treatments-xml/data/03/F3/87/03F387F1833481072013FAA5CBE8CEBA.xml
2024-06-21 12:22:17 +02:00

113 lines
13 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="EC04114AA0425CBD00E5635864D01685" ID-DOI="10.1016/j.phytochem.2014.12.009" ID-ISSN="1873-3700" ID-Zenodo-Dep="10487461" IM.bibliography_approvedBy="felipe" IM.illustrations_approvedBy="felipe" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.tables_approvedBy="felipe" IM.taxonomicNames_approvedBy="felipe" IM.treatments_approvedBy="felipe" checkinTime="1704952192083" checkinUser="felipe" docAuthor="Moniodis, Jessie, Jones, Christopher G., Barbour, E. Liz, Plummer, Julie A., Ghisalberti, Emilio L. &amp; Bohlmann, Joerg" docDate="2015" docId="03F387F1833481072013FAA5CBE8CEBA" docLanguage="en" docName="Phytochemistry.113.79-86.pdf" docOrigin="Phytochemistry 113" docSource="http://dx.doi.org/10.1016/j.phytochem.2014.12.009" docStyle="DocumentStyle:9E596C34F4E94307D29315B03ACE1007.6:Phytochemistry.2014-2019.journal_article" docStyleId="9E596C34F4E94307D29315B03ACE1007" docStyleName="Phytochemistry.2014-2019.journal_article" docStyleVersion="6" docTitle="Santalum spicatum" docType="treatment" docVersion="5" lastPageNumber="80" masterDocId="FFCAFF89833581062044FFB4C848CF36" masterDocTitle="The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum)" masterLastPageNumber="86" masterPageNumber="79" pageNumber="80" updateTime="1705421308962" updateUser="ExternalLinkService">
<mods:mods id="C4F825F819C64C81A998EB46A5632F25" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="E47008D31FF54020EBD2CAA20F94F60E">
<mods:title id="578B1C8EAFB6B049266B98FCA01DA0A3">The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum)</mods:title>
</mods:titleInfo>
<mods:name id="3086E4BA79D1A614475040DCBD7D6841" type="personal">
<mods:role id="086ED87986B63D87D1820FE881F77CEA">
<mods:roleTerm id="338FB933095220801F6ABCF1A482EC7F">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="32CB62EDB66C60C0BA9DCA2D0A4A56FD">Moniodis, Jessie</mods:namePart>
<mods:affiliation id="5C17573380117519D695693CF86D3941">School of Plant Biology (M 084), University of Western Australia (UWA), 35 Stirling Hwy, Crawley, WA 6009, Australia &amp; School of Chemistry and Biochemistry (M 310), University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia &amp; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V 6 T 1 Z 4, Canada</mods:affiliation>
</mods:name>
<mods:name id="ECB6B6B72704E2E8780B6DA154007142" type="personal">
<mods:role id="B809F91EAE4B4A6996DDE9DE5CA25FC9">
<mods:roleTerm id="6E03758B5F41219094BFCA5DD40EB508">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="048BB9EFB6C76668B71E20C6938986B0">Jones, Christopher G.</mods:namePart>
</mods:name>
<mods:name id="276EC23A467FF72FEEEAD980260EC753" type="personal">
<mods:role id="B2A25BCC4F290BAF1D41446B1C9C983D">
<mods:roleTerm id="22FC64EC9B8F807E3019312178033808">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="999A2311ED9B423BE67A5E3EB21A819C">Barbour, E. Liz</mods:namePart>
</mods:name>
<mods:name id="86A49E3F217A2BE0C7D5A281A6390864" type="personal">
<mods:role id="502CCAD104EA18C3DE8D85CFD75BDFDC">
<mods:roleTerm id="523D4E63C327BFE811CAF761584F05CD">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="6573D7C7AFFA2BA88F156DA4E8CC37D0">Plummer, Julie A.</mods:namePart>
</mods:name>
<mods:name id="B1AA55262EEA45EE906F039BB063B5F6" type="personal">
<mods:role id="F297CEC16DA2FE70EFCE16C65E8D15B2">
<mods:roleTerm id="7C564FF7AAEE05B865377FE25D63D152">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="3E4C1378CDF4F4DC00E8C00032B1B1AD">Ghisalberti, Emilio L.</mods:namePart>
</mods:name>
<mods:name id="BAE61AD8238DFF396F3E62C4217D88E1" type="personal">
<mods:role id="6B0674E031DAF891D85565D69C27F62C">
<mods:roleTerm id="4C38B94DB4818F62B982ACD01DBE1450">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="68F8ABECFE251852EB29682B8F400506">Bohlmann, Joerg</mods:namePart>
</mods:name>
<mods:typeOfResource id="02A48C342E082D07219ADCFF73C6456A">text</mods:typeOfResource>
<mods:relatedItem id="A4DD51C7E2F6ADD09BEC2A9EB4E29877" type="host">
<mods:titleInfo id="D281F99756D86ADC5FF782480EAF1DE0">
<mods:title id="2C76127B1891D70E5700C499C957DCF6">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="EAEBEB75EC0BAB7FDAA29F67A40DA461">
