treatments-xml/data/03/81/87/038187C798542B070253FB86FF42C491.xml
2024-06-21 12:22:17 +02:00

1202 lines
132 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="C6C4DCE5EA538A9FE326017663E72986" ID-DOI="10.1016/j.phytochem.2014.02.016" ID-ISSN="1873-3700" ID-Zenodo-Dep="10490034" IM.bibliography_approvedBy="felipe" IM.illustrations_approvedBy="carolina" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.tables_approvedBy="carolina" IM.taxonomicNames_approvedBy="carolina" IM.treatments_approvedBy="carolina" checkinTime="1704962129505" checkinUser="felipe" docAuthor="Galata, Mariana, Sarker, Lukman S. &amp; Mahmoud, Soheil S." docDate="2014" docId="038187C798542B070253FB86FF42C491" docLanguage="en" docName="Phytochemistry.102.64-73.pdf" docOrigin="Phytochemistry 102" docSource="http://dx.doi.org/10.1016/j.phytochem.2014.02.016" docStyle="DocumentStyle:9E596C34F4E94307D29315B03ACE1007.6:Phytochemistry.2014-2019.journal_article" docStyleId="9E596C34F4E94307D29315B03ACE1007" docStyleName="Phytochemistry.2014-2019.journal_article" docStyleVersion="6" docTitle="Coriandrum sativum L." docType="treatment" docVersion="2" lastPageNumber="70" masterDocId="FFB8FFBF98562B010204FFFFFF97C27C" masterDocTitle="Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of Coriandrum sativum L." masterLastPageNumber="73" masterPageNumber="64" pageNumber="66" updateTime="1706100759717" updateUser="carolina">
<mods:mods id="16C5315AFF3A6B3DA51D9D32F6CCDCD3" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="088D8A4667EAEFFA979B9E3C8C855C29">
<mods:title id="D8AB1B2357A1C46146C216D06EA1126B">Transcriptome profiling, and cloning and characterization of the main monoterpene synthases of Coriandrum sativum L.</mods:title>
</mods:titleInfo>
<mods:name id="0B33211AE616970ACE314CC8C97FC3FD" type="personal">
<mods:role id="C350A9A2ACF295B94B5B6B1A9BD1E926">
<mods:roleTerm id="3AD8E0D01369C20420142CAD28E742EC">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="DD62188FF2DEECBAF0025A6724CBE240">Galata, Mariana</mods:namePart>
</mods:name>
<mods:name id="AAB0F523F9A6F37F27EFA56CEF713A98" type="personal">
<mods:role id="6C8E8E9CF35E115C0A21BDE9DA752255">
<mods:roleTerm id="FC67E22EE86AB03AAF2F85E3A32DD485">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="4D29A194D8792E872711E6DF011620E2">Sarker, Lukman S.</mods:namePart>
</mods:name>
<mods:name id="2E4E49E2AE477974EA43207266D6F825" type="personal">
<mods:role id="C5186E7AECE6319617455CEFDA5B6C0D">
<mods:roleTerm id="894A5001813D4CD68CE4F8D516D10BAB">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="2B052A91149FCDEFCDEE30B801833DCF">Mahmoud, Soheil S.</mods:namePart>
</mods:name>
<mods:typeOfResource id="2782217E379436F7BF62D8AED8CADCBB">text</mods:typeOfResource>
<mods:relatedItem id="FAD15263BE46D1A8BE2A57996AB2DF65" type="host">
<mods:titleInfo id="CCDB645FB21EC5693DF35FC50EF44DEB">
<mods:title id="304EDBB04E8338481EB8C5AF1661181C">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="0A30950998DC65682B0864FFDFF0A616">
<mods:date id="013B0F5E4631A899BD2B3AFCC9F82472">2014</mods:date>
<mods:detail id="E44F9603CB0BFC125DA0BD04C4599E84" type="pubDate">
<mods:number id="4F85F051A4814A8D49A3F8D15E8DF289">2014-06-30</mods:number>
</mods:detail>
<mods:detail id="77C0F72F2389453634A93B9BCAF08CEC" type="volume">
<mods:number id="6CC9543D45F42236440ED45D76BCA0EB">102</mods:number>
</mods:detail>
<mods:extent id="5246B97372B0C5BB385C04BF846F463F" unit="page">
<mods:start id="0821136F41405CD7F3E65B7FACB57CA4">64</mods:start>
<mods:end id="7B2F93DBCE815E9312A3825AC7FE974F">73</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="5F2EF48483183D05137A00BC895CFBB8">
<mods:url id="6360FF2A9A44CD4FA77D93C8C14F7049">http://dx.doi.org/10.1016/j.phytochem.2014.02.016</mods:url>
</mods:location>
<mods:classification id="0B67391329D492DB17B2837AD59A70DB">journal article</mods:classification>
<mods:identifier id="36248CE3E683A734566ECBFCF9582000" type="DOI">10.1016/j.phytochem.2014.02.016</mods:identifier>
<mods:identifier id="04B2F0556204ED453D64095F16CC7593" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="43CC4EC40A6C9BF8ADECD3624ABC3C0F" type="Zenodo-Dep">10490034</mods:identifier>
</mods:mods>
<treatment id="038187C798542B070253FB86FF42C491" LSID="urn:lsid:plazi:treatment:038187C798542B070253FB86FF42C491" httpUri="http://treatment.plazi.org/id/038187C798542B070253FB86FF42C491" lastPageId="6" lastPageNumber="70" pageId="2" pageNumber="66">
<subSubSection id="C332655A98542B030253FB86FDA4C6F1" box="[87,563,1145,1165]" pageId="2" pageNumber="66" type="nomenclature">
<paragraph id="8B9736D198542B030253FB86FDA4C6F1" blockId="2.[87,563,1145,1165]" box="[87,563,1145,1165]" pageId="2" pageNumber="66">
<heading id="D0DF81BD98542B030253FB86FDA4C6F1" box="[87,563,1145,1165]" fontSize="36" level="2" pageId="2" pageNumber="66" reason="3">
<emphasis id="B95CEAC398542B030253FB86FDA4C6F1" box="[87,563,1145,1165]" italics="true" pageId="2" pageNumber="66">
2.2. Essential oil analysis of
<taxonomicName id="4C284D5298542B030363FB86FE5AC6F1" ID-CoL="6B3DT" authorityName="L." box="[359,461,1145,1165]" class="Magnoliopsida" family="Apiaceae" genus="Coriandrum" kingdom="Plantae" order="Apiales" pageId="2" pageNumber="66" phylum="Tracheophyta" rank="species" species="sativum">C. sativum</taxonomicName>
mericarps
</emphasis>
</heading>
</paragraph>
</subSubSection>
<paragraph id="8B9736D198542B03013FFB86FAD8C46A" pageId="2" pageNumber="66">
<table id="F928C4719854D4FE013FFB87FA3CC46A" box="[827,1451,1144,1558]" gridcols="2" gridrows="18" pageId="2" pageNumber="66">
<tr id="351834939854D4FE013FFB87FA3CC6FB" box="[827,1451,1144,1159]" gridrow="0" pageId="2" pageNumber="66">
<th id="76C95DEF9854D4FE013FFB87FC45C6FB" box="[827,978,1144,1159]" gridcol="0" gridrow="0" pageId="2" pageNumber="66">Terpene</th>
<th id="76C95DEF9854D4FE0745FB87FA3CC6FB" box="[1345,1451,1144,1159]" gridcol="1" gridrow="0" pageId="2" pageNumber="66">% of Total EO</th>
</tr>
<tr id="351834939854D4FE013FFB65FA3CC6D4" box="[827,1451,1178,1192]" gridrow="1" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFB65FC45C6D4" box="[827,978,1178,1192]" gridcol="0" gridrow="1" pageId="2" pageNumber="66">
(S)-linalool (
<emphasis id="B95CEAC398542B0301A5FB65FC3CC6D4" bold="true" box="[929,939,1178,1192]" pageId="2" pageNumber="66">1</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FB65FA3CC6D4" box="[1345,1451,1178,1192]" gridcol="1" gridrow="1" pageId="2" pageNumber="66">78.96 ± 2.86</td>
</tr>
<tr id="351834939854D4FE013FFB4EFA3CC6C3" box="[827,1451,1201,1215]" gridrow="2" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFB4EFC45C6C3" box="[827,978,1201,1215]" gridcol="0" gridrow="2" pageId="2" pageNumber="66">
Cymene (
<emphasis id="B95CEAC398542B03018DFB4EFC04C6C3" bold="true" box="[905,915,1201,1215]" pageId="2" pageNumber="66">2</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FB4EFA3CC6C3" box="[1345,1451,1201,1215]" gridcol="1" gridrow="2" pageId="2" pageNumber="66">6.38 ± 1.28</td>
</tr>
<tr id="351834939854D4FE013FFB37FA3CC6AA" box="[827,1451,1224,1238]" gridrow="3" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFB37FC45C6AA" box="[827,978,1224,1238]" gridcol="0" gridrow="3" pageId="2" pageNumber="66">
Ocimene (
<emphasis id="B95CEAC398542B03018BFB37FC0EC6AA" bold="true" box="[911,921,1224,1238]" pageId="2" pageNumber="66">3</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FB37FA3CC6AA" box="[1345,1451,1224,1238]" gridcol="1" gridrow="3" pageId="2" pageNumber="66">4.46 ± 3.39</td>
</tr>
<tr id="351834939854D4FE013FFB20FA3CC691" box="[827,1451,1247,1261]" gridrow="4" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFB20FC45C691" box="[827,978,1247,1261]" gridcol="0" gridrow="4" pageId="2" pageNumber="66">
Camphor (
<emphasis id="B95CEAC398542B030195FB20FC0CC691" bold="true" box="[913,923,1247,1261]" pageId="2" pageNumber="66">4</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FB20FA3CC691" box="[1345,1451,1247,1261]" gridcol="1" gridrow="4" pageId="2" pageNumber="66">3.62 ± 0.38</td>
</tr>
<tr id="351834939854D4FE013FFB0CFA3CC779" box="[827,1451,1267,1285]" gridrow="5" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFB0CFC45C779" box="[827,978,1267,1285]" gridcol="0" gridrow="5" pageId="2" pageNumber="66">
Ƴ- Terpinene (
<emphasis id="B95CEAC398542B0301AEFB09FC23C778" bold="true" box="[938,948,1270,1284]" pageId="2" pageNumber="66">5</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FB0CFA3CC779" box="[1345,1451,1267,1285]" gridcol="1" gridrow="5" pageId="2" pageNumber="66">2.66 ± 1.34</td>
</tr>
<tr id="351834939854D4FE013FFAF3FA3CC767" box="[827,1451,1292,1307]" gridrow="6" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFAF3FC45C767" box="[827,978,1292,1307]" gridcol="0" gridrow="6" pageId="2" pageNumber="66">
Limonene (
<emphasis id="B95CEAC398542B030193FAF3FC36C766" bold="true" box="[919,929,1292,1306]" pageId="2" pageNumber="66">6</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FAF3FA3CC767" box="[1345,1451,1292,1307]" gridcol="1" gridrow="6" pageId="2" pageNumber="66">1.13 ± 0.04</td>
</tr>
<tr id="351834939854D4FE013FFADCFA3CC74E" box="[827,1451,1315,1330]" gridrow="7" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFADCFC45C74E" box="[827,978,1315,1330]" gridcol="0" gridrow="7" pageId="2" pageNumber="66">
Linalool oxide (
<emphasis id="B95CEAC398542B0301BDFADCFC54C74D" bold="true" box="[953,963,1315,1329]" pageId="2" pageNumber="66">7</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FADCFA3CC74E" box="[1345,1451,1315,1330]" gridcol="1" gridrow="7" pageId="2" pageNumber="66">1.10 ± 0.25</td>
</tr>
<tr id="351834939854D4FE013FFAC5FA3CC734" box="[827,1451,1338,1352]" gridrow="8" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFAC5FC45C734" box="[827,978,1338,1352]" gridcol="0" gridrow="8" pageId="2" pageNumber="66">
Geraniol (
<emphasis id="B95CEAC398542B030188FAC5FC01C734" bold="true" box="[908,918,1338,1352]" pageId="2" pageNumber="66">8</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FAC5FA3CC734" box="[1345,1451,1338,1352]" gridcol="1" gridrow="8" pageId="2" pageNumber="66">0.67 ± 0.54</td>
</tr>
<tr id="351834939854D4FE013FFAAEFA3CC723" box="[827,1451,1361,1375]" gridrow="9" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFAAEFC45C723" box="[827,978,1361,1375]" gridcol="0" gridrow="9" pageId="2" pageNumber="66">
β- Phellandrene (
<emphasis id="B95CEAC398542B0301C6FAAEFC5BC723" bold="true" box="[962,972,1361,1375]" pageId="2" pageNumber="66">9</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FAAEFA3CC723" box="[1345,1451,1361,1375]" gridcol="1" gridrow="9" pageId="2" pageNumber="66">0.50 ± 0.14</td>
</tr>
<tr id="351834939854D4FE013FFA97FA3CC70A" box="[827,1451,1384,1398]" gridrow="10" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFA97FC45C70A" box="[827,978,1384,1398]" gridcol="0" gridrow="10" pageId="2" pageNumber="66">
Sabinene (
<emphasis id="B95CEAC398542B030194FA97FC33C70A" bold="true" box="[912,932,1384,1398]" pageId="2" pageNumber="66">10</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FA97FA3CC70A" box="[1345,1451,1384,1398]" gridcol="1" gridrow="10" pageId="2" pageNumber="66">0.48 ± 0.41</td>
</tr>
<tr id="351834939854D4FE013FFA80FA3CC7F1" box="[827,1451,1407,1421]" gridrow="11" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFA80FC45C7F1" box="[827,978,1407,1421]" gridcol="0" gridrow="11" pageId="2" pageNumber="66">
Camphene (
<emphasis id="B95CEAC398542B030199FA80FC26C7F1" bold="true" box="[925,945,1407,1421]" pageId="2" pageNumber="66">11</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FA80FA3CC7F1" box="[1345,1451,1407,1421]" gridcol="1" gridrow="11" pageId="2" pageNumber="66">0.32 ± 0.05</td>
</tr>
<tr id="351834939854D4FE013FFA6AFA3CC7D8" box="[827,1451,1429,1444]" gridrow="12" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFA6AFC45C7D8" box="[827,978,1429,1444]" gridcol="0" gridrow="12" pageId="2" pageNumber="66">
Terpinen-4-ol (
<emphasis id="B95CEAC398542B0301B3FA6AFC5CC7DF" bold="true" box="[951,971,1429,1443]" pageId="2" pageNumber="66">12</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FA6AFA3CC7D8" box="[1345,1451,1429,1444]" gridcol="1" gridrow="12" pageId="2" pageNumber="66">0.25 ± 0.09</td>
</tr>
<tr id="351834939854D4FE013FFA53FA3CC7C7" box="[827,1451,1452,1467]" gridrow="13" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFA53FC45C7C7" box="[827,978,1452,1467]" gridcol="0" gridrow="13" pageId="2" pageNumber="66">
Borneol (
<emphasis id="B95CEAC398542B030182FA53FC0DC7C6" bold="true" box="[902,922,1452,1466]" pageId="2" pageNumber="66">13</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FA53FA3CC7C7" box="[1345,1451,1452,1467]" gridcol="1" gridrow="13" pageId="2" pageNumber="66">0.18 ± 0.14</td>
</tr>
<tr id="351834939854D4FE013FFA3FFA3CC7AE" box="[827,1451,1472,1490]" gridrow="14" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFA3FFC45C7AE" box="[827,978,1472,1490]" gridcol="0" gridrow="14" pageId="2" pageNumber="66">
Oi- Terpineol (
<emphasis id="B95CEAC398542B0301A2FA3CFC2DC7AD" bold="true" box="[934,954,1475,1489]" pageId="2" pageNumber="66">14</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FA3FFA3CC7AE" box="[1345,1451,1472,1490]" gridcol="1" gridrow="14" pageId="2" pageNumber="66">0.18 ± 0.15</td>
</tr>
<tr id="351834939854D4FE013FFA25FA3CC794" box="[827,1451,1498,1512]" gridrow="15" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFA25FC45C794" box="[827,978,1498,1512]" gridcol="0" gridrow="15" pageId="2" pageNumber="66">
Terpinolene (
<emphasis id="B95CEAC398542B0301A3FA25FC2CC794" bold="true" box="[935,955,1498,1512]" pageId="2" pageNumber="66">15</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FA25FA3CC794" box="[1345,1451,1498,1512]" gridcol="1" gridrow="15" pageId="2" pageNumber="66">0.13 ± 0.05</td>
</tr>
<tr id="351834939854D4FE013FFA0EFA3CC783" box="[827,1451,1521,1535]" gridrow="16" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FFA0EFC45C783" box="[827,978,1521,1535]" gridcol="0" gridrow="16" pageId="2" pageNumber="66">
1,8-Cineole (
<emphasis id="B95CEAC398542B0301A7FA0EFC20C783" bold="true" box="[931,951,1521,1535]" pageId="2" pageNumber="66">16</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745FA0EFA3CC783" box="[1345,1451,1521,1535]" gridcol="1" gridrow="16" pageId="2" pageNumber="66">tr</td>
</tr>
<tr id="351834939854D4FE013FF9F7FA3CC46A" box="[827,1451,1544,1558]" gridrow="17" pageId="2" pageNumber="66">
<td id="76C95DEF9854D4FE013FF9F7FC45C46A" box="[827,978,1544,1558]" gridcol="0" gridrow="17" pageId="2" pageNumber="66">
Citronellene (
<emphasis id="B95CEAC398542B0301AEF9F7FC29C46A" bold="true" box="[938,958,1544,1558]" pageId="2" pageNumber="66">17</emphasis>
)
</td>
<td id="76C95DEF9854D4FE0745F9F7FA3CC46A" box="[1345,1451,1544,1558]" gridcol="1" gridrow="17" pageId="2" pageNumber="66">tr</td>
</tr>
</table>
</paragraph>
<subSubSection id="C332655A98542B070272FB4EFD33C65E" lastPageId="6" lastPageNumber="70" pageId="2" pageNumber="66" type="description">
<paragraph id="8B9736D198542B030272FB4EFE68C78B" blockId="2.[87,757,1200,1528]" pageId="2" pageNumber="66">
Analysis of the EO steam distilled from
<taxonomicName id="4C284D5298542B03001AFB4FFD10C6B8" box="[542,647,1200,1220]" class="Magnoliopsida" family="Apiaceae" genus="Coriandrum" kingdom="Plantae" order="Apiales" pageId="2" pageNumber="66" phylum="Tracheophyta" rank="subSpecies" species="sativum" subSpecies="mericarps">
<emphasis id="B95CEAC398542B03001AFB4FFD10C6B8" box="[542,647,1200,1220]" italics="true" pageId="2" pageNumber="66">C. sativum</emphasis>
</taxonomicName>
mericarps established that, as previously reported (
<bibRefCitation id="EFB94B2098542B030017FB32FD66C69C" author="Bhuiyan, N. I. &amp; Begum, J. &amp; Sultana, M." box="[531,753,1229,1249]" pageId="2" pageNumber="66" pagination="150 - 153" refId="ref9254" refString="Bhuiyan, N. I., Begum, J., Sultana, M., 2009. Chemical composition of leaf and seed essential oil of Coriandrum sativum L. from Bangladesh. Bangladesh J. Ethnopharmacol. 4, 150 - 153." type="journal article" year="2009">Bhuiyan et al., 2009</bibRefCitation>
;
<bibRefCitation id="EFB94B2098542B030253FB16FE96C680" author="Misharina, T." box="[87,257,1257,1276]" pageId="2" pageNumber="66" pagination="622 - 628" refId="ref10429" refString="Misharina, T., 2001. Influence of the duration and conditions of storage on the composition of the essential oil from coriander seeds. Appl. Biochem. Microbiol. 37, 622 - 628." type="journal article" year="2001">Misharina, 2001</bibRefCitation>
;
<bibRefCitation id="EFB94B2098542B03030BFB16FE7DC680" author="Msaada, K. &amp; Hosni, K. &amp; Ben Taarit, M. &amp; Ouchikh, O. &amp; Marzouk, B." box="[271,490,1257,1277]" pageId="2" pageNumber="66" pagination="603 - 612" refId="ref10515" refString="Msaada, K., Hosni, K., Ben Taarit, M., Ouchikh, O., Marzouk, B., 2009 a. Variations in essential oil composition during maturation of coriander (Coriandrum sativum L.) fruits. J. Food Biochem. 33, 603 - 612." type="journal article" year="2009">Msaada et al., 2009a</bibRefCitation>
;
<bibRefCitation id="EFB94B2098542B0303FCFB15FDECC680" author="Potter, T." box="[504,635,1257,1277]" pageId="2" pageNumber="66" pagination="1824 - 1826" refId="ref10845" refString="Potter, T., 1996. Essential oil composition of cilantro. J. Agric. Food Chem. 44, 1824 - 1826." type="journal article" year="1996">Potter, 1996</bibRefCitation>
;
<bibRefCitation id="EFB94B2098542B03008CFB16FF1EC764" author="Sriti, J. &amp; Talou, T. &amp; Wannes, W. A. &amp; Cerny, M. &amp; Marzouk, B." pageId="2" pageNumber="66" pagination="1659 - 1664" refId="ref11185" refString="Sriti, J., Talou, T., Wannes, W. A., Cerny, M., Marzouk, B., 2009. Essential oil, fatty acid and sterol composition of Tunisian coriander fruit different parts. J. Sci. Food Agric. 89, 1659 - 1664." type="journal article" year="2009">Sriti et al., 2009</bibRefCitation>
