amazonia in the Middle Pliocene (
<bibRefCitation author="Burnham, R. J. &amp; Graham, A." box="[223,538,1140,1163]" journalOrPublisher="Ann. Missouri Bot. Garden" pageId="10" pageNumber="389" pagination="546 - 589" refId="ref8673" refString="Burnham, R. J., Graham, A. (1999): The history of Neotropical vegetation: new developments and status. Ann. Missouri Bot. Garden: 546 - 589." title="The history of Neotropical vegetation: new developments and status" type="book chapter" year="1999">Burnham and Graham, 1999</bibRefCitation>
;
<bibRefCitation author="Cheng, H. &amp; Sinha, A. &amp; Cruz, FW &amp; Wang, X. &amp; Edwards, R. L. &amp; d'Horta, F. M. &amp; Ribas, C. C. &amp; Vuille, M. &amp; Stott, L. D. &amp; Auler, A. S." journalOrPublisher="Nat. Commun." pageId="10" pageNumber="389" pagination="1 - 6" part="4" refId="ref8814" refString="Cheng, H., Sinha, A., Cruz, FW., Wang, X., Edwards, R. L., d'Horta, F. M., Ribas, C. C., Vuille, M., Stott, L. D., Auler, A. S. (2013): Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4: 1 - 6." title="Climate change patterns in Amazonia and biodiversity" type="journal article" year="2013">Cheng et al., 2013</bibRefCitation>
).
</paragraph>
<paragraph blockId="10.[115,622,786,1766]" lastBlockId="10.[666,1173,182,1531]" pageId="10" pageNumber="389">
Considering increasing long-lasting fluctuations of earth climate since the Middle Miocene (
<bibRefCitation author="Miller, K. G. &amp; Fairbanks, R. G." box="[122,423,1282,1305]" journalOrPublisher="Nature" pageId="10" pageNumber="389" pagination="250 - 253" part="306" refId="ref10333" refString="Miller, K. G., Fairbanks, R. G. (1983): Evidence for Oligocene - middle Miocene abyssal circulation changes in the western north Atlantic. Nature 306: 250 - 253." title="Evidence for Oligocene - middle Miocene abyssal circulation changes in the western north Atlantic" type="journal article" year="1983">Miller and Fairbanks, 1983</bibRefCitation>
), one can hypothesize that fragmentation of tropical rainforest paralleled by the increase of dry forest and grassland areas could have triggered the initial split between the big-bodied, more rainforestadapted, and the small-bodied species, which are adapted to more open biomes. The inferred time of the divergence within
<taxonomicName authorityName="Wagler" authorityYear="1830" box="[448,544,1530,1553]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="10" pageNumber="389" phylum="Chordata" rank="genus">
<emphasis box="[448,544,1530,1553]" italics="true" pageId="10" pageNumber="389">Eunectes</emphasis>
</taxonomicName>
different from that accepted here does not affect this suggestion. Both the highest (
<bibRefCitation author="Wright, A. M. &amp; Lyons, K. M. &amp; Brandley, M. C. &amp; Hillis, D. M." journalOrPublisher="J. Exp. Zool. Part B: Molecular and Developmental Evolution" pageId="10" pageNumber="389" pagination="504 - 516" part="324" refId="ref11471" refString="Wright, A. M., Lyons, K. M., Brandley, M. C., Hillis, D. M. (2015): Which came first: the lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states. J. Exp. Zool. Part B: Molecular and Developmental Evolution 324: 504 - 516." title="Which came first: the lizard or the egg? Robustness in phylogenetic reconstruction of ancestral states" type="journal article" year="2015">Wright et al., 2015</bibRefCitation>
) and the lowest (Tonini et al., 2015) estimated divergence times are within the period between the middle and late Miocene, within the period of continuous decline of the land tem- perature (and hence continuous forest fragmentation).
