2334 lines
623 KiB
XML
2334 lines
623 KiB
XML
<document id="D8DCE235E5EBE1DBA154927063AB0743" ID-DOI="10.1111/j.1096-3642.2007.00334.x" ID-GBIF-Dataset="c95839c4-68cc-4953-84ad-fc6bbd02d753" ID-Zenodo-Dep="3734918" IM.illustrations_approvedBy="jeremy" IM.tables_requiresApprovalFor="existingObjects,jeremy" IM.treatments_approvedBy="jeremy" checkinTime="1585665027005" checkinUser="jeremy" docAuthor="Eric Snively & Anthony P. Russell" docDate="2007" docId="364187B7FFACA60370B714DC362AFCC0" docLanguage="en" docName="SnivelyRussell2007NeckMusculature.pdf.imf" docOrigin="Zoological Journal of the Linnean Society 151, No. 4" docStyle="DocumentStyle{}" docTitle="Tyrannosaurus rex" docType="treatment" docVersion="10" lastPageNumber="803" masterDocId="CA78FFCFFFADA62F700B127E335EFFC3" masterDocTitle="Functional morphology of neck musculature in the Tyrannosauridae (Dinosauria, Theropoda) as determined via a hierarchical inferential approach" masterLastPageNumber="808" masterPageNumber="759" pageNumber="760" updateTime="1689602578659" updateUser="jeremy">
|
||
<mods:mods id="A66AEFE3D6D60DB388985D9B3BAFA607" xmlns:mods="http://www.loc.gov/mods/v3">
|
||
<mods:titleInfo id="3DA417B886F2C84008663D64B8DBFC44">
|
||
<mods:title id="D3D91964F3A2493D501E890CEE5A54C9">Functional morphology of neck musculature in the Tyrannosauridae (Dinosauria, Theropoda) as determined via a hierarchical inferential approach</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:name id="179B455DD05DC7D9966A242A3FD67DAF" type="personal">
|
||
<mods:role id="E8BC47E7728C0C593257881F09FCFB24">
|
||
<mods:roleTerm id="73910B23D6A23D48CC323F29A0CFEBDB">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="BBC0CE62536E8BEDDE1842845D569AD7">Eric Snively</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="144E496083BD75D8018BA94C5B7AB0A4" type="personal">
|
||
<mods:role id="5BAA322709C96BB334665A0E18097437">
|
||
<mods:roleTerm id="13E8C4BE1311CFB3550CFD3E563D91F9">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="9877FBE6EE89684992AE430793436DBB">Anthony P. Russell</mods:namePart>
|
||
</mods:name>
|
||
<mods:typeOfResource id="C3ED02819A4B960073FAAB1ED5921A9D">text</mods:typeOfResource>
|
||
<mods:relatedItem id="51CE0570E93AD599639A6190D51BB226" type="host">
|
||
<mods:titleInfo id="295CF601C43159DC67486FC0509CEA07">
|
||
<mods:title id="87CAFD3715B9D2ABC37174FDE39F765E">Zoological Journal of the Linnean Society</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:part id="B17A587E2266C945D29C566DD7F1FC65">
|
||
<mods:date id="6B0E18A46B4C53DC4510DA383C9A17E0">2007</mods:date>
|
||
<mods:detail id="FC74C424BB2744D95278EE29039C3BC4" type="volume">
|
||
<mods:number id="E93C2E19AA3B647524766E2E070D04D8">151</mods:number>
|
||
</mods:detail>
|
||
<mods:detail id="DADBEB61B7F5B587E66C9B7D9D4AEB5B" type="numero">
|
||
<mods:number id="72B1AFCE14D540AB73E51934D3591EE1">4</mods:number>
|
||
</mods:detail>
|
||
<mods:extent id="DAEC85745A37631D94632FC47BB5BDFE" unit="page">
|
||
<mods:start id="F6A14060B8EC28FB10914C7BFF218968">759</mods:start>
|
||
<mods:end id="02B6C94E9AD1CCB7B1FD2EFC443AA8B0">808</mods:end>
|
||
</mods:extent>
|
||
</mods:part>
|
||
</mods:relatedItem>
|
||
<mods:classification id="527DDA324EC40FF46BEFFA8111DE14B1">journal article</mods:classification>
|
||
<mods:identifier id="940A8FA519ABC41B81036D1F07ABC25C" type="DOI">10.1111/j.1096-3642.2007.00334.x</mods:identifier>
|
||
<mods:identifier id="B1B5C284F275835D768BD389A727B680" type="GBIF-Dataset">c95839c4-68cc-4953-84ad-fc6bbd02d753</mods:identifier>
|
||
<mods:identifier id="F748755B42314CF30BEDEBF5EF50C1AF" type="Zenodo-Dep">3734918</mods:identifier>
|
||
</mods:mods>
|
||
<treatment id="364187B7FFACA60370B714DC362AFCC0" ID-GBIF-Taxon="190303926" LSID="urn:lsid:plazi:treatment:364187B7FFACA60370B714DC362AFCC0" httpUri="http://treatment.plazi.org/id/364187B7FFACA60370B714DC362AFCC0" lastPageId="44" lastPageNumber="803" pageId="1" pageNumber="760">
|
||
<subSubSection id="F6F2652AFFACA62A70B714DC30C6FAC8" lastPageId="5" lastPageNumber="764" pageId="1" pageNumber="760" type="description">
|
||
<paragraph id="BE5736A1FFACA62E70B714DC30DDFC9D" blockId="1.[164,779,657,1903]" lastBlockId="1.[826,1441,657,862]" pageId="1" pageNumber="760">
|
||
We examine the influence of neck muscle topology and kinematics on feeding function of
|
||
<taxonomicName id="79E84D22FFACA62E727014BE33BCF937" authorityName="Osborn" authorityYear="1906" class="Reptilia" family="Tyrannosauridae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="1" pageNumber="760" phylum="Chordata" rank="family">Tyrannosauridae</taxonomicName>
|
||
. Cervical musculature intrinsic to the neck and craniocervical muscles from the neck to the head, are here collectively termed ‘neck muscles’. Tyrannosaurid neck muscles are reconstructed by morphological comparisons with extant archosaurs, and their function and role in feeding behaviour are inferred by newly proposed modes of kinematic, electromyographic and observational inference. To ground the subsequent explorations of functional morphology, we first summarize fundamental divisions of neck axial musculature, and introduce inferential methods in detail.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFACA62E734911E236C7FC73" blockId="1.[826,1441,924,1352]" box="[834,1433,924,945]" pageId="1" pageNumber="760">FUNCTIONAL DIVISIONS OF AMNIOTE NECK MUSCLES</paragraph>
|
||
<paragraph id="BE5736A1FFACA62E733111BC361EFA8B" blockId="1.[826,1441,924,1352]" pageId="1" pageNumber="760">
|
||
Amniote axial muscle groups are functionally and anatomically classifiable by serial homology and innervation (
|
||
<bibRefCitation id="DA794B50FFACA62E73ED118137C1FBD6" author="Tsuihiji T." box="[998,1183,1023,1045]" journalOrPublisher="Journal of Morphology" pageId="1" pageNumber="760" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji, 2005</bibRefCitation>
|
||
). Transversospinalis and longissimus muscles (
|
||
<figureCitation id="26D32A24FFACA62E749C16603788FBF7" box="[1175,1238,1054,1076]" captionStart="Figure 1" captionStartId="1.[164,243,544,563]" captionTargetBox="[387,1219,202,511]" captionTargetId="figure@1.[387,1200,209,485]" captionText="Figure 1. Divisions of amniote neck and craniocervical musculature, superimposed on the cervical vertebrae of Caiman crocodylus. Different shades represent transversospinalis, longissimus, iliocostalis and longus/medial iliocostalis divisions" figureDoi="http://doi.org/10.5281/zenodo.3734920" httpUri="https://zenodo.org/record/3734920/files/figure.png" pageId="1" pageNumber="760">Fig. 1</figureCitation>
|
||
) are primarily involved with dorsiflexion and lateral flexion, respectively, while the iliocostalis group (
|
||
<figureCitation id="26D32A24FFACA62E74F516253663FBB2" box="[1278,1341,1115,1137]" captionStart="Figure 1" captionStartId="1.[164,243,544,563]" captionTargetBox="[387,1219,202,511]" captionTargetId="figure@1.[387,1200,209,485]" captionText="Figure 1. Divisions of amniote neck and craniocervical musculature, superimposed on the cervical vertebrae of Caiman crocodylus. Different shades represent transversospinalis, longissimus, iliocostalis and longus/medial iliocostalis divisions" figureDoi="http://doi.org/10.5281/zenodo.3734920" httpUri="https://zenodo.org/record/3734920/files/figure.png" pageId="1" pageNumber="760">Fig. 1</figureCitation>
|
||
) brings about ventrolateral and, to a lesser extent, ventral flexion. Unsurprisingly, muscles running along the underside of the neck are responsible for most of the ventral flexion. These include the longus colli system and m. rectus capitis anterior/ventralis, serial homologues of prevertebral muscles such as m. psoas and m. iliopsoas (
|
||
<bibRefCitation id="DA794B50FFACA62E73DF174C366AFA8B" author="Rosse C & Gaddum-Rosse P." box="[980,1332,1329,1352]" journalOrPublisher="Philadelphia: Lippincott-Raven Publishers" pageId="1" pageNumber="760" refId="ref28621" refString="Rosse C, Gaddum-Rosse P. 1997. Hollinshead's textbook of anatomy, 5 th edn. Philadelphia: Lippincott-Raven Publishers." title="Hollinshead's textbook of anatomy, 5 th edn" type="book" year="1997">Rosse & Gaddum-Rosse, 1997</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFACA62E737B17FB37B0FA7A" blockId="1.[826,1441,1413,1903]" pageId="1" pageNumber="760">INFERRING FUNCTION OF NECK MUSCLES OF EXTINCT VERTEBRATES</paragraph>
|
||
<paragraph id="BE5736A1FFACA62E733117B537D2F8AC" blockId="1.[826,1441,1413,1903]" pageId="1" pageNumber="760">
|
||
The conservatism of neck muscle development, innervation and topology in extant amniotes engenders confidence that these general characteristics are also applicable to the muscles of extinct taxa. More specific reconstruction of cervical muscle morphology in an extinct taxon requires focused comparisons with its closest extant relatives. Dissection and osteological examination of extant relatives reveal constancy and variation in muscle origins and insertions. In a formalized extension of the comparative method (
|
||
<bibRefCitation id="DA794B50FFACA62E755B14A130A0F8D1" author="Bryant HN & Russell AP" journalOrPublisher="Philosophical Transactions of the Royal Society of London B" pageId="1" pageNumber="760" pagination="405 - 418" part="337" refId="ref27237" refString="Bryant HN, Russell AP. 1992. The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philosophical Transactions of the Royal Society of London B 337: 405 - 418." title="The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa" type="journal article" year="1992">Bryant & Russell, 1992</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFACA62E741A148337EDF8D0" author="Witmer LM" box="[1041,1203,1789,1811]" editor="Thomason JJ" journalOrPublisher="Cambridge: Cambridge University Press" pageId="1" pageNumber="760" pagination="19 - 33" refId="ref29291" refString="Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, ed. Functional morphology in Vertebrate paleontology. Cambridge: Cambridge University Press, 19 - 33." title="The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils" type="book chapter" volumeTitle="Functional morphology in Vertebrate paleontology" year="1995">Witmer, 1995</bibRefCitation>
|
||
), osteological correlates of muscle attachment common to the fossil taxon and one or more extant groups indicate the muscle’s presence in the extinct form.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFAFA62D70A312B8329CFCE2" blockId="2.[144,759,198,801]" pageId="2" pageNumber="761">
|
||
An extant member of the clade of interest, and the extant sister taxon of this couplet, form the extant phylogenetic bracket (EPB) of their extinct counterpart (
|
||
<bibRefCitation id="DA794B50FFAFA62D712C135C3298FEFB" author="Witmer LM" box="[295,454,290,312]" editor="Thomason JJ" journalOrPublisher="Cambridge: Cambridge University Press" pageId="2" pageNumber="761" pagination="19 - 33" refId="ref29291" refString="Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, ed. Functional morphology in Vertebrate paleontology. Cambridge: Cambridge University Press, 19 - 33." title="The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils" type="book chapter" volumeTitle="Functional morphology in Vertebrate paleontology" year="1995">Witmer, 1995</bibRefCitation>
|
||
). An osteological correlate of a given muscle in all three taxa provides the most robust inference of its presence in the fossil animal (a Level I inference:
|
||
<bibRefCitation id="DA794B50FFAFA62D720A130331F8FE50" author="Witmer LM" box="[513,678,381,403]" editor="Thomason JJ" journalOrPublisher="Cambridge: Cambridge University Press" pageId="2" pageNumber="761" pagination="19 - 33" refId="ref29291" refString="Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, ed. Functional morphology in Vertebrate paleontology. Cambridge: Cambridge University Press, 19 - 33." title="The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils" type="book chapter" volumeTitle="Functional morphology in Vertebrate paleontology" year="1995">Witmer, 1995</bibRefCitation>
|
||
). Less definitive evidence of correlates in any of the taxa, such as when there is no discrete attachment scar for a muscle, leads to inference of increasing ambiguity (Level II and III inferences:
|
||
<bibRefCitation id="DA794B50FFAFA62D722613863193FDCD" author="Witmer LM" box="[557,717,504,526]" editor="Thomason JJ" journalOrPublisher="Cambridge: Cambridge University Press" pageId="2" pageNumber="761" pagination="19 - 33" refId="ref29291" refString="Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, ed. Functional morphology in Vertebrate paleontology. Cambridge: Cambridge University Press, 19 - 33." title="The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils" type="book chapter" volumeTitle="Functional morphology in Vertebrate paleontology" year="1995">Witmer, 1995</bibRefCitation>
|
||
). If the extinct taxon shares a correlate with one, but not both, poles of the extant bracket, a Level II inference is possible by what is herein termed ‘unipolar’ comparison or inference. Extrapolatory inference of a muscle’s morphology is still possible given a unique correlate in the extinct taxon, through explicit mechanical considerations and morphological comparison with more distantly related clades (
|
||
<bibRefCitation id="DA794B50FFAFA62D709C117532EBFCE2" author="Bryant HN & Russell AP" box="[151,437,779,801]" journalOrPublisher="Philosophical Transactions of the Royal Society of London B" pageId="2" pageNumber="761" pagination="405 - 418" part="337" refId="ref27237" refString="Bryant HN, Russell AP. 1992. The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philosophical Transactions of the Royal Society of London B 337: 405 - 418." title="The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa" type="journal article" year="1992">Bryant & Russell, 1992</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFAFA62D70CC1120311FFC51" blockId="2.[144,759,862,1903]" pageId="2" pageNumber="761">KINEMATIC AND PHYSIOLOGICAL INFERENCE OF MUSCLE FUNCTION</paragraph>
|
||
<paragraph id="BE5736A1FFAFA62D709B11DA3388F9FE" blockId="2.[144,759,862,1903]" pageId="2" pageNumber="761">
|
||
Comparative morphology is the foundation for a hierarchy of inference (
|
||
<bibRefCitation id="DA794B50FFAFA62D716411BD3154FC1A" author="Witmer LM" box="[367,522,963,985]" editor="Thomason JJ" journalOrPublisher="Cambridge: Cambridge University Press" pageId="2" pageNumber="761" pagination="19 - 33" refId="ref29291" refString="Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, ed. Functional morphology in Vertebrate paleontology. Cambridge: Cambridge University Press, 19 - 33." title="The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils" type="book chapter" volumeTitle="Functional morphology in Vertebrate paleontology" year="1995">Witmer, 1995</bibRefCitation>
|
||
) about how animals use their muscles, from the kinematic action of individual muscles moving origin and insertions together, to the integration of the work and power of multiple muscles towards a desired behavioural end. A further development of
|
||
<bibRefCitation id="DA794B50FFAFA62D7145162231DCFBB1" author="Bryant HN & Russell AP" box="[334,642,1116,1138]" journalOrPublisher="Philosophical Transactions of the Royal Society of London B" pageId="2" pageNumber="761" pagination="405 - 418" part="337" refId="ref27237" refString="Bryant HN, Russell AP. 1992. The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philosophical Transactions of the Royal Society of London B 337: 405 - 418." title="The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa" type="journal article" year="1992">Bryant & Russell’s (1992)</bibRefCitation>
|
||
and
|
||
<bibRefCitation id="DA794B50FFAFA62D72CD16223240FB53" author="Witmer LM" editor="Thomason JJ" journalOrPublisher="Cambridge: Cambridge University Press" pageId="2" pageNumber="761" pagination="19 - 33" refId="ref29291" refString="Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, ed. Functional morphology in Vertebrate paleontology. Cambridge: Cambridge University Press, 19 - 33." title="The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils" type="book chapter" volumeTitle="Functional morphology in Vertebrate paleontology" year="1995">Witmer’s (1995)</bibRefCitation>
|
||
methods enables inference of a muscle’s action and function. Function incorporates aspects of a structure’s form and physiology to define what the structure does and how it works (
|
||
<bibRefCitation id="DA794B50FFAFA62D720116A83394FAC8" author="Bock WJ & Von Wahlert G." journalOrPublisher="EVolution" pageId="2" pageNumber="761" pagination="269 - 299" part="19" refId="ref27175" refString="Bock WJ, Von Wahlert G. 1965. Evolution of the formfunction complex. EVolution 19: 269 - 299." title="Evolution of the formfunction complex" type="journal article" year="1965">Bock & von Wahlert, 1965</bibRefCitation>
|
||
). As the basic description of what muscles do, their action in extant vertebrates often is inferred based on the relative positions of a muscle’s origin and insertion and the effect of the resulting lever mechanics on skeletal movement (e.g.
|
||
<bibRefCitation id="DA794B50FFAFA62D725B170E31B5FA46" author="Burton PJK" box="[592,747,1391,1413]" journalOrPublisher="London: Trustees of the British Museum (Natural History)" pageId="2" pageNumber="761" refId="ref27275" refString="Burton PJK. 1974. Feeding and the feeding apparatus in aeaders. London: Trustees of the British Museum (Natural History)." title="Feeding and the feeding apparatus in aeaders" type="book" year="1974">Burton, 1974</bibRefCitation>
|
||
). This method is reliable for inferring potential muscle action, although it often ignores the stabilizing action of shunt muscles that perform little work (
|
||
<bibRefCitation id="DA794B50FFAFA62D729E17B532DAF9C3" author="Rosse C & Gaddum-Rosse P." journalOrPublisher="Philadelphia: Lippincott-Raven Publishers" pageId="2" pageNumber="761" refId="ref28621" refString="Rosse C, Gaddum-Rosse P. 1997. Hollinshead's textbook of anatomy, 5 th edn. Philadelphia: Lippincott-Raven Publishers." title="Hollinshead's textbook of anatomy, 5 th edn" type="book" year="1997">Rosse & Gaddum-Rosse, 1997</bibRefCitation>
|
||
) or the damping action of contralaterally contracting muscles (
|
||
<bibRefCitation id="DA794B50FFAFA62D721A14763395F9FE" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="2" pageNumber="761" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFAFA62D70A3143B375FFF39" blockId="2.[144,759,862,1903]" lastBlockId="2.[806,1422,198,1903]" pageId="2" pageNumber="761">
|
||
Applying musculoskeletal lever mechanics to the inference of action in extinct taxa is here termed ‘kinematic inference’. This is an explicit subset of extrapolatory inference proposed by
|
||
<bibRefCitation id="DA794B50FFAFA62D723B14DC3384F915" author="Bryant HN & Russell AP" journalOrPublisher="Philosophical Transactions of the Royal Society of London B" pageId="2" pageNumber="761" pagination="405 - 418" part="337" refId="ref27237" refString="Bryant HN, Russell AP. 1992. The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philosophical Transactions of the Royal Society of London B 337: 405 - 418." title="The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa" type="journal article" year="1992">Bryant & Russell (1992)</bibRefCitation>
|
||
. Similar muscle attachment topology and leverage in extant relatives allow kinematic inference of these moment relationships in the extinct form, by extant phylogenetic bracketing. However, if the muscle’s origin and insertion are reasonably deduced, the robustness of kinematic inference is independent of differences in skeletal morphology between the extant and extinct clades.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFAFA62D7334137D30DBFCE2" blockId="2.[806,1422,198,1903]" pageId="2" pageNumber="761">Non-topological characteristics also contribute to a given muscle’s action. Applying these factors to deduce muscle action in extinct animals is here termed ‘physiological inference’. Physiological tests, such as electromyography (EMG), magnetic resonance imaging (MRI) and assays for muscle fibre type, can reveal patterns of muscle activation, activity and force-generating capacity in extant animals. EMG records the occurrence, timing and general intensity of muscle activity. MRI is useful for deducing fibre direction and pennation, and hence muscle architecture, which influences force-generating capacity. Fibre types dictate speed, and hence power, of contraction and fatigability of the muscle. If homologous muscles in the extant bracket display similar in vivo characteristics, physiological inference will facilitate deduction of these features in their extinct relative.</paragraph>
|
||
<paragraph id="BE5736A1FFAFA62D7334115430D9FB90" blockId="2.[806,1422,198,1903]" pageId="2" pageNumber="761">Physiological inference is more sensitive to extant comparison than kinematic inference; differing muscle physiology in the extant groups will reduce confidence in the inference. Also, differential modifications in closely related extant taxa will render the inference more tenuous. Lability of physiological influences on muscle function is likely to be higher than with gross morphology, because muscles fatigue, recover and experience different metabolic regimes.</paragraph>
|
||
<paragraph id="BE5736A1FFAFA62D7334162236D0FA23" blockId="2.[806,1422,198,1903]" pageId="2" pageNumber="761">
|
||
However, high potential for disparity increases the power of bracketed physiological inference if similarities between extant taxa are established confidently.