), the major component of this EO is (S)-linalool (
<emphasis id="B95CEAC398542B03009AFAFAFD3CC764" bold="true" box="[670,683,1285,1304]" pageId="2" pageNumber="66">1</emphasis>
). After (S)-linalool (
<emphasis id="B95CEAC398542B0302D3FADEFF73C748" bold="true" box="[215,228,1313,1332]" pageId="2" pageNumber="66">1</emphasis>
), mericarps from the
<taxonomicName id="4C284D5298542B0303C3FADFFDB9C748" box="[455,558,1312,1332]" class="Magnoliopsida" family="Apiaceae" genus="Coriandrum" kingdom="Plantae" order="Apiales" pageId="2" pageNumber="66" phylum="Tracheophyta" rank="species" species="sativum">
<emphasis id="B95CEAC398542B0303C3FADFFDB9C748" box="[455,558,1312,1332]" italics="true" pageId="2" pageNumber="66">C. sativum</emphasis>
</taxonomicName>
plants used in this study were most abundant in cymene (
<emphasis id="B95CEAC398542B0303F5FAC2FE69C72C" bold="true" box="[497,510,1341,1360]" pageId="2" pageNumber="66">2</emphasis>
), ocimene (
<emphasis id="B95CEAC398542B03007DFAC2FD11C72C" bold="true" box="[633,646,1341,1360]" pageId="2" pageNumber="66">3</emphasis>
), camphor (
<emphasis id="B95CEAC398542B03025BFAA6FFFBC710" bold="true" box="[95,108,1369,1388]" pageId="2" pageNumber="66">4</emphasis>
) and Ƴ- terpinene (
<emphasis id="B95CEAC398542B03032CFAA6FEA2C710" bold="true" box="[296,309,1369,1388]" pageId="2" pageNumber="66">5</emphasis>
), listed in order of abundance. Those volatile terpene products present in amounts less than 2% of total EO terpenes include limonene (
<emphasis id="B95CEAC398542B030348FA6FFECEC7DF" bold="true" box="[332,345,1424,1443]" pageId="2" pageNumber="66">6</emphasis>
), linalool oxide (
<emphasis id="B95CEAC398542B030003FA6EFD83C7D8" bold="true" box="[519,532,1425,1444]" pageId="2" pageNumber="66">7</emphasis>
), geraniol (
<emphasis id="B95CEAC398542B03008EFA6FFD00C7DF" bold="true" box="[650,663,1424,1443]" pageId="2" pageNumber="66">8</emphasis>
), β- phellandrene (
<emphasis id="B95CEAC398542B0302C6FA53FF58C7C3" bold="true" box="[194,207,1452,1471]" pageId="2" pageNumber="66">9</emphasis>
), sabinene (
<emphasis id="B95CEAC398542B030354FA53FEFEC7C3" bold="true" box="[336,361,1452,1471]" pageId="2" pageNumber="66">10</emphasis>
), camphene (
<emphasis id="B95CEAC398542B0303FEFA53FD84C7C3" bold="true" box="[506,531,1452,1471]" pageId="2" pageNumber="66">11</emphasis>
), terpinene-4-ol (
<emphasis id="B95CEAC398542B0300CAFA53FD70C7C3" bold="true" box="[718,743,1452,1471]" pageId="2" pageNumber="66">12</emphasis>
), borneol (
<emphasis id="B95CEAC398542B0302BBFA37FF4FC7A7" bold="true" box="[191,216,1480,1499]" pageId="2" pageNumber="66">13</emphasis>
), Oi- terpineol (
<emphasis id="B95CEAC398542B030381FA37FE09C7A7" bold="true" box="[389,414,1480,1499]" pageId="2" pageNumber="66">14</emphasis>
), terpinolene (
<emphasis id="B95CEAC398542B030049FA37FDF1C7A7" bold="true" box="[589,614,1480,1499]" pageId="2" pageNumber="66">15</emphasis>
), 1,8-cineole (
<emphasis id="B95CEAC398542B03025BFA1BFFEFC78B" bold="true" box="[95,120,1508,1527]" pageId="2" pageNumber="66">16</emphasis>
)and citronellene (
<emphasis id="B95CEAC398542B030330FA1BFEDAC78B" bold="true" box="[308,333,1508,1527]" pageId="2" pageNumber="66">17</emphasis>
) (
<tableCitation id="C6AA036A98542B030361FA1BFE38C78B" box="[357,431,1508,1527]" captionStart="Table 1" captionStartId="2.[805,849,1061,1075]" captionTargetPageId="2" captionText="Table 1 Coriander mericarp essential oil (EO) terpene composition. Error bounds are in percent standard deviation." pageId="2" pageNumber="66">Table 1</tableCitation>
,
<figureCitation id="13132A5498542B0303BFFA1BFE65C78B" box="[443,498,1508,1527]" captionStart="Fig" captionStartId="1.[455,481,1999,2013]" captionTargetBox="[273,1333,1356,1969]" captionTargetId="figure-702@1.[272,1334,1355,1970]" captionTargetPageId="1" captionText="Fig. 1. Structures for volatile terpenes found in C. sativum mericarps use in this study." figureDoi="http://doi.org/10.5281/zenodo.10490036" httpUri="https://zenodo.org/record/10490036/files/figure.png" pageId="2" pageNumber="66">Fig. 1</figureCitation>
).
</paragraph>
<paragraph id="8B9736D198542B030253F9D7FDB7C440" blockId="2.[87,544,1576,1596]" box="[87,544,1576,1596]" pageId="2" pageNumber="66">
<heading id="D0DF81BD98542B030253F9D7FDB7C440" box="[87,544,1576,1596]" fontSize="36" level="2" pageId="2" pageNumber="66" reason="3">
<emphasis id="B95CEAC398542B030253F9D7FDB7C440" box="[87,544,1576,1596]" italics="true" pageId="2" pageNumber="66">2.3. Transcriptome sequencing and annotations</emphasis>
</heading>
</paragraph>
<paragraph id="8B9736D198542B030121F9D3FB30C440" blockId="2.[805,1191,1580,1597]" box="[805,1191,1580,1597]" pageId="2" pageNumber="66">
<tableNote id="76CE375F98542B030121F9D3FB30C440" box="[805,1191,1580,1597]" pageId="2" pageNumber="66" targetBox="[827,1451,1144,1558]" targetPageId="2">
<emphasis id="B95CEAC398542B030121F9D3FCBBC448" bold="true" box="[805,812,1580,1588]" italics="true" pageId="2" pageNumber="66">
<superScript id="7C5D9B9998542B030121F9D3FCBBC448" attach="left" box="[805,812,1580,1588]" fontSize="4" pageId="2" pageNumber="66"></superScript>
</emphasis>
tr indicates trace amounts detected (&lt;0.1%).
</tableNote>
</paragraph>
<paragraph id="8B9736D198542B030272F99EFF14C52F" blockId="2.[87,757,1633,2014]" pageId="2" pageNumber="66">
Transcriptome sequencing yielded a total of 33,330,312 raw reads of 65 bp length each, 10,638,013 from Sample 1 (
<collectionCode id="ED39AE1498542B030093F982FD30C4EC" box="[663,679,1661,1680]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="2" pageNumber="66" type="Herbarium">S</collectionCode>
1; small mericarps), 12,513,426 from Sample 2 (
<collectionCode id="ED39AE1498542B0303FAF966FD9BC4D0" box="[510,524,1689,1708]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="2" pageNumber="66" type="Herbarium">S</collectionCode>
2; medium mericarps) and 10,178,873 from Sample 3 (
<collectionCode id="ED39AE1498542B0303B2F94AFE52C4B4" box="[438,453,1717,1736]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="2" pageNumber="66" type="Herbarium">S</collectionCode>
3; large mericarps). De novo assembly yielded 65,306 transcripts of a median length of 519 bp. All unique transcript sequences were aligned against sequences in The Arabidopsis Information Resource TAIR (v.2.2.8) and UniProtKB databases, resulting in 55,689 sequences with blast hits.
</paragraph>
<paragraph id="8B9736D198542B030272F8A3FAC7C565" blockId="2.[87,757,1633,2014]" lastBlockId="2.[805,1475,1658,2012]" pageId="2" pageNumber="66">
Of the 65,306 transcripts, 35,928 were assigned at least one gene ontology (GO) term. Among these, 26,882 (41.16%), 19,025 (29.13%) and 32,405 (49.62%) sequences were assigned at least one GO term in the biological processes, cellular component and molecular function categories, respectively. Distribution of the most abundant GO terms for biological processes, molecular functions, and cellular components is summarized in Supplementary
<figureCitation id="13132A5498542B030121F94DFC15C4B9" box="[805,898,1714,1733]" captionStart="Fig" captionStartId="2.[87,113,953,967]" captionTargetBox="[382,1176,181,924]" captionTargetPageId="2" captionText="Fig. 2. Scanning electron microscope images of C. sativum mericarp tissue. (A) Whole mericarp, (B) cross-section with four vittae visible, (C) stomata on mericarp surface, (D) close-up of a vitta." figureDoi="http://doi.org/10.5281/zenodo.10490038" httpUri="https://zenodo.org/record/10490038/files/figure.png" pageId="2" pageNumber="66">Figure S2</figureCitation>
. Transcript sequences with no BLASTx hits are likely novel and involved in functions specific to
<taxonomicName id="4C284D5298542B0306C8F932FAA4C49D" box="[1228,1331,1741,1761]" class="Magnoliopsida" family="Apiaceae" genus="Coriandrum" kingdom="Plantae" order="Apiales" pageId="2" pageNumber="66" phylum="Tracheophyta" rank="species" species="sativum">
<emphasis id="B95CEAC398542B0306C8F932FAA4C49D" box="[1228,1331,1741,1761]" italics="true" pageId="2" pageNumber="66">C. sativum</emphasis>
</taxonomicName>
. The study of these genes may lead to uncovering evolutionary or speciesspecific processes including adaptation and speciation.
</paragraph>
<paragraph id="8B9736D198542B020140F8DDFD99C345" blockId="2.[805,1475,1658,2012]" lastBlockId="3.[113,783,182,424]" lastPageId="3" lastPageNumber="67" pageId="2" pageNumber="66">
KEGG annotations categorized 1508, 760 and 442 transcripts under metabolism, genetic information processing and cellular processes, respectively. Within those transcripts grouped under metabolism, 287 corresponded to carbohydrate metabolism, 235 to amino acid metabolism, 197 to lipid metabolism (includes all genes involved in fatty acid biosynthesis/metabolism), 189 to energy metabolism, 179 to secondary products metabolism (includes all genes involved in terpenoid, phenylpropanoid, flavonoid, alkaloid and polyketide metabolism), 151 to nucleotide metabolism, 101 to cofactors/vitamins metabolism and 169 to other processes (e.g., other amino acids and glycan metabolism) (Supplementary
<figureCitation id="13132A5498552B02031EFED9FEEFC345" box="[282,376,294,313]" captionStart="Fig" captionStartId="4.[306,332,1991,2005]" captionTargetBox="[361,1193,1231,1961]" captionTargetId="figure-654@4.[359,1194,1230,1962]" captionTargetPageId="4" captionText="Fig. 3. Conversion of geranyl diphosphate to (S)-linalool by CsLINS, and to other monoterpene products by CsƳTRPS." figureDoi="http://doi.org/10.5281/zenodo.10490040" httpUri="https://zenodo.org/record/10490040/files/figure.png" pageId="3" pageNumber="67">Figure S3</figureCitation>
and
<tableCitation id="C6AA036A98552B0203A8FED9FD96C345" box="[428,513,294,313]" captionStart="Table 2" captionStartId="3.[114,158,1030,1044]" captionTargetPageId="3" captionText="Table 2 Transcript abundance for putative genes involved in coriander isoprenoid biosynthesisacross three stages of mericarp development (S1, S2, S3)." pageId="3" pageNumber="67">Table S2</tableCitation>
).
</paragraph>
<paragraph id="8B9736D198552B020295FEBDFF66C3D4" blockId="3.[113,783,182,424]" pageId="3" pageNumber="67">Novel full-length protein and nucleotide sequences of CsƳTRPS and CsLINS generated for this study were deposited in Genbank with the following accession numbersKF700699 and KF700700, respectively.</paragraph>
<paragraph id="8B9736D198552B020276FE33FDC3C39C" blockId="3.[114,596,460,480]" box="[114,596,460,480]" pageId="3" pageNumber="67">
<heading id="D0DF81BD98552B020276FE33FDC3C39C" box="[114,596,460,480]" fontSize="36" level="2" pageId="3" pageNumber="67" reason="3">
<emphasis id="B95CEAC398552B020276FE33FDC3C39C" box="[114,596,460,480]" italics="true" pageId="3" pageNumber="67">2.4. Terpene biosynthetic gene expression analysis</emphasis>
</heading>
</paragraph>
<paragraph id="8B9736D198552B020295FDFAFF5DC153" blockId="3.[113,783,517,955]" pageId="3" pageNumber="67">
Differential transcript abundance data for each of the DXP and MVA pathway genes, as well as related prenyl transferases and other terpene biosynthetic genes, are represented in
<tableCitation id="C6AA036A98552B0200C0FDC2FC98C02C" box="[708,783,573,592]" captionStart="Table 2" captionStartId="3.[114,158,1030,1044]" captionTargetPageId="3" captionText="Table 2 Transcript abundance for putative genes involved in coriander isoprenoid biosynthesisacross three stages of mericarp development (S1, S2, S3)." pageId="3" pageNumber="67">Table 2</tableCitation>
and Supplementary
<tableCitation id="C6AA036A98552B020344FDA6FE01C010" box="[320,406,601,620]" captionStart="Table 3" captionStartId="6.[87,131,183,197]" captionTargetPageId="6" captionText="Table 3 Kinetics properties of coriander Ƴ-terpinene synthase and (S)-linalool synthase with the GPP substrate." pageId="3" pageNumber="67">Table S3</tableCitation>
. The data was analyzed using Reads Per Kilobase per Million mapped reads (RPKM), and thus data in
<tableCitation id="C6AA036A98552B020275FD6EFF2DC0D8" box="[113,186,657,676]" captionStart="Table 2" captionStartId="3.[114,158,1030,1044]" captionTargetPageId="3" captionText="Table 2 Transcript abundance for putative genes involved in coriander isoprenoid biosynthesisacross three stages of mericarp development (S1, S2, S3)." pageId="3" pageNumber="67">Table 2</tableCitation>
and Supplementary
<tableCitation id="C6AA036A98552B02038DFD6EFE4BC0D8" box="[393,476,657,676]" captionStart="Table 3" captionStartId="6.[87,131,183,197]" captionTargetPageId="6" captionText="Table 3 Kinetics properties of coriander Ƴ-terpinene synthase and (S)-linalool synthase with the GPP substrate." pageId="3" pageNumber="67">Table S3</tableCitation>
are represented as RPKM-normalized counts. The fold change (differential expression) is represented by log
<subScript id="17AC349498552B02030AFD2DFE80C0A2" attach="left" box="[270,279,722,734]" fontSize="5" pageId="3" pageNumber="67">2</subScript>
ratio transformations. A negative log
<subScript id="17AC349498552B0200C1FD2DFD59C0A2" attach="left" box="[709,718,722,734]" fontSize="5" pageId="3" pageNumber="67">2</subScript>
ratio represents down-regulation, a positive value, up-regulation and a ratio of 0 is indicative of no differential expression between two samples.
</paragraph>
<paragraph id="8B9736D198552B020295FCC7FB9DC37D" blockId="3.[113,783,517,955]" lastBlockId="3.[831,1501,182,955]" pageId="3" pageNumber="67">
Transcripts for DXS and HMGR, which are considered key regulatory enzymes in EO biosynthesis (
<bibRefCitation id="EFB94B2098552B0203DAFCABFC9CC11B" author="Munoz-Bertomeu, J. &amp; Arrillaga, I. &amp; Ros, R. &amp; Segura, J." box="[478,779,852,871]" pageId="3" pageNumber="67" pagination="890 - 900" refId="ref10635" refString="Munoz-Bertomeu, J., Arrillaga, I., Ros, R., Segura, J., 2006. Up-regulation of 1 - deoxy- D- xylulose- 5 - phosphate synthase enhances production of essential oils in transgenic spike lavender. Plant Physiol. 142, 890 - 900." type="journal article" year="2006">Munoz-Bertomeu et al., 2006</bibRefCitation>
;
<bibRefCitation id="EFB94B2098552B020275FC8FFE0EC1FF" author="Rodriguez-Concepcion, M." box="[113,409,880,899]" pageId="3" pageNumber="67" pagination="118 - 122" refId="ref11063" refString="Rodriguez-Concepcion, M., 2010. Supply of precursors for carotenoid biosynthesis in plants. Arch. Biochem. Biophys. 504, 118 - 122." type="journal article" year="2010">Rodriguez-Concepcion, 2010</bibRefCitation>
) demonstrated relatively constant levels of transcript abundance throughout mericarp development, with the exception of DXS2 which exhibited an approximately 2-fold decrease in transcript abundance from
<collectionCode id="ED39AE1498552B020720FF49FAA7C2B5" box="[1316,1328,182,201]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="3" pageNumber="67" type="Herbarium">S</collectionCode>
2 to
<collectionCode id="ED39AE1498552B020761FF49FAE4C2B5" box="[1381,1395,182,201]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="3" pageNumber="67" type="Herbarium">S</collectionCode>
3. Further, transcripts for all isoprenoid synthesis-related prenyltransferase genes were present.
</paragraph>
<paragraph id="8B9736D198552B02015AFEF5FCE8C010" blockId="3.[831,1501,182,955]" pageId="3" pageNumber="67">
In coriander, because the EO is vastly dominated by monoterpenes, rather than sesquiterpenes (
<bibRefCitation id="EFB94B2098552B02069AFED9FAFEC345" author="Msaada, K. &amp; Hosni, K. &amp; Ben Taarit, M. &amp; Ouchikh, O. &amp; Marzouk, B." box="[1182,1385,294,313]" pageId="3" pageNumber="67" pagination="603 - 612" refId="ref10515" refString="Msaada, K., Hosni, K., Ben Taarit, M., Ouchikh, O., Marzouk, B., 2009 a. Variations in essential oil composition during maturation of coriander (Coriandrum sativum L.) fruits. J. Food Biochem. 33, 603 - 612." type="journal article" year="2009">Msaada et al., 2009a</bibRefCitation>
), it is likely that farnesyl diphosphate synthase (FPPS) feeds the biosynthesis of large amounts of non-EO related metabolites such as triterpenes, which are also derived from farnesyl diphosphate (FPP). All plants generate triterpenes, many of which are precursors to important plant sterols and other growth regulators (
<bibRefCitation id="EFB94B2098552B020725FE4EFA4FC3B8" author="Benveniste, P." box="[1313,1496,433,452]" pageId="3" pageNumber="67" pagination="429 - 457" refId="ref9228" refString="Benveniste, P., 2004. Biosynthesis and accumulation of sterols. Annu. Rev. Plant Biol. 55, 429 - 457." type="journal article" year="2004">Benveniste, 2004</bibRefCitation>
;
<bibRefCitation id="EFB94B2098552B02013BFE32FBB4C39C" author="Clouse, S. &amp; Sasse, J." box="[831,1059,461,480]" pageId="3" pageNumber="67" pagination="427 - 451" refId="ref9338" refString="Clouse, S., Sasse, J., 1998. Brassinosteroids: essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 427 - 451." type="journal article" year="1998">Clouse and Sasse, 1998</bibRefCitation>
). The high GGPPS transcript expression suggests that coriander mericarps also produce tetraterpenes, which are commonly found in plant mericarps as precusors to important growth regulators, photoprotective quenching compounds and as accessory pigments in the photosynthetic system (
<bibRefCitation id="EFB94B2098552B02075FFDC2FCE5C010" author="Maluf, M. &amp; Saab, I. &amp; Wurtzel, E. &amp; Sachs, M." pageId="3" pageNumber="67" pagination="1259 - 1268" refId="ref10378" refString="Maluf, M., Saab, I., Wurtzel, E., Sachs, M., 1997. The viviparous 12 maize mutant is deficient in abscisic acid, carotenoids, and chlorophyll synthesis. J. Exp. Bot. 48, 1259 - 1268." type="journal article" year="1997">Maluf et al., 1997</bibRefCitation>
).