</paragraph>
<paragraph blockId="10.[666,1173,182,1531]" pageId="10" pageNumber="389">
The further split within big-bodied anacondas occurred, probably due to climate and landscape changes in early Pliocene. In small-bodied anaconda lineages, the divergence of the main evolutionary lineages occurred later, probably during the Pleistocene glacial-interglacial cycles.
<bibRefCitation author="Kershaw, F. &amp; Waller, T. &amp; Micucci, P. &amp; Draque, J. &amp; Barros, M. &amp; Buongermini, E. &amp; Pearson, R. G. &amp; Mendez, M." box="[666,897,461,484]" journalOrPublisher="Divers. Distrib." pageId="10" pageNumber="389" pagination="1164 - 1174" part="19" refId="ref9845" refString="Kershaw, F., Waller, T., Micucci, P., Draque, J., Barros, M., Buongermini, E., Pearson, R. G., Mendez, M. (2013): Informing conservation units: barriers to dispersal for the yellow anaconda. Divers. Distrib. 19: 1164 - 1174." title="Informing conservation units: barriers to dispersal for the yellow anaconda" type="journal article" year="2013">Kershaw et al. (2013)</bibRefCitation>
showed that the dispersal of
<taxonomicName authorityName="Cope" authorityYear="1862" box="[700,818,496,519]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="10" pageNumber="389" phylum="Chordata" rank="species" species="notaeus">
<emphasis box="[700,818,496,519]" italics="true" pageId="10" pageNumber="389">E. notaeus</emphasis>
</taxonomicName>
is limited by precipitation seasonality and presence of sandy cambisol soil; the two other small-bodied anaconda species also are absent from the areas with high precipitation seasonality. Currently, large grassland areas in South America, more or less coinciding with the ranges of the small-bodied anacondas, are separated by rainforest massifs. During the last glacial period, the climate of the continent was drier (
<bibRefCitation author="Cheng, H. &amp; Sinha, A. &amp; Cruz, FW &amp; Wang, X. &amp; Edwards, R. L. &amp; d'Horta, F. M. &amp; Ribas, C. C. &amp; Vuille, M. &amp; Stott, L. D. &amp; Auler, A. S." box="[831,1031,810,833]" journalOrPublisher="Nat. Commun." pageId="10" pageNumber="389" pagination="1 - 6" part="4" refId="ref8814" refString="Cheng, H., Sinha, A., Cruz, FW., Wang, X., Edwards, R. L., d'Horta, F. M., Ribas, C. C., Vuille, M., Stott, L. D., Auler, A. S. (2013): Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4: 1 - 6." title="Climate change patterns in Amazonia and biodiversity" type="journal article" year="2013">Cheng et al., 2013</bibRefCitation>
;
<bibRefCitation author="Haggi, C. &amp; Chiessi, C. M. &amp; Merkel, U. &amp; Mulitza, S. &amp; Prange, M. &amp; Schulz, M. &amp; Schefuss, E." journalOrPublisher="Earth Planet. Sci. Lett." pageId="10" pageNumber="389" pagination="50 - 59" part="479" refId="ref9615" refString="Haggi, C., Chiessi, C. M., Merkel, U., Mulitza, S., Prange, M., Schulz, M., Schefuss, E. (2017): Response of the Amazon rainforest to late Pleistocene climate variability. Earth Planet. Sci. Lett. 479: 50 - 59." title="Response of the Amazon rainforest to late Pleistocene climate variability" type="journal article" year="2017">Häggi et al., 2017</bibRefCitation>
) and, probably, grasslands were less fragmented (see also
<bibRefCitation author="Wuster, W. &amp; Ferguson, J. E. &amp; Quijada-Mascarenas, J. A. &amp; Pook, C. E. &amp; Da Graca Salomao, M. &amp; Thorpe, R. S." box="[846,1046,880,903]" journalOrPublisher="Mol. Ecol." pageId="10" pageNumber="389" pagination="1095 - 1108" part="14" refId="ref11539" refString="Wuster, W., Ferguson, J. E., Quijada-Mascarenas, J. A., Pook, C. E., Da Graca Salomao, M., Thorpe, R. S. (2005): Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Mol. Ecol. 14: 1095 - 1108." title="Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus)" type="journal article" year="2005">Wüster et al., 2005</bibRefCitation>