<mods:date id="41D92112B292505AC604161A93C3A0D5">2015</mods:date>
<mods:detail id="D1D3CA799FE3349CEB82D5E03E17760F" type="pubDate">
<mods:number id="9681322E6A88FBD7E339D625E740F6BF">2015-05-31</mods:number>
</mods:detail>
<mods:detail id="DC4CD9A498748E20832A8D32DFF5D139" type="volume">
<mods:number id="A71C820882ECA39FF5EE6FF55E9AA7FD">113</mods:number>
</mods:detail>
<mods:extent id="9C2417F42F345A8A511F8B37152C167A" unit="page">
<mods:start id="F127AAF2A38AC374C0F2C3D8C3B213A0">79</mods:start>
<mods:end id="1BB60CF6F26E153EDAB0B2C57D36FD1F">86</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="FB435143D03E670A6C0520CA5384576E">
<mods:url id="010F255229996401294ADD78A437F7E9">http://dx.doi.org/10.1016/j.phytochem.2014.12.009</mods:url>
</mods:location>
<mods:classification id="6958E9BCDB2469E0F1510BB64FD1DFB1">journal article</mods:classification>
<mods:identifier id="F14684435D94E879F94F05B7B9DD871C" type="DOI">10.1016/j.phytochem.2014.12.009</mods:identifier>
<mods:identifier id="95751F5FF322A5B617E6A9768F6DBAD0" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="CD276F0EA5C5BEC9927635E8F75C74E8" type="Zenodo-Dep">10487461</mods:identifier>
</mods:mods>
<treatment id="03F387F1833481072013FAA5CBE8CEBA" LSID="urn:lsid:plazi:treatment:03F387F1833481072013FAA5CBE8CEBA" httpUri="http://treatment.plazi.org/id/03F387F1833481072013FAA5CBE8CEBA" lastPageNumber="80" pageId="1" pageNumber="80">
<subSubSection id="C340656C833481072013FAA5CAC2CA13" box="[87,650,1297,1317]" pageId="1" pageNumber="80" type="nomenclature">
<paragraph id="8BE536E7833481072013FAA5CAC2CA13" blockId="1.[87,650,1297,1317]" box="[87,650,1297,1317]" pageId="1" pageNumber="80">
<heading id="D0AD818B833481072013FAA5CAC2CA13" box="[87,650,1297,1317]" fontSize="36" level="2" pageId="1" pageNumber="80" reason="3">
<emphasis id="B92EEAF5833481072013FAA5CAC2CA13" box="[87,650,1297,1317]" italics="true" pageId="1" pageNumber="80">
2.1. Transcripts of the
<taxonomicName id="4C5A4D64833481072174FAA5C9D6CA13" ID-CoL="79KBJ" baseAuthorityName="Moretta" baseAuthorityYear="2001" box="[304,414,1297,1317]" class="Magnoliopsida" family="Santalaceae" genus="Santalum" kingdom="Plantae" order="Santalales" pageId="1" pageNumber="80" phylum="Tracheophyta" rank="species" species="spicatum">S. spicatum</taxonomicName>
MEV and MEP pathway
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="C340656C833481072032FAFECBE8CEBA" pageId="1" pageNumber="80" type="discussion">
<paragraph id="8BE536E7833481072032FAFECBE8CEBA" blockId="1.[87,757,1354,2015]" lastBlockId="1.[805,1474,181,396]" pageId="1" pageNumber="80">
To identify the core biosynthetic steps of sesquiterpene formation in
<taxonomicName id="4C5A4D648334810720DBFAD1C944CA4F" box="[159,268,1381,1401]" class="Magnoliopsida" family="Santalaceae" genus="Santalum" kingdom="Plantae" order="Santalales" pageId="1" pageNumber="80" phylum="Tracheophyta" rank="species" species="spicatum">
<emphasis id="B92EEAF58334810720DBFAD1C944CA4F" box="[159,268,1381,1401]" italics="true" pageId="1" pageNumber="80">S. spicatum</emphasis>
</taxonomicName>
, a transcriptome established by 454-sequencing of RNA from xylem tissue containing ray parenchyma cells, where sandalwood oil is thought to be synthesised, was explored (
<bibRefCitation id="EFCB4B168334810722FBFA2AC880CAFA" author="Jones, C. G. &amp; Keeling, C. I. &amp; Ghisalberti, E. L. &amp; Barbour, E. L. &amp; Plummer, J. A. &amp; Bohlmann, J." pageId="1" pageNumber="80" pagination="121 - 130" refId="ref7201" refString="Jones, C. G., Keeling, C. I., Ghisalberti, E. L., Barbour, E. L., Plummer, J. A., Bohlmann, J., 2008. Isolation of cDNAs and functional characterisation of two multi-product terpene synthase enzymes from sandalwood, Santalum album L. Arch. Biochem. Biophys. 477, 121 - 130." type="journal article" year="2008">Jones et al., 2008</bibRefCitation>
). The transcriptome library of 489,364 reads was produced from a single farnesol (
<emphasis id="B92EEAF58334810721E5FA61C9E6CADE" bold="true" box="[417,430,1493,1512]" pageId="1" pageNumber="80">8</emphasis>
)-rich tree and assembled into 12,537 apparently unique contig sequences. Contigs were classified into functional ontology groups (