</paragraph>
<paragraph id="8B9736D198552B05015AFD8AFD1DC361" blockId="3.[831,1501,182,955]" lastBlockId="4.[87,758,182,1178]" lastPageId="4" lastPageNumber="68" pageId="3" pageNumber="67">
In a study by
<bibRefCitation id="EFB94B2098552B0201F3FD8AFB31C0F4" author="Lane, A. &amp; Boecklemann, A. &amp; Woronuk, G. N. &amp; Sarker, L. S. &amp; Mahmoud, S. S." box="[1015,1190,629,648]" pageId="3" pageNumber="67" pagination="835 - 845" refId="ref9931" refString="Lane, A., Boecklemann, A., Woronuk, G. N., Sarker, L. S., Mahmoud, S. S., 2010. A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia. Planta 231 (4), 835 - 845." type="journal article" year="2010">Lane et al., 2010</bibRefCitation>
, it was found that
<taxonomicName id="4C284D5298552B02077DFD8BFC38C0DF" class="Magnoliopsida" family="Lamiaceae" genus="Lavandula" kingdom="Plantae" order="Lamiales" pageId="3" pageNumber="67" phylum="Tracheophyta" rank="species" species="angustifolia">
<emphasis id="B95CEAC398552B02077DFD8BFC38C0DF" italics="true" pageId="3" pageNumber="67">Lavandula angustifolia</emphasis>
</taxonomicName>
flowers exhibit clear differential expression of the DXS and HMGR genes with DXS expressing 7-fold more than HMGR, leading to the conclusion that the flower terpene content was primarily produced via the DXP pathway. The mericarps of
<taxonomicName id="4C284D5298552B02013BFD00FC30C16F" box="[831,935,767,787]" class="Magnoliopsida" family="Apiaceae" genus="Coriandrum" kingdom="Plantae" order="Apiales" pageId="3" pageNumber="67" phylum="Tracheophyta" rank="species" species="sativum">
<emphasis id="B95CEAC398552B02013BFD00FC30C16F" box="[831,935,767,787]" italics="true" pageId="3" pageNumber="67">C. sativum</emphasis>
</taxonomicName>
exhibit a relatively constant and constitutive pattern of both DXS and HMGR gene expression, with DXS more strongly expressed (2-fold) than HMGR. This suggests that, like in
<taxonomicName id="4C284D5298552B02077AFCC8FCF8C11B" class="Magnoliopsida" family="Lamiaceae" genus="Lavandula" kingdom="Plantae" order="Lamiales" pageId="3" pageNumber="67" phylum="Tracheophyta" rank="species" species="angustifolia">
<emphasis id="B95CEAC398552B02077AFCC8FCF8C11B" italics="true" pageId="3" pageNumber="67">L. angustifolia</emphasis>
</taxonomicName>
flowers, in
<taxonomicName id="4C284D5298552B0201EDFCACFB2AC11B" box="[1001,1213,851,871]" class="Magnoliopsida" family="Apiaceae" genus="Coriandrum" kingdom="Plantae" order="Apiales" pageId="3" pageNumber="66" phylum="Tracheophyta" rank="subSpecies" species="sativum" subSpecies="mericarps">
<emphasis id="B95CEAC398552B0201EDFCACFBC7C11B" box="[1001,1104,851,871]" italics="true" pageId="3" pageNumber="67">C. sativum</emphasis>
mericarps
</taxonomicName>
, terpene content of the EOs are primarily produced through the DXP pathway. However, differential expression between DXS and HMGR genes was not as pronounced in coriander mericarps as was the case in the lavender flowers, suggesting that the MVA pathway may also contribute to EO production in coriander. This would occur via metabolic exchange of the phorphorylated intermediates (IPP and DMAPP) between the plastid and cytosol (
<bibRefCitation id="EFB94B2098522B050397FEF5FDEAC361" author="Hemmerlin, A. &amp; Hoeffler, J. F. &amp; Meyer, O. &amp; Tritsch, D. &amp; Kagan, I. A. &amp; Grosdemagne-Billard, C. &amp; Rohmer, M. &amp; Bach, T. J." box="[403,637,266,285]" pageId="4" pageNumber="68" pagination="26666 - 26676" refId="ref9767" refString="Hemmerlin, A., Hoeffler, J. F., Meyer, O., Tritsch, D., Kagan, I. A., Grosdemagne-Billard, C., Rohmer, M., Bach, T. J., 2003. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow- 2 cells. J. Biol. Chem. 278, 26666 - 26676." type="journal article" year="2003">Hemmerlin et al., 2003</bibRefCitation>
).
</paragraph>
<caption id="DF57665998552B020276FBF9FB7FC657" pageId="3" pageNumber="67" startId="3.[114,158,1030,1044]" targetBox="[136,1477,1091,1979]" targetIsTable="true" targetPageId="3" targetType="table">
<paragraph id="8B9736D198552B020276FBF9FB7FC657" blockId="3.[113,1256,1030,1067]" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B020276FBF9FF39C668" bold="true" box="[114,174,1030,1044]" pageId="3" pageNumber="67">Table 2</emphasis>
Transcript abundance for putative genes involved in coriander isoprenoid biosynthesisacross three stages of mericarp development (S1, S2, S3).
</paragraph>
</caption>
<paragraph id="8B9736D198552B02003EFBBCFA39C5C7" pageId="3" pageNumber="67">
<table id="F928C4719855D4FE028CFBBCFA52C5C7" box="[136,1477,1091,1979]" gridcols="6" gridrows="37" pageId="3" pageNumber="67">
<tr id="351834939855D4FE028CFBBCFA52C62D" box="[136,1477,1091,1105]" gridrow="0" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFBBCFA52C62D" box="[136,1477,1091,1105]" colspan="6" colspanRight="5" gridcol="0" gridrow="0" pageId="3" pageNumber="67">RPKM-normalized counts</th>
</tr>
<tr id="351834939855D4FE028CFB9BFA52C609" box="[136,1477,1124,1141]" gridrow="1" pageId="3" pageNumber="67" rowspan-0="1">
<td id="76C95DEF9855D4FE003EFB9BFDF4C609" box="[570,611,1124,1141]" gridcol="1" gridrow="1" pageId="3" pageNumber="67">S1</td>
<td id="76C95DEF9855D4FE00F2FB9BFC88C609" box="[758,799,1124,1141]" gridcol="2" gridrow="1" pageId="3" pageNumber="67">S2</td>
<td id="76C95DEF9855D4FE01B5FB9BFC7FC609" box="[945,1000,1124,1141]" gridcol="3" gridrow="1" pageId="3" pageNumber="67">S3</td>
<td id="76C95DEF9855D4FE067FFB9BFB40C609" box="[1147,1239,1124,1141]" gridcol="4" gridrow="1" pageId="3" pageNumber="67">log2 (S2/S1)</td>
<td id="76C95DEF9855D4FE076EFB9BFA52C609" box="[1386,1477,1124,1141]" gridcol="5" gridrow="1" pageId="3" pageNumber="67">log2 (S3/S1)</td>
</tr>
<tr id="351834939855D4FE028CFB7AFA52C6E8" box="[136,1477,1157,1172]" gridrow="2" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFB7AFA52C6E8" box="[136,1477,1157,1172]" colspan="6" colspanRight="5" gridcol="0" gridrow="2" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02028CFB7AFEC6C6E8" box="[136,337,1157,1172]" italics="true" pageId="3" pageNumber="67">Monoterpene biosynthesis</emphasis>
</th>
</tr>
<tr id="351834939855D4FE028CFB62FA52C6D7" box="[136,1477,1181,1195]" gridrow="3" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFB62FE30C6D7" box="[136,423,1181,1195]" gridcol="0" gridrow="3" pageId="3" pageNumber="67">(S)-linalool synthase</th>
<td id="76C95DEF9855D4FE003EFB62FDF4C6D7" box="[570,611,1181,1195]" gridcol="1" gridrow="3" pageId="3" pageNumber="67">3015</td>
<td id="76C95DEF9855D4FE00F2FB62FC88C6D7" box="[758,799,1181,1195]" gridcol="2" gridrow="3" pageId="3" pageNumber="67">7317</td>
<td id="76C95DEF9855D4FE01B5FB62FC7FC6D7" box="[945,1000,1181,1195]" gridcol="3" gridrow="3" pageId="3" pageNumber="67">1350</td>
<td id="76C95DEF9855D4FE067FFB62FB40C6D7" box="[1147,1239,1181,1195]" gridcol="4" gridrow="3" pageId="3" pageNumber="67">1.279</td>
<td id="76C95DEF9855D4FE076EFB62FA52C6D7" box="[1386,1477,1181,1195]" gridcol="5" gridrow="3" pageId="3" pageNumber="67">1.160</td>
</tr>
<tr id="351834939855D4FE028CFB4CFA52C6BE" box="[136,1477,1203,1218]" gridrow="4" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFB4CFE30C6BE" box="[136,423,1203,1218]" gridcol="0" gridrow="4" pageId="3" pageNumber="67">mTPS2</th>
<td id="76C95DEF9855D4FE003EFB4CFDF4C6BE" box="[570,611,1203,1218]" gridcol="1" gridrow="4" pageId="3" pageNumber="67">4110</td>
<td id="76C95DEF9855D4FE00F2FB4CFC88C6BE" box="[758,799,1203,1218]" gridcol="2" gridrow="4" pageId="3" pageNumber="67">3829</td>
<td id="76C95DEF9855D4FE01B5FB4CFC7FC6BE" box="[945,1000,1203,1218]" gridcol="3" gridrow="4" pageId="3" pageNumber="67">3962</td>
<td id="76C95DEF9855D4FE067FFB4CFB40C6BE" box="[1147,1239,1203,1218]" gridcol="4" gridrow="4" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FFB4CFB1FC6BE" box="[1147,1160,1203,1218]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.1022
</td>
<td id="76C95DEF9855D4FE076EFB4CFA52C6BE" box="[1386,1477,1203,1218]" gridcol="5" gridrow="4" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EFB4CFAE0C6BE" box="[1386,1399,1203,1218]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.0529
</td>
</tr>
<tr id="351834939855D4FE028CFB37FA52C6A6" box="[136,1477,1224,1242]" gridrow="5" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFB37FE30C6A6" box="[136,423,1224,1242]" gridcol="0" gridrow="5" pageId="3" pageNumber="67">Ƴ- Terpinene synthase</th>
<td id="76C95DEF9855D4FE003EFB37FDF4C6A6" box="[570,611,1224,1242]" gridcol="1" gridrow="5" pageId="3" pageNumber="67">664</td>
<td id="76C95DEF9855D4FE00F2FB37FC88C6A6" box="[758,799,1224,1242]" gridcol="2" gridrow="5" pageId="3" pageNumber="67">1645</td>
<td id="76C95DEF9855D4FE01B5FB37FC7FC6A6" box="[945,1000,1224,1242]" gridcol="3" gridrow="5" pageId="3" pageNumber="67">715</td>
<td id="76C95DEF9855D4FE067FFB37FB40C6A6" box="[1147,1239,1224,1242]" gridcol="4" gridrow="5" pageId="3" pageNumber="67">1.309</td>
<td id="76C95DEF9855D4FE076EFB37FA52C6A6" box="[1386,1477,1224,1242]" gridcol="5" gridrow="5" pageId="3" pageNumber="67">0.1070</td>
</tr>
<tr id="351834939855D4FE028CFB1EFA52C68C" box="[136,1477,1249,1264]" gridrow="6" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFB1EFE30C68C" box="[136,423,1249,1264]" gridcol="0" gridrow="6" pageId="3" pageNumber="67">mTPS3</th>
<td id="76C95DEF9855D4FE003EFB1EFDF4C68C" box="[570,611,1249,1264]" gridcol="1" gridrow="6" pageId="3" pageNumber="67">502</td>
<td id="76C95DEF9855D4FE00F2FB1EFC88C68C" box="[758,799,1249,1264]" gridcol="2" gridrow="6" pageId="3" pageNumber="67">255</td>
<td id="76C95DEF9855D4FE01B5FB1EFC7FC68C" box="[945,1000,1249,1264]" gridcol="3" gridrow="6" pageId="3" pageNumber="67">847</td>
<td id="76C95DEF9855D4FE067FFB1EFB40C68C" box="[1147,1239,1249,1264]" gridcol="4" gridrow="6" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FFB1EFB1FC68C" box="[1147,1160,1249,1264]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.9787
</td>
<td id="76C95DEF9855D4FE076EFB1EFA52C68C" box="[1386,1477,1249,1264]" gridcol="5" gridrow="6" pageId="3" pageNumber="67">0.7546</td>
</tr>
<tr id="351834939855D4FE028CFAFEFA52C76D" box="[136,1477,1281,1297]" gridrow="7" pageId="3" pageNumber="67" rowspan-1="1" rowspan-2="1" rowspan-3="1" rowspan-4="1" rowspan-5="1">
<th id="76C95DEF9855D4FE028CFAFEFE30C76D" box="[136,423,1281,1297]" gridcol="0" gridrow="7" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02028CFAFEFE0EC76D" box="[136,409,1281,1297]" italics="true" pageId="3" pageNumber="67">Sesqui- and Triterpene biosynthesis</emphasis>
</th>
</tr>
<tr id="351834939855D4FE028CFAE6FA52C754" box="[136,1477,1305,1320]" gridrow="8" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFAE6FE30C754" box="[136,423,1305,1320]" gridcol="0" gridrow="8" pageId="3" pageNumber="67">Squalene monooxygenase3</th>
<td id="76C95DEF9855D4FE003EFAE6FDF4C754" box="[570,611,1305,1320]" gridcol="1" gridrow="8" pageId="3" pageNumber="67">589</td>
<td id="76C95DEF9855D4FE00F2FAE6FC88C754" box="[758,799,1305,1320]" gridcol="2" gridrow="8" pageId="3" pageNumber="67">551</td>
<td id="76C95DEF9855D4FE01B5FAE6FC7FC754" box="[945,1000,1305,1320]" gridcol="3" gridrow="8" pageId="3" pageNumber="67">503.01</td>
<td id="76C95DEF9855D4FE067FFAE6FB40C754" box="[1147,1239,1305,1320]" gridcol="4" gridrow="8" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FFAE6FB1FC754" box="[1147,1160,1305,1320]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.0962
</td>
<td id="76C95DEF9855D4FE076EFAE6FA52C754" box="[1386,1477,1305,1320]" gridcol="5" gridrow="8" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EFAE6FAE0C754" box="[1386,1399,1305,1320]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.2277
</td>
</tr>
<tr id="351834939855D4FE028CFACFFA52C742" box="[136,1477,1328,1342]" gridrow="9" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFACFFE30C742" box="[136,423,1328,1342]" gridcol="0" gridrow="9" pageId="3" pageNumber="67">Squalene monooxygenase1</th>
<td id="76C95DEF9855D4FE003EFACFFDF4C742" box="[570,611,1328,1342]" gridcol="1" gridrow="9" pageId="3" pageNumber="67">333</td>
<td id="76C95DEF9855D4FE00F2FACFFC88C742" box="[758,799,1328,1342]" gridcol="2" gridrow="9" pageId="3" pageNumber="67">419</td>
<td id="76C95DEF9855D4FE01B5FACFFC7FC742" box="[945,1000,1328,1342]" gridcol="3" gridrow="9" pageId="3" pageNumber="67">350</td>
<td id="76C95DEF9855D4FE067FFACFFB40C742" box="[1147,1239,1328,1342]" gridcol="4" gridrow="9" pageId="3" pageNumber="67">0.3314</td>
<td id="76C95DEF9855D4FE076EFACFFA52C742" box="[1386,1477,1328,1342]" gridcol="5" gridrow="9" pageId="3" pageNumber="67">0.0718</td>
</tr>
<tr id="351834939855D4FE028CFAB8FA52C729" box="[136,1477,1351,1365]" gridrow="10" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFAB8FE30C729" box="[136,423,1351,1365]" gridcol="0" gridrow="10" pageId="3" pageNumber="67">Squalene monooxygenase2</th>
<td id="76C95DEF9855D4FE003EFAB8FDF4C729" box="[570,611,1351,1365]" gridcol="1" gridrow="10" pageId="3" pageNumber="67">158</td>
<td id="76C95DEF9855D4FE00F2FAB8FC88C729" box="[758,799,1351,1365]" gridcol="2" gridrow="10" pageId="3" pageNumber="67">209</td>
<td id="76C95DEF9855D4FE01B5FAB8FC7FC729" box="[945,1000,1351,1365]" gridcol="3" gridrow="10" pageId="3" pageNumber="67">183</td>
<td id="76C95DEF9855D4FE067FFAB8FB40C729" box="[1147,1239,1351,1365]" gridcol="4" gridrow="10" pageId="3" pageNumber="67">0.4036</td>
<td id="76C95DEF9855D4FE076EFAB8FA52C729" box="[1386,1477,1351,1365]" gridcol="5" gridrow="10" pageId="3" pageNumber="67">0.2119</td>
</tr>
<tr id="351834939855D4FE028CFAA1FA52C710" box="[136,1477,1374,1388]" gridrow="11" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFAA1FE30C710" box="[136,423,1374,1388]" gridcol="0" gridrow="11" pageId="3" pageNumber="67">Squalene synthase</th>
<td id="76C95DEF9855D4FE003EFAA1FDF4C710" box="[570,611,1374,1388]" gridcol="1" gridrow="11" pageId="3" pageNumber="67">750</td>
<td id="76C95DEF9855D4FE00F2FAA1FC88C710" box="[758,799,1374,1388]" gridcol="2" gridrow="11" pageId="3" pageNumber="67">1061</td>
<td id="76C95DEF9855D4FE01B5FAA1FC7FC710" box="[945,1000,1374,1388]" gridcol="3" gridrow="11" pageId="3" pageNumber="67">764</td>
<td id="76C95DEF9855D4FE067FFAA1FB40C710" box="[1147,1239,1374,1388]" gridcol="4" gridrow="11" pageId="3" pageNumber="67">0.5005</td>
<td id="76C95DEF9855D4FE076EFAA1FA52C710" box="[1386,1477,1374,1388]" gridcol="5" gridrow="11" pageId="3" pageNumber="67">0.0267</td>
</tr>
<tr id="351834939855D4FE028CFA8BFA52C7FF" box="[136,1477,1396,1411]" gridrow="12" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFA8BFE30C7FF" box="[136,423,1396,1411]" gridcol="0" gridrow="12" pageId="3" pageNumber="67">sTPS1</th>
<td id="76C95DEF9855D4FE003EFA8BFDF4C7FF" box="[570,611,1396,1411]" gridcol="1" gridrow="12" pageId="3" pageNumber="67">1127</td>
<td id="76C95DEF9855D4FE00F2FA8BFC88C7FF" box="[758,799,1396,1411]" gridcol="2" gridrow="12" pageId="3" pageNumber="67">3177</td>
<td id="76C95DEF9855D4FE01B5FA8BFC7FC7FF" box="[945,1000,1396,1411]" gridcol="3" gridrow="12" pageId="3" pageNumber="67">631</td>
<td id="76C95DEF9855D4FE067FFA8BFB40C7FF" box="[1147,1239,1396,1411]" gridcol="4" gridrow="12" pageId="3" pageNumber="67">1.495</td>