). Rainforest repeatedly expanded during interglacials, separating optimal habitats of the small-bodied anacondas, and shrinked / fragmented again during the glacial waves. The split between
<taxonomicName authorityName="Cope" authorityYear="1862" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="10" pageNumber="389" phylum="Chordata" rank="species" species="notaeus">
<emphasis italics="true" pageId="10" pageNumber="389">E. notaeus</emphasis>
</taxonomicName>
and
<taxonomicName authorityName="Dunn and Conant" authorityYear="1936" box="[800,982,1055,1078]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="10" pageNumber="389" phylum="Chordata" rank="species" species="deschauenseei">
<emphasis box="[800,982,1055,1078]" italics="true" pageId="10" pageNumber="389">E. deschauenseei</emphasis>
</taxonomicName>
, which started ca. 1 Mya, coincides in time and space with the split between two lineages of the Neotropical rattlesnake
<taxonomicName box="[792,984,1159,1182]" class="Reptilia" family="Viperidae" genus="Crotalus" kingdom="Animalia" order="Squamata" pageId="10" pageNumber="389" phylum="Chordata" rank="species" species="durissus">
<emphasis box="[792,984,1159,1182]" italics="true" pageId="10" pageNumber="389">Crotalus durissus</emphasis>
</taxonomicName>
which occurs in seasonally dry and open habitats, and can be attributed to “Transamazonian Vicariance” as defined by
<bibRefCitation author="Wuster, W. &amp; Ferguson, J. E. &amp; Quijada-Mascarenas, J. A. &amp; Pook, C. E. &amp; Da Graca Salomao, M. &amp; Thorpe, R. S." box="[789,1009,1264,1287]" journalOrPublisher="Mol. Ecol." pageId="10" pageNumber="389" pagination="1095 - 1108" part="14" refId="ref11539" refString="Wuster, W., Ferguson, J. E., Quijada-Mascarenas, J. A., Pook, C. E., Da Graca Salomao, M., Thorpe, R. S. (2005): Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Mol. Ecol. 14: 1095 - 1108." title="Tracing an invasion: landbridges, refugia, and the phylogeography of the Neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus)" type="journal article" year="2005">Wüster et al. (2005)</bibRefCitation>
. However, earlier inferred time of the split between the diagnostic lineages of
<taxonomicName authorityName="Dirksen" authorityYear="2002" box="[857,984,1334,1357]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="10" pageNumber="389" phylum="Chordata" rank="species" species="beniensis">
<emphasis box="[857,984,1334,1357]" italics="true" pageId="10" pageNumber="389">E. beniensis</emphasis>
</taxonomicName>
and
<taxonomicName authorityName="Cope" authorityYear="1862" box="[1034,1146,1334,1357]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="10" pageNumber="389" phylum="Chordata" rank="species" species="notaeus">
<emphasis box="[1034,1146,1334,1357]" italics="true" pageId="10" pageNumber="389">E. notaeus</emphasis>
</taxonomicName>
+
<taxonomicName authorityName="Dunn and Conant" authorityYear="1936" box="[666,857,1369,1392]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="10" pageNumber="389" phylum="Chordata" rank="species" species="deschauenseei">
<emphasis box="[666,857,1369,1392]" italics="true" pageId="10" pageNumber="389">E. deschauenseei</emphasis>
</taxonomicName>
draws us to conclude that the split between the eastern and western fragments of South American grasslands and light forests happened earlier than the Transamazonian split.