|
||
<bibRefCitation id="DA794B50FFAFA62D732D16C63092FB0E" author="Witmer LM" box="[806,972,1207,1230]" editor="Thomason JJ" journalOrPublisher="Cambridge: Cambridge University Press" pageId="2" pageNumber="761" pagination="19 - 33" refId="ref29291" refString="Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, ed. Functional morphology in Vertebrate paleontology. Cambridge: Cambridge University Press, 19 - 33." title="The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils" type="book chapter" volumeTitle="Functional morphology in Vertebrate paleontology" year="1995">Witmer (1995)</bibRefCitation>
|
||
established inference Levels I′, II′ and III′ for attributes that are variably present in extant comparative clades, but that have no osteological correlates. A strong, Level I′ physiological inference is possible when both poles of the extant bracket show homologous attributes of muscle activity. If tests have been carried out on members of only one clade of the extant bracket, ‘unipolar (Level II′) physiological inference’ will tentatively indicate presence of the same physiological characteristic in the extinct taxon.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFAFA62C73341794311EFEFB" blockId="2.[806,1422,198,1903]" lastBlockId="3.[164,779,198,1352]" lastPageId="3" lastPageNumber="762" pageId="2" pageNumber="761">
|
||
While most aspects of physiological muscle function will be difficult to bracket in fossil forms, EMG offers a clear route to physiological inference. EMG activity is an immediate, measurable correlate of muscle activity as extant animals carry out behaviour in real time. If EMG of homologous muscles in crocodilians and birds reveals electrical activity during similar functions (such as dorsiflexion and lateroflexion), bracketed inference of these functions is strengthened for homologous muscles of tyrannosaurids. Strict morphological and physiological bracketing is ideal. However, if a Level II morphological inference (
|
||
<bibRefCitation id="DA794B50FFAFA62D732515273094F8AC" author="Witmer LM" box="[814,970,1881,1903]" journalOrPublisher="Society of Vertebrate Paleontology Memoir 3. Journal of Vertebrate Paleontology" pageId="2" pageNumber="761" pagination="1 - 73" part="17" refId="ref29333" refString="Witmer LM. 1997. The evolution of the antorbital cavity of archosaurs: a study in soft tissue reconstruction in the fossil record with an analysis of the function of pneumaticity. Society of Vertebrate Paleontology Memoir 3. Journal of Vertebrate Paleontology 17 (Suppl. to no. 1): 1 - 73." title="The evolution of the antorbital cavity of archosaurs: a study in soft tissue reconstruction in the fossil record with an analysis of the function of pneumaticity." type="book chapter" year="1997">Witmer, 1997</bibRefCitation>
|
||
) indicates the presence of a muscle in tyrannosaurids and only one member of the phylogenetic bracket, EMG can facilitate a Level II′ physiological inference in which tyrannosaurid muscle activity is less stringently inferred.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFAEA62C70B7133E31D3FC5F" blockId="3.[164,779,198,1352]" pageId="3" pageNumber="762">
|
||
Physiological inference is testable and falsifiable by kinematic inference. Functional bracketing by EMG might signal inference of a function in the extinct form, but its moment arm topology would render this function impossible or unrealistically limited. An example would be EMG indicating a muscle’s activity strictly during head lateroflexion in crocodilians and birds (such as m. longissimus capitis superficialis and a hypothetical avian equivalent). Morphological and physiological bracketing would indicate this function in the carnosaur
|
||
<taxonomicName id="79E84D22FFAEA62C71A2100C31DFFD44" authority="Marsh, 1877" box="[425,641,626,647]" class="Reptilia" family="Allosauridae" genus="Allosaurus" kingdom="Animalia" order="Dinosauria" pageId="3" pageNumber="762" phylum="Chordata" rank="species" species="fragilis">Allosaurus fragilis</taxonomicName>
|
||
. The insertion of the muscle is lateral to the occipital condyle, which kinematically supports the physiological bracket. However,
|
||
<bibRefCitation id="DA794B50FFAEA62C717610B0316CFD27" author="Bakker RT" box="[381,562,718,740]" journalOrPublisher="Gaia" pageId="3" pageNumber="762" pagination="145 - 158" part="15" refId="ref27031" refString="Bakker RT. 2000. Brontosaur killers: late Jurassic allosaurids as sabre-tooth cat analogues. Gaia 15: 145 - 158." title="Brontosaur killers: late Jurassic allosaurids as sabre-tooth cat analogues" type="journal article" year="2000">Bakker’s (2000)</bibRefCitation>
|
||
analysis of osteology indicates that this muscle has a long ventroflexive lever arm as well. By kinematic inference we would deduce that the muscle was capable of strong head ventroflexion in
|
||
<taxonomicName id="79E84D22FFAEA62C7163113632BDFC9E" authority="Marsh, 1877" box="[360,483,840,861]" class="Reptilia" family="Allosauridae" genus="Allosaurus" kingdom="Animalia" order="Dinosauria" pageId="3" pageNumber="762" phylum="Chordata" rank="genus">Allosaurus</taxonomicName>
|
||
as well as lateroflexion, and that
|
||
<taxonomicName id="79E84D22FFAEA62C711F111932D1FCBF" authority="Marsh, 1877" box="[276,399,871,892]" class="Reptilia" family="Allosauridae" genus="Allosaurus" kingdom="Animalia" order="Dinosauria" pageId="3" pageNumber="762" phylum="Chordata" rank="genus">Allosaurus</taxonomicName>
|
||
was more versatile than extant archosaurus when employing this muscle.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFAEA62C70B711DA3058FA8B" blockId="3.[164,779,198,1352]" pageId="3" pageNumber="762">
|
||
Conversely, physiological inference can strongly inform, and even falsify, kinematic inferences. This will occur when moment arms indicate that a muscle would facilitate a certain action, but EMG indicates that the muscle stabilizes a joint posturally or against the actions of other muscles. One example of this is the human m. brachioradialis. Lever arms might indicate that this muscle is capable of high-geared, rapid flexion of the elbow, but EMG indicates that it acts as a shunt muscle that stabilizes the joint during both rapid flexion and extension by the biceps and triceps, respectively (
|
||
<bibRefCitation id="DA794B50FFAEA62C7130168B31CBFAC8" author="Rosse C & Gaddum-Rosse P." box="[315,661,1269,1291]" journalOrPublisher="Philadelphia: Lippincott-Raven Publishers" pageId="3" pageNumber="762" refId="ref28621" refString="Rosse C, Gaddum-Rosse P. 1997. Hollinshead's textbook of anatomy, 5 th edn. Philadelphia: Lippincott-Raven Publishers." title="Hollinshead's textbook of anatomy, 5 th edn" type="book" year="1997">Rosse & Gaddum-Rosse, 1997</bibRefCitation>
|
||
). Corroborating EMG of m. brachioradialis in gibbons would allow bracketing of its shunt function in fossil apes.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFAEA62C70C117FB31ECFA7A" blockId="3.[164,779,1413,1903]" pageId="3" pageNumber="762">BEHAVIOURAL INTERPOLATION: INFERRING THE CONSEQUENCES OF MUSCLE FUNCTION</paragraph>
|
||
<paragraph id="BE5736A1FFAEA62C70AF17B53673FDCE" blockId="3.[164,779,1413,1903]" lastBlockId="3.[826,1441,198,1903]" pageId="3" pageNumber="762">
|
||
A collective subset of extrapolatory and phylogenetic inference (
|
||
<bibRefCitation id="DA794B50FFAEA62C71291794311AF9C3" author="Bryant HN & Russell AP" box="[290,580,1514,1536]" journalOrPublisher="Philosophical Transactions of the Royal Society of London B" pageId="3" pageNumber="762" pagination="405 - 418" part="337" refId="ref27237" refString="Bryant HN, Russell AP. 1992. The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philosophical Transactions of the Royal Society of London B 337: 405 - 418." title="The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa" type="journal article" year="1992">Bryant & Russell, 1992</bibRefCitation>
|
||
), termed ‘extant behavioural interpolation’ or EBI, expands upon deducing the basic function of muscles to facilitate inference of faculty, biological role (
|
||
<bibRefCitation id="DA794B50FFAEA62C7264143B321AF9B9" author="Bock WJ & Von Wahlert G." journalOrPublisher="EVolution" pageId="3" pageNumber="762" pagination="269 - 299" part="19" refId="ref27175" refString="Bock WJ, Von Wahlert G. 1965. Evolution of the formfunction complex. EVolution 19: 269 - 299." title="Evolution of the formfunction complex" type="journal article" year="1965">Bock & von Wahlert, 1965</bibRefCitation>
|
||
) and behaviour. EBI involves observing a behaviour in extant groups, correlating that behaviour with a reductive muscle function, and inferring the potential for that function and behaviour in the extinct taxon. The actual behaviour can be inferred in the extinct taxon only if the extant groups carry it out, using structural and physiological capabilities observed and inferable as common to all three clades. If a muscle’s morphology and action are known for extant groups, observations of their behaviour can elucidate how the muscle contributes to a given biological role. An example would be a muscle able to dorsiflex the head that facilitates inertial feeding in birds and crocodilians. If both birds and crocodilians use a homologous muscle for inertial feeding, and the muscle is inferred as being present in tyrannosaurids, the behaviour and biological role are also inferred as potentially present in tyrannosaurids. The inference is not absolute, as the bracket cannot predict loss of a function or behaviour in the extinct taxon.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFAEA62C735810683615FCBE" blockId="3.[826,1441,198,1903]" pageId="3" pageNumber="762">
|
||
The robustness of behavioural interpolation will be greatest when the EPB indicates similarity in the extant taxa of all correlates for activity, including kinematic morphology, muscle physiology and the behaviour itself. Potential behaviours are falsifiable with refined information on structure, and inference of overly specific behaviours will not be tenable. Inertial feeding may be acceptable as an inference involving herbivorous hadrosaurian dinosaurs, employing the extant bracket of crocodiles and eagles. However, morphological considerations rule out the inference of hadrosaurs tearing flesh (
|
||
<bibRefCitation id="DA794B50FFAEA62C746311193660FCBE" author="Weishampel DB" box="[1128,1342,871,893]" journalOrPublisher="Acta Palaeontologica Polonica" pageId="3" pageNumber="762" pagination="271 - 280" part="28" refId="ref29273" refString="Weishampel DB. 1983. Hadrosaurid jaw mechanics. Acta Palaeontologica Polonica 28: 271 - 280." title="Hadrosaurid jaw mechanics" type="journal article" year="1983">Weishampel, 1983</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFAEA62C735811F830FBFA3C" blockId="3.[826,1441,198,1903]" pageId="3" pageNumber="762">
|
||
A muscle’s function for a given behaviour in extant animals is deducible from analysis of morphology and kinematics, physiological data (as from EMG), and observed behaviour. The degree of corrobaration for these phenomena, ranging from initial speculation to corroboration by multiple independent authors, can be plotted along respective axes to create a box that subtends a qualitative ‘behavioural inference space’ (
|
||
<figureCitation id="26D32A24FFAEA62C7349160430C6FB52" box="[834,920,1146,1169]" captionStart="Figure 2" captionStartId="4.[144,223,1374,1393]" captionTargetBox="[366,1197,200,1347]" captionTargetId="figure@4.[377,1151,253,1249]" captionTargetPageId="4" captionText="Figure 2. A, inference of muscle function for turning the head in extant animals. Axes represent levels of corroboration of muscle topological and kinematic morphology, physiology and observed behaviour. The volume subtended by these levels of certainty is the behavioural inference space for the muscle. The muscles m. transversospinalis capitis lateralis and m. complexus, homologous and present in crocodilians and birds, respectively, are depicted as examples with different levels of corroboration along the axes and more or less certain inference of function. Physiological activity is shown as confirmed by electromyography in birds, but only hypothesized in crocodilians. B, inferring the function of m. complexus for turning the head in tyrannosaurids. Axes represent levels of inference (Witmer, 1995) for morphology and physiology, and level of inference for kinematic action of the muscle based on its reconstructed morphology (see text for explanation). Because physiological muscle function during movements is corroborated in only one pole of the extant bracket, and the physiology does not leave osteological correlates, a Level II′ inference is the best possible for the extinct taxon ." figureDoi="http://doi.org/10.5281/zenodo.3734922" httpUri="https://zenodo.org/record/3734922/files/figure.png" pageId="3" pageNumber="762">Fig. 2A</figureCitation>
|
||
). The size and shape of the box, respectively, represent the degree of certainty about a muscle’s behavioural role, and the relative contributions of observation, morphology and physiology to our understanding of that utility. A similar behavioural inference space for extinct taxa is shown in
|
||
<figureCitation id="26D32A24FFAEA62C74B1176D3671FAEA" box="[1210,1327,1299,1321]" captionStart="Figure 2" captionStartId="4.[144,223,1374,1393]" captionTargetBox="[366,1197,200,1347]" captionTargetId="figure@4.[377,1151,253,1249]" captionTargetPageId="4" captionText="Figure 2. A, inference of muscle function for turning the head in extant animals. Axes represent levels of corroboration of muscle topological and kinematic morphology, physiology and observed behaviour. The volume subtended by these levels of certainty is the behavioural inference space for the muscle. The muscles m. transversospinalis capitis lateralis and m. complexus, homologous and present in crocodilians and birds, respectively, are depicted as examples with different levels of corroboration along the axes and more or less certain inference of function. Physiological activity is shown as confirmed by electromyography in birds, but only hypothesized in crocodilians. B, inferring the function of m. complexus for turning the head in tyrannosaurids. Axes represent levels of inference (Witmer, 1995) for morphology and physiology, and level of inference for kinematic action of the muscle based on its reconstructed morphology (see text for explanation). Because physiological muscle function during movements is corroborated in only one pole of the extant bracket, and the physiology does not leave osteological correlates, a Level II′ inference is the best possible for the extinct taxon ." figureDoi="http://doi.org/10.5281/zenodo.3734922" httpUri="https://zenodo.org/record/3734922/files/figure.png" pageId="3" pageNumber="762">Figure 2B</figureCitation>
|
||
. Two axes represent inferability of morphology (to a maximum Level I inference) and physiology (maximum of Level I′ without preserved correlates). The third axis represents certainty of kinematic interpretation, which is independent of specific morphologies in the extant relatives if EPB unambiguously suggests the muscle’s presence.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFAEA62C7358147730DFF8D0" blockId="3.[826,1441,198,1903]" pageId="3" pageNumber="762">
|
||
EBI facilitates inference of behaviour from bracketed muscle function, but the behavioural hypothesis becomes more useful and specific when tested biomechanically. Capabilities and limits of an animal’s behavioural performance are quantifiable through biomechanical methods, such as quasi-static (
|
||
<bibRefCitation id="DA794B50FFAEA62C755A14DF3765F915" author="Hutchinson JH & Garcia M." journalOrPublisher="Nature" pageId="3" pageNumber="762" pagination="1018 - 1021" part="415" refId="ref28218" refString="Hutchinson JH, Garcia M. 2001. Tyrannosaurus was not a fast runner. Nature 415: 1018 - 1021." title="Tyrannosaurus was not a fast runner" type="journal article" year="2001">Hutchinson & Garcia, 2001</bibRefCitation>
|
||
) and dynamic (
|
||
<bibRefCitation id="DA794B50FFAEA62C74F714BE36C4F915" author="Snively E." box="[1276,1434,1728,1750]" journalOrPublisher="University of Calgary" pageId="3" pageNumber="762" refId="ref28816" refString="Snively E. 2006. Neck musculoskeletal function in the Tyrannosauridae (Theropoda, Coelurosauria): implications for feeding dynamics. PhD dissertation, Univesity of Calgary." title="Neck musculoskeletal function in the Tyrannosauridae (Theropoda, Coelurosauria): implications for feeding dynamics" type="book" year="2006">Snively, 2006</bibRefCitation>
|
||
) modelling and finite element analysis (
|
||
<bibRefCitation id="DA794B50FFAEA62C753014A0302BF8D0" author="Rayfield EJ" journalOrPublisher="Proceedings of the Royal Society of London B" pageId="3" pageNumber="762" pagination="1451 - 1459" part="271" refId="ref28594" refString="Rayfield EJ. 2004. Cranial mechanics and feeding in Tyrannosaurus rex. Proceedings of the Royal Society of London B 271: 1451 - 1459." title="Cranial mechanics and feeding in Tyrannosaurus rex" type="journal article" year="2004">Rayfield, 2004</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFAEA62B7358156230C0F8AC" blockId="3.[826,1441,198,1903]" lastBlockId="4.[806,1421,1758,1903]" lastPageId="4" lastPageNumber="763" pageId="3" pageNumber="762">
|
||
<figureCitation id="26D32A24FFAEA62C7358156230EDF8F2" box="[851,947,1820,1842]" captionStart="Figure 3" captionStartId="5.[164,243,933,952]" captionTargetBox="[170,778,197,902]" captionTargetId="figure@5.[168,778,195,902]" captionTargetPageId="5" captionText="Figure 3. Flow chart for extant behavioural interpolation, which enables inference of muscle-modulated behaviours in extinct animals. The certainty of behavioural inference in an extinct taxon is inversely related to the behaviour’s specificity. Behaviour can be inferred by phylogenetic bracketing if similarity of muscle function is established in extant clades by kinematic and physiological considerations, and if these functions correlate with similar behaviours in the extant groups." figureDoi="http://doi.org/10.5281/zenodo.3734924" httpUri="https://zenodo.org/record/3734924/files/figure.png" pageId="3" pageNumber="762">Figure 3</figureCitation>
|
||
presents a scheme for arriving at the initial hypothesis of EBI based on preceding inferences. Behaviour is emergent from numerous factors in addition to muscle kinematics and physiology and will remain less testable than other inferences, unless other drivers of behaviour are shown to be homologous in the extant taxa. Nevertheless, these methods facilitate, as far as possible, reconstruction of neck muscles for tyrannosaurids, inference of their action and instigation of biomechanical hypotheses, and discussion of feeding variation within
|
||
<taxonomicName id="79E84D22FFA9A62B75071562302EF893" authorityName="Osborn" authorityYear="1906" class="Reptilia" family="Tyrannosauridae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="4" pageNumber="763" phylum="Chordata" rank="family">Tyrannosauridae</taxonomicName>
|
||
and between tyrannosaurids and other large theropods.