<td id="76C95DEF9855D4FE076EFA8BFA52C7FF" box="[1386,1477,1396,1411]" gridcol="5" gridrow="12" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EFA8BFAE0C7FF" box="[1386,1399,1396,1411]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.8368
</td>
</tr>
<tr id="351834939855D4FE028CFA74FA52C7E6" box="[136,1477,1419,1434]" gridrow="13" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFA74FE30C7E6" box="[136,423,1419,1434]" gridcol="0" gridrow="13" pageId="3" pageNumber="67">sTPS2</th>
<td id="76C95DEF9855D4FE003EFA74FDF4C7E6" box="[570,611,1419,1434]" gridcol="1" gridrow="13" pageId="3" pageNumber="67">578</td>
<td id="76C95DEF9855D4FE00F2FA74FC88C7E6" box="[758,799,1419,1434]" gridcol="2" gridrow="13" pageId="3" pageNumber="67">1056</td>
<td id="76C95DEF9855D4FE01B5FA74FC7FC7E6" box="[945,1000,1419,1434]" gridcol="3" gridrow="13" pageId="3" pageNumber="67">466</td>
<td id="76C95DEF9855D4FE067FFA74FB40C7E6" box="[1147,1239,1419,1434]" gridcol="4" gridrow="13" pageId="3" pageNumber="67">0.8694</td>
<td id="76C95DEF9855D4FE076EFA74FA52C7E6" box="[1386,1477,1419,1434]" gridcol="5" gridrow="13" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EFA74FAE0C7E6" box="[1386,1399,1419,1434]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.3107
</td>
</tr>
<tr id="351834939855D4FE028CFA5DFA52C7CC" box="[136,1477,1442,1456]" gridrow="14" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFA5DFE30C7CC" box="[136,423,1442,1456]" gridcol="0" gridrow="14" pageId="3" pageNumber="67">Brassinosteroids</th>
<td id="76C95DEF9855D4FE003EFA5DFDF4C7CC" box="[570,611,1442,1456]" gridcol="1" gridrow="14" pageId="3" pageNumber="67">438</td>
<td id="76C95DEF9855D4FE00F2FA5DFC88C7CC" box="[758,799,1442,1456]" gridcol="2" gridrow="14" pageId="3" pageNumber="67">694</td>
<td id="76C95DEF9855D4FE01B5FA5DFC7FC7CC" box="[945,1000,1442,1456]" gridcol="3" gridrow="14" pageId="3" pageNumber="67">579</td>
<td id="76C95DEF9855D4FE067FFA5DFB40C7CC" box="[1147,1239,1442,1456]" gridcol="4" gridrow="14" pageId="3" pageNumber="67">0.6643</td>
<td id="76C95DEF9855D4FE076EFA5DFA52C7CC" box="[1386,1477,1442,1456]" gridcol="5" gridrow="14" pageId="3" pageNumber="67">0.4018</td>
</tr>
<tr id="351834939855D4FE028CFA3DFA52C7AD" box="[136,1477,1474,1489]" gridrow="15" pageId="3" pageNumber="67" rowspan-1="1" rowspan-2="1" rowspan-3="1" rowspan-4="1" rowspan-5="1">
<th id="76C95DEF9855D4FE028CFA3DFE30C7AD" box="[136,423,1474,1489]" gridcol="0" gridrow="15" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02028CFA3DFEA1C7AD" box="[136,310,1474,1489]" italics="true" pageId="3" pageNumber="67">Diterpene biosynthesis</emphasis>
</th>
</tr>
<tr id="351834939855D4FE028CFA26FA52C794" box="[136,1477,1497,1512]" gridrow="16" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFA26FE30C794" box="[136,423,1497,1512]" gridcol="0" gridrow="16" pageId="3" pageNumber="67">ent-Kaurene acid hydroxylase</th>
<td id="76C95DEF9855D4FE003EFA26FDF4C794" box="[570,611,1497,1512]" gridcol="1" gridrow="16" pageId="3" pageNumber="67">502</td>
<td id="76C95DEF9855D4FE00F2FA26FC88C794" box="[758,799,1497,1512]" gridcol="2" gridrow="16" pageId="3" pageNumber="67">348</td>
<td id="76C95DEF9855D4FE01B5FA26FC7FC794" box="[945,1000,1497,1512]" gridcol="3" gridrow="16" pageId="3" pageNumber="67">494</td>
<td id="76C95DEF9855D4FE067FFA26FB40C794" box="[1147,1239,1497,1512]" gridcol="4" gridrow="16" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FFA26FB1FC794" box="[1147,1160,1497,1512]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.5301
</td>
<td id="76C95DEF9855D4FE076EFA26FA52C794" box="[1386,1477,1497,1512]" gridcol="5" gridrow="16" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EFA26FAE0C794" box="[1386,1399,1497,1512]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.0221
</td>
</tr>
<tr id="351834939855D4FE028CFA0FFA52C783" box="[136,1477,1520,1535]" gridrow="17" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CFA0FFE30C783" box="[136,423,1520,1535]" gridcol="0" gridrow="17" pageId="3" pageNumber="67">Gibberellin 2-oxidase1</th>
<td id="76C95DEF9855D4FE003EFA0FFDF4C783" box="[570,611,1520,1535]" gridcol="1" gridrow="17" pageId="3" pageNumber="67">201</td>
<td id="76C95DEF9855D4FE00F2FA0FFC88C783" box="[758,799,1520,1535]" gridcol="2" gridrow="17" pageId="3" pageNumber="67">37</td>
<td id="76C95DEF9855D4FE01B5FA0FFC7FC783" box="[945,1000,1520,1535]" gridcol="3" gridrow="17" pageId="3" pageNumber="67">174</td>
<td id="76C95DEF9855D4FE067FFA0FFB40C783" box="[1147,1239,1520,1535]" gridcol="4" gridrow="17" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FFA0FFB1FC783" box="[1147,1160,1520,1535]" italics="true" pageId="3" pageNumber="67"></emphasis>
2.442
</td>
<td id="76C95DEF9855D4FE076EFA0FFA52C783" box="[1386,1477,1520,1535]" gridcol="5" gridrow="17" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EFA0FFAE0C783" box="[1386,1399,1520,1535]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.2081
</td>
</tr>
<tr id="351834939855D4FE028CF9F8FA52C46A" box="[136,1477,1543,1558]" gridrow="18" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF9F8FE30C46A" box="[136,423,1543,1558]" gridcol="0" gridrow="18" pageId="3" pageNumber="67">ent-Kaurene oxidase</th>
<td id="76C95DEF9855D4FE003EF9F8FDF4C46A" box="[570,611,1543,1558]" gridcol="1" gridrow="18" pageId="3" pageNumber="67">191</td>
<td id="76C95DEF9855D4FE00F2F9F8FC88C46A" box="[758,799,1543,1558]" gridcol="2" gridrow="18" pageId="3" pageNumber="67">275</td>
<td id="76C95DEF9855D4FE01B5F9F8FC7FC46A" box="[945,1000,1543,1558]" gridcol="3" gridrow="18" pageId="3" pageNumber="67">147</td>
<td id="76C95DEF9855D4FE067FF9F8FB40C46A" box="[1147,1239,1543,1558]" gridcol="4" gridrow="18" pageId="3" pageNumber="67">0.5259</td>
<td id="76C95DEF9855D4FE076EF9F8FA52C46A" box="[1386,1477,1543,1558]" gridcol="5" gridrow="18" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EF9F8FAE0C46A" box="[1386,1399,1543,1558]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.3812
</td>
</tr>
<tr id="351834939855D4FE028CF9E1FA52C451" box="[136,1477,1566,1581]" gridrow="19" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF9E1FE30C451" box="[136,423,1566,1581]" gridcol="0" gridrow="19" pageId="3" pageNumber="67">ent-Kaurene synthase</th>
<td id="76C95DEF9855D4FE003EF9E1FDF4C451" box="[570,611,1566,1581]" gridcol="1" gridrow="19" pageId="3" pageNumber="67">150</td>
<td id="76C95DEF9855D4FE00F2F9E1FC88C451" box="[758,799,1566,1581]" gridcol="2" gridrow="19" pageId="3" pageNumber="67">180</td>
<td id="76C95DEF9855D4FE01B5F9E1FC7FC451" box="[945,1000,1566,1581]" gridcol="3" gridrow="19" pageId="3" pageNumber="67">136</td>
<td id="76C95DEF9855D4FE067FF9E1FB40C451" box="[1147,1239,1566,1581]" gridcol="4" gridrow="19" pageId="3" pageNumber="67">0.2630</td>
<td id="76C95DEF9855D4FE076EF9E1FA52C451" box="[1386,1477,1566,1581]" gridcol="5" gridrow="19" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EF9E1FAE0C451" box="[1386,1399,1566,1581]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.1414
</td>
</tr>
<tr id="351834939855D4FE028CF9CAFA52C438" box="[136,1477,1589,1604]" gridrow="20" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF9CAFE30C438" box="[136,423,1589,1604]" gridcol="0" gridrow="20" pageId="3" pageNumber="67">Gibberellin 2-oxidase2</th>
<td id="76C95DEF9855D4FE003EF9CAFDF4C438" box="[570,611,1589,1604]" gridcol="1" gridrow="20" pageId="3" pageNumber="67">91</td>
<td id="76C95DEF9855D4FE00F2F9CAFC88C438" box="[758,799,1589,1604]" gridcol="2" gridrow="20" pageId="3" pageNumber="67">409</td>
<td id="76C95DEF9855D4FE01B5F9CAFC7FC438" box="[945,1000,1589,1604]" gridcol="3" gridrow="20" pageId="3" pageNumber="67">104</td>
<td id="76C95DEF9855D4FE067FF9CAFB40C438" box="[1147,1239,1589,1604]" gridcol="4" gridrow="20" pageId="3" pageNumber="67">2.168</td>
<td id="76C95DEF9855D4FE076EF9CAFA52C438" box="[1386,1477,1589,1604]" gridcol="5" gridrow="20" pageId="3" pageNumber="67">0.1978</td>
</tr>
<tr id="351834939855D4FE028CF9B3FA52C427" box="[136,1477,1612,1627]" gridrow="21" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF9B3FE30C427" box="[136,423,1612,1627]" gridcol="0" gridrow="21" pageId="3" pageNumber="67">Gibberellin 3-β- dioxygenase</th>
<td id="76C95DEF9855D4FE003EF9B3FDF4C427" box="[570,611,1612,1627]" gridcol="1" gridrow="21" pageId="3" pageNumber="67">493</td>
<td id="76C95DEF9855D4FE00F2F9B3FC88C427" box="[758,799,1612,1627]" gridcol="2" gridrow="21" pageId="3" pageNumber="67">609</td>
<td id="76C95DEF9855D4FE01B5F9B3FC7FC427" box="[945,1000,1612,1627]" gridcol="3" gridrow="21" pageId="3" pageNumber="67">226</td>
<td id="76C95DEF9855D4FE067FF9B3FB40C427" box="[1147,1239,1612,1627]" gridcol="4" gridrow="21" pageId="3" pageNumber="67">0.3047</td>
<td id="76C95DEF9855D4FE076EF9B3FA52C427" box="[1386,1477,1612,1627]" gridcol="5" gridrow="21" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EF9B3FAE0C427" box="[1386,1399,1612,1627]" italics="true" pageId="3" pageNumber="67"></emphasis>
1.125
</td>
</tr>
<tr id="351834939855D4FE028CF993FA52C407" box="[136,1477,1644,1659]" gridrow="22" pageId="3" pageNumber="67" rowspan-1="1" rowspan-2="1" rowspan-3="1" rowspan-4="1" rowspan-5="1">
<th id="76C95DEF9855D4FE028CF993FE30C407" box="[136,423,1644,1659]" gridcol="0" gridrow="22" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02028CF993FEDBC407" box="[136,332,1644,1659]" italics="true" pageId="3" pageNumber="67">Tetraterpene biosynthesis</emphasis>
</th>
</tr>
<tr id="351834939855D4FE028CF97CFA52C4EE" box="[136,1477,1667,1682]" gridrow="23" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF97CFE30C4EE" box="[136,423,1667,1682]" gridcol="0" gridrow="23" pageId="3" pageNumber="67">9-cis-Epoxycarotenoid dioxygenase</th>
<td id="76C95DEF9855D4FE003EF97CFDF4C4EE" box="[570,611,1667,1682]" gridcol="1" gridrow="23" pageId="3" pageNumber="67">108</td>
<td id="76C95DEF9855D4FE00F2F97CFC88C4EE" box="[758,799,1667,1682]" gridcol="2" gridrow="23" pageId="3" pageNumber="67">20</td>
<td id="76C95DEF9855D4FE01B5F97CFC7FC4EE" box="[945,1000,1667,1682]" gridcol="3" gridrow="23" pageId="3" pageNumber="67">44</td>
<td id="76C95DEF9855D4FE067FF97CFB40C4EE" box="[1147,1239,1667,1682]" gridcol="4" gridrow="23" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FF97CFB1FC4EE" box="[1147,1160,1667,1682]" italics="true" pageId="3" pageNumber="67"></emphasis>
2.441
</td>
<td id="76C95DEF9855D4FE076EF97CFA52C4EE" box="[1386,1477,1667,1682]" gridcol="5" gridrow="23" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EF97CFAE0C4EE" box="[1386,1399,1667,1682]" italics="true" pageId="3" pageNumber="67"></emphasis>
1.298
</td>
</tr>
<tr id="351834939855D4FE028CF967FA52C4D6" box="[136,1477,1688,1706]" gridrow="24" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF967FE30C4D6" box="[136,423,1688,1706]" gridcol="0" gridrow="24" pageId="3" pageNumber="67">Lycopene Ɛ- cyclase</th>
<td id="76C95DEF9855D4FE003EF967FDF4C4D6" box="[570,611,1688,1706]" gridcol="1" gridrow="24" pageId="3" pageNumber="67">468</td>
<td id="76C95DEF9855D4FE00F2F967FC88C4D6" box="[758,799,1688,1706]" gridcol="2" gridrow="24" pageId="3" pageNumber="67">385</td>
<td id="76C95DEF9855D4FE01B5F967FC7FC4D6" box="[945,1000,1688,1706]" gridcol="3" gridrow="24" pageId="3" pageNumber="67">323</td>
<td id="76C95DEF9855D4FE067FF967FB40C4D6" box="[1147,1239,1688,1706]" gridcol="4" gridrow="24" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FF965FB1FC4D5" box="[1147,1160,1690,1705]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.2817
</td>
<td id="76C95DEF9855D4FE076EF967FA52C4D6" box="[1386,1477,1688,1706]" gridcol="5" gridrow="24" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EF965FAE0C4D5" box="[1386,1399,1690,1705]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.5350
</td>
</tr>
<tr id="351834939855D4FE028CF94EFA52C4BC" box="[136,1477,1713,1728]" gridrow="25" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF94EFE30C4BC" box="[136,423,1713,1728]" gridcol="0" gridrow="25" pageId="3" pageNumber="67">Prolycopene isomerase</th>
<td id="76C95DEF9855D4FE003EF94EFDF4C4BC" box="[570,611,1713,1728]" gridcol="1" gridrow="25" pageId="3" pageNumber="67">472</td>
<td id="76C95DEF9855D4FE00F2F94EFC88C4BC" box="[758,799,1713,1728]" gridcol="2" gridrow="25" pageId="3" pageNumber="67">457</td>
<td id="76C95DEF9855D4FE01B5F94EFC7FC4BC" box="[945,1000,1713,1728]" gridcol="3" gridrow="25" pageId="3" pageNumber="67">471</td>
<td id="76C95DEF9855D4FE067FF94EFB40C4BC" box="[1147,1239,1713,1728]" gridcol="4" gridrow="25" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FF94EFB1FC4BC" box="[1147,1160,1713,1728]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.0466
</td>
<td id="76C95DEF9855D4FE076EF94EFA52C4BC" box="[1386,1477,1713,1728]" gridcol="5" gridrow="25" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EF94EFAE0C4BC" box="[1386,1399,1713,1728]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.0031
</td>
</tr>
<tr id="351834939855D4FE028CF937FA52C4AB" box="[136,1477,1736,1751]" gridrow="26" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF937FE30C4AB" box="[136,423,1736,1751]" gridcol="0" gridrow="26" pageId="3" pageNumber="67">ζ- Carotene isomerase</th>
<td id="76C95DEF9855D4FE003EF937FDF4C4AB" box="[570,611,1736,1751]" gridcol="1" gridrow="26" pageId="3" pageNumber="67">85</td>
<td id="76C95DEF9855D4FE00F2F937FC88C4AB" box="[758,799,1736,1751]" gridcol="2" gridrow="26" pageId="3" pageNumber="67">171</td>
<td id="76C95DEF9855D4FE01B5F937FC7FC4AB" box="[945,1000,1736,1751]" gridcol="3" gridrow="26" pageId="3" pageNumber="67">105</td>
<td id="76C95DEF9855D4FE067FF937FB40C4AB" box="[1147,1239,1736,1751]" gridcol="4" gridrow="26" pageId="3" pageNumber="67">1.008</td>
<td id="76C95DEF9855D4FE076EF937FA52C4AB" box="[1386,1477,1736,1751]" gridcol="5" gridrow="26" pageId="3" pageNumber="67">0.3049</td>
</tr>
<tr id="351834939855D4FE028CF920FA52C492" box="[136,1477,1759,1774]" gridrow="27" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF920FE30C492" box="[136,423,1759,1774]" gridcol="0" gridrow="27" pageId="3" pageNumber="67">Xanthoxin dehydrogenase</th>
<td id="76C95DEF9855D4FE003EF920FDF4C492" box="[570,611,1759,1774]" gridcol="1" gridrow="27" pageId="3" pageNumber="67">390</td>
<td id="76C95DEF9855D4FE00F2F920FC88C492" box="[758,799,1759,1774]" gridcol="2" gridrow="27" pageId="3" pageNumber="67">472</td>
<td id="76C95DEF9855D4FE01B5F920FC7FC492" box="[945,1000,1759,1774]" gridcol="3" gridrow="27" pageId="3" pageNumber="67">349</td>
<td id="76C95DEF9855D4FE067FF920FB40C492" box="[1147,1239,1759,1774]" gridcol="4" gridrow="27" pageId="3" pageNumber="67">0.2763</td>
<td id="76C95DEF9855D4FE076EF920FA52C492" box="[1386,1477,1759,1774]" gridcol="5" gridrow="27" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EF920FAE0C492" box="[1386,1399,1759,1774]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.1607
</td>
</tr>
<tr id="351834939855D4FE028CF90AFA52C578" box="[136,1477,1781,1796]" gridrow="28" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF90AFE30C578" box="[136,423,1781,1796]" gridcol="0" gridrow="28" pageId="3" pageNumber="67">(+)-Abscisic acid 8-hydroxylase</th>
<td id="76C95DEF9855D4FE003EF90AFDF4C578" box="[570,611,1781,1796]" gridcol="1" gridrow="28" pageId="3" pageNumber="67">54</td>