<figureCitation id="13612A628334810721B5F9B9CA70C916" box="[497,568,1549,1568]" captionStart="Fig" captionStartId="4.[113,139,947,961]" captionTargetBox="[393,1224,503,918]" captionTargetId="figure-199@4.[393,1224,503,918]" captionTargetPageId="4" captionText="Fig. 3. GCMS chromatogram of in vitro assay products of recombinant SspiTPS4 using GPP as a substrate and Mg2+ or Mn2+ (dotted). Peaks: 1 OE-pinene (18), 2 β-pinene (15), 3 sabinene (17), 4 myrcene (16), 5 linalool (20), 6 OE-terpineol (19)." figureDoi="http://doi.org/10.5281/zenodo.10487469" httpUri="https://zenodo.org/record/10487469/files/figure.png" pageId="1" pageNumber="80">Fig. S3</figureCitation>
). More than half (55%) of the contigs had matches of known functions in other species. Of these, the majority (28%) were annotated with cellular or metabolic processes. Genes involved in secondary metabolism were found in metabolic processes and response to stimuli groups, which comprised 14% and 7% of the transcriptome, respectively. The transcriptome included candidate TPS, P450 and allylic phosphatase sequences, as well as sequences for genes of the MEV and MEP pathways (
<tableCitation id="C6D8035C833481072161F958C926C9C9" box="[293,366,1772,1791]" captionStart="Table 1" captionStartId="2.[114,158,183,197]" captionTargetPageId="2" captionText="Table 1 Summary of genes identified in the xylem transcriptome encoding enzymes of the MEV and MEP pathway, TPS, cytochrome P450, and allylic phosphatase." httpUri="http://table.plazi.org/id/DF25666F833781042036FF03CD0CCFEA" pageId="1" pageNumber="80" tableUuid="DF25666F833781042036FF03CD0CCFEA">Table 1</tableCitation>
). All steps of the MEV pathway, except for phosphomevalonate kinase, were found in the heartwood xylem transcriptome. In contrast, only two enzymes of the MEP pathway were represented. These results are consistent with the MEV pathway being the primary route by which sesquiterpene precursors are produced in plants and the heartwood xylem tissue being particularly rich in sesquiterpenoids. The most abundant transcript of the terpenoid pathway in the xylem transcriptome was HMG-CoA reductase 1 (HMGR1) classified based on sequence relatedness with
<taxonomicName id="4C5A4D648334810723ABFF01CD56CFFF" authority="HMGR" authorityName="HMGR" box="[1007,1310,181,201]" class="Magnoliopsida" family="Brassicaceae" genus="Arabidopsis" kingdom="Plantae" order="Brassicales" pageId="1" pageNumber="80" phylum="Tracheophyta" rank="species" species="thaliana">
<emphasis id="B92EEAF58334810723ABFF01CC8ACFFF" box="[1007,1218,181,201]" italics="true" pageId="1" pageNumber="80">Arabidopsis thaliana</emphasis>
HMGR
</taxonomicName>
1 and HMGR2 (GenBank accession No. AEE35849 and AEC06618, respectively), a critical step for isoprenoid biosynthesis in plants (
<bibRefCitation id="EFCB4B1683348107250CFF5ACB14CE2B" author="Chye, M. - L. &amp; Tan, C. - T. &amp; Chua, N. - H." pageId="1" pageNumber="80" pagination="473 - 484" refId="ref6663" refString="Chye, M. - L., Tan, C. - T., Chua, N. - H., 1992. Three genes encode 3 - hydroxy- 3 - methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmgl and hmg 3 are differentially expressed. Plant Mol. Biol. 19, 473 - 484." type="journal article" year="1992">Chye et al., 1992</bibRefCitation>
;
<bibRefCitation id="EFCB4B16833481072322FEBECC33CE2B" author="Goldstein, J. L. &amp; Brown, M. S." box="[870,1147,266,285]" pageId="1" pageNumber="80" pagination="425 - 430" refId="ref6893" refString="Goldstein, J. L., Brown, M. S., 1990. Regulation of the mevalonate pathway. Nature 343, 425 - 430." type="journal article" year="1990">Goldstein and Brown, 1990</bibRefCitation>
). The MEP pathway, which provides the isoprenoid building blocks for monoterpenes and diterpenes was underrepresented in the transcriptome of
<taxonomicName id="4C5A4D64833481072516FEF5CD8ACE63" box="[1362,1474,321,341]" class="Magnoliopsida" family="Santalaceae" genus="Santalum" kingdom="Plantae" order="Santalales" pageId="1" pageNumber="80" phylum="Tracheophyta" rank="species" species="spicatum">
<emphasis id="B92EEAF5833481072516FEF5CD8ACE63" box="[1362,1474,321,341]" italics="true" pageId="1" pageNumber="80">S. spicatum</emphasis>
</taxonomicName>
heartwood matching the low abundance or lack of these compounds.
</paragraph>
</subSubSection>
</treatment>
</document>