|
||
</paragraph>
|
||
<caption id="EA976629FFA9A62B709B17203151F954" ID-DOI="http://doi.org/10.5281/zenodo.3734922" ID-Zenodo-Dep="3734922" httpUri="https://zenodo.org/record/3734922/files/figure.png" pageId="4" pageNumber="763" startId="4.[144,223,1374,1393]" targetBox="[366,1197,200,1347]" targetPageId="4">
|
||
<paragraph id="BE5736A1FFA9A62B709B17203155F954" blockId="4.[144,1421,1374,1687]" pageId="4" pageNumber="763">
|
||
Figure 2. A, inference of muscle function for turning the head in extant animals. Axes represent levels of corroboration of muscle topological and kinematic morphology, physiology and observed behaviour. The volume subtended by these levels of certainty is the behavioural inference space for the muscle. The muscles m. transversospinalis capitis lateralis and m. complexus, homologous and present in crocodilians and birds, respectively, are depicted as examples with different levels of corroboration along the axes and more or less certain inference of function. Physiological activity is shown as confirmed by electromyography in birds, but only hypothesized in crocodilians. B, inferring the function of m. complexus for turning the head in tyrannosaurids. Axes represent levels of inference (
|
||
<bibRefCitation id="DA794B50FFA9A62B74DB1470363EF9E2" author="Witmer LM" box="[1232,1376,1550,1569]" editor="Thomason JJ" journalOrPublisher="Cambridge: Cambridge University Press" pageId="4" pageNumber="763" pagination="19 - 33" refId="ref29291" refString="Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, ed. Functional morphology in Vertebrate paleontology. Cambridge: Cambridge University Press, 19 - 33." title="The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils" type="book chapter" volumeTitle="Functional morphology in Vertebrate paleontology" year="1995">Witmer, 1995</bibRefCitation>
|
||
) for morphology and physiology, and level of inference for kinematic action of the muscle based on its reconstructed morphology (see text for explanation). Because physiological muscle function during movements is corroborated in only one pole of the extant bracket, and the physiology does not leave osteological correlates, a Level II′ inference is the best possible for the extinct taxon
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA9A62B720014FA3151F954" blockId="4.[144,1421,1374,1687]" box="[523,527,1668,1687]" pageId="4" pageNumber="763">.</paragraph>
|
||
</caption>
|
||
<caption id="EA976629FFA8A62A70AF11DB3109FB61" ID-DOI="http://doi.org/10.5281/zenodo.3734924" ID-Zenodo-Dep="3734924" httpUri="https://zenodo.org/record/3734924/files/figure.png" pageId="5" pageNumber="764" startId="5.[164,243,933,952]" targetBox="[170,778,197,902]" targetPageId="5">
|
||
<paragraph id="BE5736A1FFA8A62A70AF11DB3109FB61" blockId="5.[164,779,933,1186]" pageId="5" pageNumber="764">
|
||
<figureCitation id="26D32A24FFA8A62A70AF11DB3259FC7B" box="[164,263,933,952]" captionStart="Figure 3" captionStartId="5.[164,243,933,952]" captionTargetBox="[170,778,197,902]" captionTargetId="figure@5.[168,778,195,902]" captionTargetPageId="5" captionText="Figure 3. Flow chart for extant behavioural interpolation, which enables inference of muscle-modulated behaviours in extinct animals. The certainty of behavioural inference in an extinct taxon is inversely related to the behaviour’s specificity. Behaviour can be inferred by phylogenetic bracketing if similarity of muscle function is established in extant clades by kinematic and physiological considerations, and if these functions correlate with similar behaviours in the extant groups." figureDoi="http://doi.org/10.5281/zenodo.3734924" httpUri="https://zenodo.org/record/3734924/files/figure.png" pageId="5" pageNumber="764">Figure 3</figureCitation>
|
||
. Flow chart for extant behavioural interpolation, which enables inference of muscle-modulated behaviours in extinct animals. The certainty of behavioural inference in an extinct taxon is inversely related to the behaviour’s specificity. Behaviour can be inferred by phylogenetic bracketing if similarity of muscle function is established in extant clades by kinematic and physiological considerations, and if these functions correlate with similar behaviours in the extant groups.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFA8A62A7115169D31CEFB38" blockId="5.[164,779,1251,1903]" box="[286,656,1251,1275]" pageId="5" pageNumber="764">MATERIAL AND METHODS</paragraph>
|
||
<paragraph id="BE5736A1FFA8A62A713417723131FAE3" blockId="5.[164,779,1251,1903]" box="[319,623,1292,1313]" pageId="5" pageNumber="764">MUSCLE RECONSTRUCTION</paragraph>
|
||
<paragraph id="BE5736A1FFA8A62A70AF174C37BFFE95" blockId="5.[164,779,1251,1903]" lastBlockId="5.[826,1441,198,1780]" pageId="5" pageNumber="764">
|
||
Cervical and craniocervical muscles of tyrannosaurids were reconstructed with reference to dissections and literature descriptions of extant archosaurians, lepidosaurians and mammals, and identification of muscle scars on recent and fossil bone. The guiding principles for reconstruction were EPB and extrapolatory inference (
|
||
<bibRefCitation id="DA794B50FFA8A62A717D179431C2FA3C" author="Bryant HN & Russell AP" box="[374,668,1514,1536]" journalOrPublisher="Philosophical Transactions of the Royal Society of London B" pageId="5" pageNumber="764" pagination="405 - 418" part="337" refId="ref27237" refString="Bryant HN, Russell AP. 1992. The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philosophical Transactions of the Royal Society of London B 337: 405 - 418." title="The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa" type="journal article" year="1992">Bryant & Russell, 1992</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA8A62A72BB17943380F9DD" author="Witmer LM" editor="Thomason JJ" journalOrPublisher="Cambridge: Cambridge University Press" pageId="5" pageNumber="764" pagination="19 - 33" refId="ref29291" refString="Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, ed. Functional morphology in Vertebrate paleontology. Cambridge: Cambridge University Press, 19 - 33." title="The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils" type="book chapter" volumeTitle="Functional morphology in Vertebrate paleontology" year="1995">Witmer, 1995</bibRefCitation>
|
||
). Through the EPB approach, muscles present in both crocodilians and modern dinosaurs are robustly inferred as being present in tyrannosaurids. Examination of successive extant outgroups to Archosauria, such as varanid lizards and mammals, reinforces the immediate bracket if a homologous muscle is present in more distant groups, and polarizes the sequence of a muscle’s evolution and modification. When precise homologies are ambiguous in any of the taxa, less certain reconstructions are possible through higher levels of inference (by greater osteological similarity between the extinct taxon and one of the extant groups; osteological and arthrological analogues; and mechanical considerations:
|
||
<bibRefCitation id="DA794B50FFA8A62A7474129B36C2FF39" author="Bryant HN & Russell AP" box="[1151,1436,228,250]" journalOrPublisher="Philosophical Transactions of the Royal Society of London B" pageId="5" pageNumber="764" pagination="405 - 418" part="337" refId="ref27237" refString="Bryant HN, Russell AP. 1992. The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philosophical Transactions of the Royal Society of London B 337: 405 - 418." title="The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa" type="journal article" year="1992">Bryant & Russell, 1992</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA8A62A7331137D3080FEDA" author="Witmer LM" box="[826,990,259,281]" editor="Thomason JJ" journalOrPublisher="Cambridge: Cambridge University Press" pageId="5" pageNumber="764" pagination="19 - 33" refId="ref29291" refString="Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, ed. Functional morphology in Vertebrate paleontology. Cambridge: Cambridge University Press, 19 - 33." title="The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils" type="book chapter" volumeTitle="Functional morphology in Vertebrate paleontology" year="1995">Witmer, 1995</bibRefCitation>
|
||
). Autapomorphic loss of a muscle is considered to be a less parsimonious interpretation in the absence of osteological evidence.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA8A62A7358132130C6FAC8" blockId="5.[826,1441,198,1780]" pageId="5" pageNumber="764">
|
||
Specimens for dissection and osteological examination were obtained by the University of Calgary Museum of Zoology (UCMZ), primarily through the Calgary Zoo, Alberta Department of Fish and Wildlife, and Reptile World, Drumheller, Alberta. Two specimens of
|
||
<taxonomicName id="79E84D22FFA8A62A73D6138737EDFDCE" box="[989,1203,504,526]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
were dissected and described as part of an assessment of intervertebral flexion (our unpubl. data). Dissection of commercially obtained, preserved domestic cats and three human cadavers (generously bequeathed to the Department of Cell Biology and Anatomy, University of Calgary Faculty of Medicine: UCDA), and examination of muscle attachments on cat and human skeletal preparations (UCDA, UCMZ), introduced the context of a more distal outgroup. Dissected crocodilians were
|
||
<taxonomicName id="79E84D22FFA8A62A733111543736FC83" baseAuthorityName="Daudin" baseAuthorityYear="1802" box="[826,1128,810,832]" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFA8A62A74BD115436C4FCFC" authorityName="Lehr" authorityYear="2002" box="[1206,1434,810,831]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
, and muscle scars were assessed on skulls and cervical vertebrae of
|
||
<taxonomicName id="79E84D22FFA8A62A73DB111937F2FCBF" authorityName="Lehr" authorityYear="2002" box="[976,1196,871,892]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
(two),
|
||
<taxonomicName id="79E84D22FFA8A62A750B11193096FC58" baseAuthorityName="Daudin" baseAuthorityYear="1802" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
(two) and
|
||
<taxonomicName id="79E84D22FFA8A62A746111F83616FC58" authority="Cuvier, 1807" box="[1130,1352,902,923]" class="Reptilia" family="Crocodylidae" genus="Crocodylus" kingdom="Animalia" order="Crocodylia" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="acutus">Crocodylus acutus</taxonomicName>
|
||
. Birds dissected were
|
||
<taxonomicName id="79E84D22FFA8A62A73F711DA3797FC7A" authority="Linnaeus, 1758" box="[1020,1225,932,953]" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
(two adults and two late-stage embryos),
|
||
<taxonomicName id="79E84D22FFA8A62A747C11BD36C4FC1B" authority="Lesson, 1831" box="[1143,1434,963,984]" class="Aves" family="Ciconiidae" genus="Leptoptilos" kingdom="Animalia" order="Ciconiiformes" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="crumeniferus">Leptoptilos crumeniferus</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA8A62A7331119F3766FC35" box="[826,1080,993,1014]" class="Reptilia" family="Tyrannosauridae" genus="Pelicanus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="occidentalis">Pelicanus occidentalis</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA8A62A7441119C3665FC35" baseAuthorityName="Ord" baseAuthorityYear="1815" box="[1098,1339,993,1015]" class="Aves" family="Anatidae" genus="Cygnus" kingdom="Animalia" order="Anseriformes" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="columbianus">Cygnus columbianus</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA8A62A7546119C30ECFBD6" class="Aves" family="Anatidae" genus="Cygnus" kingdom="Animalia" order="Anseriformes" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="buccinator">Cygnus buccinator</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA8A62A73CE167E37F5FBD6" authorityName="Linnaeus" authorityYear="1758" box="[965,1195,1024,1045]" class="Aves" family="Anatidae" genus="Anas" kingdom="Animalia" order="Anseriformes" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="platyrhynchos">Anas platyrhynchos</taxonomicName>
|
||
(two),
|
||
<taxonomicName id="79E84D22FFA8A62A7508167E36FFFBD6" authorityName="Linnaeus" authorityYear="1758" box="[1283,1441,1024,1045]" class="Aves" family="Phasianidae" genus="Gallus" kingdom="Animalia" order="Galliformes" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="gallus">Gallus gallus</taxonomicName>
|
||
(three),
|
||
<taxonomicName id="79E84D22FFA8A62A73911661372FFBF7" authorityName="Linnaeus" authorityYear="1758" box="[922,1137,1055,1076]" class="Aves" family="Falconidae" genus="Falco" kingdom="Animalia" order="Falconiformes" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="columbarius">Falco columbarius</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA8A62A748E1661360DFBF7" authorityName="Linnaeus" authorityYear="1758" box="[1157,1363,1055,1076]" class="Aves" family="Accipitridae" genus="Aquila" kingdom="Animalia" order="Accipitriformes" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="chrysaetos">Aquila chrysaetos</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA8A62A756D16613776FB91" authorityName="Linnaeus" authorityYear="1766" class="Aves" family="Accipitridae" genus="Haliaeetus" kingdom="Animalia" order="Accipitriformes" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="leucocephalus">Haliaeetus leucocephalus</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA8A62A7433164037BFFB91" authority="Pontoppidan, 1763" box="[1080,1249,1085,1107]" class="Aves" family="Strigidae" genus="Asio" kingdom="Animalia" order="Strigiformes" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="flammeus">Asio flammeus</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA8A62A74F9164330C9FBB2" authority="Swainson, 1821" class="Aves" family="Alcedinidae" genus="Todiramphus" kingdom="Animalia" order="Coraciiformes" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="cinnamominus">Halcyon cinnamomina</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFA8A62A73D816223762FBB2" authority="Linnaeus, 1758" box="[979,1084,1116,1137]" class="Aves" family="Corvidae" genus="Pica" kingdom="Animalia" order="Passeriformes" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="pica">Pica pica</taxonomicName>
|
||
. Skeletal material consisted of cervical vertebrae and skulls of skeletonized dissection specimens, and additional skeletal specimens of numerous avian clades curated at UCMZ. The Appendix lists the examined skeletal material of extant reptiles.
|
||
</paragraph>
|
||
</subSubSection>
|
||
<subSubSection id="F6F2652AFFA8A62A7358176D30A8F937" pageId="5" pageNumber="764" type="nomenclature">
|
||
<paragraph id="BE5736A1FFA8A62A7358176D30A8F937" blockId="5.[826,1441,198,1780]" pageId="5" pageNumber="764">
|
||
Specimens of tyrannosaurids and other Mesozoic theropods were examined at numerous institutions. These included specimens of
|
||
<taxonomicName id="79E84D22FFA8A62A74B5172F36FFFAA5" authority="Osborn, 1905" box="[1214,1441,1361,1382]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(six; seven if this taxon subsumes
|
||
<taxonomicName id="79E84D22FFA8A62A74F6170E30FCFA60" authority="Bakker, Currie & Williams, 1988" class="Reptilia" family="Tyrannosauridae" genus="Nanotyrannus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="lancensis">Nanotyrannus lancencis</taxonomicName>
|
||
),
|
||
<taxonomicName id="79E84D22FFA8A62A73B017F037C1FA60" authority="Maleev, 1955" box="[955,1183,1422,1443]" class="Reptilia" family="Tyrannosauridae" genus="Tarbosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="bataar">Tarbosaurus bataar</taxonomicName>
|
||
(two),
|
||
<taxonomicName id="79E84D22FFA8A62A74F917F030D5FA01" authority="Russell, 1970" class="Reptilia" family="Tyrannosauridae" genus="Daspletosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="torosus">Daspletosaurus torosus</taxonomicName>
|
||
(four, possibly including other
|
||
<taxonomicName id="79E84D22FFA8A62A74F917D236FFFA02" authority="Russell, 1970" box="[1266,1441,1452,1473]" class="Reptilia" family="Tyrannosauridae" genus="Daspletosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="genus">Daspletosaurus</taxonomicName>
|
||
species),
|
||
<taxonomicName id="79E84D22FFA8A62A73A817B537C6FA23" authority="Lambe 1914" box="[931,1176,1483,1504]" class="Reptilia" family="Tyrannosauridae" genus="Gorgosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="libratus">Gorgosaurus libratus</taxonomicName>
|
||
(four) and
|
||
<taxonomicName id="79E84D22FFA8A62A751417B530A8FA3C" authority="Osborn, 1905" class="Reptilia" family="Tyrannosauridae" genus="Albertosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="sarcophagus">Albertosaurus sarcophagus</taxonomicName>
|
||
(two). Non-tyrannosaurid specimens included many smaller coelurosaurs, and large noncoelurosaurian theropods including
|
||
<taxonomicName id="79E84D22FFA8A62A74DF145930FDF999" authority="Stovall & Langston, 1950" class="Reptilia" family="Carcharodontosauridae" genus="Acrocanthosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="atokensis">Acrocanthosaurus atokensis</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA8A62A73B5143B37C1F999" authority="Marsh, 1877" box="[958,1183,1605,1626]" class="Reptilia" family="Allosauridae" genus="Allosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="fragilis">Allosaurus fragilis</taxonomicName>
|
||
, three
|
||
<taxonomicName id="79E84D22FFA8A62A7502143836FFF998" authority="Marsh, 1884" box="[1289,1441,1606,1627]" class="Reptilia" family="Ceratosauridae" genus="Ceratosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="genus">Ceratosaurus</taxonomicName>
|
||
species,
|
||
<taxonomicName id="79E84D22FFA8A62A73AC141A3797F9BA" authority="Welles, 1970" box="[935,1225,1636,1657]" class="Reptilia" family="Dilophosauridae" genus="Dilophosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="wetherilli">Dilophosaurus wethereli</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFA8A62A7514141B36C4F9B9" authority="Hu, 1993" box="[1311,1434,1637,1658]" class="Reptilia" family="Dilophosauridae" genus="Dilophosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="sinensis">D. sinensis</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA8A62A733114FD373FF95B" authority="Coria & Salgado, 1995" box="[826,1121,1667,1688]" class="Reptilia" family="Carcharodontosauridae" genus="Giganotosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="carolini">Giganotosaurus carolinii</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA8A62A747014FD36C5F95B" authority="Zhao & Currie 1993" box="[1147,1435,1667,1688]" class="Reptilia" genus="Monolophosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="jiangi">Monolophosaurus jiangi</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA8A62A733114DC30AEF975" authority="Currie and Zhao, 1994" box="[826,1008,1697,1719]" class="Reptilia" family="Metriacanthosauridae" genus="Sinraptor" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="dongi">Sinraptor dongi</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFA8A62A742214DC3651F974" authority="Galton & Jensen 1979" box="[1065,1295,1698,1719]" class="Reptilia" family="Megalosauridae" genus="Torvosaurus" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="764" phylum="Chordata" rank="species" species="tanneri">Torvosaurus tanneri</taxonomicName>
|
||
. The Appendix summarizes specimen information for examined fossil theropods.