<td id="76C95DEF9855D4FE00F2F90AFC88C578" box="[758,799,1781,1796]" gridcol="2" gridrow="28" pageId="3" pageNumber="67">105</td>
<td id="76C95DEF9855D4FE01B5F90AFC7FC578" box="[945,1000,1781,1796]" gridcol="3" gridrow="28" pageId="3" pageNumber="67">48</td>
<td id="76C95DEF9855D4FE067FF90AFB40C578" box="[1147,1239,1781,1796]" gridcol="4" gridrow="28" pageId="3" pageNumber="67">0.9594</td>
<td id="76C95DEF9855D4FE076EF90AFA52C578" box="[1386,1477,1781,1796]" gridcol="5" gridrow="28" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02076EF90AFAE0C578" box="[1386,1399,1781,1796]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.1699
</td>
</tr>
<tr id="351834939855D4FE028CF8F3FA52C567" box="[136,1477,1804,1819]" gridrow="29" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF8F3FE30C567" box="[136,423,1804,1819]" gridcol="0" gridrow="29" pageId="3" pageNumber="67">ζ- Carotene desaturase</th>
<td id="76C95DEF9855D4FE003EF8F3FDF4C567" box="[570,611,1804,1819]" gridcol="1" gridrow="29" pageId="3" pageNumber="67">663</td>
<td id="76C95DEF9855D4FE00F2F8F3FC88C567" box="[758,799,1804,1819]" gridcol="2" gridrow="29" pageId="3" pageNumber="67">799</td>
<td id="76C95DEF9855D4FE01B5F8F3FC7FC567" box="[945,1000,1804,1819]" gridcol="3" gridrow="29" pageId="3" pageNumber="67">907</td>
<td id="76C95DEF9855D4FE067FF8F3FB40C567" box="[1147,1239,1804,1819]" gridcol="4" gridrow="29" pageId="3" pageNumber="67">0.2692</td>
<td id="76C95DEF9855D4FE076EF8F3FA52C567" box="[1386,1477,1804,1819]" gridcol="5" gridrow="29" pageId="3" pageNumber="67">0.4521</td>
</tr>
<tr id="351834939855D4FE028CF8DCFA52C54E" box="[136,1477,1827,1842]" gridrow="30" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF8DCFE30C54E" box="[136,423,1827,1842]" gridcol="0" gridrow="30" pageId="3" pageNumber="67">Zeaxanthin epoxidase</th>
<td id="76C95DEF9855D4FE003EF8DCFDF4C54E" box="[570,611,1827,1842]" gridcol="1" gridrow="30" pageId="3" pageNumber="67">716</td>
<td id="76C95DEF9855D4FE00F2F8DCFC88C54E" box="[758,799,1827,1842]" gridcol="2" gridrow="30" pageId="3" pageNumber="67">570</td>
<td id="76C95DEF9855D4FE01B5F8DCFC7FC54E" box="[945,1000,1827,1842]" gridcol="3" gridrow="30" pageId="3" pageNumber="67">1312</td>
<td id="76C95DEF9855D4FE067FF8DCFB40C54E" box="[1147,1239,1827,1842]" gridcol="4" gridrow="30" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FF8DCFB1FC54E" box="[1147,1160,1827,1842]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.3290
</td>
<td id="76C95DEF9855D4FE076EF8DCFA52C54E" box="[1386,1477,1827,1842]" gridcol="5" gridrow="30" pageId="3" pageNumber="67">0.8741</td>
</tr>
<tr id="351834939855D4FE028CF8C5FA52C535" box="[136,1477,1850,1865]" gridrow="31" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF8C5FE30C535" box="[136,423,1850,1865]" gridcol="0" gridrow="31" pageId="3" pageNumber="67">Violaxanthin de-epoxidase</th>
<td id="76C95DEF9855D4FE003EF8C5FDF4C535" box="[570,611,1850,1865]" gridcol="1" gridrow="31" pageId="3" pageNumber="67">265</td>
<td id="76C95DEF9855D4FE00F2F8C5FC88C535" box="[758,799,1850,1865]" gridcol="2" gridrow="31" pageId="3" pageNumber="67">262</td>
<td id="76C95DEF9855D4FE01B5F8C5FC7FC535" box="[945,1000,1850,1865]" gridcol="3" gridrow="31" pageId="3" pageNumber="67">455</td>
<td id="76C95DEF9855D4FE067FF8C5FB40C535" box="[1147,1239,1850,1865]" gridcol="4" gridrow="31" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FF8C5FB1FC535" box="[1147,1160,1850,1865]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.0164
</td>
<td id="76C95DEF9855D4FE076EF8C5FA52C535" box="[1386,1477,1850,1865]" gridcol="5" gridrow="31" pageId="3" pageNumber="67">0.7801</td>
</tr>
<tr id="351834939855D4FE028CF8ADFA52C51C" box="[136,1477,1874,1888]" gridrow="32" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF8ADFE30C51C" box="[136,423,1874,1888]" gridcol="0" gridrow="32" pageId="3" pageNumber="67">Lycopene β- cyclase</th>
<td id="76C95DEF9855D4FE003EF8ADFDF4C51C" box="[570,611,1874,1888]" gridcol="1" gridrow="32" pageId="3" pageNumber="67">254</td>
<td id="76C95DEF9855D4FE00F2F8ADFC88C51C" box="[758,799,1874,1888]" gridcol="2" gridrow="32" pageId="3" pageNumber="67">332</td>
<td id="76C95DEF9855D4FE01B5F8ADFC7FC51C" box="[945,1000,1874,1888]" gridcol="3" gridrow="32" pageId="3" pageNumber="67">418</td>
<td id="76C95DEF9855D4FE067FF8ADFB40C51C" box="[1147,1239,1874,1888]" gridcol="4" gridrow="32" pageId="3" pageNumber="67">0.3864</td>
<td id="76C95DEF9855D4FE076EF8ADFA52C51C" box="[1386,1477,1874,1888]" gridcol="5" gridrow="32" pageId="3" pageNumber="67">0.7187</td>
</tr>
<tr id="351834939855D4FE028CF897FA52C50B" box="[136,1477,1896,1911]" gridrow="33" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF897FE30C50B" box="[136,423,1896,1911]" gridcol="0" gridrow="33" pageId="3" pageNumber="67">15-cis-Phytoene desaturase</th>
<td id="76C95DEF9855D4FE003EF897FDF4C50B" box="[570,611,1896,1911]" gridcol="1" gridrow="33" pageId="3" pageNumber="67">813</td>
<td id="76C95DEF9855D4FE00F2F897FC88C50B" box="[758,799,1896,1911]" gridcol="2" gridrow="33" pageId="3" pageNumber="67">950</td>
<td id="76C95DEF9855D4FE01B5F897FC7FC50B" box="[945,1000,1896,1911]" gridcol="3" gridrow="33" pageId="3" pageNumber="67">1035</td>
<td id="76C95DEF9855D4FE067FF897FB40C50B" box="[1147,1239,1896,1911]" gridcol="4" gridrow="33" pageId="3" pageNumber="67">0.2249</td>
<td id="76C95DEF9855D4FE076EF897FA52C50B" box="[1386,1477,1896,1911]" gridcol="5" gridrow="33" pageId="3" pageNumber="67">0.3483</td>
</tr>
<tr id="351834939855D4FE028CF880FA52C5F2" box="[136,1477,1919,1934]" gridrow="34" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF880FE30C5F2" box="[136,423,1919,1934]" gridcol="0" gridrow="34" pageId="3" pageNumber="67">Abscisic-aldehyde oxidase</th>
<td id="76C95DEF9855D4FE003EF880FDF4C5F2" box="[570,611,1919,1934]" gridcol="1" gridrow="34" pageId="3" pageNumber="67">342</td>
<td id="76C95DEF9855D4FE00F2F880FC88C5F2" box="[758,799,1919,1934]" gridcol="2" gridrow="34" pageId="3" pageNumber="67">275</td>
<td id="76C95DEF9855D4FE01B5F880FC7FC5F2" box="[945,1000,1919,1934]" gridcol="3" gridrow="34" pageId="3" pageNumber="67">411</td>
<td id="76C95DEF9855D4FE067FF880FB40C5F2" box="[1147,1239,1919,1934]" gridcol="4" gridrow="34" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FF880FB1FC5F2" box="[1147,1160,1919,1934]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.3128
</td>
<td id="76C95DEF9855D4FE076EF880FA52C5F2" box="[1386,1477,1919,1934]" gridcol="5" gridrow="34" pageId="3" pageNumber="67">0.2663</td>
</tr>
<tr id="351834939855D4FE028CF86AFA52C5D9" box="[136,1477,1941,1957]" gridrow="35" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF86AFE30C5D9" box="[136,423,1941,1957]" gridcol="0" gridrow="35" pageId="3" pageNumber="67">β- carotene 3-hydroxylase</th>
<td id="76C95DEF9855D4FE003EF86AFDF4C5D9" box="[570,611,1941,1957]" gridcol="1" gridrow="35" pageId="3" pageNumber="67">202</td>
<td id="76C95DEF9855D4FE00F2F86AFC88C5D9" box="[758,799,1941,1957]" gridcol="2" gridrow="35" pageId="3" pageNumber="67">109</td>
<td id="76C95DEF9855D4FE01B5F86AFC7FC5D9" box="[945,1000,1941,1957]" gridcol="3" gridrow="35" pageId="3" pageNumber="67">280</td>
<td id="76C95DEF9855D4FE067FF86AFB40C5D9" box="[1147,1239,1941,1957]" gridcol="4" gridrow="35" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FF86AFB1FC5D8" box="[1147,1160,1941,1956]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.8953
</td>
<td id="76C95DEF9855D4FE076EF86AFA52C5D9" box="[1386,1477,1941,1957]" gridcol="5" gridrow="35" pageId="3" pageNumber="67">0.4702</td>
</tr>
<tr id="351834939855D4FE028CF853FA52C5C7" box="[136,1477,1964,1979]" gridrow="36" pageId="3" pageNumber="67">
<th id="76C95DEF9855D4FE028CF853FE30C5C7" box="[136,423,1964,1979]" gridcol="0" gridrow="36" pageId="3" pageNumber="67">Phytoene synthase</th>
<td id="76C95DEF9855D4FE003EF853FDF4C5C7" box="[570,611,1964,1979]" gridcol="1" gridrow="36" pageId="3" pageNumber="67">422</td>
<td id="76C95DEF9855D4FE00F2F853FC88C5C7" box="[758,799,1964,1979]" gridcol="2" gridrow="36" pageId="3" pageNumber="67">270</td>
<td id="76C95DEF9855D4FE01B5F853FC7FC5C7" box="[945,1000,1964,1979]" gridcol="3" gridrow="36" pageId="3" pageNumber="67">499</td>
<td id="76C95DEF9855D4FE067FF853FB40C5C7" box="[1147,1239,1964,1979]" gridcol="4" gridrow="36" pageId="3" pageNumber="67">
<emphasis id="B95CEAC398552B02067FF853FB1FC5C7" box="[1147,1160,1964,1979]" italics="true" pageId="3" pageNumber="67"></emphasis>
0.6443
</td>
<td id="76C95DEF9855D4FE076EF853FA52C5C7" box="[1386,1477,1964,1979]" gridcol="5" gridrow="36" pageId="3" pageNumber="67">0.2418</td>
</tr>
</table>
</paragraph>
<paragraph id="8B9736D198522B050272FED9FE2DC0F4" blockId="4.[87,758,182,1178]" pageId="4" pageNumber="68">
Upon analyzing the transcript abundance of terpene synthase genes (
<tableCitation id="C6AA036A98522B0502A5FEBDFF7AC329" box="[161,237,322,341]" captionStart="Table 2" captionStartId="3.[114,158,1030,1044]" captionTargetPageId="3" captionText="Table 2 Transcript abundance for putative genes involved in coriander isoprenoid biosynthesisacross three stages of mericarp development (S1, S2, S3)." pageId="4" pageNumber="68">Table 2</tableCitation>
), it was found that there were many tetraterpene biosynthetic genes actively expressed in the coriander mericarp, which correlated with the high expression of GGPPS. The majority of these genes (57%) exhibited peak expression at
<collectionCode id="ED39AE1498522B05004DFE69FDC0C3D5" box="[585,599,406,425]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
3. The two most abundantly expressed tetraterpene genes, 15-cis-phytoene desaturase and zeaxanthin epoxidase are involved in β- carotene and abscisic acid biosynthesis, respectively. Genes involved with diterpene production had substantially lower transcript abundance than tetraterpene biosynthetic genes. The two diterpene biosynthetic genes with greatest expression are directly involved in gibberellin biosynthesis, diterpene-derived plant hormones which play roles in fruit/seed senescence.
</paragraph>
<paragraph id="8B9736D198522B050272FD6EFE61C1FF" blockId="4.[87,758,182,1178]" pageId="4" pageNumber="68">Two putative sesquiterpene synthase genes (sTPS1 and sTPS2) were identified that, according to GO annotations, encoded for enzymes responsible for the production of β- caryophyllene, Oi- humulene, and germacrene D. Both genes were KEGG annotated as part of the β- caryophyllene and Oi- humulene biosynthetic pathways. Given that coriander EO contains all three sesquiterpenes, it is likely that one or both of those genes predominantly converts FPP to more than one of those three sesquiterpenes; more work is required to conclusively establish this.</paragraph>
<paragraph id="8B9736D198522B050272FC74FB36C30D" blockId="4.[87,758,182,1178]" lastBlockId="4.[805,1475,182,508]" pageId="4" pageNumber="68">
Transcript levels for the (
<collectionCode id="ED39AE1498522B050381FC74FE06C1E2" box="[389,401,907,926]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
)-linalool synthase gene were the most abundant of the four mTPS candidates, and peaked at
<collectionCode id="ED39AE1498522B0500D9FC57FD7EC1C7" box="[733,745,936,955]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
2 (2-fold upregulation from
<collectionCode id="ED39AE1498522B05035AFC3CFEFAC1AA" box="[350,365,963,982]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
1 to
<collectionCode id="ED39AE1498522B050391FC3CFE36C1AA" box="[405,417,963,982]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
2 and 5-fold downregulation from
<collectionCode id="ED39AE1498522B050253FC20FFF4C18E" box="[87,99,991,1010]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
2 to
<collectionCode id="ED39AE1498522B050296FC20FF08C18E" box="[146,159,991,1010]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
3).In addition to the high levels of the (
<collectionCode id="ED39AE1498522B050028FC20FDAFC18E" box="[556,568,991,1010]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
)-linalool synthase transcript in coriander, another likely reason for the large amount of linalool (
<emphasis id="B95CEAC398522B0502CBFBE8FF4BC656" bold="true" box="[207,220,1047,1066]" pageId="4" pageNumber="68">1</emphasis>
) content in coriander EO by late maturity is due to accumulation of the monoterpene over time, rather than increased (
<collectionCode id="ED39AE1498522B05025AFBB0FFFDC61E" box="[94,106,1103,1122]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
)-linalool synthase expression at
<collectionCode id="ED39AE1498522B0503C2FBB0FE44C61E" box="[454,467,1103,1122]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
3.In the case of Ƴ- terpinene synthase, transcript abundace also peaked at
<collectionCode id="ED39AE1498522B050019FB94FDBEC602" box="[541,553,1131,1150]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
2 but did not parrallel Ƴ- terpinene oil content, which dips lowest at middevelopment. This may be due to the various factors involved with post-transcriptional and post-translational regulation of EO biosynthetic genes. It is known that transcriptome sequencing data only suggest changes in the transcript abundance, and does not necessarily represent protein levels since translation to active protein may be post-transcriptionally and post-translationally regulated (
<bibRefCitation id="EFB94B2098522B050778FEBDFC0FC30D" author="Barrett, T. &amp; Suzek, T. O. &amp; Troup, D. B. &amp; Wilhite, S. E. &amp; Ngau, W. C. &amp; Ledoux, P. &amp; Rudenv, D. &amp; Lash, A. E. &amp; Fugibuchi, W. &amp; Edgar, R." pageId="4" pageNumber="68" pagination="566" refId="ref9141" refString="Barrett, T., Suzek, T. O., Troup, D. B., Wilhite, S. E., Ngau, W. C., Ledoux, P., Rudenv, D., Lash, A. E., Fugibuchi, W., Edgar, R., 2005. NCBI GEO: Mining millions of expression profiles - database and tools. Nucleic Acids Res. 33, D 562 - D 566." type="journal article" year="2005">Barrett et al., 2005</bibRefCitation>
;
<bibRefCitation id="EFB94B2098522B0501A7FEA1FB04C30D" author="Valasek, M. &amp; Repa, J." box="[931,1171,350,369]" pageId="4" pageNumber="68" pagination="151 - 159" refId="ref11331" refString="Valasek, M., Repa, J., 2005. The power of real-time PCR. Adv. Physiol. Educ. 29, 151 - 159." type="journal article" year="2005">Valasek and Repa, 2005</bibRefCitation>
).
</paragraph>
<paragraph id="8B9736D198522B050140FE86FAA6C380" blockId="4.[805,1475,182,508]" pageId="4" pageNumber="68">
Given that 17 monoterpenes were identified in
<taxonomicName id="4C284D5298522B050721FE87FA1DC3F0" box="[1317,1418,376,396]" class="Magnoliopsida" family="Apiaceae" genus="Coriandrum" kingdom="Plantae" order="Apiales" pageId="4" pageNumber="68" phylum="Tracheophyta" rank="species" species="sativum">
<emphasis id="B95CEAC398522B050721FE87FA1DC3F0" box="[1317,1418,376,396]" italics="true" pageId="4" pageNumber="68">C. sativum</emphasis>
</taxonomicName>
mericarp EO, and only 4mTPS candidate genes were identified in this study, it is likely that as with many plant TPSs, coriander terpene synthases are multiproduct enzymes that can produce several monoterpene products from a single GPP substrate.