</paragraph>
</subSubSection>
<subSubSection lastPageId="11" lastPageNumber="390" pageId="10" pageNumber="389" type="discussion">
<paragraph blockId="10.[666,902,1581,1604]" box="[666,902,1581,1604]" pageId="10" pageNumber="389">
<heading box="[666,902,1581,1604]" fontSize="10" level="2" pageId="10" pageNumber="389" reason="1">
<emphasis box="[666,902,1581,1604]" italics="true" pageId="10" pageNumber="389">Taxonomic suggestion</emphasis>
</heading>
</paragraph>
<paragraph blockId="10.[666,1173,1638,1766]" lastBlockId="11.[115,622,182,1766]" lastPageId="11" lastPageNumber="390" pageId="10" pageNumber="389">
The studied gene phylogenies, including Cyt-b based phylogeny, do not support reciprocal monophyly of allopatric species of small-bodied anacondas. This suggests that the small-bodied anacondas did not reach the stage of genealogical concordance in the sense of
<bibRefCitation author="Avise, J. C." box="[475,617,219,242]" journalOrPublisher="Oxford surveys in evolutionary biology" pageId="11" pageNumber="390" pagination="45 - 67" part="7" refId="ref8438" refString="Avise, J. C. (1990): Principles of genealogical concordance in species concepts and biological taxonomy. Oxford surveys in evolutionary biology 7: 45 - 67." title="Principles of genealogical concordance in species concepts and biological taxonomy" type="journal article" year="1990">Avise (1990)</bibRefCitation>
, and their differences are probably maintained due to long-lasting geographic isolation rather than pre- or postzygotic isolation mechanisms.
</paragraph>
<paragraph blockId="11.[115,622,182,1766]" pageId="11" pageNumber="390">
Therefore, our study reveals (1) reciprocal monophyly of
<taxonomicName baseAuthorityName="Linnaeus" baseAuthorityYear="1758" box="[325,447,405,428]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="390" phylum="Chordata" rank="species" species="murinus">
<emphasis box="[325,447,405,428]" italics="true" pageId="11" pageNumber="390">E. murinus</emphasis>
</taxonomicName>
and the smallbodied anacondas within the genus
<taxonomicName authorityName="Wagler" authorityYear="1830" box="[518,614,443,466]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="390" phylum="Chordata" rank="genus">
<emphasis box="[518,614,443,466]" italics="true" pageId="11" pageNumber="390">Eunectes</emphasis>
</taxonomicName>
; (2) incomplete lineage sorting between the small-bodied anaconda species; (3) probably, closer relationships between
<taxonomicName authorityName="Cope" authorityYear="1862" box="[447,568,554,577]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="390" phylum="Chordata" rank="species" species="notaeus">
<emphasis box="[447,568,554,577]" italics="true" pageId="11" pageNumber="390">E. notaeus</emphasis>
</taxonomicName>
and
<taxonomicName authorityName="Dunn and Conant" authorityYear="1936" box="[115,303,591,614]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="390" phylum="Chordata" rank="species" species="deschauenseei">
<emphasis box="[115,303,591,614]" italics="true" pageId="11" pageNumber="390">E. deschauenseei</emphasis>
</taxonomicName>
than between each of them and
<taxonomicName authorityName="Dirksen" authorityYear="2002" box="[162,293,628,651]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="390" phylum="Chordata" rank="species" species="beniensis">
<emphasis box="[162,293,628,651]" italics="true" pageId="11" pageNumber="390">E. beniensis</emphasis>
</taxonomicName>
; and (4) a distinct phenotypic position of the Peruvian
<taxonomicName baseAuthorityName="Linnaeus" baseAuthorityYear="1758" box="[403,526,665,688]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="390" phylum="Chordata" rank="species" species="murinus">
<emphasis box="[403,526,665,688]" italics="true" pageId="11" pageNumber="390">E. murinus</emphasis>
</taxonomicName>
population. This separation, however, is inconsistent with the traditional distinction of the two
<taxonomicName baseAuthorityName="Linnaeus" baseAuthorityYear="1758" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="390" phylum="Chordata" rank="species" species="murinus">