|
||
</paragraph>
|
||
</subSubSection>
|
||
<subSubSection id="F6F2652AFFA8A603735B156A362AFCC0" lastPageId="44" lastPageNumber="803" pageId="5" pageNumber="764" type="description">
|
||
<paragraph id="BE5736A1FFA8A62A735B156A36D5F8EB" blockId="5.[826,1441,1812,1903]" box="[848,1419,1812,1833]" pageId="5" pageNumber="764">MUSCLE SYNONYMIES AND NAMING CONVENTIONS</paragraph>
|
||
<paragraph id="BE5736A1FFA8A62973311544321BFC9D" blockId="5.[826,1441,1812,1903]" lastPageId="6" lastPageNumber="765" pageId="5" pageNumber="764">
|
||
Neck muscles are complex and have a rich history of description in multiple languages. Consequently, consistency of muscle names between taxa, or even within well-defined clades, has been difficult for researchers to maintain. Avian muscle names, in particular, conflict with those for homologues in other amniotes, but precision within the avian literature is stabilizing with the adoption of the Nomina Anatomica Avium (
|
||
<bibRefCitation id="DA794B50FFABA62971D01303319AFE57" author="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" box="[475,708,381,404]" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="6" pageNumber="765" refId="ref27088" refString="Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC. 1993. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club." title="Handbook of aVian anatomy: nomina anatomica aVium" type="book" year="1993">Baumel et al., 1993</bibRefCitation>
|
||
). To avoid ambiguity between conflicting names, for a given homologous muscle or bone of insertion in birds, crocodilians and tyrannosaurids we use both the term from Nomina Anatomica Avium (
|
||
<bibRefCitation id="DA794B50FFABA629709C10683153FDEE" author="Vanden Berge JC & Zweers GA" box="[151,525,534,557]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="6" pageNumber="765" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
) and the synonym most commonly applied for the muscle in other reptiles (usually from Nomina Anatomica Veteri- naria: ICVGAN, 1994). However, we do list syn- onyms and include their citation when authors diverge from the ICVGAN nomenclature. For muscles present in either birds or other reptiles but not universally present in sauropsids, we apply the name given to the muscle in the respec- tive group if correlates indicate its presence in tyrannosaurids.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFABA62970A31119320AFB90" pageId="6" pageNumber="765">
|
||
Neck muscles have often been described as inserting on the exoccipitals. However, the exoccipitals and opisthotics are ambiguously differentiable in many dinosaurs, and the opisthotics may be more the prominent lateral components of the occiput (A. Carabajal, pers. comm.). We therefore follow
|
||
<bibRefCitation id="DA794B50FFABA629726A167E31A9FBD5" author="Seidel R." box="[609,759,1024,1046]" journalOrPublisher="City University of New York" pageId="6" pageNumber="765" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel (1978)</bibRefCitation>
|
||
and refer to these muscles as inserting on the paroccipital processes.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFABA62970A31622323FFA60" pageId="6" pageNumber="765">
|
||
There is general agreement between the names used here for muscles and those in work recently published and in preparation by
|
||
<bibRefCitation id="DA794B50FFABA629720716E731F2FB6D" author="Tsuihiji T." box="[524,684,1177,1199]" journalOrPublisher="Journal of Vertebrate Paleontology" pageId="6" pageNumber="765" pagination="115" part="22" refId="ref29080" refString="Tsuihiji T. 2002. A preliminary assessment of the evolution of the cervical musculature in Diapsida with an emphasis on Dinosauria. Journal of Vertebrate Paleontology 22 (Suppl. to no. 3): 115 A." title="A preliminary assessment of the evolution of the cervical musculature in Diapsida with an emphasis on Dinosauria." type="journal article" year="2002">Tsuihiji (2002</bibRefCitation>
|
||
,
|
||
<bibRefCitation id="DA794B50FFABA62972B216E731ACFB6D" author="Tsuihiji T." box="[697,754,1177,1198]" journalOrPublisher="Journal of Vertebrate Paleontology" pageId="6" pageNumber="765" pagination="105" part="23" refId="ref29120" refString="Tsuihiji T. 2003. Evolutionary changes in attachments of the axial musculature in the occipital region in Marginocephalia (Dinosauria). Journal of Vertebrate Paleontology 23 (Suppl. to no. 3): 105 A." title="Evolutionary changes in attachments of the axial musculature in the occipital region in Marginocephalia (Dinosauria)." type="journal article" year="2003">2003</bibRefCitation>
|
||
,
|
||
<bibRefCitation id="DA794B50FFABA629709B16C63395FB0D" author="Tsuihiji T." box="[144,203,1208,1230]" journalOrPublisher="Journal of Morphology" pageId="6" pageNumber="765" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">2005</bibRefCitation>
|
||
). Tsuihiji’s research encompasses the evolution and homologies of neck muscles throughout Sauria, while the present work emphasizes analogous functions of these muscles in tyrannosaurids and their extant relatives. With its broader systematic scope Tsuihiji’s nomenclature will be more comprehensively applicable, and should be adopted in the case of conflicting names.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFABA62970A317D232EEF8AC" pageId="6" pageNumber="765">
|
||
Muscle descriptions of extant archosaurs and tyr- annosaurids are organized by topographic and func- tional divisions. Descriptions proceed from dorsal to ventral for transversospinalis, longissimus, iliocosta- lis and longus groups, starting with superficial and/or multiarticular muscles and subsequently dis- cussing uniarticular and deeper ones. Variants of each muscle are noted in extant clades, when pos- sible including
|
||
<taxonomicName id="79E84D22FFABA629714314DC3140F975" box="[328,542,1697,1719]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="6" pageNumber="765" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
as a comparative outgroup. Kinematic and physiological correlates of muscle function are described. The inferred mor- phologies of muscles are then described for the
|
||
<taxonomicName id="79E84D22FFABA629709B1562320BF8F1" authorityName="Osborn" authorityYear="1906" box="[144,341,1820,1842]" class="Reptilia" family="Tyrannosauridae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="6" pageNumber="765" phylum="Chordata" rank="family">Tyrannosauridae</taxonomicName>
|
||
, and kinematic and physiological considerations are assessed so as to facilitate infer- ence of muscle function.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFABA629741112B837C4FF1D" box="[1050,1178,198,222]" pageId="6" pageNumber="765">RESULTS</paragraph>
|
||
<paragraph id="BE5736A1FFABA629736712903787FE81" pageId="6" pageNumber="765">CONTINUITIES OF OSTEOLOGICAL MUSCLE ATTACHMENTS IN EXTANT ARCHOSAURS AND TYRANNOSAURIDS</paragraph>
|
||
<paragraph id="BE5736A1FFABA629732D132A3635FCD5" pageId="6" pageNumber="765">
|
||
<figureCitation id="26D32A24FFABA629732D132A30D9FEAA" box="[806,903,340,362]" captionStart="Figure 4" captionStartId="7.[164,243,1674,1693]" captionTargetId="figure@7.[514,1139,205,1644]" captionTargetPageId="7" captionText="Figure 4. Comparison of major sites of muscle attachment on the necks of tyrannosaurids versus crocodilians and birds. A, cervical series of Caiman crocodylus (above; C1–C9) and Tyrannosaurus rex (below; C1–C10), depicting similarities of posterior transverse process morpohology. B, cervical series of Asio flamaeus (above) and Tyrannosaurus rex (below), depicting morphological similarities of epipophysis and the C2 neural spine. In all three groups the anterior transverse processes are smaller than their posterior counterparts (to show this clearly the C2 cerivical rib of T. rex is not pictured). Cervical rib morphology differs markedly among these archosaurs. The specimens are scaled to similar lengths from C1 to C9. The Tyrannosaurus rex is a composite reconstruction of C1 from Osborn (1905), BHI 3033 (C2) and AMNH 5027 (the remaining bones)." figureDoi="http://doi.org/10.5281/zenodo.3734926" httpUri="https://zenodo.org/record/3734926/files/figure.png" pageId="6" pageNumber="765">Figure 4</figureCitation>
|
||
depicts a comparison of muscle attachment sites on the cervical vertebrae of crocodilians and birds, respectively, with tyrannosaurids. Posteriorly, crocodilians and tyrannosaurids share long transverse processes with prominent diapophyseal articular surfaces for the cervical ribs. These osteological similarities indicate similar origins for muscles of the longissimus system, associated with the transverse processes. Birds are derived among archosaurs in lacking long transverse processes, which indicates modification of associated longissimus musculature. Also, unlike the condition in birds, neural spines of both crocodilians and tyrannosaurids are relatively tall throughout the cervical series, indicating similar origins for transversospinalis system components.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFABA6297334116130C0FB45" pageId="6" pageNumber="765">Conversely, anterior insertions and origins of transversospinalis derivatives are more similar in birds and tyrannosaurids than either are to crocodilians. In particular, the epipophyses (also called processes dorsales), projections above the postzygapophyses, are of the standard dinosaurian morphology in tyrannosaurids and birds, while crocodilians lack these projections. The C2 neural spine of birds and tyrannosarids is tall relative to the anteroposterior length of the centrum, again unlike the condition in crocodilians and suggesting similarity of associated muscles in the theropods.</paragraph>
|
||
<paragraph id="BE5736A1FFABA629733416F037B4F929" pageId="6" pageNumber="765">Although tyrannosaurids share respective traits with crocodilians and birds, some aspects of their neck osteology are unlike those of either extant archosaur clade, and more like those of other large Mesozoic theropods. Shafts of the cervical ribs of most large theropods were long, attenuate structures, that extended posteriorly by the lengths of several posterior centra. In contrast, most cervical ribs of crocodilians have relatively short anterior and posterior projections that overlap each other. Only the C1–C3 ribs of crocodilians have long and posteriorly restricted shafts. In birds the cervical ribs are fused to the diapophyses as short costal processes. These differences indicate that the cervical iliocostalis muscles, associated with the cervical ribs, were distinct in tyrannosaurids and other large theropds from the condition in either clade of extant archosaurs. We now describe the neck muscles of extant reptiles, as the basis for inferring specific homologies, differences, and similarities between tyrannosaurids and their extant relatives.</paragraph>
|
||
<paragraph id="BE5736A1FFABA62973DC15753782F8E0" box="[983,1244,1803,1827]" pageId="6" pageNumber="765">EXTANT REPTILES</paragraph>
|
||
<paragraph id="BE5736A1FFABA626732D154430B0F8AC" lastBlockId="9.[826,1441,1514,1903]" lastPageId="9" lastPageNumber="768" pageId="6" pageNumber="765">
|
||
<tableCitation id="F36A031AFFABA629732D154430DBF88C" box="[806,901,1850,1872]" captionStart="Table 1" captionStartId="8.[144,208,200,219]" captionTargetPageId="8" captionText="Table 1. Neck muscles of Aves, with osteological correlates listed for Tyrannosauridae" httpUri="http://table.plazi.org/id/EA976629FFA5A627709B12B6376FFF18" pageId="6" pageNumber="765" tableUuid="EA976629FFA5A627709B12B6376FFF18">Tables 1</tableCitation>
|
||
and
|
||
<tableCitation id="F36A031AFFABA62973CC1544308BF88C" box="[967,981,1850,1871]" captionStart="Table 2" captionStartId="10.[144,208,200,219]" captionText="Table 2. Multiarticular neck muscles of crocodilians, with osteological correlates listed for Tyrannosauridae" pageId="6" pageNumber="765">2</tableCitation>
|
||
summarize origins and insertions of muscles of birds and crocodilians.
|
||
<figureCitation id="26D32A24FFABA62974C515273671F8AC" box="[1230,1327,1881,1903]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="6" pageNumber="765">Figure 5</figureCitation>
|
||
depicts attachments of muscles inserting on the occiput of birds, and
|
||
<figureCitation id="26D32A24FFA4A6267123147632D7F9DD" box="[296,393,1544,1566]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="9" pageNumber="768">Figure 6</figureCitation>
|
||
shows origins and insertions of most neck and craniocervical muscles of crocodilians. Some small, postural muscles that span intervertebral pairs in archosaurs, but that are variably present, are omitted from figures and descriptions. These include mm. interarticulares between postzygapophyses in crocodilians, and mm. interspinales that connect successive crocodilian neural spines (
|
||
<bibRefCitation id="DA794B50FFA4A626710D148332D5F8D0" author="Frey E." box="[262,395,1789,1811]" journalOrPublisher="Biologie" pageId="9" pageNumber="768" pagination="1 - 106" part="424" refId="ref27770" refString="Frey E. 1988. Anatomie des Korperstammes von Alligator mississippiensis Daudin. Stuttgarter Beitrage zur Naturkunde (series A - Biologie) 424: 1 - 106." title="Anatomie des Korperstammes von Alligator mississippiensis Daudin. Stuttgarter Beitrage zur Naturkunde" type="journal article" year="1988">Frey, 1988</bibRefCitation>
|
||
). Other muscles that may be uniquely configured in birds, mm. intercristales and mm. cervicales ascendentes, are treated last. The gross morphology of each muscle is figured first, and then origins and insertions are depicted. Several authors have presented excellent schematic and realistically drafed illustrations of archosaurian neck muscles (
|
||
<bibRefCitation id="DA794B50FFA4A62673FE143B366AF998" author="Fisher HI & Goodman DC" box="[1013,1332,1605,1627]" journalOrPublisher="Urbana: The University of Illinois Press" pageId="9" pageNumber="768" pagination="2" part="24" refId="ref27668" refString="Fisher HI, Goodman DC. 1955. The myology of the whooping crane, Grus americana. In: Illinois Biological Monographs 24 (2). Urbana: The University of Illinois Press." title="The myology of the whooping crane, Grus americana" type="book chapter" volumeTitle="Illinois Biological Monographs" year="1955">Fisher & Goodman, 1955</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA4A6267541143B3094F9B9" author="Zusi RL & Storer RW" journalOrPublisher="Miscellaneous Publications of the Museum of Zoology, University of Michigan" pageId="9" pageNumber="768" pagination="1-49" part="139" refId="ref29391" refString="Zusi RL, Storer RW. 1969. Osteology and myology of the head and neck of the Pied-billed Grebe (Podilymbus). Miscellaneous Publications of the Museum of Zoology, Uni- Versity of Michigan 139: 1 - 49." title="Osteology and myology of the head and neck of the Pied-billed Grebe (Podilymbus)" type="book" year="1969">Zusi & Storer, 1969</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA4A62673D2141B372DF9BA" author="Burton PJK" box="[985,1139,1636,1658]" journalOrPublisher="London: Trustees of the British Museum (Natural History)" pageId="9" pageNumber="768" refId="ref27275" refString="Burton PJK. 1974. Feeding and the feeding apparatus in aeaders. London: Trustees of the British Museum (Natural History)." title="Feeding and the feeding apparatus in aeaders" type="book" year="1974">Burton, 1974</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA4A6267489141A364CF9BA" author="Seidel R." box="[1154,1298,1636,1658]" journalOrPublisher="City University of New York" pageId="9" pageNumber="768" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA4A626752B141B36C2F9BA" author="Frey E." box="[1312,1436,1636,1658]" journalOrPublisher="Biologie" pageId="9" pageNumber="768" pagination="1 - 106" part="424" refId="ref27770" refString="Frey E. 1988. Anatomie des Korperstammes von Alligator mississippiensis Daudin. Stuttgarter Beitrage zur Naturkunde (series A - Biologie) 424: 1 - 106." title="Anatomie des Korperstammes von Alligator mississippiensis Daudin. Stuttgarter Beitrage zur Naturkunde" type="journal article" year="1988">Frey, 1988</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA4A626733114FD37E9F95B" author="Vanden Berge JC & Zweers GA" box="[826,1207,1667,1689]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="9" pageNumber="768" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA4A62674C014FD36C2F95B" author="Cong L & Hou L & Wu X-C & Hou J." box="[1227,1436,1667,1688]" journalOrPublisher="Beijing: Science Press" pageId="9" pageNumber="768" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA4A626733114DF3732F975" author="Cleuren J & De Vree F." box="[826,1132,1697,1719]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="9" pageNumber="768" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
; especially comprehensive are those of
|
||
<bibRefCitation id="DA794B50FFA4A62673EF14BE3734F916" author="Boas JEV" box="[996,1130,1728,1749]" journalOrPublisher="Det Kongelige Danske Videnskabernes Selskabs skrifter NaturVidenskabelig og Mathematick Afdelning" pageId="9" pageNumber="768" pagination="105 - 222" part="1" refId="ref27144" refString="Boas JEV. 1929. Biologische-anatomische Studien uber den Hals der Vogel. Det Kongelige Danske Videnskabernes Selskabs skrifter NaturVidenskabelig og Mathematick Afdelning Series 9 1: 105 - 222." title="Biologische-anatomische Studien uber den Hals der Vogel" type="journal article" year="1929">Boas, 1929</bibRefCitation>
|
||
and
|
||
<bibRefCitation id="DA794B50FFA4A62674B314BE363CF915" author="Tsuihiji T." box="[1208,1378,1728,1750]" journalOrPublisher="Journal of Morphology" pageId="9" pageNumber="768" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji, 2005</bibRefCitation>
|
||
). We present a photographic record of dissected reptiles, to highlight topographic and functional relationships between the muscles, and as as a replicative guide to corroborating or falsifying our interpretations.
|
||
</paragraph>
|
||
<caption id="EA976629FFAAA62870AF14F432C8F8A9" ID-DOI="http://doi.org/10.5281/zenodo.3734926" ID-Zenodo-Dep="3734926" httpUri="https://zenodo.org/record/3734926/files/figure.png" pageId="7" pageNumber="766" targetBox="[411,1194,201,1644]" targetPageId="7">
|
||
<paragraph id="BE5736A1FFAAA62870AF14F432C8F8A9" blockId="7.[164,1442,1674,1898]" pageId="7" pageNumber="766">
|
||
<figureCitation id="26D32A24FFAAA62870AF14F43259F95E" box="[164,263,1674,1693]" captionStart="Figure 4" captionStartId="7.[164,243,1674,1693]" captionTargetId="figure@7.[514,1139,205,1644]" captionTargetPageId="7" captionText="Figure 4. Comparison of major sites of muscle attachment on the necks of tyrannosaurids versus crocodilians and birds. A, cervical series of Caiman crocodylus (above; C1–C9) and Tyrannosaurus rex (below; C1–C10), depicting similarities of posterior transverse process morpohology. B, cervical series of Asio flamaeus (above) and Tyrannosaurus rex (below), depicting morphological similarities of epipophysis and the C2 neural spine. In all three groups the anterior transverse processes are smaller than their posterior counterparts (to show this clearly the C2 cerivical rib of T. rex is not pictured). Cervical rib morphology differs markedly among these archosaurs. The specimens are scaled to similar lengths from C1 to C9. The Tyrannosaurus rex is a composite reconstruction of C1 from Osborn (1905), BHI 3033 (C2) and AMNH 5027 (the remaining bones)." figureDoi="http://doi.org/10.5281/zenodo.3734926" httpUri="https://zenodo.org/record/3734926/files/figure.png" pageId="7" pageNumber="766">Figure 4</figureCitation>
|
||
. Comparison of major sites of muscle attachment on the necks of tyrannosaurids versus crocodilians and birds. A, cervical series of
|
||
<taxonomicName id="79E84D22FFAAA628717114D6311CF979" authorityName="Lehr" authorityYear="2002" box="[378,578,1703,1723]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="7" pageNumber="766" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
(above; C1–C9) and
|
||
<taxonomicName id="79E84D22FFAAA628732B14D630BBF979" authority="Osborn, 1905" box="[800,997,1704,1722]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="7" pageNumber="766" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(below; C1–C10), depicting similarities of posterior transverse process morpohology. B, cervical series of
|
||
<taxonomicName id="79E84D22FFAAA628735F14BB30B4F91B" authority="Pontoppidan, 1763" box="[852,1002,1733,1752]" class="Aves" family="Strigidae" genus="Asio" kingdom="Animalia" order="Strigiformes" pageId="7" pageNumber="766" phylum="Chordata" rank="species" species="flammeus">Asio flamaeus</taxonomicName>
|
||
(above) and
|
||
<taxonomicName id="79E84D22FFAAA628747614BB361AF914" authority="Osborn, 1905" box="[1149,1348,1733,1751]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="7" pageNumber="766" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(below), depicting morphological similarities of epipophysis and the C2 neural spine. In all three groups the anterior transverse processes are smaller than their posterior counterparts (to show this clearly the C2 cerivical rib of T. rex is not pictured). Cervical rib morphology differs markedly among these archosaurs. The specimens are scaled to similar lengths from C1 to C9. The
|
||
<taxonomicName id="79E84D22FFAAA6287116154432BCF88F" authority="Osborn, 1905" box="[285,482,1850,1868]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="7" pageNumber="766" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
is a composite reconstruction of C1 from
|
||
<bibRefCitation id="DA794B50FFAAA62873AF15443765F88E" author="Osborn HF" box="[932,1083,1850,1869]" journalOrPublisher="Bulletin of the American Museum of Natural History" pageId="7" pageNumber="766" pagination="259 - 265" part="21" refId="ref28545" refString="Osborn HF. 1905. Tyrannosaurus and other Cretaceous carnivorous dinosaurs. Bulletin of the American Museum of Natural History 21: 259 - 265." title="Tyrannosaurus and other Cretaceous carnivorous dinosaurs" type="journal article" year="1905">Osborn (1905)</bibRefCitation>
|
||
,
|
||
<materialsCitation id="0E803CFCFFAAA6287443154437F1F88E" ID-GBIF-Occurrence="3396397316" box="[1096,1199,1850,1869]" collectionCode="BHI" pageId="7" pageNumber="766" specimenCode="BHI 3033">BHI 3033</materialsCitation>
|
||
(C2) and
|
||
<materialsCitation id="0E803CFCFFAAA6287510154436FFF88E" ID-GBIF-Occurrence="3396397307" box="[1307,1441,1850,1869]" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&specimen_id=47761 " pageId="7" pageNumber="766" specimenCode="AMNH 5027">AMNH 5027</materialsCitation>
|
||
(the remaining bones).