</paragraph>
<paragraph id="8B9736D198522B050121FDDFFA95C048" blockId="4.[805,1282,543,564]" box="[805,1282,543,564]" pageId="4" pageNumber="68">
<heading id="D0DF81BD98522B050121FDDFFA95C048" box="[805,1282,543,564]" fontSize="36" level="2" pageId="4" pageNumber="68" reason="3">
<emphasis id="B95CEAC398522B050121FDDFFCF4C048" box="[805,867,544,564]" italics="true" pageId="4" pageNumber="68">2.5. Cs</emphasis>
<emphasis id="B95CEAC398522B050167FDE0FCF9C048" bold="true" box="[867,878,543,564]" italics="true" pageId="4" pageNumber="68">γ</emphasis>
<emphasis id="B95CEAC398522B05016BFDDFFA95C048" box="[879,1282,544,564]" italics="true" pageId="4" pageNumber="68">TRPS and CsLINS candidate gene selection</emphasis>
</heading>
</paragraph>
<paragraph id="8B9736D198522B040140FDA6FD38C600" blockId="4.[805,1476,601,1178]" lastBlockId="5.[113,783,1017,1148]" lastPageId="5" lastPageNumber="69" pageId="4" pageNumber="68">
Transcripts with the GO annotation monoterpene biosynthetic process, as well as transcripts with BLASTx hits to known monoTPS genes having a cutoff e-value of &lt;10
<superScript id="7C5D9B9998522B0506BFFD73FB4EC0E4" attach="left" box="[1211,1241,652,665]" fontSize="5" pageId="4" pageNumber="68">
<emphasis id="B95CEAC398522B0506BFFD73FB50C0E5" box="[1211,1223,652,665]" italics="true" pageId="4" pageNumber="68"></emphasis>
60
</superScript>
were selected as putative coriander mTPS gene candidates. Two of these candidates,
<emphasis id="B95CEAC398522B050121FD38FCADC0A7" box="[805,826,711,731]" italics="true" pageId="4" pageNumber="68">Cs</emphasis>
<emphasis id="B95CEAC398522B05013EFD38FCD2C0A0" bold="true" box="[826,837,711,732]" italics="true" pageId="4" pageNumber="68">γ</emphasis>
<emphasis id="B95CEAC398522B050141FD38FCE3C0A7" box="[837,884,711,731]" italics="true" pageId="4" pageNumber="68">TRPS</emphasis>
and
<emphasis id="B95CEAC398522B0501ACFD38FC7FC0A7" box="[936,1000,711,731]" italics="true" pageId="4" pageNumber="68">CsLINS</emphasis>
, were chosen based on sequence homology to known mTPS genes, especially the presence of conserved motifs shared by all known TPS genes, DDXXD, (N,D)D(L,I,V)X(
<collectionCode id="ED39AE1498522B05075BFCFFFAFDC16F" box="[1375,1386,768,787]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
,T)XXXE and RRX
<subScript id="17AC349498522B05017EFCDAFC14C14D" attach="both" box="[890,899,805,817]" fontSize="5" pageId="4" pageNumber="68">8</subScript>
W, as well as one partially conserved motif, LQLYEASFLL. Protein sequence alignments between
<emphasis id="B95CEAC398522B0506B1FCC8FB5DC137" box="[1205,1226,823,843]" italics="true" pageId="4" pageNumber="68">Cs</emphasis>
<emphasis id="B95CEAC398522B0506CEFCC9FB42C137" bold="true" box="[1226,1237,822,843]" italics="true" pageId="4" pageNumber="68">γ</emphasis>
<emphasis id="B95CEAC398522B0506D2FCC8FA93C137" box="[1238,1284,823,843]" italics="true" pageId="4" pageNumber="68">TRPS</emphasis>
,
<emphasis id="B95CEAC398522B050716FCC8FAC5C137" box="[1298,1362,823,843]" italics="true" pageId="4" pageNumber="68">CsLINS</emphasis>
and
<taxonomicName id="4C284D5298522B05078EFCC8FCCBC11B" class="Magnoliopsida" family="Rutaceae" genus="Citrus" kingdom="Plantae" order="Sapindales" pageId="4" pageNumber="68" phylum="Tracheophyta" rank="species" species="limon">
<emphasis id="B95CEAC398522B05078EFCC8FCCBC11B" italics="true" pageId="4" pageNumber="68">Citrus limon</emphasis>
</taxonomicName>
Ƴ- terpinene synthase (E2E2P0.1),
<taxonomicName id="4C284D5298522B0506DAFCACFA55C11B" box="[1246,1474,851,871]" class="Magnoliopsida" family="Lamiaceae" genus="Lavandula" kingdom="Plantae" order="Lamiales" pageId="4" pageNumber="68" phylum="Tracheophyta" rank="species" species="angustifolia">
<emphasis id="B95CEAC398522B0506DAFCACFA55C11B" box="[1246,1474,851,871]" italics="true" pageId="4" pageNumber="68">Lavandula angustifolia</emphasis>
</taxonomicName>
linalool synthase (ABB73045.1),
<taxonomicName id="4C284D5298522B05069EFC90FAAAC1FF" box="[1178,1341,879,899]" class="Magnoliopsida" family="Lamiaceae" genus="Salvia" kingdom="Plantae" order="Lamiales" pageId="4" pageNumber="68" phylum="Tracheophyta" rank="species" species="fruticosa">
<emphasis id="B95CEAC398522B05069EFC90FAAAC1FF" box="[1178,1341,879,899]" italics="true" pageId="4" pageNumber="68">Salvia fruticosa</emphasis>
</taxonomicName>
1,8-cineole synthase(ABH07677.1),
<taxonomicName id="4C284D5298522B05062EFC75FB42C1E2" box="[1066,1237,906,926]" class="Magnoliopsida" family="Cannabaceae" genus="Cannabis" kingdom="Plantae" order="Rosales" pageId="4" pageNumber="68" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B95CEAC398522B05062EFC75FB42C1E2" box="[1066,1237,906,926]" italics="true" pageId="4" pageNumber="68">Cannabis sativa</emphasis>
</taxonomicName>
limonene synthase (ABI21837.1),
<taxonomicName id="4C284D5298522B0501D2FC59FBE9C1C6" box="[982,1150,934,954]" class="Magnoliopsida" family="Lamiaceae" genus="Lavandula" kingdom="Plantae" order="Lamiales" pageId="4" pageNumber="68" phylum="Tracheophyta" rank="species" species="angustifolia">
<emphasis id="B95CEAC398522B0501D2FC59FBE9C1C6" box="[982,1150,934,954]" italics="true" pageId="4" pageNumber="68">L. angustifolia</emphasis>
</taxonomicName>
β- phellandrene synthase (ADQ73631.1) and
<taxonomicName id="4C284D5298522B05061EFC3DFB47C1AA" box="[1050,1232,962,982]" class="Magnoliopsida" family="Lamiaceae" genus="Salvia" kingdom="Plantae" order="Lamiales" pageId="4" pageNumber="68" phylum="Tracheophyta" rank="species" species="officinalis">
<emphasis id="B95CEAC398522B05061EFC3DFB47C1AA" box="[1050,1232,962,982]" italics="true" pageId="4" pageNumber="68">Salvia officinalis</emphasis>
</taxonomicName>
sabinene synthase (AAC26018.1) were performed with ClustalW2 (Supplementary
<figureCitation id="13132A5498522B050121FC04FC12C672" box="[805,901,1019,1038]" captionStart="Fig" captionStartId="5.[113,139,906,920]" captionTargetBox="[252,648,181,874]" captionTargetId="figure-678@5.[347,629,183,816]" captionTargetPageId="5" captionText="Fig. 4. Gas chromatogram using chiral column to separate (S)-linalool (1) and (R)-linalool (20). (A) (S/R)-Linalool stereoisomer blend standard (peak 1 is (R)- and peak 2 is (S)-linalool, (B) (S)-linalool standard and (C) CsLINS with geranyl diphosphate assay product." figureDoi="http://doi.org/10.5281/zenodo.10490042" httpUri="https://zenodo.org/record/10490042/files/figure.png" pageId="4" pageNumber="68">Figure S4</figureCitation>
). This analysis indicated that
<emphasis id="B95CEAC398522B0506C7FC05FB4FC672" box="[1219,1240,1018,1038]" italics="true" pageId="4" pageNumber="68">Cs</emphasis>
<emphasis id="B95CEAC398522B0506DDFC05FB73C673" bold="true" box="[1241,1252,1018,1039]" italics="true" pageId="4" pageNumber="68">γ</emphasis>
<emphasis id="B95CEAC398522B0506E0FC05FA84C672" box="[1252,1299,1018,1038]" italics="true" pageId="4" pageNumber="68">TRPS</emphasis>
and
<emphasis id="B95CEAC398522B05074FFC05FA1CC672" box="[1355,1419,1018,1038]" italics="true" pageId="4" pageNumber="68">CsLINS</emphasis>
contained all highly conserved motifs found in monoterpene synthases including the RRx8W motif involved in cyclization of the GPP substrate, the DDxxD and (N,D)D(L,I,V)x(
<collectionCode id="ED39AE1498522B0506A1FBB0FB27C61E" box="[1189,1200,1103,1122]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="4" pageNumber="68" type="Herbarium">S</collectionCode>
,T)xxxE motifs involved in divalent metal ion coordination, and the LQLYEASFLL motif involved in substrate binding (Supplementary
<figureCitation id="13132A5498522B0506EBFB78FAD9C6E6" box="[1263,1358,1159,1178]" captionStart="Fig" captionStartId="5.[113,139,906,920]" captionTargetBox="[252,648,181,874]" captionTargetId="figure-678@5.[347,629,183,816]" captionTargetPageId="5" captionText="Fig. 4. Gas chromatogram using chiral column to separate (S)-linalool (1) and (R)-linalool (20). (A) (S/R)-Linalool stereoisomer blend standard (peak 1 is (R)- and peak 2 is (S)-linalool, (B) (S)-linalool standard and (C) CsLINS with geranyl diphosphate assay product." figureDoi="http://doi.org/10.5281/zenodo.10490042" httpUri="https://zenodo.org/record/10490042/files/figure.png" pageId="4" pageNumber="68">Figure S4</figureCitation>
). Sequence alignment via the BLASTx algorithm against NCBI non-redundant protein sequences demonstrated
<emphasis id="B95CEAC398532B0403C3FBEBFE4BC654" box="[455,476,1044,1064]" italics="true" pageId="5" pageNumber="69">Cs</emphasis>
<emphasis id="B95CEAC398532B0403D8FBEBFE70C655" bold="true" box="[476,487,1044,1065]" italics="true" pageId="5" pageNumber="69">γ</emphasis>
<emphasis id="B95CEAC398532B0403ECFBEBFD80C654" box="[488,535,1044,1064]" italics="true" pageId="5" pageNumber="69">TRPS</emphasis>
to share 49% conserved identity with Ƴ- terpinene synthase from
<taxonomicName id="4C284D5298532B04007EFBCFFC98C638" box="[634,783,1072,1092]" class="Magnoliopsida" family="Rutaceae" genus="Citrus" kingdom="Plantae" order="Sapindales" pageId="5" pageNumber="69" phylum="Tracheophyta" rank="species" species="unshiu">
<emphasis id="B95CEAC398532B04007EFBCFFC98C638" box="[634,783,1072,1092]" italics="true" pageId="5" pageNumber="69">Citrus unshiu</emphasis>
</taxonomicName>
(BAD27259.1), and CsLINS to share 51% conserved identity with (d)-limonene synthase from
<taxonomicName id="4C284D5298532B040390FB97FD82C600" box="[404,533,1128,1148]" class="Magnoliopsida" family="Rutaceae" genus="Citrus" kingdom="Plantae" order="Sapindales" pageId="5" pageNumber="69" phylum="Tracheophyta" rank="species" species="unshiu">
<emphasis id="B95CEAC398532B040390FB97FD82C600" box="[404,533,1128,1148]" italics="true" pageId="5" pageNumber="69">Citrus unshiu</emphasis>
</taxonomicName>
(BAD27257.1).
</paragraph>
<caption id="DF57665998522B050336F838FB7EC5AA" ID-DOI="http://doi.org/10.5281/zenodo.10490040" ID-Zenodo-Dep="10490040" box="[306,1257,1989,2007]" httpUri="https://zenodo.org/record/10490040/files/figure.png" pageId="4" pageNumber="68" startId="4.[306,332,1991,2005]" targetBox="[361,1193,1231,1961]" targetPageId="4" targetType="figure">
<paragraph id="8B9736D198522B050336F838FB7EC5AA" blockId="4.[306,1257,1989,2007]" box="[306,1257,1989,2007]" pageId="4" pageNumber="68">
<emphasis id="B95CEAC398522B050336F838FEF3C5A9" bold="true" box="[306,356,1991,2005]" pageId="4" pageNumber="68">Fig. 3.</emphasis>
Conversion of geranyl diphosphate to (
<smallCapsWord id="8D71A00D98522B0500ADF838FD24C5A9" baselines="2001" box="[681,691,1991,2005]" lowerCaseFontSize="6" mainFontSize="8" normCase="lower" normString="s" pageId="4" pageNumber="68">S</smallCapsWord>
)-linalool by CsLINS, and to other monoterpene products by
<smallCapsWord id="8D71A00D98522B05069AF837FB72C5AA" baselines="2002,2002" box="[1182,1253,1989,2007]" lowerCaseFontSize="6" mainFontSize="8" normCase="title" normString="Ytrps" pageId="4" pageNumber="68">CsƳTRPS</smallCapsWord>
.
</paragraph>
</caption>
<caption id="DF57665998532B040275FC75FEC6C1A1" ID-DOI="http://doi.org/10.5281/zenodo.10490042" ID-Zenodo-Dep="10490042" httpUri="https://zenodo.org/record/10490042/files/figure.png" pageId="5" pageNumber="69" startId="5.[113,139,906,920]" targetBox="[252,648,181,874]" targetPageId="5" targetType="figure">
<paragraph id="8B9736D198532B040275FC75FEC6C1A1" blockId="5.[113,783,906,990]" pageId="5" pageNumber="69">
<emphasis id="B95CEAC398532B040275FC75FF30C1E5" bold="true" box="[113,167,906,921]" pageId="5" pageNumber="69">Fig. 4.</emphasis>
Gas chromatogram using chiral column to separate (S)-linalool (
<emphasis id="B95CEAC398532B0400D3FC74FD76C1E5" bold="true" box="[727,737,907,921]" pageId="5" pageNumber="69">1</emphasis>
) and (R)-linalool (
<emphasis id="B95CEAC398532B0402DCFC5EFF7BC1D3" bold="true" box="[216,236,929,943]" pageId="5" pageNumber="69">20</emphasis>
). (A) (S/R)-Linalool stereoisomer blend standard (peak 1 is (R)- and peak 2 is (S)-linalool, (B) (S)-linalool standard and (C) CsLINS with geranyl diphosphate assay product.
</paragraph>
</caption>
<paragraph id="8B9736D198532B040276FB5BFC97C6C4" blockId="5.[113,768,1188,1236]" box="[114,768,1188,1209]" pageId="5" pageNumber="69">
<emphasis id="B95CEAC398532B040276FB5BFD52C6C4" box="[114,709,1188,1208]" italics="true" pageId="5" pageNumber="69">2.6. Bacterial expression and functional characterization of Cs</emphasis>
<emphasis id="B95CEAC398532B0400C1FB5BFD47C6C5" bold="true" box="[709,720,1188,1209]" italics="true" pageId="5" pageNumber="69">γ</emphasis>
<emphasis id="B95CEAC398532B0400D5FB5BFC97C6C4" box="[721,768,1188,1208]" italics="true" pageId="5" pageNumber="69">TRPS</emphasis>
</paragraph>
<paragraph id="8B9736D198532B040275FB3FFF4BC6A8" blockId="5.[113,768,1188,1236]" box="[113,220,1216,1236]" pageId="5" pageNumber="69">
<heading id="D0DF81BD98532B040275FB3FFF4BC6A8" box="[113,220,1216,1236]" fontSize="8" level="3" pageId="5" pageNumber="69" reason="8">
<emphasis id="B95CEAC398532B040275FB3FFF4BC6A8" box="[113,220,1216,1236]" italics="true" pageId="5" pageNumber="69">and CsLINS</emphasis>
</heading>
</paragraph>
<paragraph id="8B9736D198532B040295FB06FBFAC1E3" blockId="5.[113,783,1273,1432]" lastBlockId="5.[831,1501,181,1429]" pageId="5" pageNumber="69">
The N-terminal signal peptide of TPSs, which is necessary for the pseudo-mature TPS to be transported to the plastid, where it becomes fully mature mono-TPS, has been found to render TPSs expressed in bacteria insoluble, thus inactive. Therefore, the signal peptides are generally eliminated from mono-TPS gene sequences during cloning work (
<bibRefCitation id="EFB94B2098532B04034AFA7BFDBDC7E4" author="Vonheijne, G. &amp; Steppuhn, J. &amp; Herrmann, R." box="[334,554,1412,1432]" pageId="5" pageNumber="69" pagination="535 - 545" refId="ref11361" refString="Vonheijne, G., Steppuhn, J., Herrmann, R., 1989. Domain-structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180, 535 - 545." type="journal article" year="1989">Vonheijne et al., 1989</bibRefCitation>
). The complete ORF of
<emphasis id="B95CEAC398532B04013BFF4AFCC3C2B5" box="[831,852,181,201]" italics="true" pageId="5" pageNumber="69">Cs</emphasis>
<emphasis id="B95CEAC398532B040150FF4AFCC8C2B6" bold="true" box="[852,863,181,202]" italics="true" pageId="5" pageNumber="69">γ</emphasis>
<emphasis id="B95CEAC398532B04015BFF4AFC19C2B5" box="[863,910,181,201]" italics="true" pageId="5" pageNumber="69">TRPS</emphasis>
and CsLINS were 1833 bp and 1773 bp, of which 186 bp and 114 bp corresponding to the putative signal peptides, were removed to improve protein solubility during expression. The truncated genes tagged with eight C-terminal histidine residues encoded a 558 and 562 amino acid proteins for CsƳTRPS and CsLINS, respectively, with predicted masses of 65.16and 65.91 kDa. The ORFsof
<emphasis id="B95CEAC398532B04062BFEA2FBE9C30D" box="[1071,1150,349,369]" italics="true" pageId="5" pageNumber="69">CsyTRPS</emphasis>
and
<emphasis id="B95CEAC398532B0406B2FEA2FB61C30D" box="[1206,1270,349,369]" italics="true" pageId="5" pageNumber="69">CsLINS</emphasis>
, excluding the transit peptides, were expressed in bacterial cells and the recombinant proteins purified and assayed for activity with GPP. Incubation of the bacterially produced CsƳTRPS with GPP (
<emphasis id="B95CEAC398532B040703FE4EFAB7C3B8" bold="true" box="[1287,1312,433,452]" pageId="5" pageNumber="69">18</emphasis>
) yielded Ƴ- terpinene (
<emphasis id="B95CEAC398532B040175FE32FCE9C39C" bold="true" box="[881,894,461,480]" pageId="5" pageNumber="69">5</emphasis>
) as major product (91.1%) in addition to a number of minor products, including sabinene (
<emphasis id="B95CEAC398532B040690FE16FB3AC380" bold="true" box="[1172,1197,489,508]" pageId="5" pageNumber="69">10</emphasis>
) (6.97%), Oi- terpinene (
<emphasis id="B95CEAC398532B0407BFFE16FA43C380" bold="true" box="[1467,1492,489,508]" pageId="5" pageNumber="69">19</emphasis>
) (1.18%), terpinene-4-ol (
<emphasis id="B95CEAC398532B04064BFDFAFBFFC064" bold="true" box="[1103,1128,517,536]" pageId="5" pageNumber="69">12</emphasis>
) (0.533%), and Oi- terpineol (
<emphasis id="B95CEAC398532B0407BFFDFAFA43C064" bold="true" box="[1467,1492,517,536]" pageId="5" pageNumber="69">14</emphasis>
) (0.246%) (
<figureCitation id="13132A5498532B0401A6FDDEFC40C048" box="[930,983,545,564]" captionStart="Fig" captionStartId="4.[306,332,1991,2005]" captionTargetBox="[361,1193,1231,1961]" captionTargetId="figure-654@4.[359,1194,1230,1962]" captionTargetPageId="4" captionText="Fig. 3. Conversion of geranyl diphosphate to (S)-linalool by CsLINS, and to other monoterpene products by CsƳTRPS." figureDoi="http://doi.org/10.5281/zenodo.10490040" httpUri="https://zenodo.org/record/10490040/files/figure.png" pageId="5" pageNumber="69">Fig. 3</figureCitation>
and Supplementary
<figureCitation id="13132A5498532B0406A1FDDEFA96C048" box="[1189,1281,545,564]" captionStart="Fig" captionStartId="5.[113,139,1953,1967]" captionTargetBox="[197,1407,1444,1919]" captionTargetId="graphics-770@5.[267,789,1494,1862]" captionTargetPageId="5" captionText="Fig. 5. Kinetics data for CsƳTRPS (A) and CsLINS (B) with GPP substrate. Each enzymatic assay consisted of two biological and two technical replicates. CsƳTRPS and CsLINS proteins catalyzed the conversion of geranyl diphosphate to Ƴ-terpinene and (S)-linalool, respectively, with apparent Vmax and Km values of 2.24 ± 0.16 (CsƳTRPS) and 19.63 ± 1.05 (CsLINS) pkat/mg, and 66.25 ± 13 (CsƳTRPS) and 2.5 ± 0.6 (CsLINS) µM, respectively." figureDoi="http://doi.org/10.5281/zenodo.10490046" httpUri="https://zenodo.org/record/10490046/files/figure.png" pageId="5" pageNumber="69">Figure S5</figureCitation>
). Incubation of bacterially produced CsLINS with GPP (
<emphasis id="B95CEAC398532B040697FDC2FB3BC02C" bold="true" box="[1171,1196,573,592]" pageId="5" pageNumber="69">18</emphasis>
) yielded a single product, (
<collectionCode id="ED39AE1498532B0407C4FDC2FA59C02C" box="[1472,1486,573,592]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="5" pageNumber="69" type="Herbarium">S</collectionCode>
)- linalool (
<emphasis id="B95CEAC398532B040198FDA6FC3EC010" bold="true" box="[924,937,601,620]" pageId="5" pageNumber="69">1</emphasis>
) (
<figureCitation id="13132A5498532B0401C0FDA6FC69C010" box="[964,1022,601,620]" captionStart="Fig" captionStartId="4.[306,332,1991,2005]" captionTargetBox="[361,1193,1231,1961]" captionTargetId="figure-654@4.[359,1194,1230,1962]" captionTargetPageId="4" captionText="Fig. 3. Conversion of geranyl diphosphate to (S)-linalool by CsLINS, and to other monoterpene products by CsƳTRPS." figureDoi="http://doi.org/10.5281/zenodo.10490040" httpUri="https://zenodo.org/record/10490040/files/figure.png" pageId="5" pageNumber="69">Fig. 3</figureCitation>
). The stereoisomerism of (
<collectionCode id="ED39AE1498532B04071EFDA6FAB1C010" box="[1306,1318,601,620]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="5" pageNumber="69" type="Herbarium">S</collectionCode>
)-linalool (
<emphasis id="B95CEAC398532B040791FDA6FA35C010" bold="true" box="[1429,1442,601,620]" pageId="5" pageNumber="69">1</emphasis>
) was confirmed by gas chromatography using a chiral column (Agilent, Missisauga, ON, CAN) (
<figureCitation id="13132A5498532B040626FD6EFBC0C0D8" box="[1058,1111,657,676]" captionStart="Fig" captionStartId="5.[113,139,906,920]" captionTargetBox="[252,648,181,874]" captionTargetId="figure-678@5.[347,629,183,816]" captionTargetPageId="5" captionText="Fig. 4. Gas chromatogram using chiral column to separate (S)-linalool (1) and (R)-linalool (20). (A) (S/R)-Linalool stereoisomer blend standard (peak 1 is (R)- and peak 2 is (S)-linalool, (B) (S)-linalool standard and (C) CsLINS with geranyl diphosphate assay product." figureDoi="http://doi.org/10.5281/zenodo.10490042" httpUri="https://zenodo.org/record/10490042/files/figure.png" pageId="5" pageNumber="69">Fig. 4</figureCitation>
). In
<figureCitation id="13132A5498532B040686FD6EFB52C0D8" box="[1154,1221,656,676]" captionStart="Fig" captionStartId="5.[113,139,1953,1967]" captionTargetBox="[197,1407,1444,1919]" captionTargetId="graphics-770@5.[267,789,1494,1862]" captionTargetPageId="5" captionText="Fig. 5. Kinetics data for CsƳTRPS (A) and CsLINS (B) with GPP substrate. Each enzymatic assay consisted of two biological and two technical replicates. CsƳTRPS and CsLINS proteins catalyzed the conversion of geranyl diphosphate to Ƴ-terpinene and (S)-linalool, respectively, with apparent Vmax and Km values of 2.24 ± 0.16 (CsƳTRPS) and 19.63 ± 1.05 (CsLINS) pkat/mg, and 66.25 ± 13 (CsƳTRPS) and 2.5 ± 0.6 (CsLINS) µM, respectively." figureDoi="http://doi.org/10.5281/zenodo.10490046" httpUri="https://zenodo.org/record/10490046/files/figure.png" pageId="5" pageNumber="69">Fig. 5C</figureCitation>
, there is a slight (R)-linalool (20) peak in addition to the (
<collectionCode id="ED39AE1498532B04066CFD53FBE3C0C3" box="[1128,1140,684,703]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="5" pageNumber="69" type="Herbarium">S</collectionCode>
)-linalool (
<emphasis id="B95CEAC398532B0406E5FD53FB79C0C3" bold="true" box="[1249,1262,684,703]" pageId="5" pageNumber="69">1</emphasis>
) peak. This (R)-linalool (
<emphasis id="B95CEAC398532B040143FD37FCF7C0A7" bold="true" box="[839,864,712,731]" pageId="5" pageNumber="69">20</emphasis>
) presence is likely due to solvolysis of the GPP substrate, the stock of which was made up in water. Coriander EO contains only the (
<collectionCode id="ED39AE1498532B04016BFCFFFCEBC16F" box="[879,892,768,787]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="5" pageNumber="69" type="Herbarium">S</collectionCode>
) isomer of linalool (
<emphasis id="B95CEAC398532B040654FCFFFBCAC16F" bold="true" box="[1104,1117,768,787]" pageId="5" pageNumber="69">1</emphasis>
), as opposed to the lavender flowers previously studied by
<bibRefCitation id="EFB94B2098532B04062CFCE3FB42C153" author="Lane, A. &amp; Boecklemann, A. &amp; Woronuk, G. N. &amp; Sarker, L. S. &amp; Mahmoud, S. S." box="[1064,1237,796,815]" pageId="5" pageNumber="69" pagination="835 - 845" refId="ref9931" refString="Lane, A., Boecklemann, A., Woronuk, G. N., Sarker, L. S., Mahmoud, S. S., 2010. A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia. Planta 231 (4), 835 - 845." type="journal article" year="2010">Lane et al., 2010</bibRefCitation>
, which only produce the (R) isomer (20). In future, work could be done to investigate the structural reason behind the stereospecificity of these linalool synthases. Together CsƳTRPS and CsLINS describe the majority of corianders EO terpenoid content.