<emphasis italics="true" pageId="11" pageNumber="390">E. murinus</emphasis>
</taxonomicName>
subspecies
<emphasis box="[339,499,777,800]" italics="true" pageId="11" pageNumber="390">
E. m.
<taxonomicName baseAuthorityName="Linnaeus" baseAuthorityYear="1758" box="[412,499,777,800]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="390" phylum="Chordata" rank="species" species="murinus">murinus</taxonomicName>
</emphasis>
and
<emphasis italics="true" pageId="11" pageNumber="390">E. m. gigas</emphasis>
(
<bibRefCitation author="Stimson, A. F." box="[193,355,814,837]" journalOrPublisher="Das Tierreich" pageId="11" pageNumber="390" pagination="1 - 49" part="89" refId="ref11165" refString="Stimson, A. F. (1969): Liste der rezenten Amphibien und Reptilien. Boidae (Boinae + Bolyeriinae + Loxoceminae + Pythoninae). Das Tierreich 89: I-XI + 1 - 49." title="Liste der rezenten Amphibien und Reptilien. Boidae (Boinae + Bolyeriinae + Loxoceminae + Pythoninae)" type="book chapter" year="1969">Stimson, 1969</bibRefCitation>
) and supports the synonymy of both taxa (see
<bibRefCitation author="Dirksen, L. &amp; Bohme, W." journalOrPublisher="Salamandra" pageId="11" pageNumber="390" pagination="359 - 374" part="34" refId="ref9032" refString="Dirksen, L., Bohme, W. (1998 b): Studien an Anacondas 2: Zum taxonomischen Status von Eunectes murinus gigas (LATREILLE, 1801) (Serpentes: Boidae), mit neuen Ergebnissen zur Gattung Eunectes Wagler, 1830. Salamandra 34: 359 - 374." title="Studien an Anacondas 2: Zum taxonomischen Status von Eunectes murinus gigas (LATREILLE, 1801) (Serpentes: Boidae), mit neuen Ergebnissen zur Gattung Eunectes Wagler, 1830" type="journal article" year="1998">Dirksen and Böhme, 1998b</bibRefCitation>
).
</paragraph>
<paragraph blockId="11.[115,622,182,1766]" lastBlockId="11.[666,1173,182,555]" pageId="11" pageNumber="390">
In conclusion, we suggest that the genus
<taxonomicName authorityName="Wagler" authorityYear="1830" box="[115,211,963,986]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="390" phylum="Chordata" rank="genus">
<emphasis box="[115,211,963,986]" italics="true" pageId="11" pageNumber="390">Eunectes</emphasis>
</taxonomicName>
has four phenotypically distinct species, which did not reach the stage of complete lineage sorting. The genetic differences between small-bodied anacondas are not fixed. However, they are highly significant, and currently their ranges are separated by less suitable tropical forest landscapes and limited dispersal capabilities due to the relative autonomy of the different wetland and riparian systems (cf.