|
||
</paragraph>
|
||
</caption>
|
||
<caption id="EA976629FFA5A627709B12B6376FFF18" ID-Table-UUID="EA976629FFA5A627709B12B6376FFF18" box="[144,1073,200,219]" httpUri="http://table.plazi.org/id/EA976629FFA5A627709B12B6376FFF18" pageId="8" pageNumber="767" targetBox="[144,1421,258,1825]" targetIsTable="true" targetPageId="8">
|
||
<paragraph id="BE5736A1FFA5A627709B12B6376FFF18" blockId="8.[144,1073,200,219]" box="[144,1073,200,219]" pageId="8" pageNumber="767">
|
||
Table 1. Neck muscles of
|
||
<taxonomicName id="79E84D22FFA5A62771A012B63280FF18" box="[427,478,200,219]" class="Aves" kingdom="Animalia" pageId="8" pageNumber="767" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
, with osteological correlates listed for
|
||
<taxonomicName id="79E84D22FFA5A627737512B6376FFF18" authorityName="Osborn" authorityYear="1906" box="[894,1073,200,219]" class="Reptilia" family="Tyrannosauridae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="8" pageNumber="767" phylum="Chordata" rank="family">Tyrannosauridae</taxonomicName>
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFA5A627745B137C37E5F8E2" pageId="8" pageNumber="767">
|
||
<table id="CCE8C401FFA559D0709B137C36D3F8E2" box="[144,1421,258,1825]" gridcols="4" gridrows="10" pageId="8" pageNumber="767">
|
||
<tr id="00D834E3FFA559D0709B137C36D3FED6" box="[144,1421,258,277]" gridrow="0" pageId="8" pageNumber="767" rowspan-0="1" rowspan-1="1" rowspan-2="1">
|
||
<th id="43095D9FFFA559D0745B137C36D3FED6" box="[1104,1421,258,277]" gridcol="3" gridrow="0" pageId="8" pageNumber="767">Correlates in</th>
|
||
</tr>
|
||
<tr id="00D834E3FFA559D0709B136136D3FEF1" box="[144,1421,287,306]" gridrow="1" pageId="8" pageNumber="767">
|
||
<th id="43095D9FFFA559D0709B13613223FEF1" box="[144,381,287,306]" gridcol="0" gridrow="1" pageId="8" pageNumber="767">Muscle/action</th>
|
||
<td id="43095D9FFFA559D071AF13613184FEF1" box="[420,730,287,306]" gridcol="1" gridrow="1" pageId="8" pageNumber="767">Origin</td>
|
||
<td id="43095D9FFFA559D0730A13613774FEF1" box="[769,1066,287,306]" gridcol="2" gridrow="1" pageId="8" pageNumber="767">Insertion</td>
|
||
<td id="43095D9FFFA559D0745B136136D3FEF1" box="[1104,1421,287,306]" gridcol="3" gridrow="1" pageId="8" pageNumber="767">
|
||
<taxonomicName id="79E84D22FFA5A627745B136137A3FEF1" authorityName="Osborn" authorityYear="1906" box="[1104,1277,287,306]" class="Reptilia" family="Tyrannosauridae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="8" pageNumber="807" phylum="Chordata" rank="family">tyrannosauridae</taxonomicName>
|
||
</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA559D0709B132736D3FE22" box="[144,1421,345,481]" gridrow="2" pageId="8" pageNumber="767">
|
||
<th id="43095D9FFFA559D0709B13273223FE22" box="[144,381,345,481]" gridcol="0" gridrow="2" pageId="8" pageNumber="767">m. complexus head dosriflexion</th>
|
||
<td id="43095D9FFFA559D071AF13273184FE22" box="[420,730,345,481]" gridcol="1" gridrow="2" pageId="8" pageNumber="767">Dorsal scars on epipophyses (many birds). Lateral tubercle between prezygapophysis and lateral ridge (grebes).</td>
|
||
<td id="43095D9FFFA559D0730A13273774FE22" box="[769,1066,345,481]" gridcol="2" gridrow="2" pageId="8" pageNumber="767">Nuchal crest (parietals), dorsolateral to m. splenius, lateral to m. biventer cervicis (bv.c.).</td>
|
||
<td id="43095D9FFFA559D0745B132736D3FE22" box="[1104,1421,345,481]" gridcol="3" gridrow="2" pageId="8" pageNumber="767">Origin: lateral ridge and rugosity on epipophyses Insertion: squamosals.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA559D0709B138D36D3FDB8" box="[144,1421,499,635]" gridrow="3" pageId="8" pageNumber="767">
|
||
<th id="43095D9FFFA559D0709B138D3223FDB8" box="[144,381,499,635]" gridcol="0" gridrow="3" pageId="8" pageNumber="767">m. splenius capitis head dorsiflexion</th>
|
||
<td id="43095D9FFFA559D071AF138D3184FDB8" box="[420,730,499,635]" gridcol="1" gridrow="3" pageId="8" pageNumber="767">Teardrop-shaped origins on either side of midline of dorsolateral surface of neural arches of C2 and C3.</td>
|
||
<td id="43095D9FFFA559D0730A138D3774FDB8" box="[769,1066,499,635]" gridcol="2" gridrow="3" pageId="8" pageNumber="767">Nuchal crest (parietals), deep to m. complexus.</td>
|
||
<td id="43095D9FFFA559D0745B138D36D3FDB8" box="[1104,1421,499,635]" gridcol="3" gridrow="3" pageId="8" pageNumber="767">Origin: scar identical to that in birds. Insertion: parietals.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA559D0709B10F336D3FCD6" box="[144,1421,653,789]" gridrow="4" pageId="8" pageNumber="767">
|
||
<th id="43095D9FFFA559D0709B10F33223FCD6" box="[144,381,653,789]" gridcol="0" gridrow="4" pageId="8" pageNumber="767">m. biventer cervicis head dorsiflexion</th>
|
||
<td id="43095D9FFFA559D071AF10F33184FCD6" box="[420,730,653,789]" gridcol="1" gridrow="4" pageId="8" pageNumber="767">Tendinous or aponeurotic from base of neck.</td>
|
||
<td id="43095D9FFFA559D0730A10F33774FCD6" box="[769,1066,653,789]" gridcol="2" gridrow="4" pageId="8" pageNumber="767">Medial part of nuchal crest (parietals).</td>
|
||
<td id="43095D9FFFA559D0745B10F336D3FCD6" box="[1104,1421,653,789]" gridcol="3" gridrow="4" pageId="8" pageNumber="767">Origin: dorsal and lateral surfaces of neural spines. Insertion: rugose dorsal scar on posterior surface of parietals.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA559D0709B115636D3FC0E" box="[144,1421,808,973]" gridrow="5" pageId="8" pageNumber="767">
|
||
<th id="43095D9FFFA559D0709B11563223FC0E" box="[144,381,808,973]" gridcol="0" gridrow="5" pageId="8" pageNumber="767">m. longus colli dorsalis pars cranialis neck dosriflexion</th>
|
||
<td id="43095D9FFFA559D071AF11563184FC0E" box="[420,730,808,973]" gridcol="1" gridrow="5" pageId="8" pageNumber="767">Tendinous or aponeurotic from base of neck.</td>
|
||
<td id="43095D9FFFA559D0730A11563774FC0E" box="[769,1066,808,973]" gridcol="2" gridrow="5" pageId="8" pageNumber="767">On tendon of m. l.c.d.caudalis (see below), to epipophysis of axis.</td>
|
||
<td id="43095D9FFFA559D0745B115636D3FC0E" box="[1104,1421,808,973]" gridcol="3" gridrow="5" pageId="8" pageNumber="767">Origin: ambiguous (in crocodilians: aponeuroses from prezygapophyses and neural spines of C3–C9). Insertion: epipophyses of C2–C3.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA559D0709B11A136D3FB46" box="[144,1421,991,1157]" gridrow="6" pageId="8" pageNumber="767">
|
||
<th id="43095D9FFFA559D0709B11A136D3FB46" box="[144,1421,991,1157]" colspan="4" colspanRight="3" gridcol="0" gridrow="6" pageId="8" pageNumber="767">m. longus colli Ventral and medial surfaces First slip to epipophysis of Not differentiable from m. dorsalis pars of strong encircling C2; posterior slips to l.c.d. cr. caudalis aponeurosis from dorsal anapophyses of cervicals neck dorsiflexion ridges of posterior cervical posterior to origins of m. and anteriormost dorsal l.c.d.cr. neural spines</th>
|
||
</tr>
|
||
<tr id="00D834E3FFA559D0709B16E936D3FA0C" box="[144,1421,1175,1487]" gridrow="7" pageId="8" pageNumber="767">
|
||
<th id="43095D9FFFA559D0709B16E93223FA0C" box="[144,381,1175,1487]" gridcol="0" gridrow="7" pageId="8" pageNumber="767">m. rectus capitis dorsalis head lateral flexion</th>
|
||
<td id="43095D9FFFA559D071AF16E93184FA0C" box="[420,730,1175,1487]" gridcol="1" gridrow="7" pageId="8" pageNumber="767">Epipophysis, adjacent neural arch of C2 in wading charadriaformes. Anterolateral surface of C2, anterior to complexus origin, on neural arch of grebes. Also costal processes of C3–C6, aponeurosis from ventrolateral edge of m. intertransversarii (grebes).</td>
|
||
<td id="43095D9FFFA559D0730A16E93774FA0C" box="[769,1066,1175,1487]" gridcol="2" gridrow="7" pageId="8" pageNumber="767">Ridge or low process on basitemporal plate, anterolateral to occipital condyle.</td>
|
||
<td id="43095D9FFFA559D0745B16E936D3FA0C" box="[1104,1421,1175,1487]" gridcol="3" gridrow="7" pageId="8" pageNumber="767">Origin: ambiguous; probably anterior parapophyses. Insertion: basioccipital tuberosity.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA559D0709B179F36D3F9AA" box="[144,1421,1505,1641]" gridrow="8" pageId="8" pageNumber="767">
|
||
<th id="43095D9FFFA559D0709B179F3223F9AA" box="[144,381,1505,1641]" gridcol="0" gridrow="8" pageId="8" pageNumber="767">mm. intertransversarii neck intervertebral lateral flexion</th>
|
||
<td id="43095D9FFFA559D071AF179F3184F9AA" box="[420,730,1505,1641]" gridcol="1" gridrow="8" pageId="8" pageNumber="767">Complex multislip origins on transverse processes</td>
|
||
<td id="43095D9FFFA559D0730A179F3774F9AA" box="[769,1066,1505,1641]" gridcol="2" gridrow="8" pageId="8" pageNumber="767">Complex multihead insertions on transverse processes</td>
|
||
<td id="43095D9FFFA559D0745B179F36D3F9AA" box="[1104,1421,1505,1641]" gridcol="3" gridrow="8" pageId="8" pageNumber="767">Origin: indiscrete rugosities of transverse processes. Insertion: ambiguous; probably rugosity on next anterior vertebra</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA559D0709B140536D3F8E2" box="[144,1421,1659,1825]" gridrow="9" pageId="8" pageNumber="767">
|
||
<th id="43095D9FFFA559D0709B14053223F8E2" box="[144,381,1659,1825]" gridcol="0" gridrow="9" pageId="8" pageNumber="767">m. rectus capitis lateralis head ventro/–lateral flexion</th>
|
||
<td id="43095D9FFFA559D071AF14053184F8E2" box="[420,730,1659,1825]" gridcol="1" gridrow="9" pageId="8" pageNumber="767">Hypopophysis of C2–C5, aponeruroses between these.</td>
|
||
<td id="43095D9FFFA559D0730A14053774F8E2" box="[769,1066,1659,1825]" gridcol="2" gridrow="9" pageId="8" pageNumber="767">Paroccipital process: crest and opisthotic process lateral to m. spl. cap. in grebes, ventroanterior tip of opisthotic process in waders.</td>
|
||
<td id="43095D9FFFA559D0745B140536D3F8E2" box="[1104,1421,1659,1825]" gridcol="3" gridrow="9" pageId="8" pageNumber="767">Origin: probably heads, and aponeuroses attaching to cervical ribs. Insertion: clear triangular ventral scar on paroccipital process.</td>
|
||
</tr>
|
||
</table>
|
||
</paragraph>
|
||
<caption id="EA976629FFA4A62670AF12B73226FF1F" box="[164,376,201,220]" pageId="9" pageNumber="768">
|
||
<paragraph id="BE5736A1FFA4A62670AF12B73226FF1F" blockId="9.[164,376,201,220]" box="[164,376,201,220]" pageId="9" pageNumber="768">Table 1. Continued</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFA4A62670AF135E366FFAF5" pageId="9" pageNumber="768">
|
||
<table id="CCE8C401FFA459D070AF137D36C5FA4E" box="[164,1435,259,1421]" gridcols="4" gridrows="6" pageId="9" pageNumber="768">
|
||
<tr id="00D834E3FFA459D070AF137D36C5FEF0" box="[164,1435,259,307]" gridrow="0" pageId="9" pageNumber="768">
|
||
<th id="43095D9FFFA459D070AF137D3223FEF0" box="[164,381,259,307]" gridcol="0" gridrow="0" pageId="9" pageNumber="768">Muscle/action</th>
|
||
<th id="43095D9FFFA459D071B3137D31B7FEF0" box="[440,745,259,307]" gridcol="1" gridrow="0" pageId="9" pageNumber="768">Origin</th>
|
||
<th id="43095D9FFFA459D0731E137D376BFEF0" box="[789,1077,259,307]" gridcol="2" gridrow="0" pageId="9" pageNumber="768">Insertion</th>
|
||
<th id="43095D9FFFA459D0746E137D36C5FEF0" box="[1125,1435,259,307]" gridcol="3" gridrow="0" pageId="9" pageNumber="768">
|
||
Correlates in
|
||
<taxonomicName id="79E84D22FFA4A626746E135E364CFEF0" authorityName="Osborn" authorityYear="1906" box="[1125,1298,288,307]" class="Reptilia" family="Tyrannosauridae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="9" pageNumber="807" phylum="Chordata" rank="family">tyrannosauridae</taxonomicName>
|
||
</th>
|
||
</tr>
|
||
<tr id="00D834E3FFA459D070AF132436C5FD51" box="[164,1435,346,658]" gridrow="1" pageId="9" pageNumber="768">
|
||
<th id="43095D9FFFA459D070AF13243223FD51" box="[164,381,346,658]" gridcol="0" gridrow="1" pageId="9" pageNumber="768">m. rectus capitis ventralis head ventroflexion</th>
|
||
<td id="43095D9FFFA459D071B3132431B7FD51" box="[440,745,346,658]" gridcol="1" gridrow="1" pageId="9" pageNumber="768">Pars medialis: median aponeuroses of hypopophyses of C1–C3, aponeurosis joining C1–C2. Pars lateralis: Fascia of carotid arteries. Posterolateral/lateral processes of C3, postsublateral crest of C4, sublateral processes of C5–C6.</td>
|
||
<td id="43095D9FFFA459D0731E1324376BFD51" box="[789,1077,346,658]" gridcol="2" gridrow="1" pageId="9" pageNumber="768">Basitemporal plate.</td>
|
||
<td id="43095D9FFFA459D0746E132436C5FD51" box="[1125,1435,346,658]" gridcol="3" gridrow="1" pageId="9" pageNumber="768">Origin: ambiguous. Weak hypopophysis on C2, stronger hypopophyses on C3–C5. Insertion: basioccipital.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA459D070AF10DA36C5FCCC" box="[164,1435,676,783]" gridrow="2" pageId="9" pageNumber="768">
|
||
<th id="43095D9FFFA459D070AF10DA3223FCCC" box="[164,381,676,783]" gridcol="0" gridrow="2" pageId="9" pageNumber="768">m. longus colli ventralis neck ventroflexion</th>
|
||
<td id="43095D9FFFA459D071B310DA31B7FCCC" box="[440,745,676,783]" gridcol="1" gridrow="2" pageId="9" pageNumber="768">Ventral surfaces and processes of thoracic and cervical vertebrae.</td>
|
||
<td id="43095D9FFFA459D0731E10DA376BFCCC" box="[789,1077,676,783]" gridcol="2" gridrow="2" pageId="9" pageNumber="768">Cervical ribs.</td>
|
||
<td id="43095D9FFFA459D0746E10DA36C5FCCC" box="[1125,1435,676,783]" gridcol="3" gridrow="2" pageId="9" pageNumber="768">Origin: as with birds. Insertion: probably onto fascia surrounding cervical ribs.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA459D070AF115F36C5FB72" box="[164,1435,801,1201]" gridrow="3" pageId="9" pageNumber="768">
|
||
<th id="43095D9FFFA459D070AF115F3223FB72" box="[164,381,801,1201]" gridcol="0" gridrow="3" pageId="9" pageNumber="768">m. flexor colli profundus neck ventroflexion</th>
|
||
<td id="43095D9FFFA459D071B3115F31B7FB72" box="[440,745,801,1201]" gridcol="1" gridrow="3" pageId="9" pageNumber="768">Inserting on C2: costal process of C4, anterior sublateral crest and process of centrum of C5 (in grebes). On C3: Sublateral crest and costal process of C5, postlateral process of 4. C4–C6: ventrolateral edge of transverse process and sublateral processes of vertebra 2 posteriorly, postlateral process of vertebra 1 posteriorly.</td>
|
||
<td id="43095D9FFFA459D0731E115F376BFB72" box="[789,1077,801,1201]" gridcol="2" gridrow="3" pageId="9" pageNumber="768">C2 and C3: posterior and lateral surfaces of hypopophysis. C3-C6: postlateral process of centrum</td>
|
||
<td id="43095D9FFFA459D0746E115F36C5FB72" box="[1125,1435,801,1201]" gridcol="3" gridrow="3" pageId="9" pageNumber="768">Origins and insertions ambiguous; difficult to see discrete scars. Insertion: Weakly developed hypopophysis on C2; stronger on C3-C5.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA459D070AF16BD36C5FAD3" box="[164,1435,1219,1296]" gridrow="4" pageId="9" pageNumber="768">
|
||
<th id="43095D9FFFA459D070AF16BD3223FAD3" box="[164,381,1219,1296]" gridcol="0" gridrow="4" pageId="9" pageNumber="768">mm. intercristales intervertebral dorsiflexion</th>
|
||
<td id="43095D9FFFA459D071B316BD31B7FAD3" box="[440,745,1219,1296]" gridcol="1" gridrow="4" pageId="9" pageNumber="768">Transverse oblique crests of posterior vertebra of each pair</td>
|
||
<td id="43095D9FFFA459D0731E16BD376BFAD3" box="[789,1077,1219,1296]" gridcol="2" gridrow="4" pageId="9" pageNumber="768">Transverse oblique crests of anterior vertebra of each pair</td>
|
||
<td id="43095D9FFFA459D0746E16BD36C5FAD3" box="[1125,1435,1219,1296]" gridcol="3" gridrow="4" pageId="9" pageNumber="768">Origins and insertions are ambiguous.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA459D070AF175C36C5FA4E" box="[164,1435,1314,1421]" gridrow="5" pageId="9" pageNumber="768">
|
||
<th id="43095D9FFFA459D070AF175C3223FA4E" box="[164,381,1314,1421]" gridcol="0" gridrow="5" pageId="9" pageNumber="768">mm. cervicales ascendentes neck intervertebral dorsiflexion</th>
|
||
<td id="43095D9FFFA459D071B3175C31B7FA4E" box="[440,745,1314,1421]" gridcol="1" gridrow="5" pageId="9" pageNumber="768">Dorsal and lateral tubercles of transverse processes, ventral to prezygapophysis.</td>
|
||
<td id="43095D9FFFA459D0731E175C376BFA4E" box="[789,1077,1314,1421]" gridcol="2" gridrow="5" pageId="9" pageNumber="768">Aponeurosis on epipophysis, shared with m. intercristales.</td>
|
||
<td id="43095D9FFFA459D0746E175C36C5FA4E" box="[1125,1435,1314,1421]" gridcol="3" gridrow="5" pageId="9" pageNumber="768">Likely not present.</td>
|
||
</tr>
|
||
</table>
|
||
</paragraph>
|
||
<caption id="EA976629FFA7A625709B12B63646FF18" box="[144,1304,200,219]" pageId="10" pageNumber="769" startId="10.[144,208,200,219]">
|
||
<paragraph id="BE5736A1FFA7A625709B12B63646FF18" blockId="10.[144,1304,200,219]" box="[144,1304,200,219]" pageId="10" pageNumber="769">
|
||
Table 2. Multiarticular neck muscles of crocodilians, with osteological correlates listed for
|
||
<taxonomicName id="79E84D22FFA7A625746E12B63646FF18" authorityName="Osborn" authorityYear="1906" box="[1125,1304,200,219]" class="Reptilia" family="Tyrannosauridae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="10" pageNumber="769" phylum="Chordata" rank="family">Tyrannosauridae</taxonomicName>
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFA7A625709B13613609FA7A" pageId="10" pageNumber="769">
|
||
<table id="CCE8C401FFA759D0709B137C36D3FA7A" box="[144,1421,258,1465]" gridcols="4" gridrows="8" pageId="10" pageNumber="769">
|
||
<tr id="00D834E3FFA759D0709B137C36D3FEF1" box="[144,1421,258,306]" gridrow="0" pageId="10" pageNumber="769">
|
||
<th id="43095D9FFFA759D0709B137C32D0FEF1" box="[144,398,258,306]" gridcol="0" gridrow="0" pageId="10" pageNumber="769">Muscle/action</th>
|
||
<th id="43095D9FFFA759D071BF137C318CFEF1" box="[436,722,258,306]" gridcol="1" gridrow="0" pageId="10" pageNumber="769">Origin</th>
|
||
<th id="43095D9FFFA759D072F3137C376BFEF1" box="[760,1077,258,306]" gridcol="2" gridrow="0" pageId="10" pageNumber="769">Insertion</th>
|
||
<th id="43095D9FFFA759D07451137C36D3FEF1" box="[1114,1421,258,306]" gridcol="3" gridrow="0" pageId="10" pageNumber="769">
|
||
Correlates in
|
||
<taxonomicName id="79E84D22FFA7A625745113613659FEF1" authorityName="Osborn" authorityYear="1906" box="[1114,1287,287,306]" class="Reptilia" family="Tyrannosauridae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="10" pageNumber="807" phylum="Chordata" rank="family">tyrannosauridae</taxonomicName>
|
||
</th>
|
||
</tr>
|
||
<tr id="00D834E3FFA759D0709B132736D3FDD8" box="[144,1421,345,539]" gridrow="1" pageId="10" pageNumber="769">
|
||
<th id="43095D9FFFA759D0709B132732D0FDD8" box="[144,398,345,539]" gridcol="0" gridrow="1" pageId="10" pageNumber="769">m. transversospinalis capitis (m. tr. cap.) head dosriflexion</th>
|
||
<td id="43095D9FFFA759D071BF1327318CFDD8" box="[436,722,345,539]" gridcol="1" gridrow="1" pageId="10" pageNumber="769">Thin medial belly: Neural spines of C2-C8 (possible splenius homologue). Thick lateral belly: Neural spines of C6-T1 (complexus homologue).</td>
|
||
<td id="43095D9FFFA759D072F31327376BFDD8" box="[760,1077,345,539]" gridcol="2" gridrow="1" pageId="10" pageNumber="769">Nuchal crest (supraoccipital).</td>