</paragraph>
<paragraph id="8B9736D198532B04015AFC58FA4BC7E9" blockId="5.[831,1501,181,1429]" pageId="5" pageNumber="69">
The linear kinetics ranged from 2.5 to 15 (CsƳTRPS) and 10 to 90 (CsLINS) min. The optimum pH for both CsƳTRPS and CsLINS ranged from 6.0 to 6.5, while the optimum temperature ranged from 30 to 35 °
<collectionCode id="ED39AE1498532B0401A3FC04FC23C672" box="[935,948,1019,1038]" country="Denmark" name="University of Copenhagen" pageId="5" pageNumber="69" type="Herbarium">C</collectionCode>
with a slight activity peak at 32 °
<collectionCode id="ED39AE1498532B040719FC04FABDC672" box="[1309,1322,1019,1038]" country="Denmark" name="University of Copenhagen" pageId="5" pageNumber="69" type="Herbarium">C</collectionCode>
(CsƳTRPS), 33 °
<collectionCode id="ED39AE1498532B0407CBFC04FA4BC672" box="[1487,1500,1019,1038]" country="Denmark" name="University of Copenhagen" pageId="5" pageNumber="69" type="Herbarium">C</collectionCode>
(CsLINS). The MichaelisMenten enzyme saturation curve was prepared for each enzyme using the hyperbolic enzyme analysis module in the SigmaPlot software (v.10.0) (Systat Software, Erkrath,
<collectingCountry id="F33F764198532B04013BFB94FC0AC602" box="[831,925,1131,1150]" name="Germany" pageId="5" pageNumber="69">Germany</collectingCountry>
) (
<figureCitation id="13132A5498532B0401B2FB94FBDFC602" box="[950,1096,1131,1150]" captionStart="Fig" captionStartId="5.[113,139,1953,1967]" captionTargetBox="[197,1407,1444,1919]" captionTargetId="graphics-770@5.[267,789,1494,1862]" captionTargetPageId="5" captionText="Fig. 5. Kinetics data for CsƳTRPS (A) and CsLINS (B) with GPP substrate. Each enzymatic assay consisted of two biological and two technical replicates. CsƳTRPS and CsLINS proteins catalyzed the conversion of geranyl diphosphate to Ƴ-terpinene and (S)-linalool, respectively, with apparent Vmax and Km values of 2.24 ± 0.16 (CsƳTRPS) and 19.63 ± 1.05 (CsLINS) pkat/mg, and 66.25 ± 13 (CsƳTRPS) and 2.5 ± 0.6 (CsLINS) µM, respectively." figureDoi="http://doi.org/10.5281/zenodo.10490046" httpUri="https://zenodo.org/record/10490046/files/figure.png" pageId="5" pageNumber="69">Fig. 5A and B</figureCitation>
). The
<emphasis id="B95CEAC398532B040688FB95FB3FC6FC" box="[1164,1192,1130,1152]" italics="true" pageId="5" pageNumber="69">
<subScript id="17AC349498532B040688FB95FB3FC6FC" attach="right" box="[1164,1192,1130,1152]" fontSize="5" pageId="5" pageNumber="69">Km</subScript>
</emphasis>
,
<emphasis id="B95CEAC398532B0406B3FB95FB75C6FC" box="[1207,1250,1130,1152]" italics="true" pageId="5" pageNumber="69">
<subScript id="17AC349498532B0406B3FB95FB75C6FC" attach="left" box="[1207,1250,1130,1152]" fontSize="5" pageId="5" pageNumber="69">Vmax</subScript>
</emphasis>
and catalytic efficiency for CsƳTRPS were calculated to be 66.25 ± 13.32 µM, 2.24 ± 0.16
<subScript id="17AC349498532B0401B5FB5CFC42C6CB" attach="left" box="[945,981,1187,1207]" fontSize="5" pageId="5" pageNumber="69">pkat</subScript>
/mg and 2.228
<emphasis id="B95CEAC398532B040673FB5EFB1FC6C9" box="[1143,1160,1185,1205]" italics="true" pageId="5" pageNumber="69">×</emphasis>
10
<superScript id="7C5D9B9998532B0406A3FB61FB2BC6D6" attach="left" box="[1191,1212,1182,1195]" fontSize="5" pageId="5" pageNumber="69">
<emphasis id="B95CEAC398532B0406A3FB61FB24C6D7" box="[1191,1203,1182,1195]" italics="true" pageId="5" pageNumber="69"></emphasis>
6
</superScript>
s
<superScript id="7C5D9B9998532B0406CFFB61FB76C6D7" attach="left" box="[1227,1249,1182,1195]" fontSize="5" pageId="5" pageNumber="69">
<emphasis id="B95CEAC398532B0406CFFB61FB40C6D7" box="[1227,1239,1182,1195]" italics="true" pageId="5" pageNumber="69"></emphasis>
1
</superScript>
µM
<superScript id="7C5D9B9998532B040700FB61FA8EC6D7" attach="right" box="[1284,1305,1182,1195]" fontSize="5" pageId="5" pageNumber="69">
<emphasis id="B95CEAC398532B040700FB61FA87C6D7" box="[1284,1296,1182,1195]" italics="true" pageId="5" pageNumber="69"></emphasis>
1
</superScript>
, respectively; and these parameters for CsLINS were 2.5 ± 0.63 µM, 19.63 ± 1.05
<subScript id="17AC349498532B040790FB40FA22C6AF" attach="left" box="[1428,1461,1215,1235]" fontSize="5" pageId="5" pageNumber="69">pkat</subScript>
/mg and 5.40
<emphasis id="B95CEAC398532B04019AFB26FC38C691" box="[926,943,1241,1261]" italics="true" pageId="5" pageNumber="69">×</emphasis>
10
<superScript id="7C5D9B9998532B0401C9FB29FC75C69E" attach="right" box="[973,994,1238,1251]" fontSize="5" pageId="5" pageNumber="69">
<emphasis id="B95CEAC398532B0401C9FB29FC4EC69F" box="[973,985,1238,1251]" italics="true" pageId="5" pageNumber="69"></emphasis>
4
</superScript>
s
<superScript id="7C5D9B9998532B0401E8FB29FB95C69E" attach="left" box="[1004,1026,1238,1251]" fontSize="5" pageId="5" pageNumber="69">
<emphasis id="B95CEAC398532B0401E8FB29FC6FC69F" box="[1004,1016,1238,1251]" italics="true" pageId="5" pageNumber="69"></emphasis>
1
</superScript>
µM
<superScript id="7C5D9B9998532B04062EFB29FBD7C69E" attach="left" box="[1066,1088,1238,1251]" fontSize="5" pageId="5" pageNumber="69">
<emphasis id="B95CEAC398532B04062EFB29FBA1C69F" box="[1066,1078,1238,1251]" italics="true" pageId="5" pageNumber="69"></emphasis>
1
</superScript>
, respectively. From these values, it can be seen that CsƳTRPS had a low affinity for its substrate, GPP (
<emphasis id="B95CEAC398532B040143FAEDFCF7C759" bold="true" box="[839,864,1298,1317]" pageId="5" pageNumber="69">18</emphasis>
), and was saturated at a low substrate concentration, while CsLINS was saturated at a substrate concentration 10-fold higher than CsƳTRPS and its affinity for GPP was much greater than was the case with CsƳTRPS. Turnover and efficiency data shown in
<tableCitation id="C6AA036A98532B04013BFA7DFC05C7E9" box="[831,914,1410,1429]" captionStart="Table 3" captionStartId="6.[87,131,183,197]" captionTargetPageId="6" captionText="Table 3 Kinetics properties of coriander Ƴ-terpinene synthase and (S)-linalool synthase with the GPP substrate." pageId="5" pageNumber="69">Table 3</tableCitation>
for CsƳTRPS and CsLINS indicate that the catalytic
</paragraph>
<caption id="DF57665998532B040275F85EFC13C5A1" ID-DOI="http://doi.org/10.5281/zenodo.10490046" ID-Zenodo-Dep="10490046" httpUri="https://zenodo.org/record/10490046/files/figure.png" pageId="5" pageNumber="69" startId="5.[113,139,1953,1967]" targetBox="[197,1407,1444,1919]" targetPageId="5" targetType="figure">
<paragraph id="8B9736D198532B040275F85EFC13C5A1" blockId="5.[113,1501,1951,2014]" pageId="5" pageNumber="69">
<emphasis id="B95CEAC398532B040275F85EFF34C5D3" bold="true" box="[113,163,1953,1967]" pageId="5" pageNumber="69">Fig. 5.</emphasis>
Kinetics data for
<smallCapsWord id="8D71A00D98532B040331F85EFEEEC5D3" baselines="1964,1963" box="[309,377,1951,1969]" lowerCaseFontSize="6" mainFontSize="8" normCase="title" normString="Ytrps" pageId="5" pageNumber="69">CsƳTRPS</smallCapsWord>
(
<smallCapsWord id="8D71A00D98532B040387F85EFE06C5D3" baselines="1963" box="[387,401,1953,1967]" lowerCaseFontSize="6" mainFontSize="8" normCase="lower" normString="a" pageId="5" pageNumber="69">A</smallCapsWord>
) and CsLINS (
<smallCapsWord id="8D71A00D98532B040004F85EFD9BC5D3" baselines="1963" box="[512,524,1953,1967]" lowerCaseFontSize="6" mainFontSize="8" normCase="lower" normString="b" pageId="5" pageNumber="69">B</smallCapsWord>
) with
<smallCapsWord id="8D71A00D98532B040046F85EFDF5C5D3" baselines="1963" box="[578,610,1953,1967]" lowerCaseFontSize="6" mainFontSize="8" normCase="lower" normString="gpp" pageId="5" pageNumber="69">GPP</smallCapsWord>
substrate. Each enzymatic assay consisted of two biological and two technical replicates.
<smallCapsWord id="8D71A00D98532B04073DF85EFAEAC5D3" baselines="1964,1963" box="[1337,1405,1951,1969]" lowerCaseFontSize="6" mainFontSize="8" normCase="title" normString="Ytrps" pageId="5" pageNumber="69">CsƳTRPS</smallCapsWord>
and CsLINS proteins catalyzed the conversion of geranyl diphosphate to Ƴ- terpinene and (
<smallCapsWord id="8D71A00D98532B040104F847FC9DC5BA" baselines="1986" box="[768,778,1976,1990]" lowerCaseFontSize="6" mainFontSize="8" normCase="lower" normString="s" pageId="5" pageNumber="69">S</smallCapsWord>
)-linalool, respectively, with apparent
<smallCapsWord id="8D71A00D98532B04064CF848FBFDC5B5" baselines="1986" box="[1096,1130,1975,1993]" lowerCaseFontSize="6" mainFontSize="8" normCase="lower" normString="v" pageId="5" pageNumber="69">
<emphasis id="B95CEAC398532B04064CF848FBFDC5B5" box="[1096,1130,1975,1993]" italics="true" pageId="5" pageNumber="69">
<subScript id="17AC349498532B04064CF848FBFDC5B5" attach="left" box="[1096,1130,1975,1993]" fontSize="4" pageId="5" pageNumber="69">Vmax</subScript>
</emphasis>
</smallCapsWord>
and
<smallCapsWord id="8D71A00D98532B04069CF848FB3AC5B5" baselines="1986" box="[1176,1197,1975,1993]" lowerCaseFontSize="6" mainFontSize="8" normCase="lower" normString="k" pageId="5" pageNumber="69">
<emphasis id="B95CEAC398532B04069CF848FB3AC5B5" box="[1176,1197,1975,1993]" italics="true" pageId="5" pageNumber="69">
<subScript id="17AC349498532B04069CF848FB3AC5B5" attach="left" box="[1176,1197,1975,1993]" fontSize="4" pageId="5" pageNumber="69">Km</subScript>
</emphasis>
</smallCapsWord>
values of 2.24 ± 0.16 (
<smallCapsWord id="8D71A00D98532B04076FF847FA25C5BA" baselines="1986,1986" box="[1387,1458,1973,1991]" lowerCaseFontSize="6" mainFontSize="8" normCase="title" normString="Ytrps" pageId="5" pageNumber="69">CsƳTRPS</smallCapsWord>
) and 19.63 ± 1.05 (CsLINS) pkat/mg, and 66.25 ± 13 (
<smallCapsWord id="8D71A00D98532B0403F5F830FDAFC5A1" baselines="2009,2009" box="[497,568,1996,2014]" lowerCaseFontSize="6" mainFontSize="8" normCase="title" normString="Ytrps" pageId="5" pageNumber="69">CsƳTRPS</smallCapsWord>
) and 2.5 ± 0.6 (CsLINS)
<smallCapsWord id="8D71A00D98532B0400FCF833FC82C5A1" baselines="2009" box="[760,789,1996,2014]" lowerCaseFontSize="6" mainFontSize="8" normCase="lower" normString="m" pageId="5" pageNumber="69">µM</smallCapsWord>
, respectively.
</paragraph>
</caption>
<caption id="DF57665998502B070253FF48FF7DC28E" pageId="6" pageNumber="70" startId="6.[87,131,183,197]" targetBox="[110,734,264,385]" targetIsTable="true" targetPageId="6" targetType="table">
<paragraph id="8B9736D198502B070253FF48FF7DC28E" blockId="6.[87,756,183,242]" pageId="6" pageNumber="70">
<emphasis id="B95CEAC398502B070253FF48FF04C2B9" bold="true" box="[87,147,183,197]" pageId="6" pageNumber="70">Table 3</emphasis>
Kinetics properties of coriander Ƴ- terpinene synthase and (S)-linalool synthase with the GPP substrate.