<bibRefCitation author="McCartney-Melstad, E. &amp; Waller, T. &amp; Micucci, P. A. &amp; Barros, M. &amp; Draque, J. &amp; Amato, G. &amp; Mendez, M." box="[217,502,1297,1320]" journalOrPublisher="PLOS One" pageId="11" pageNumber="390" pagination="37473" part="7" refId="ref10164" refString="McCartney-Melstad, E., Waller, T., Micucci, P. A., Barros, M., Draque, J., Amato, G., Mendez, M. (2012): Population structure and gene flow of the yellow anaconda (Eunectes notaeus) in northern Argentina. PLOS One 7 (5): e 37473. DOI: 10.1371 / journal. pone. 0037473." title="Population structure and gene flow of the yellow anaconda (Eunectes notaeus) in northern Argentina" type="journal article" year="2012">McCartney-Melstad, 2012</bibRefCitation>
). If
<bibRefCitation author="Mayr, E." journalOrPublisher="McGraw Hill, NY" pageId="11" pageNumber="390" refId="ref10146" refString="Mayr, E. (1969): Principles of Systematic Zoology. McGraw Hill, NY." title="Principles of Systematic Zoology" type="book" year="1969">Mayrs (1969)</bibRefCitation>
polytypic species concept is considered, the three small anacondas might be attributed to the same polytypic species complex. A new taxonomic committee of SEH does not suggest a consolidated view on species definition (
<bibRefCitation author="Speybroeck, J. &amp; Beukema, W. &amp; Dufresnes, C. &amp; Fritz, U. &amp; Jablonski, D. &amp; Lymberakis, P. &amp; Martinez-Solano, I. &amp; Razzetti, E. &amp; Vamberger, M. &amp; Vences, M. &amp; Voros, J. &amp; Crochet, P. A." box="[122,388,1520,1543]" journalOrPublisher="Amphibia- Reptilia" pageId="11" pageNumber="390" pagination="139 - 189" part="41" refId="ref11043" refString="Speybroeck, J., Beukema, W., Dufresnes, C., Fritz, U., Jablonski, D., Lymberakis, P., Martinez-Solano, I., Razzetti, E., Vamberger, M., Vences, M., Voros, J., Crochet, P. A. (2020): Species list of the European herpetofauna - 2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. Amphibia- Reptilia 41: 139 - 189." title="Species list of the European herpetofauna - 2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica" type="journal article" year="2020">Speybroeck et al., 2020</bibRefCitation>
); however they agree that (1) all species are evolutionary lineages, (2) some gene flow between them is possible, if they remain distinct geographically. We conclude that
<taxonomicName authorityName="Cope" authorityYear="1862" box="[281,402,1669,1692]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="390" phylum="Chordata" rank="species" species="notaeus">
<emphasis box="[281,402,1669,1692]" italics="true" pageId="11" pageNumber="390">E. notaeus</emphasis>
</taxonomicName>
,
<taxonomicName authorityName="Dunn and Conant" authorityYear="1936" box="[423,614,1669,1692]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="390" phylum="Chordata" rank="species" species="deschauenseei">
<emphasis box="[423,614,1669,1692]" italics="true" pageId="11" pageNumber="390">E. deschauenseei</emphasis>
</taxonomicName>
, and
<taxonomicName authorityName="Dirksen" authorityYear="2002" box="[167,303,1706,1729]" class="Reptilia" family="Boidae" genus="Eunectes" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="390" phylum="Chordata" rank="species" species="beniensis">
<emphasis box="[167,303,1706,1729]" italics="true" pageId="11" pageNumber="390">E. beniensis</emphasis>
</taxonomicName>
are evolutionary species in the sense of
<bibRefCitation author="Wiley, E. O." box="[255,402,1743,1766]" journalOrPublisher="Syst. Zool." pageId="11" pageNumber="390" pagination="17 - 26" part="27" refId="ref11445" refString="Wiley, E. O. (1978): The evolutionary species concept reconsidered. Syst. Zool. 27: 17 - 26." title="The evolutionary species concept reconsidered" type="journal article" year="1978">Wiley (1978)</bibRefCitation>
.
<bibRefCitation author="De Queiroz, K." box="[415,621,1743,1766]" journalOrPublisher="Syst. Biol." pageId="11" pageNumber="390" pagination="879 - 886" part="56" refId="ref8946" refString="De Queiroz, K. (2007): Species concepts and species delimitation. Syst. Biol. 56: 879 - 886." title="Species concepts and species delimitation" type="journal article" year="2007">De Queiroz (2007)</bibRefCitation>
defined species as the lineages/ groups of individuals characterized by a unique evolutionary pathway. The divergence of the smallbodied anacondas developed at least several glacial cycles before present; this means that they might have come into contact repeatedly during the glacial climatic oscillations, which, however, did not cause secondary panmixis, and thus phylogenetic independence of these evolutionary lineages appears to be sustainable.
</paragraph>
</subSubSection>
</treatment>
</document>