|
||
<td id="43095D9FFFA759D07451132736D3FDD8" box="[1114,1421,345,539]" gridcol="3" gridrow="1" pageId="10" pageNumber="769">Origin: As per avian m. biventer cervicis, plus rugosities on posterior neural spines. Insertion: rugose scar on nuchal crest (parietals).</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA759D0709B105336D3FD10" box="[144,1421,557,723]" gridrow="2" pageId="10" pageNumber="769">
|
||
<th id="43095D9FFFA759D0709B105332D0FD10" box="[144,398,557,723]" gridcol="0" gridrow="2" pageId="10" pageNumber="769">m. semispinalis capitis/ spinocapitis posticus head dorsiflexion</th>
|
||
<td id="43095D9FFFA759D071BF1053318CFD10" box="[436,722,557,723]" gridcol="1" gridrow="2" pageId="10" pageNumber="769">Lateral surface of neural spines of C2-8 (possible splenius homologue).</td>
|
||
<td id="43095D9FFFA759D072F31053376BFD10" box="[760,1077,557,723]" gridcol="2" gridrow="2" pageId="10" pageNumber="769">Dorsolateral portion of paroccipital processes, dorsal to m. r.c.d.maj, insertion, medial to m. depressor mandibulae origin.</td>
|
||
<td id="43095D9FFFA759D07451105336D3FD10" box="[1114,1421,557,723]" gridcol="3" gridrow="2" pageId="10" pageNumber="769">Origin: ambiguous, possibly on rugosity of neural spines. Insertion: ambiguous.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA759D0709B109B36D3FC06" box="[144,1421,741,965]" gridrow="3" pageId="10" pageNumber="769">
|
||
<th id="43095D9FFFA759D0709B109B32D0FC06" box="[144,398,741,965]" gridcol="0" gridrow="3" pageId="10" pageNumber="769">m. epistropheo-capitis lateralis medialis head lateral flexion</th>
|
||
<td id="43095D9FFFA759D071BF109B318CFC06" box="[436,722,741,965]" gridcol="1" gridrow="3" pageId="10" pageNumber="769">Anterolateral portion of axis neural spine. Extreme anteriomedial portion of axis neural spine, neural arch of atlas and proatlas.</td>
|
||
<td id="43095D9FFFA759D072F3109B376BFC06" box="[760,1077,741,965]" gridcol="2" gridrow="3" pageId="10" pageNumber="769">Dorsal surface of paroccipital process, medial to m. longissimus capitis insertion. Dorsal surface of paroccipital process medial to r.c.d.maj. insertion, and adjacent area on supraoccipital.</td>
|
||
<td id="43095D9FFFA759D07451109B36D3FC06" box="[1114,1421,741,965]" gridcol="3" gridrow="3" pageId="10" pageNumber="769">Origin: ambiguous, probably as for avian m. spl. cap. Insertion: ambiguous; probably as for avian. m. spl. cap.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA759D0709B11A936D3FBBE" box="[144,1421,983,1149]" gridrow="4" pageId="10" pageNumber="769">
|
||
<th id="43095D9FFFA759D0709B11A932D0FBBE" box="[144,398,983,1149]" gridcol="0" gridrow="4" pageId="10" pageNumber="769">m. longissimus capitis superficialis head lateral flexion</th>
|
||
<td id="43095D9FFFA759D071BF11A9318CFBBE" box="[436,722,983,1149]" gridcol="1" gridrow="4" pageId="10" pageNumber="769">Proximal parts of transverse processes and neural arches of C4–C7. Lateral part of transverse process of C8.</td>
|
||
<td id="43095D9FFFA759D072F311A9376BFBBE" box="[760,1077,983,1149]" gridcol="2" gridrow="4" pageId="10" pageNumber="769">Tedinous to lateral scar on paroccipital process.</td>
|
||
<td id="43095D9FFFA759D0745111A936D3FBBE" box="[1114,1421,983,1149]" gridcol="3" gridrow="4" pageId="10" pageNumber="769">Origin: Transverse processes of C7–T1 or T2. Insertion: Similar to crocodilians.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA759D0709B16F136D3FB1F" box="[144,1421,1167,1244]" gridrow="5" pageId="10" pageNumber="769">
|
||
<th id="43095D9FFFA759D0709B16F132D0FB1F" box="[144,398,1167,1244]" gridcol="0" gridrow="5" pageId="10" pageNumber="769">m. longissimus capitis profundus head ventroflexion</th>
|
||
<td id="43095D9FFFA759D071BF16F1318CFB1F" box="[436,722,1167,1244]" gridcol="1" gridrow="5" pageId="10" pageNumber="769">Distal parts of transverse processes of C3-C7.</td>
|
||
<td id="43095D9FFFA759D072F316F1376BFB1F" box="[760,1077,1167,1244]" gridcol="2" gridrow="5" pageId="10" pageNumber="769">Basioccipital tuberosities.</td>
|
||
<td id="43095D9FFFA759D0745116F136D3FB1F" box="[1114,1421,1167,1244]" gridcol="3" gridrow="5" pageId="10" pageNumber="769">Origin and insertion as per avian m. rectus capitis dorsalis.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA759D0709B169036D3FA9A" box="[144,1421,1262,1369]" gridrow="6" pageId="10" pageNumber="769">
|
||
<th id="43095D9FFFA759D0709B169032D0FA9A" box="[144,398,1262,1369]" gridcol="0" gridrow="6" pageId="10" pageNumber="769">m. rectus capitis lateralis head ventro/-lateral flexion</th>
|
||
<td id="43095D9FFFA759D071BF1690318CFA9A" box="[436,722,1262,1369]" gridcol="1" gridrow="6" pageId="10" pageNumber="769">Aponeurosis from entire ventral surface of C1 and C2 cervical ribs</td>
|
||
<td id="43095D9FFFA759D072F31690376BFA9A" box="[760,1077,1262,1369]" gridcol="2" gridrow="6" pageId="10" pageNumber="769">Ventral portion of paroccipital process, ventral to r.c.d. insertion.</td>
|
||
<td id="43095D9FFFA759D07451169036D3FA9A" box="[1114,1421,1262,1369]" gridcol="3" gridrow="6" pageId="10" pageNumber="769">Origin and insertion as described for avian homologue.</td>
|
||
</tr>
|
||
<tr id="00D834E3FFA759D0709B171236D3FA7A" box="[144,1421,1388,1465]" gridrow="7" pageId="10" pageNumber="769">
|
||
<th id="43095D9FFFA759D0709B171232D0FA7A" box="[144,398,1388,1465]" gridcol="0" gridrow="7" pageId="10" pageNumber="769">m. rectus capitis ventralis head ventroflexion</th>
|
||
<td id="43095D9FFFA759D071BF1712318CFA7A" box="[436,722,1388,1465]" gridcol="1" gridrow="7" pageId="10" pageNumber="769">Ventral centrum surfaces of C1 and C2.</td>
|
||
<td id="43095D9FFFA759D072F31712376BFA7A" box="[760,1077,1388,1465]" gridcol="2" gridrow="7" pageId="10" pageNumber="769">Ventromedially sloping plate/ ridge of basioccipital.</td>
|
||
<td id="43095D9FFFA759D07451171236D3FA7A" box="[1114,1421,1388,1465]" gridcol="3" gridrow="7" pageId="10" pageNumber="769">Origin: As for avian description. Insertion: Basioccipital.</td>
|
||
</tr>
|
||
</table>
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA7A625709B14763174F9DE" blockId="10.[144,759,1544,1689]" box="[144,554,1544,1566]" pageId="10" pageNumber="769">A. M. transversospinalis system</paragraph>
|
||
<paragraph id="BE5736A1FFA7A625709B145932D0F99F" blockId="10.[144,759,1544,1689]" pageId="10" pageNumber="769">
|
||
M. biventer cervicis (m. biv. c.) (
|
||
<bibRefCitation id="DA794B50FFA7A625723E14593275F99F" author="Vanden Berge JC & Zweers GA" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="10" pageNumber="769" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFA7A6257142143832DDF99F" box="[329,387,1606,1628]" class="Aves" kingdom="Animalia" pageId="10" pageNumber="769" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
.)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA7A625709B141A3293F95A" blockId="10.[144,759,1544,1689]" pageId="10" pageNumber="769">
|
||
M. transversospinais capitis (m. trans. cap.) (
|
||
<bibRefCitation id="DA794B50FFA7A625709C14FD3276F95A" author="Seidel R." box="[151,296,1667,1689]" journalOrPublisher="City University of New York" pageId="10" pageNumber="769" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFA7A625714E14FD329DF95A" box="[325,451,1667,1689]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="10" pageNumber="769" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
.)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA7A625709B14BE30A7F8D0" blockId="10.[144,759,1728,1903]" lastBlockId="10.[806,1422,1544,1903]" pageId="10" pageNumber="769">
|
||
Origin: Each m. biventer cervicis of birds has two fusiform bellies positioned over the posterior and anterior parts of the neck that are connected by a long tendon (
|
||
<figureCitation id="26D32A24FFA7A62570F61562320AF8F1" box="[253,340,1820,1842]" captionStart="Figure 7" captionStartId="13.[164,243,1260,1279]" captionTargetBox="[169,1450,206,1217]" captionTargetId="figure@13.[164,1451,195,1230]" captionTargetPageId="13" captionText="Figure 7. A, dorsal view of m. biventer cervicis (m. biv. c., dark outline) and m. longus colli dorsalis pars cranialis of Aquila chrysaetos. Note the tendon intervening between anterior and posterior bellies of m. biv. c. M. complexus has been removed. B, dorsal view of m. transversospinalis capitis (m. trans. cap., dark outline) of Alligator mississippiensis. Medial and lateral portions of m. trans. cap. in Alligator are not distinguished here. C, lateral view of m. trans. cap. of Alligator mississippiensis (dark outline). D, m. complexus (dark outline) and m. rectus capitis lateralis (light outline) of Pelicanus occidentalis in lateral view. E, m. complexus of Pelicanus occidentalis, outlined in dark grey on the right. This is a dorsal view, with anterior towards the top. F, dorsal view of dissected Alligator mississippiensis, with m. epistrpheo-capitis lateralis, m. spinocapitis posticus and m. transversospinalis cervicis outlined in grey. M. transversospinalis capitis has been removed. G, m. splenius capitis of Anas platyrhynchos, from C2 to the occiput, outlined in grey, in posterior view. M. complexus and m. biventer cervicis have been removed. H, m. epistropheo-capitis medialis/m. altoïdius capitis of Caiman crocodylus, outlined in grey. M. transversospinalis capitis and m. epistropheo-capitis lateralis have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734932" httpUri="https://zenodo.org/record/3734932/files/figure.png" pageId="10" pageNumber="769">Fig. 7A</figureCitation>
|
||
). The posterior belly originates (
|
||
<figureCitation id="26D32A24FFA7A6257093154433B5F893" box="[152,235,1850,1872]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="10" pageNumber="769">Fig. 5A</figureCitation>
|
||
) either tendinously from the spinous processes of the posterormost cervicals, or from the medial portion of an aponeurosis in the anterior shoulder region, arising from the neural spines and transverse processes of T1, T2, and the posteriormost one or two cervical vertebrae. Because the aponeurosis is associated with the first thoracic vertebrae of the notarium,
|
||
<bibRefCitation id="DA794B50FFA7A62573C614DF366AF974" author="Vanden Berge JC & Zweers GA" box="[973,1332,1697,1719]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="10" pageNumber="769" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers (1993)</bibRefCitation>
|
||
label it aponeurosis notarii. M. biv. c. is tightly attached to the portion of the aponeurosis notarii just adjacent to the neural spines.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA7A622733415623266F916" blockId="10.[806,1422,1544,1903]" lastBlockId="13.[164,779,1636,1903]" lastPageId="13" lastPageNumber="772" pageId="10" pageNumber="769">
|
||
A larger muscle lateral to the posterior belly of m. biv. c., m. longus colli dorsalis pars posterior (m. l.c.d.p.), can also originate from this aponeurosis However, its origin is more diffuse. The bellies of these two muscles are variably differentiable upon initial examination, because m. biv. c. is often small, and appears to grade laterally into m. l.c.d.p. until the fascia surrounding them are carefully dissected away. In larger birds, such as
|
||
<taxonomicName id="79E84D22FFA1A62371A915273135F8AD" authorityName="Linnaeus" authorityYear="1758" box="[418,619,1881,1902]" class="Aves" family="Accipitridae" genus="Aquila" kingdom="Animalia" order="Accipitriformes" pageId="12" pageNumber="771" phylum="Chordata" rank="species" species="chrysaetos">Aquila chryseatos</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA1A6237271152730E5F916" authority="Lesson, 1831" box="[634,955,1728,1902]" class="Aves" family="Ciconiidae" genus="Leptoptilos" kingdom="Animalia" order="Ciconiiformes" pageId="12" pageNumber="771" phylum="Chordata" rank="species" species="crumeniferus">Leptoptilos crumeniferus</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFA1A62373F714BE379CF916" authority="Linnaeus, 1758" box="[1020,1218,1728,1749]" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="12" pageNumber="771" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
, the origin of m. biv. c and its posterior belly are obvious, but their evidence is not solely size related. In
|
||
<taxonomicName id="79E84D22FFA1A62374F114833034F8F2" authorityName="Linnaeus" authorityYear="1758" class="Aves" family="Accipitridae" genus="Aquila" kingdom="Animalia" order="Accipitriformes" pageId="12" pageNumber="771" phylum="Chordata" rank="species" species="chrysaetos">Aquila chrysaetos</taxonomicName>
|
||
(
|
||
<figureCitation id="26D32A24FFA1A62373761562308FF8F1" box="[893,977,1820,1842]" captionStart="Figure 7" captionStartId="13.[164,243,1260,1279]" captionTargetBox="[169,1450,206,1217]" captionTargetId="figure@13.[164,1451,195,1230]" captionTargetPageId="13" captionText="Figure 7. A, dorsal view of m. biventer cervicis (m. biv. c., dark outline) and m. longus colli dorsalis pars cranialis of Aquila chrysaetos. Note the tendon intervening between anterior and posterior bellies of m. biv. c. M. complexus has been removed. B, dorsal view of m. transversospinalis capitis (m. trans. cap., dark outline) of Alligator mississippiensis. Medial and lateral portions of m. trans. cap. in Alligator are not distinguished here. C, lateral view of m. trans. cap. of Alligator mississippiensis (dark outline). D, m. complexus (dark outline) and m. rectus capitis lateralis (light outline) of Pelicanus occidentalis in lateral view. E, m. complexus of Pelicanus occidentalis, outlined in dark grey on the right. This is a dorsal view, with anterior towards the top. F, dorsal view of dissected Alligator mississippiensis, with m. epistrpheo-capitis lateralis, m. spinocapitis posticus and m. transversospinalis cervicis outlined in grey. M. transversospinalis capitis has been removed. G, m. splenius capitis of Anas platyrhynchos, from C2 to the occiput, outlined in grey, in posterior view. M. complexus and m. biventer cervicis have been removed. H, m. epistropheo-capitis medialis/m. altoïdius capitis of Caiman crocodylus, outlined in grey. M. transversospinalis capitis and m. epistropheo-capitis lateralis have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734932" httpUri="https://zenodo.org/record/3734932/files/figure.png" pageId="12" pageNumber="771">Fig. 7A</figureCitation>
|
||
) the posterior belly is a long, moderately thick strap that covers the vertebrae over the posterior half of the neck. The kingfisher
|
||
<taxonomicName id="79E84D22FFA1A622753B1527321FF9B9" authority="Swainson, 1821" class="Aves" family="Alcedinidae" genus="Todiramphus" kingdom="Animalia" lastPageId="13" lastPageNumber="772" order="Coraciiformes" pageId="12" pageNumber="771" phylum="Chordata" rank="species" species="cinnamominus">Halcyon cinnamomina</taxonomicName>
|
||
has a large posterior belly, but the muscle is difficult to see in
|
||
<taxonomicName id="79E84D22FFA0A62271F014FD3136F95B" authority="Linnaeus, 1758" box="[507,616,1667,1688]" class="Aves" family="Corvidae" genus="Pica" kingdom="Animalia" order="Passeriformes" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="pica">Pica pica</taxonomicName>
|
||
and was not identifiable in an equivalently sized merlin,
|
||
<taxonomicName id="79E84D22FFA0A62272C614DF326FF916" authorityName="Linnaeus" authorityYear="1758" class="Aves" family="Falconidae" genus="Falco" kingdom="Animalia" order="Falconiformes" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="columbarius">Falco columbarius</taxonomicName>
|
||
.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA7A6257581152736D0F8AC" blockId="10.[806,1422,1544,1903]" box="[1418,1422,1881,1903]" pageId="10" pageNumber="769">.</paragraph>
|
||
<caption id="EA976629FFA6A62470AF14D337A4F8AC" ID-DOI="http://doi.org/10.5281/zenodo.3734928" ID-Zenodo-Dep="3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="11" pageNumber="770" startId="11.[164,243,1709,1728]" targetBox="[175,1430,202,1676]" targetPageId="11">
|
||
<paragraph id="BE5736A1FFA6A62470AF14D337A4F8AC" blockId="11.[164,1442,1709,1904]" pageId="11" pageNumber="770">
|
||
<figureCitation id="26D32A24FFA6A62470AF14D33259F903" box="[164,263,1709,1728]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="11" pageNumber="770">Figure 5</figureCitation>
|
||
. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of
|
||
<taxonomicName id="79E84D22FFA6A62474F814D336C5F903" authority="Linnaeus, 1758" box="[1267,1435,1709,1728]" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="11" pageNumber="770" phylum="Chordata" rank="species" species="camelus">Strutio camelus</taxonomicName>
|
||
, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of
|
||
<taxonomicName id="79E84D22FFA6A624753A14B4326AF939" authorityName="Linnaeus" authorityYear="1766" class="Aves" family="Accipitridae" genus="Haliaeetus" kingdom="Animalia" order="Accipitriformes" pageId="11" pageNumber="770" phylum="Chordata" rank="species" species="leucocephalus">Haliaeetus leucocephalus</taxonomicName>
|
||
, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in
|
||
<taxonomicName id="79E84D22FFA6A6247297157B30FAF8DB" authorityName="Linnaeus" authorityYear="1766" box="[668,932,1797,1816]" class="Aves" family="Accipitridae" genus="Haliaeetus" kingdom="Animalia" order="Accipitriformes" pageId="11" pageNumber="770" phylum="Chordata" rank="species" species="leucocephalus">Haliaeetus leucocephalus</taxonomicName>
|
||
), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of
|
||
<taxonomicName id="79E84D22FFA6A62471A41541313CF891" authority="Linnaeus, 1758" box="[431,610,1855,1874]" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="11" pageNumber="770" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
, depicting all insertions. In
|
||
<taxonomicName id="79E84D22FFA6A624738215413765F891" authority="Linnaeus, 1758" box="[905,1083,1855,1874]" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="11" pageNumber="770" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here.
|
||
</paragraph>
|
||
</caption>
|
||
<caption id="EA976629FFA1A623709B17A0376CF940" ID-DOI="http://doi.org/10.5281/zenodo.3734930" ID-Zenodo-Dep="3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="12" pageNumber="771" startId="12.[144,223,1502,1521]" targetBox="[303,1261,200,1472]" targetPageId="12">
|
||
<paragraph id="BE5736A1FFA1A623709B17A0376CF940" blockId="12.[144,1421,1502,1668]" pageId="12" pageNumber="771">
|
||
Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of
|
||
<taxonomicName id="79E84D22FFA1A62374B617A136D9FA32" authorityName="Lehr" authorityYear="2002" box="[1213,1415,1502,1522]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="12" pageNumber="771" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
. B, muscle insertions on the occiput of
|
||
<taxonomicName id="79E84D22FFA1A6237222178231ACF9CD" authorityName="Lehr" authorityYear="2002" box="[553,754,1531,1551]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="12" pageNumber="771" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis.