</paragraph>
</caption>
<paragraph id="8B9736D198502B070311FEF4FD49C30B" pageId="6" pageNumber="70">
<table id="F928C4719850D4FE026AFEF7FD49C3FD" box="[110,734,264,385]" gridcols="3" gridrows="5" pageId="6" pageNumber="70">
<tr id="351834939850D4FE026AFEF7FD49C366" box="[110,734,264,282]" gridrow="0" pageId="6" pageNumber="70" rowspan-0="1">
<th id="76C95DEF9850D4FE0311FEF7FE5BC366" box="[277,460,264,282]" gridcol="1" gridrow="0" pageId="6" pageNumber="70">CsƳTRPS</th>
<th id="76C95DEF9850D4FE003FFEF7FD49C366" box="[571,734,264,282]" gridcol="2" gridrow="0" pageId="6" pageNumber="70">CsLINS</th>
</tr>
<tr id="351834939850D4FE026AFED5FD49C340" box="[110,734,298,316]" gridrow="1" pageId="6" pageNumber="70">
<th id="76C95DEF9850D4FE026AFED5FF30C340" box="[110,167,298,316]" gridcol="0" gridrow="1" pageId="6" pageNumber="70">Km</th>
<td id="76C95DEF9850D4FE0311FED5FE5BC340" box="[277,460,298,316]" gridcol="1" gridrow="1" pageId="6" pageNumber="70">66.25 ± 13.32 µM</td>
<td id="76C95DEF9850D4FE003FFED5FD49C340" box="[571,734,298,316]" gridcol="2" gridrow="1" pageId="6" pageNumber="70">2.5 ± 0.6 µM</td>
</tr>
<tr id="351834939850D4FE026AFEBCFD49C328" box="[110,734,323,340]" gridrow="2" pageId="6" pageNumber="70">
<th id="76C95DEF9850D4FE026AFEBCFF30C328" box="[110,167,323,340]" gridcol="0" gridrow="2" pageId="6" pageNumber="70">Vmax</th>
<td id="76C95DEF9850D4FE0311FEBCFE5BC328" box="[277,460,323,340]" gridcol="1" gridrow="2" pageId="6" pageNumber="70">2.24 ± 0.16 pkat/mg</td>
<td id="76C95DEF9850D4FE003FFEBCFD49C328" box="[571,734,323,340]" gridcol="2" gridrow="2" pageId="6" pageNumber="70">19.63 ± 1.05 pkat/mg</td>
</tr>
<tr id="351834939850D4FE026AFEAAFD49C316" box="[110,734,341,362]" gridrow="3" pageId="6" pageNumber="70">
<th id="76C95DEF9850D4FE026AFEAAFF30C316" box="[110,167,341,362]" gridcol="0" gridrow="3" pageId="6" pageNumber="70">kcat</th>
<td id="76C95DEF9850D4FE0311FEAAFE5BC316" box="[277,460,341,362]" gridcol="1" gridrow="3" pageId="6" pageNumber="70">
1.476
<emphasis id="B95CEAC398502B070342FEA6FEC4C314" box="[326,339,345,360]" italics="true" pageId="6" pageNumber="70">×</emphasis>
10
<emphasis id="B95CEAC398502B070368FEAAFEE1C31C" box="[364,374,341,352]" italics="true" pageId="6" pageNumber="70"></emphasis>
4 s
<emphasis id="B95CEAC398502B07038EFEAAFE03C31C" box="[394,404,341,352]" italics="true" pageId="6" pageNumber="70"></emphasis>
1
</td>
<td id="76C95DEF9850D4FE003FFEAAFD49C316" box="[571,734,341,362]" gridcol="2" gridrow="3" pageId="6" pageNumber="70">
1.4
<emphasis id="B95CEAC398502B07005CFEA6FDF2C314" box="[600,613,345,360]" italics="true" pageId="6" pageNumber="70">×</emphasis>
10
<emphasis id="B95CEAC398502B07007AFEAAFD1FC31C" box="[638,648,341,352]" italics="true" pageId="6" pageNumber="70"></emphasis>
3 s
<emphasis id="B95CEAC398502B07009FFEAAFD32C31C" box="[667,677,341,352]" italics="true" pageId="6" pageNumber="70"></emphasis>
1
</td>
</tr>
<tr id="351834939850D4FE026AFE93FD49C3FD" box="[110,734,364,385]" gridrow="4" pageId="6" pageNumber="70">
<th id="76C95DEF9850D4FE026AFE93FF30C3FD" box="[110,167,364,385]" gridcol="0" gridrow="4" pageId="6" pageNumber="70">kcat/Km</th>
<td id="76C95DEF9850D4FE0311FE93FE5BC3FD" box="[277,460,364,385]" gridcol="1" gridrow="4" pageId="6" pageNumber="70">
2.228
<emphasis id="B95CEAC398502B070342FE8FFEC4C303" box="[326,339,368,383]" italics="true" pageId="6" pageNumber="70">×</emphasis>
10
<emphasis id="B95CEAC398502B070368FE93FEE1C30B" box="[364,374,364,375]" italics="true" pageId="6" pageNumber="70"></emphasis>
6 s
<emphasis id="B95CEAC398502B07038EFE93FE03C30B" box="[394,404,364,375]" italics="true" pageId="6" pageNumber="70"></emphasis>
1 µM
<emphasis id="B95CEAC398502B0703BFFE93FE52C30B" box="[443,453,364,375]" italics="true" pageId="6" pageNumber="70"></emphasis>
1
</td>
<td id="76C95DEF9850D4FE003FFE93FD49C3FD" box="[571,734,364,385]" gridcol="2" gridrow="4" pageId="6" pageNumber="70">
5.4
<emphasis id="B95CEAC398502B07005CFE8FFDF2C303" box="[600,613,368,383]" italics="true" pageId="6" pageNumber="70">×</emphasis>
10
<emphasis id="B95CEAC398502B07007AFE93FD1FC30B" box="[638,648,364,375]" italics="true" pageId="6" pageNumber="70"></emphasis>
4 s
<emphasis id="B95CEAC398502B07009FFE93FD32C30B" box="[667,677,364,375]" italics="true" pageId="6" pageNumber="70"></emphasis>
1 µM
<emphasis id="B95CEAC398502B0700C9FE93FD40C30B" box="[717,727,364,375]" italics="true" pageId="6" pageNumber="70"></emphasis>
1
</td>
</tr>
</table>
</paragraph>
<paragraph id="8B9736D198502B070253FE56FD33C65E" blockId="6.[87,757,424,1058]" pageId="6" pageNumber="70">
efficiency of CsƳTRPS is much less than observed in CsLINS. It is expected that CsƳTRPS be a slower enzyme than CsLINS because, Ƴ- terpinene (
<emphasis id="B95CEAC398502B0702CEFE1EFF40C388" bold="true" box="[202,215,481,500]" pageId="6" pageNumber="70">5</emphasis>
) is only a minor component of coriander EO while (
<collectionCode id="ED39AE1498502B07025AFE02FFFDC06C" box="[94,106,509,528]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="6" pageNumber="70" type="Herbarium">S</collectionCode>
)-linalool (
<emphasis id="B95CEAC398502B0702DCFE02FF72C06C" bold="true" box="[216,229,509,528]" pageId="6" pageNumber="70">1</emphasis>
) makes up approximately 79% of the total EO terpene content (
<tableCitation id="C6AA036A98502B0702E9FDE6FEAEC050" box="[237,313,537,556]" captionStart="Table 1" captionStartId="2.[805,849,1061,1075]" captionTargetPageId="2" captionText="Table 1 Coriander mericarp essential oil (EO) terpene composition. Error bounds are in percent standard deviation." pageId="6" pageNumber="70">Table 1</tableCitation>
). These data do not exclude other possible regulatory elements that determine the composition of coriander EO. No enzymatic activity was detected upon incubation with FPP. The major product of CsƳTRPS, Ƴ- terpinene (
<emphasis id="B95CEAC398502B07004FFD92FDCFC0FC" bold="true" box="[587,600,621,640]" pageId="6" pageNumber="70">5</emphasis>
), is a precursor of the second most abundant monoterpene in the
<taxonomicName id="4C284D5298502B070053FD78FF04C0CB" class="Magnoliopsida" family="Apiaceae" genus="Coriandrum" kingdom="Plantae" order="Apiales" pageId="6" pageNumber="66" phylum="Tracheophyta" rank="subSpecies" species="sativum" subSpecies="mericarps">
<emphasis id="B95CEAC398502B070053FD78FD2AC0E7" box="[599,701,647,667]" italics="true" pageId="6" pageNumber="70">C. sativum</emphasis>
mericarps
</taxonomicName>
used for this study, cymene (
<emphasis id="B95CEAC398502B0703CEFD5BFE40C0CB" bold="true" box="[458,471,676,695]" pageId="6" pageNumber="70">2</emphasis>
) (6.38% of total EO terpene content) (
<bibRefCitation id="EFB94B2098502B0702BFFD3FFE5EC0AF" author="Poulose, A. &amp; Croteau, R." box="[187,457,704,723]" pageId="6" pageNumber="70" pagination="307 - 314" refId="ref10871" refString="Poulose, A., Croteau, R., 1978. Biosynthesis of aromatic monoterpenes - conversion of gamma-terpinene to para-cymene and thymol in Thymus vulgaris L 1. Arch. Biochem. Biophys. 187, 307 - 314." type="journal article" year="1978">Poulose and Croteau, 1978</bibRefCitation>
). Oxygenation of Ƴ- terpinene (
<emphasis id="B95CEAC398502B07025BFD23FFFBC093" bold="true" box="[95,108,732,751]" pageId="6" pageNumber="70">5</emphasis>
) carried out by cytochrome p450 mono-oxygenases is likely responsible for the conversion of Ƴ- terpinene (
<emphasis id="B95CEAC398502B070047FD07FDC7C177" bold="true" box="[579,592,760,779]" pageId="6" pageNumber="70">5</emphasis>
) to cymene (
<emphasis id="B95CEAC398502B0700E4FD07FD7AC177" bold="true" box="[736,749,760,779]" pageId="6" pageNumber="70">2</emphasis>
) in these mericarps, as has been shown to be the case in other plants (
<bibRefCitation id="EFB94B2098502B0702A7FCCFFECEC13F" author="Lupien, S. &amp; Karp, F. &amp; Wildung, M. &amp; Croteau, R." box="[163,345,816,835]" pageId="6" pageNumber="70" pagination="181 - 192" refId="ref10231" refString="Lupien, S., Karp, F., Wildung, M., Croteau, R., 1999. Regiospecific cytochrome P 450 limonene hydroxylases from mint (Mentha) species: CDNA isolation, characterization, and functional expression of (-) - 4 S-limonene- 3 - hydroxylase and (-) - 4 S-limonene- 6 - hydroxylase. Arch. Biochem. Biophys. 368, 181 - 192." type="journal article" year="1999">Lupien et al., 1999</bibRefCitation>
). Camphor (
<emphasis id="B95CEAC398502B0703D0FCCFFE76C13F" bold="true" box="[468,481,816,835]" pageId="6" pageNumber="70">4</emphasis>
), the fourth most abundant monoterpene in the mericarps used here (3.62% total EO terpene content), is the product of a borneol dehydrogenase, converting borneol (
<emphasis id="B95CEAC398502B0702B0FC7CFF5AC1EA" bold="true" box="[180,205,899,918]" pageId="6" pageNumber="70">13</emphasis>
) to camphor (
<emphasis id="B95CEAC398502B070364FC7CFEFAC1EA" bold="true" box="[352,365,899,918]" pageId="6" pageNumber="70">4</emphasis>
), rather than the action of a monoterpene synthase (
<bibRefCitation id="EFB94B2098502B0702F8FC60FE4CC1CE" author="Okamoto, S. &amp; Yu, F. &amp; Harada, H. &amp; Okajima, T. &amp; Hattan, J. &amp; Misawa, N. &amp; Utsumi, R." box="[252,475,927,947]" pageId="6" pageNumber="70" pagination="2892 - 2900" refId="ref10687" refString="Okamoto, S., Yu, F., Harada, H., Okajima, T., Hattan, J., Misawa, N., Utsumi, R., 2011. A short-chain dehydrogenase involved in terpene metabolism from zingiber zerumbet. Febs J. 278, 2892 - 2900." type="journal article" year="2011">Okamoto et al., 2011</bibRefCitation>
;
<bibRefCitation id="EFB94B2098502B0703EDFC60FD3EC1CE" author="Sarker, L. S. &amp; Galata, M. &amp; Demissie, Z. A. &amp; Mahmoud, S. S." box="[489,681,927,947]" pageId="6" pageNumber="70" pagination="163 - 170" refId="ref11128" refString="Sarker, L. S., Galata, M., Demissie, Z. A., Mahmoud, S. S., 2012. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of lavandula x intermedia. Arch. Biochem. Biophys. 528, 163 - 170." type="journal article" year="2012">Sarker et al., 2012</bibRefCitation>
). Thus, the two monoterpene synthases CsLINS and CsƳTRPS are together responsible for the biosynthesis of the most abundant EO constituents ((
<collectionCode id="ED39AE1498502B0702EBFC0CFF6CC67A" box="[239,251,1011,1030]" country="Sweden" lsid="urn:lsid:biocol.org:col:15668" name="Department of Botany, Swedish Museum of Natural History" pageId="6" pageNumber="70" type="Herbarium">S</collectionCode>
)-linalool (
<emphasis id="B95CEAC398502B070368FC0CFEEEC67A" bold="true" box="[364,377,1011,1030]" pageId="6" pageNumber="70">1</emphasis>
), Ƴ- terpinene (
<emphasis id="B95CEAC398502B070019FC0CFDBDC67A" bold="true" box="[541,554,1011,1030]" pageId="6" pageNumber="70">5</emphasis>
), and cymene (
<emphasis id="B95CEAC398502B0700DCFC0CFD72C67A" bold="true" box="[728,741,1011,1030]" pageId="6" pageNumber="70">2</emphasis>
)) and produce the bulk of the EO in the
<taxonomicName id="4C284D5298502B0703E4FBF1FDD2C65E" box="[480,581,1038,1058]" class="Magnoliopsida" family="Apiaceae" genus="Coriandrum" kingdom="Plantae" order="Apiales" pageId="6" pageNumber="70" phylum="Tracheophyta" rank="species" species="sativum">
<emphasis id="B95CEAC398502B0703E4FBF1FDD2C65E" box="[480,581,1038,1058]" italics="true" pageId="6" pageNumber="70">C. sativum</emphasis>
</taxonomicName>
mericap.
</paragraph>
</subSubSection>
<subSubSection id="C332655A98502B070253FBA6FF42C491" pageId="6" pageNumber="70" type="discussion">
<paragraph id="8B9736D198502B070253FBA6FF67C617" blockId="6.[87,240,1112,1132]" box="[87,240,1112,1132]" pageId="6" pageNumber="70">
<heading id="D0DF81BD98502B070253FBA6FF67C617" bold="true" box="[87,240,1112,1132]" fontSize="36" level="1" pageId="6" pageNumber="70" reason="1">
<emphasis id="B95CEAC398502B070253FBA6FF67C617" bold="true" box="[87,240,1112,1132]" pageId="6" pageNumber="70">3. Conclusions</emphasis>
</heading>
</paragraph>
<paragraph id="8B9736D198502B070272FB70FDEFC7C6" blockId="6.[87,757,1167,1773]" pageId="6" pageNumber="70">
<taxonomicName id="4C284D5298502B070272FB70FF4CC6DF" box="[118,219,1167,1187]" class="Magnoliopsida" family="Apiaceae" genus="Coriandrum" kingdom="Plantae" order="Apiales" pageId="6" pageNumber="70" phylum="Tracheophyta" rank="species" species="sativum">
<emphasis id="B95CEAC398502B070272FB70FF4CC6DF" box="[118,219,1167,1187]" italics="true" pageId="6" pageNumber="70">C. sativum</emphasis>
</taxonomicName>
is both an important culinary herb and EO crop. Coriander EO has been shown to exhibit medicinal activity, for example as an anti-hyperlipedemic and an anxiolytic (
<bibRefCitation id="EFB94B2098502B07002EFB37FF1AC68B" author="Dhanapakiam, P. &amp; Joseph, J. M. &amp; Ramaswamy, V. K. &amp; Moorthi, M. &amp; Kumar, A. S." pageId="6" pageNumber="70" pagination="53 - 56" refId="ref9468" refString="Dhanapakiam, P., Joseph, J. M., Ramaswamy, V. K., Moorthi, M., Kumar, A. S., 2008. The cholesterol lowering property of coriander seeds (Coriandrum sativum): mechanism of action. J. Environ. Biol. 29, 53 - 56." type="journal article" year="2008">Dhanapakiam et al., 2008</bibRefCitation>
;
<bibRefCitation id="EFB94B2098502B070298FB1BFE23C68B" author="Mahendra, P. &amp; Bisht, S." box="[156,436,1252,1271]" pageId="6" pageNumber="70" pagination="574 - 577" refId="ref10307" refString="Mahendra, P., Bisht, S., 2011. Anti-anxiety activity of Coriandrum sativum assessed using different experimental anxiety models. Indian J. Pharmacol. 43, 574 - 577." type="journal article" year="2011">Mahendra and Bisht, 2011</bibRefCitation>
). Further, coriander mericarps contain large quantities of the monounsaturated fatty acid, petroselinic acid which is useful in the production of detergents and nylon polymers (
<bibRefCitation id="EFB94B2098502B0702EFFAC7FE2BC737" author="Msaada, K. &amp; Hosni, K. &amp; Ben Taarit, M. &amp; Chahed, T. &amp; Hammami, M. &amp; Marzouk, B." box="[235,444,1336,1355]" pageId="6" pageNumber="70" pagination="269 - 274" refId="ref10572" refString="Msaada, K., Hosni, K., Ben Taarit, M., Chahed, T., Hammami, M., Marzouk, B., 2009 b. Changes in fatty acid composition of coriander (Coriandrum sativum L.) fruit during maturation. Ind. Crop. Prod. 29, 269 - 274." type="journal article" year="2009">Msaada et al., 2009b</bibRefCitation>
). Although coriander is clearly an important crop, genomic resources for this plant have not been developed. This study is the first to develop a transcript library for coriander and to clone two mTPS genes which make up the majority of the total EO monoterpene content in this plant.
</paragraph>
<paragraph id="8B9736D198502B070272FA3BFF42C491" blockId="6.[87,757,1167,1773]" pageId="6" pageNumber="70">
In addition to facilitating gene discovery, the de novo transcriptome assembly of this non-model plant contributes to the advancement of genetics and plant breeding research for this underutilized crop. For example, the genetic composition and gene functionality information provided by this research can lead to identification of molecular markers such as STRs and SNPs (
<bibRefCitation id="EFB94B2098502B07001FF9B0FD3EC41E" author="Li, X. &amp; Acharya, A. &amp; Farmer, A. D. &amp; Crow, J. A. &amp; Bharti, A. K. &amp; Kramer, R. S. &amp; Wei, Y. &amp; Han, Y. &amp; Gou, J. &amp; May, G. D. &amp; Monteros, M. J. &amp; Brummer, E. C." box="[539,681,1615,1634]" pageId="6" pageNumber="70" pagination="568 - 579" refId="ref10069" refString="Li, X., Acharya, A., Farmer, A. D., Crow, J. A., Bharti, A. K., Kramer, R. S., Wei, Y., Han, Y., Gou, J., May, G. D., Monteros, M. J., Brummer, E. C., 2012. Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing. BMC Genomics 13, 568 - 579." type="journal article" year="2012">Li et al., 2012</bibRefCitation>
,
<bibRefCitation id="EFB94B2098502B0700B1F9B0FD7FC41E" author="Li, C. &amp; Zhu, Y. &amp; Guo, X. &amp; Sun, C. &amp; Luo, H. &amp; Song, J. &amp; Li, Y. &amp; Wang, L. &amp; Qian, J. &amp; Chen, S." box="[693,744,1615,1634]" pageId="6" pageNumber="70" pagination="245 - 255" refId="ref9988" refString="Li, C., Zhu, Y., Guo, X., Sun, C., Luo, H., Song, J., Li, Y., Wang, L., Qian, J., Chen, S., 2013. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and single sequence repeats in Panax ginseng C. A. meyer. BMC Genomics 14, 245 - 255." type="journal article" year="2013">2013</bibRefCitation>
). Also, future development of molecular markers will allow this specialty oil crop plant to be industrially improved via markerassisted selective breeding. Finally, these results can be used to improve oil yield and quality of coriander through metabolic engineering.
</paragraph>
</subSubSection>
</treatment>
</document>