|
||
</paragraph>
|
||
</caption>
|
||
<caption id="EA976629FFA0A62270AF169236FCF9E7" ID-DOI="http://doi.org/10.5281/zenodo.3734932" ID-Zenodo-Dep="3734932" httpUri="https://zenodo.org/record/3734932/files/figure.png" pageId="13" pageNumber="772" startId="13.[164,243,1260,1279]" targetBox="[169,1450,206,1217]" targetPageId="13">
|
||
<paragraph id="BE5736A1FFA0A62270AF169236FCF9E7" blockId="13.[164,1442,1260,1572]" pageId="13" pageNumber="772">
|
||
Figure 7. A, dorsal view of m. biventer cervicis (m. biv. c., dark outline) and m. longus colli dorsalis pars cranialis of
|
||
<taxonomicName id="79E84D22FFA0A62270AF17773203FADF" authorityName="Linnaeus" authorityYear="1758" box="[164,349,1289,1308]" class="Aves" family="Accipitridae" genus="Aquila" kingdom="Animalia" order="Accipitriformes" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="chrysaetos">Aquila chrysaetos</taxonomicName>
|
||
. Note the tendon intervening between anterior and posterior bellies of m. biv. c. M. complexus has been removed. B, dorsal view of m. transversospinalis capitis (m. trans. cap., dark outline) of
|
||
<taxonomicName id="79E84D22FFA0A622744B17593612FAFA" baseAuthorityName="Daudin" baseAuthorityYear="1802" box="[1088,1356,1319,1338]" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
. Medial and lateral portions of m. trans. cap. in
|
||
<taxonomicName id="79E84D22FFA0A6227247173A31F7FA94" box="[588,681,1348,1367]" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="13" pageNumber="772" phylum="Chordata" rank="genus">Alligator</taxonomicName>
|
||
are not distinguished here. C, lateral view of m. trans. cap. of
|
||
<taxonomicName id="79E84D22FFA0A622754F173A3212FAB7" baseAuthorityName="Daudin" baseAuthorityYear="1802" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
(dark outline). D, m. complexus (dark outline) and m. rectus capitis lateralis (light outline) of
|
||
<taxonomicName id="79E84D22FFA0A6227537171F3241FA52" class="Reptilia" family="Tyrannosauridae" genus="Pelicanus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="occidentalis">Pelicanus occidentalis</taxonomicName>
|
||
in lateral view. E, m. complexus of
|
||
<taxonomicName id="79E84D22FFA0A622729317003021FA52" box="[664,895,1406,1425]" class="Reptilia" family="Tyrannosauridae" genus="Pelicanus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="occidentalis">Pelicanus occidentalis</taxonomicName>
|
||
, outlined in dark grey on the right. This is a dorsal view, with anterior towards the top. F, dorsal view of dissected
|
||
<taxonomicName id="79E84D22FFA0A622736D17E23728FA6D" baseAuthorityName="Daudin" baseAuthorityYear="1802" box="[870,1142,1436,1455]" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
, with m. epistrpheo-capitis lateralis, m. spinocapitis posticus and m. transversospinalis cervicis outlined in grey. M. transversospinalis capitis has been removed. G, m. splenius capitis of
|
||
<taxonomicName id="79E84D22FFA0A622725817A8307DFA2A" authorityName="Linnaeus" authorityYear="1758" box="[595,803,1494,1513]" class="Aves" family="Anatidae" genus="Anas" kingdom="Animalia" order="Anseriformes" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="platyrhynchos">Anas platyrhynchos</taxonomicName>
|
||
, from C2 to the occiput, outlined in grey, in posterior view. M. complexus and m. biventer cervicis have been removed. H, m. epistropheo-capitis medialis/m. altoïdius capitis of
|
||
<taxonomicName id="79E84D22FFA0A62270AF146F3235F9E7" authorityName="Lehr" authorityYear="2002" box="[164,363,1553,1572]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
, outlined in grey. M. transversospinalis capitis and m. epistropheo-capitis lateralis have been removed.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFA0A62270B714A0379EF915" blockId="13.[164,779,1636,1903]" lastBlockId="13.[826,1441,1636,1903]" pageId="13" pageNumber="772">
|
||
The anterior belly of m. biv. c. originates from a long tendon (
|
||
<figureCitation id="26D32A24FFA0A6227136148332CDF8D0" box="[317,403,1789,1811]" captionStart="Figure 7" captionStartId="13.[164,243,1260,1279]" captionTargetBox="[169,1450,206,1217]" captionTargetId="figure@13.[164,1451,195,1230]" captionTargetPageId="13" captionText="Figure 7. A, dorsal view of m. biventer cervicis (m. biv. c., dark outline) and m. longus colli dorsalis pars cranialis of Aquila chrysaetos. Note the tendon intervening between anterior and posterior bellies of m. biv. c. M. complexus has been removed. B, dorsal view of m. transversospinalis capitis (m. trans. cap., dark outline) of Alligator mississippiensis. Medial and lateral portions of m. trans. cap. in Alligator are not distinguished here. C, lateral view of m. trans. cap. of Alligator mississippiensis (dark outline). D, m. complexus (dark outline) and m. rectus capitis lateralis (light outline) of Pelicanus occidentalis in lateral view. E, m. complexus of Pelicanus occidentalis, outlined in dark grey on the right. This is a dorsal view, with anterior towards the top. F, dorsal view of dissected Alligator mississippiensis, with m. epistrpheo-capitis lateralis, m. spinocapitis posticus and m. transversospinalis cervicis outlined in grey. M. transversospinalis capitis has been removed. G, m. splenius capitis of Anas platyrhynchos, from C2 to the occiput, outlined in grey, in posterior view. M. complexus and m. biventer cervicis have been removed. H, m. epistropheo-capitis medialis/m. altoïdius capitis of Caiman crocodylus, outlined in grey. M. transversospinalis capitis and m. epistropheo-capitis lateralis have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734932" httpUri="https://zenodo.org/record/3734932/files/figure.png" pageId="13" pageNumber="772">Fig. 7A</figureCitation>
|
||
), anteriorly continuous with the posterior belly. The tendon and anterior belly run deep to the dorsal portion of a strong sheath of fascia that surrounds the dorsal neck muscles. This belly is sometimes discrete from other muscles, as in
|
||
<taxonomicName id="79E84D22FFA0A6227549141A30C8F95B" authority="Linnaeus, 1758" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA0A62273A314FD372BF95B" authorityName="Linnaeus" authorityYear="1758" box="[936,1141,1667,1688]" class="Aves" family="Accipitridae" genus="Aquila" kingdom="Animalia" order="Accipitriformes" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="chrysaetos">Aquila chryseatos</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFA0A62274BD14FD300BF975" class="Reptilia" family="Tyrannosauridae" genus="Pelicanus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="occidentalis">Pelicanus occidentalis</taxonomicName>
|
||
, but in
|
||
<taxonomicName id="79E84D22FFA0A62273B014DC3779F974" authority="Linnaeus, 1758" box="[955,1063,1698,1719]" class="Aves" family="Corvidae" genus="Pica" kingdom="Animalia" order="Passeriformes" pageId="13" pageNumber="772" phylum="Chordata" rank="species" species="pica">Pica pica</taxonomicName>
|
||
it must be dissected free of m. complexus that runs lateral to it.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA0A621735814A0327AFDCD" blockId="13.[826,1441,1636,1903]" lastBlockId="14.[144,759,198,526]" lastPageId="14" lastPageNumber="773" pageId="13" pageNumber="772">
|
||
The homologous muscle in crocodilians and lizards, m. transversospinalis capitis, is large, continuous longitudinally without an intervening tendon, and defines the dorsal contour of the neck (
|
||
<figureCitation id="26D32A24FFA0A6227511154436CAF893" box="[1306,1428,1850,1872]" captionStart="Figure 7" captionStartId="13.[164,243,1260,1279]" captionTargetBox="[169,1450,206,1217]" captionTargetId="figure@13.[164,1451,195,1230]" captionTargetPageId="13" captionText="Figure 7. A, dorsal view of m. biventer cervicis (m. biv. c., dark outline) and m. longus colli dorsalis pars cranialis of Aquila chrysaetos. Note the tendon intervening between anterior and posterior bellies of m. biv. c. M. complexus has been removed. B, dorsal view of m. transversospinalis capitis (m. trans. cap., dark outline) of Alligator mississippiensis. Medial and lateral portions of m. trans. cap. in Alligator are not distinguished here. C, lateral view of m. trans. cap. of Alligator mississippiensis (dark outline). D, m. complexus (dark outline) and m. rectus capitis lateralis (light outline) of Pelicanus occidentalis in lateral view. E, m. complexus of Pelicanus occidentalis, outlined in dark grey on the right. This is a dorsal view, with anterior towards the top. F, dorsal view of dissected Alligator mississippiensis, with m. epistrpheo-capitis lateralis, m. spinocapitis posticus and m. transversospinalis cervicis outlined in grey. M. transversospinalis capitis has been removed. G, m. splenius capitis of Anas platyrhynchos, from C2 to the occiput, outlined in grey, in posterior view. M. complexus and m. biventer cervicis have been removed. H, m. epistropheo-capitis medialis/m. altoïdius capitis of Caiman crocodylus, outlined in grey. M. transversospinalis capitis and m. epistropheo-capitis lateralis have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734932" httpUri="https://zenodo.org/record/3734932/files/figure.png" pageId="13" pageNumber="772">Fig. 7B, C</figureCitation>
|
||
). The origin of m. trans. cap. of crocodilians (
|
||
<figureCitation id="26D32A24FFA0A622752015273621F8AC" box="[1323,1407,1881,1903]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="13" pageNumber="772">Fig. 6A</figureCitation>
|
||
) is more complex than it is in birds, and divides the muscle into lateral and deep portions. The lateral portion originates from tough fascia over the anterior thoracic vertebrae and C9, dorsal to the neural spine origins of m. rhomboideus thoracis. This fascia is probably homologous with the dorsal part of the aponeurosis notarii of birds. The medial portion of m. transversospinalis capitis originates as a set of fleshy slips from the dorsal tips of the C9–C2 neural spines. These slips coalesce laterally to form a continuous muscle belly.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA3A621709B10483160FC34" blockId="14.[144,759,565,1474]" pageId="14" pageNumber="773">
|
||
Insertion: In both birds (
|
||
<figureCitation id="26D32A24FFA3A62171C1104B3143FD88" box="[458,541,565,587]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="14" pageNumber="773">Fig. 5C</figureCitation>
|
||
) and crocodilians (
|
||
<figureCitation id="26D32A24FFA3A6217093102A33B2FDA9" box="[152,236,596,618]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="14" pageNumber="773">Fig. 6B</figureCitation>
|
||
), m. biv. c./trans. cap. usually inserts on the dorsomedial region of the occiput by a slender tendon (in some birds there is a larger fleshy insertion). The scar in birds is on the supraoccipital and medialmost portion of the posterior parietals, just lateral to the point at which the parietals often converge to a point dorsoposteriorly. In most birds the tendon dives deep to m. complexus and must be teased apart from this large muscle. The m. biv. c. tendon is visible anteriorly without dissection if m. complexus becomes slender in cross-section medially. In
|
||
<taxonomicName id="79E84D22FFA3A621725811F8319DFC58" authority="Linnaeus, 1758" box="[595,707,902,923]" class="Aves" family="Corvidae" genus="Pica" kingdom="Animalia" order="Passeriformes" pageId="14" pageNumber="773" phylum="Chordata" rank="species" species="pica">Pica pica</taxonomicName>
|
||
the anterior belly of m. biventer cervicis merges with m. complexus, and shares the medial part of the aponeurosis of insertion for this muscle.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA3A62170A3167F3250FA01" blockId="14.[144,759,565,1474]" pageId="14" pageNumber="773">
|
||
In crocodilians both the lateral and the medial portions of m. trans. cap. converge to insert by a tendon, in a fashion similar to the m. biv. c. insertion tendon of birds. In dissected specimens of
|
||
<taxonomicName id="79E84D22FFA3A621729016223259FB4C" authorityName="Lehr" authorityYear="2002" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="14" pageNumber="773" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFA3A621714716043128FB53" baseAuthorityName="Daudin" baseAuthorityYear="1802" box="[332,630,1146,1168]" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="14" pageNumber="773" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
the insertion was onto an embayment at the sutural confluence of the supraoccipital and squamosal. In the young dissected
|
||
<taxonomicName id="79E84D22FFA3A621714516A8312CFB2F" baseAuthorityName="Daudin" baseAuthorityYear="1802" box="[334,626,1238,1260]" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="14" pageNumber="773" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
the tendon extended onto the posteroventral overhang of the parietals, differing slightly from the insertion usually reported (
|
||
<bibRefCitation id="DA794B50FFA3A62170F4174C32D2FA84" author="Seidel R." box="[255,396,1330,1352]" journalOrPublisher="City University of New York" pageId="14" pageNumber="773" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA3A6217193174C31E7FA8B" author="Cleuren J & De Vree F." box="[408,697,1330,1352]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="14" pageNumber="773" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
). The tendon forms the dorsalmost muscle insertion on the skull and is prominently visible, unlike in some birds where it is obscured by superficial muscle fibres of m. complexus.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA3A621709B17943388F8AC" blockId="14.[144,759,1514,1903]" pageId="14" pageNumber="773">
|
||
Action/function: Because m. biv. c./m. trans. cap. inserts dorsal to the occipital condyle in both birds and crocodilians, it is able to dorsiflex the head relative to the level of the posterior cervicals (
|
||
<bibRefCitation id="DA794B50FFA3A621729414383397F9BA" author="Burton PJK" journalOrPublisher="London: Trustees of the British Museum (Natural History)" pageId="14" pageNumber="773" refId="ref27275" refString="Burton PJK. 1974. Feeding and the feeding apparatus in aeaders. London: Trustees of the British Museum (Natural History)." title="Feeding and the feeding apparatus in aeaders" type="book" year="1974">Burton, 1974</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA3A62170D1141B3207F9B9" author="Frey E." box="[218,345,1636,1658]" journalOrPublisher="Biologie" pageId="14" pageNumber="773" pagination="1 - 106" part="424" refId="ref27770" refString="Frey E. 1988. Anatomie des Korperstammes von Alligator mississippiensis Daudin. Stuttgarter Beitrage zur Naturkunde (series A - Biologie) 424: 1 - 106." title="Anatomie des Korperstammes von Alligator mississippiensis Daudin. Stuttgarter Beitrage zur Naturkunde" type="journal article" year="1988">Frey, 1988</bibRefCitation>
|
||
).
|
||
<bibRefCitation id="DA794B50FFA3A621717A141A3155F9B9" author="Seidel R." box="[369,523,1636,1658]" journalOrPublisher="City University of New York" pageId="14" pageNumber="773" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel (1978)</bibRefCitation>
|
||
and
|
||
<bibRefCitation id="DA794B50FFA3A6217244141A3242F95A" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="14" pageNumber="773" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree (2000)</bibRefCitation>
|
||
note subsidiary functions for lateral flexion and neck elevation in crocodilians. EMG reveals that this muscle is active during head–neck dorsiflexion for inertial feeding and opening the jaws in crocodilians (
|
||
<bibRefCitation id="DA794B50FFA3A6217144148331D8F8D0" author="Cleuren J & De Vree F." box="[335,646,1789,1811]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="14" pageNumber="773" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
), and for drinking and inertial feeding in birds (
|
||
<bibRefCitation id="DA794B50FFA3A621726715623287F88C" author="Heidweiller J & Lendering B & Zweers GA" journalOrPublisher="Netherlands Journal of Zoology" pageId="14" pageNumber="773" pagination="1 - 22" part="42" refId="ref27942" refString="Heidweiller J, Lendering B, Zweers GA. 1992. Development of motor patterns in cervical muscles of drinking chickens. Netherlands Journal of Zoology 42: 1 - 22." title="Development of motor patterns in cervical muscles of drinking chickens" type="journal article" year="1992">Heidweiller, Lendering & Zweers, 1992</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA3A62171E515453394F8AC" author="van der Leeuw AHJ & Bout RG & Zweers GA" journalOrPublisher="Netherlands Journal of Zoology" pageId="14" pageNumber="773" pagination="243 - 262" part="51" refId="ref28293" refString="van der Leeuw AHJ, Bout RG, Zweers GA. 2001. Evolutionary morphology of the neck system in ratites, fowl and waterfowl. Netherlands Journal of Zoology 51: 243 - 262." title="Evolutionary morphology of the neck system in ratites, fowl and waterfowl" type="journal article" year="2001">van der Leeuw et al., 2001</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA3A621733412B830E6FDCE" blockId="14.[806,1421,198,525]" pageId="14" pageNumber="773">
|
||
The clear homologue of m. trans. cap. of
|
||
<taxonomicName id="79E84D22FFA3A621752412B930CFFF3A" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="773" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
is morphologically similar to that of crocodilians, originating from the dorsolateral surfaces of the postatlantal neural spines and inserting medially on the posterior surface of the parietal. The muscle resembles that of crocodilians and is unlike the homologue in birds, with a fairly massive belly that is anteroposteriorly continuous. Another muscle belly (m. articulo-parietalis), inserts laterally on the parietals, but originates with components of the longissimus system.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA3A621732D1059302DFD98" blockId="14.[806,1421,550,940]" pageId="14" pageNumber="773">
|
||
M. complexus (
|
||
<bibRefCitation id="DA794B50FFA3A62173F2105836DFFDFE" author="Vanden Berge JC & Zweers GA" box="[1017,1409,550,573]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="14" pageNumber="773" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFA3A6217325103B3036FD98" box="[814,872,581,603]" class="Aves" kingdom="Animalia" pageId="14" pageNumber="773" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
.)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA3A621732D101A3784FC6F" blockId="14.[806,1421,550,940]" pageId="14" pageNumber="773">
|
||
M. transversospinalis capitis lateralis (m. trans. cap. lat.) (
|
||
<bibRefCitation id="DA794B50FFA3A62173AF10FC371BFD5B" author="Tsuihiji T." box="[932,1093,642,664]" journalOrPublisher="Journal of Morphology" pageId="14" pageNumber="773" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji, 2005</bibRefCitation>
|
||
). M. spinocapitis posticus (m. sp. cap. post.) (
|
||
<bibRefCitation id="DA794B50FFA3A621741810DF37FFFD75" author="Seidel R." box="[1043,1185,673,695]" journalOrPublisher="City University of New York" pageId="14" pageNumber="773" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA3A62174A610DF303EFD15" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="14" pageNumber="773" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
), m. semispinalis capitis (m. semisp. cap.) (
|
||
<bibRefCitation id="DA794B50FFA3A621732510A03778FD37" author="Cong L & Hou L & Wu X-C & Hou J." box="[814,1062,734,756]" journalOrPublisher="Beijing: Science Press" pageId="14" pageNumber="773" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
). Anterior portion: m. epistropheo-capitis lateralis (m. epist.-cap. lat.) (
|
||
<bibRefCitation id="DA794B50FFA3A6217325116530E1FCF3" author="Seidel R." box="[814,959,795,817]" journalOrPublisher="City University of New York" pageId="14" pageNumber="773" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA3A62173C5116537A0FCF2" author="Cleuren J & De Vree F." box="[974,1278,795,817]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="14" pageNumber="773" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
). m. rectus capitis dorsalis major (m. r.c.d.maj.) (
|
||
<bibRefCitation id="DA794B50FFA3A621750111443003FCAC" author="Cong L & Hou L & Wu X-C & Hou J." journalOrPublisher="Beijing: Science Press" pageId="14" pageNumber="773" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
) (
|
||
<taxonomicName id="79E84D22FFA3A6217376112630A5FCAD" box="[893,1019,856,878]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="14" pageNumber="773" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
). m. obliquus capitis magnus (m. obl. cap. mag.) (
|
||
<bibRefCitation id="DA794B50FFA3A621742211093796FC4E" author="Oelrich TM" box="[1065,1224,887,909]" journalOrPublisher="Miscellaneous Publications of the Museum of Zoology, UniVersity of Michigan" pageId="14" pageNumber="773" pagination="1 - 122" part="94" refId="ref28511" refString="Oelrich TM. 1956. The anatomy of the head of Ctenosaura pectinata (Iguanidae). Miscellaneous Publications of the Museum of Zoology, UniVersity of Michigan 94: 1 - 122." title="The anatomy of the head of Ctenosaura pectinata (Iguanidae)" type="journal article" year="1956">Oelrich, 1956</bibRefCitation>
|
||
; ICVGAN, 1994;
|
||
<bibRefCitation id="DA794B50FFA3A621732D11E8371FFC6F" author="Herrell A & De Vree F." box="[806,1089,918,940]" journalOrPublisher="Belgian Journal of Zoology" pageId="14" pageNumber="773" pagination="175 - 186" part="129" refId="ref28038" refString="Herrell A, De Vree F. 1999. The cervical musculature in helodermatid lizards. Belgian Journal of Zoology 129: 175 - 186." title="The cervical musculature in helodermatid lizards" type="journal article" year="1999">Herrell & De Vree, 1999</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFA3A621745611E8378DFC6F" box="[1117,1235,918,940]" class="Reptilia" family="Varanidae" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="773" phylum="Chordata" rank="family">Varanidae</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA3A621732D11BA3022FB51" blockId="14.[806,1421,964,1170]" pageId="14" pageNumber="773">
|
||
<bibRefCitation id="DA794B50FFA3A621732D11BA3093FC19" author="Tsuihiji T." box="[806,973,964,986]" journalOrPublisher="Journal of Morphology" pageId="14" pageNumber="773" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji (2005)</bibRefCitation>
|
||
established homology of m. complexus of birds with m. transversospinalis capitis lateralis of crocodilians. M. trans. cap. lat. is described in the previous section. Other crocodilian muscles are described here with m. complexus, because they have similar insertions, actions and partly similar origins.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA3A621732D16C63703F998" blockId="14.[806,1422,1208,1903]" pageId="14" pageNumber="773">
|
||
Origin: In dissected birds (
|
||
<figureCitation id="26D32A24FFA3A621746E16C63782FB0E" box="[1125,1244,1208,1230]" captionStart="Figure 7" captionStartId="13.[164,243,1260,1279]" captionTargetBox="[169,1450,206,1217]" captionTargetId="figure@13.[164,1451,195,1230]" captionTargetPageId="13" captionText="Figure 7. A, dorsal view of m. biventer cervicis (m. biv. c., dark outline) and m. longus colli dorsalis pars cranialis of Aquila chrysaetos. Note the tendon intervening between anterior and posterior bellies of m. biv. c. M. complexus has been removed. B, dorsal view of m. transversospinalis capitis (m. trans. cap., dark outline) of Alligator mississippiensis. Medial and lateral portions of m. trans. cap. in Alligator are not distinguished here. C, lateral view of m. trans. cap. of Alligator mississippiensis (dark outline). D, m. complexus (dark outline) and m. rectus capitis lateralis (light outline) of Pelicanus occidentalis in lateral view. E, m. complexus of Pelicanus occidentalis, outlined in dark grey on the right. This is a dorsal view, with anterior towards the top. F, dorsal view of dissected Alligator mississippiensis, with m. epistrpheo-capitis lateralis, m. spinocapitis posticus and m. transversospinalis cervicis outlined in grey. M. transversospinalis capitis has been removed. G, m. splenius capitis of Anas platyrhynchos, from C2 to the occiput, outlined in grey, in posterior view. M. complexus and m. biventer cervicis have been removed. H, m. epistropheo-capitis medialis/m. altoïdius capitis of Caiman crocodylus, outlined in grey. M. transversospinalis capitis and m. epistropheo-capitis lateralis have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734932" httpUri="https://zenodo.org/record/3734932/files/figure.png" pageId="14" pageNumber="773">Fig. 7D, E</figureCitation>
|
||
) m. complexus originates from the epipophyses of C2–C4, and even C5 or C6 as in
|
||
<taxonomicName id="79E84D22FFA3A62173D2168B372DFAC9" authorityName="Linnaeus" authorityYear="1758" box="[985,1139,1269,1290]" class="Aves" family="Phasianidae" genus="Gallus" kingdom="Animalia" order="Galliformes" pageId="14" pageNumber="773" phylum="Chordata" rank="species" species="gallus">Gallus gallus</taxonomicName>
|
||
(
|
||
<figureCitation id="26D32A24FFA3A621748F168B3787FAC8" box="[1156,1241,1269,1291]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="14" pageNumber="773">Fig. 5B</figureCitation>
|
||
). In some birds (e.g.
|
||
<taxonomicName id="79E84D22FFA3A6217368176D376CFAEB" authorityName="Linnaeus" authorityYear="1758" box="[867,1074,1299,1320]" class="Aves" family="Accipitridae" genus="Aquila" kingdom="Animalia" order="Accipitriformes" pageId="14" pageNumber="773" phylum="Chordata" rank="species" species="chrysaetos">Aquila chrysaetos</taxonomicName>
|
||
), and in grebes and waders (
|
||
<bibRefCitation id="DA794B50FFA3A6217325174C377CFA8B" author="Zusi RL & Storer RW" box="[814,1058,1330,1352]" journalOrPublisher="Miscellaneous Publications of the Museum of Zoology, University of Michigan" pageId="14" pageNumber="773" pagination="1-49" part="139" refId="ref29391" refString="Zusi RL, Storer RW. 1969. Osteology and myology of the head and neck of the Pied-billed Grebe (Podilymbus). Miscellaneous Publications of the Museum of Zoology, Uni- Versity of Michigan 139: 1 - 49." title="Osteology and myology of the head and neck of the Pied-billed Grebe (Podilymbus)" type="book" year="1969">Zusi & Storer, 1969</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA3A621743F174C378DFA8B" author="Burton PJK" box="[1076,1235,1330,1352]" journalOrPublisher="London: Trustees of the British Museum (Natural History)" pageId="14" pageNumber="773" refId="ref27275" refString="Burton PJK. 1974. Feeding and the feeding apparatus in aeaders. London: Trustees of the British Museum (Natural History)." title="Feeding and the feeding apparatus in aeaders" type="book" year="1974">Burton, 1974</bibRefCitation>
|
||
), m. complexus also originates from lateral tubercles associated with the transverse processes of C3–C4 or C5 (
|
||
<figureCitation id="26D32A24FFA3A6217520171136DFFA46" box="[1323,1409,1391,1413]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="14" pageNumber="773">Fig. 5B</figureCitation>
|
||
). Embryologically in chickens and quail the origins from the epipophyses of C4 and C5 are prominent, and lateral tubercle origins are ambiguous or absent (
|
||
<bibRefCitation id="DA794B50FFA3A621732517943094FA3C" author="Noden DM" box="[814,970,1514,1536]" journalOrPublisher="American Journal of Anatomy" pageId="14" pageNumber="773" pagination="257 - 276" part="168" refId="ref28482" refString="Noden DM. 1983. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. American Journal of Anatomy 168: 257 - 276." title="The embryonic origins of avian cephalic and cervical muscles and associated connective tissues" type="journal article" year="1983">Noden, 1983</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA3A62173EA17943793F9C3" author="Huang R & Zhi Q & Patel K & Wilting J & Christ B." box="[993,1229,1514,1536]" journalOrPublisher="Anatomy and Embryology" pageId="14" pageNumber="773" pagination="375 - 383" part="202" refId="ref28138" refString="Huang R, Zhi Q, Patel K, Wilting J, Christ B. 2000. Contribution of single somites to the skeleton and muscles of the occipital and cervical regions in avian embryos. Anatomy and Embryology 202: 375 - 383." title="Contribution of single somites to the skeleton and muscles of the occipital and cervical regions in avian embryos" type="journal article" year="2000">Huang et al., 2000</bibRefCitation>
|
||
). Embryological studies of birds with lateral tubercle origins would shed light on coalescence of dorsal and ventral slips of the muscle in these forms.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA3A6217334141A37FAF8AC" blockId="14.[806,1422,1208,1903]" pageId="14" pageNumber="773">
|
||
In
|
||
<taxonomicName id="79E84D22FFA3A6217369141A3760F9BA" authorityName="Lehr" authorityYear="2002" box="[866,1086,1636,1657]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="14" pageNumber="773" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFA3A6217476141A301AF95B" baseAuthorityName="Daudin" baseAuthorityYear="1802" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="14" pageNumber="773" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
, m. sp. cap. post./m. semisp. cap. (
|
||
<figureCitation id="26D32A24FFA3A62174E714FD3663F95B" box="[1260,1341,1667,1689]" captionStart="Figure 7" captionStartId="13.[164,243,1260,1279]" captionTargetBox="[169,1450,206,1217]" captionTargetId="figure@13.[164,1451,195,1230]" captionTargetPageId="13" captionText="Figure 7. A, dorsal view of m. biventer cervicis (m. biv. c., dark outline) and m. longus colli dorsalis pars cranialis of Aquila chrysaetos. Note the tendon intervening between anterior and posterior bellies of m. biv. c. M. complexus has been removed. B, dorsal view of m. transversospinalis capitis (m. trans. cap., dark outline) of Alligator mississippiensis. Medial and lateral portions of m. trans. cap. in Alligator are not distinguished here. C, lateral view of m. trans. cap. of Alligator mississippiensis (dark outline). D, m. complexus (dark outline) and m. rectus capitis lateralis (light outline) of Pelicanus occidentalis in lateral view. E, m. complexus of Pelicanus occidentalis, outlined in dark grey on the right. This is a dorsal view, with anterior towards the top. F, dorsal view of dissected Alligator mississippiensis, with m. epistrpheo-capitis lateralis, m. spinocapitis posticus and m. transversospinalis cervicis outlined in grey. M. transversospinalis capitis has been removed. G, m. splenius capitis of Anas platyrhynchos, from C2 to the occiput, outlined in grey, in posterior view. M. complexus and m. biventer cervicis have been removed. H, m. epistropheo-capitis medialis/m. altoïdius capitis of Caiman crocodylus, outlined in grey. M. transversospinalis capitis and m. epistropheo-capitis lateralis have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734932" httpUri="https://zenodo.org/record/3734932/files/figure.png" pageId="14" pageNumber="773">Fig. 7F</figureCitation>
|
||
) originates from the ventrolateral portions of the anterior neural arches (
|
||
<figureCitation id="26D32A24FFA3A62173F314BE3711F915" box="[1016,1103,1728,1750]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="14" pageNumber="773">Fig. 6A</figureCitation>
|
||
). M. epistr.-cap. lat./m. r.c.d.maj. (
|
||
<figureCitation id="26D32A24FFA3A621739514A030B1F937" box="[926,1007,1758,1780]" captionStart="Figure 7" captionStartId="13.[164,243,1260,1279]" captionTargetBox="[169,1450,206,1217]" captionTargetId="figure@13.[164,1451,195,1230]" captionTargetPageId="13" captionText="Figure 7. A, dorsal view of m. biventer cervicis (m. biv. c., dark outline) and m. longus colli dorsalis pars cranialis of Aquila chrysaetos. Note the tendon intervening between anterior and posterior bellies of m. biv. c. M. complexus has been removed. B, dorsal view of m. transversospinalis capitis (m. trans. cap., dark outline) of Alligator mississippiensis. Medial and lateral portions of m. trans. cap. in Alligator are not distinguished here. C, lateral view of m. trans. cap. of Alligator mississippiensis (dark outline). D, m. complexus (dark outline) and m. rectus capitis lateralis (light outline) of Pelicanus occidentalis in lateral view. E, m. complexus of Pelicanus occidentalis, outlined in dark grey on the right. This is a dorsal view, with anterior towards the top. F, dorsal view of dissected Alligator mississippiensis, with m. epistrpheo-capitis lateralis, m. spinocapitis posticus and m. transversospinalis cervicis outlined in grey. M. transversospinalis capitis has been removed. G, m. splenius capitis of Anas platyrhynchos, from C2 to the occiput, outlined in grey, in posterior view. M. complexus and m. biventer cervicis have been removed. H, m. epistropheo-capitis medialis/m. altoïdius capitis of Caiman crocodylus, outlined in grey. M. transversospinalis capitis and m. epistropheo-capitis lateralis have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734932" httpUri="https://zenodo.org/record/3734932/files/figure.png" pageId="14" pageNumber="773">Fig. 7F</figureCitation>
|
||
) originates from the anterodorsolateral surface of C2 (
|
||
<figureCitation id="26D32A24FFA3A62174161483372AF8D0" box="[1053,1140,1789,1811]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="14" pageNumber="773">Fig. 6A</figureCitation>
|
||
). In
|
||
<taxonomicName id="79E84D22FFA3A62174BE148036D3F8D1" box="[1205,1421,1789,1811]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="773" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
m. obl. cap. mag. arises from the dorsal surfaces of the postzygapophyses, similarly to the epipophysis origins of m. complexus of birds.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA2A62070AF12B9315FFD64" blockId="15.[164,779,198,1352]" pageId="15" pageNumber="774">
|
||
Insertion: M. complexus has a fleshy or aponeurotic insertion medially on the parietals of birds (
|
||
<figureCitation id="26D32A24FFA2A62072A2129A31A0FF39" box="[681,766,228,250]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="15" pageNumber="774">Fig. 5C</figureCitation>
|
||
), and laterally can insert on the posterior surface of the squamosal (‘temporal’ sensu
|
||
<bibRefCitation id="DA794B50FFA2A620720C135C3058FEFB" author="Zusi RL & Storer RW" box="[519,774,290,312]" journalOrPublisher="Miscellaneous Publications of the Museum of Zoology, University of Michigan" pageId="15" pageNumber="774" pagination="1-49" part="139" refId="ref29391" refString="Zusi RL, Storer RW. 1969. Osteology and myology of the head and neck of the Pied-billed Grebe (Podilymbus). Miscellaneous Publications of the Museum of Zoology, Uni- Versity of Michigan 139: 1 - 49." title="Osteology and myology of the head and neck of the Pied-billed Grebe (Podilymbus)" type="book" year="1969">Zusi & Storer, 1969</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA2A62070AF133E3277FE95" author="Koch T." box="[164,297,320,342]" journalOrPublisher="Ames: Iowa State University Press" pageId="15" pageNumber="774" refId="ref28264" refString="Koch T. 1973. Anatomy of the chicken and domestic birds (Translated by Skold BH, DeVries L). Ames: Iowa State University Press." title="Anatomy of the chicken and domestic birds (Translated by Skold BH, DeVries L)" type="book" year="1973">Koch, 1973</bibRefCitation>
|
||
). The latter insertion represents a ventrolateral expansion of the muscle from the condition in 11-day-old chick embryos, in which the insertion is restricted to the dorsomedlal posterior face of the parietals (
|
||
<bibRefCitation id="DA794B50FFA2A620711C13C532F4FE12" author="Noden DM" box="[279,426,443,465]" journalOrPublisher="American Journal of Anatomy" pageId="15" pageNumber="774" pagination="257 - 276" part="168" refId="ref28482" refString="Noden DM. 1983. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. American Journal of Anatomy 168: 257 - 276." title="The embryonic origins of avian cephalic and cervical muscles and associated connective tissues" type="journal article" year="1983">Noden, 1983</bibRefCitation>
|
||
). The ventrolateral insertion is uniquely tendinous in
|
||
<taxonomicName id="79E84D22FFA2A62071A313A731FDFE2D" box="[424,675,473,494]" class="Reptilia" family="Tyrannosauridae" genus="Pelicanus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="15" pageNumber="774" phylum="Chordata" rank="species" species="occidentalis">Pelicanus occidentalis</taxonomicName>
|
||
. In most birds dissected (Falconiformes:
|
||
<taxonomicName id="79E84D22FFA2A62072241386305AFDCE" authorityName="Linnaeus" authorityYear="1758" box="[559,772,504,525]" class="Aves" family="Accipitridae" genus="Aquila" kingdom="Animalia" order="Accipitriformes" pageId="15" pageNumber="774" phylum="Chordata" rank="species" species="chrysaetos">Aquila chrysaetos</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA2A62070AF10683220FDE8" authorityName="Linnaeus" authorityYear="1758" box="[164,382,534,555]" class="Aves" family="Falconidae" genus="Falco" kingdom="Animalia" order="Falconiformes" pageId="15" pageNumber="774" phylum="Chordata" rank="species" species="columbarius">Falco columbarius</taxonomicName>
|
||
;
|
||
<taxonomicName id="79E84D22FFA2A620719F106831CBFDE8" authority=", Struthio" authorityName="Struthio" box="[404,661,534,555]" class="Reptilia" family="Tyrannosauridae" genus="Pelicanus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="15" pageNumber="774" phylum="Chordata" rank="species" species="occidentalis">Pelicanus occidentalis</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFA2A62072A01068325EFD89" authority="Linnaeus, 1758" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="15" pageNumber="774" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
and other large specimens), m. complexus forms a broad, dorsoventrally thick band, but in Pica pica it is more slender transversely and merges medially with m. biventer cervicis.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA2A62070B710D131CCFC1A" blockId="15.[164,779,198,1352]" pageId="15" pageNumber="774">
|
||
While m. complexus is the most superficial and prominent anterior craniocervical muscle in birds, fusion of bones in the occipital region has led to imprecise descriptions of its insertion. The posterior surfaces of adult avian squamosals are fused dorsomedially with the parietals, and ventromedially with the paroccipital processes. Hence the insertion of m. complexus has been identified as being solely on the parietals (
|
||
<bibRefCitation id="DA794B50FFA2A620712A11DA32E7FC79" author="Fisher HI" box="[289,441,932,954]" journalOrPublisher="Condor" pageId="15" pageNumber="774" pagination="227 - 233" part="63" refId="ref27648" refString="Fisher HI. 1961. The hatching muscle in North American grebes. Condor 63: 227 - 233." title="The hatching muscle in North American grebes" type="journal article" year="1961">Fisher, 1961</bibRefCitation>
|
||
), or on the occipital crest, without reference to its constituent bones.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA2A62070B7119C312BFA8B" blockId="15.[164,779,198,1352]" pageId="15" pageNumber="774">
|
||
In dissected crocodilians m. sp. cap. post./m. semisp. cap. inserts via a broad tendon onto the paroccipital process (
|
||
<figureCitation id="26D32A24FFA2A620719C166132B5FBF6" box="[407,491,1055,1077]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="15" pageNumber="774">Fig. 6B</figureCitation>
|
||
), medial to the insertion of m. longissimus capitis superficialis and dorsal to that of m. iliocostalis capitis/m. rectus capitis lateralis. The crocodilian m. epistr.-cap. lat./m. r.c.d.maj. inserts fleshily on the squamosal (
|
||
<figureCitation id="26D32A24FFA2A620723B16E731DBFB6C" box="[560,645,1177,1199]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="15" pageNumber="774">Fig. 6B</figureCitation>
|
||
), ventrolaterally to the tendon of m. spinalis capitis. M. obliquus capitis magnus inserts ventrolaterally on the squamosal of
|
||
<taxonomicName id="79E84D22FFA2A620711E168832B2FAC9" box="[277,492,1269,1291]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="15" pageNumber="774" phylum="Chordata" rank="species" species="dumerilii">
|
||
Varanus
|
||
<taxonomicName id="79E84D22FFA2A620718A168B32B2FAC9" box="[385,492,1269,1290]" pageId="15" pageNumber="774" rank="species" species="dumerilii">dumerilii</taxonomicName>
|
||
</taxonomicName>
|
||
. Similar insertions and partially similar origins indicate homology with the dorsal portion of m. complexus of birds.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA2A62070AF17113192F937" blockId="15.[164,779,1391,1903]" pageId="15" pageNumber="774">
|
||
Action/function: The insertion of m. complexus in birds is dorsal and dorsolateral to the occipital condyle, and this position imparts it with a long in-lever for dorsal and lateral flexion of the head relative to the axis. M. complexus is strongly active during the initial upstroke of the head in drinking in adult chickens (
|
||
<bibRefCitation id="DA794B50FFA2A620716914593126F9FE" author="Heidweiller J & Lendering B & Zweers GA" box="[354,632,1575,1597]" journalOrPublisher="Netherlands Journal of Zoology" pageId="15" pageNumber="774" pagination="1 - 22" part="42" refId="ref27942" refString="Heidweiller J, Lendering B, Zweers GA. 1992. Development of motor patterns in cervical muscles of drinking chickens. Netherlands Journal of Zoology 42: 1 - 22." title="Development of motor patterns in cervical muscles of drinking chickens" type="journal article" year="1992">Heidweiller et al., 1992</bibRefCitation>
|
||
), confirming the predicted dorsiflexive kinematics. Because m. complexus inserts lateral to the occipital condyle as well as dorsal to it, a kinematic role in head lateroflexion relative to the neck has been proposed (
|
||
<bibRefCitation id="DA794B50FFA2A62070A714BE3213F915" author="Burton PJK" box="[172,333,1728,1750]" journalOrPublisher="London: Trustees of the British Museum (Natural History)" pageId="15" pageNumber="774" refId="ref27275" refString="Burton PJK. 1974. Feeding and the feeding apparatus in aeaders. London: Trustees of the British Museum (Natural History)." title="Feeding and the feeding apparatus in aeaders" type="book" year="1974">Burton, 1974</bibRefCitation>
|
||
). This hypothesis has been corroborated electromyographically (our unpubl. data).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA2A62070B714833098FE2C" blockId="15.[164,779,1391,1903]" lastBlockId="15.[826,1442,198,954]" pageId="15" pageNumber="774">
|
||
M. complexus has often been cited as the ‘piping’ or hatching muscle, through the action of which hatching birds break the shell with their egg tooth, or otherwise with their beak. Just prior to hatching in all taxa examined by
|
||
<bibRefCitation id="DA794B50FFA2A620743412B83783FF1F" author="Fisher HI" box="[1087,1245,198,220]" journalOrPublisher="Condor" pageId="15" pageNumber="774" pagination="227 - 233" part="63" refId="ref27648" refString="Fisher HI. 1961. The hatching muscle in North American grebes. Condor 63: 227 - 233." title="The hatching muscle in North American grebes" type="journal article" year="1961">Fisher (1961)</bibRefCitation>
|
||
, the muscle distends by the infiltration of lymph rich in glycogen that is probably important for the muscle’s function.
|
||
<bibRefCitation id="DA794B50FFA2A6207331135C373BFEFB" author="Lipar JL & Ketterson ED" box="[826,1125,290,312]" journalOrPublisher="Proceedings of the Royal Society of London B" pageId="15" pageNumber="774" pagination="2005 - 2010" part="267" refId="ref28356" refString="Lipar JL, Ketterson ED. 2000. Maternally derived yolk testosterone enhances the development of the hatching muscle in the red-winged blackbird Agelaius phoeniceus. Proceedings of the Royal Society of London B 267: 2005 - 2010." title="Maternally derived yolk testosterone enhances the development of the hatching muscle in the red-winged blackbird Agelaius phoeniceus" type="journal article" year="2000">Lipar & Ketterson (2000)</bibRefCitation>
|
||
established that testosterone within the egg yolk of red-winged blackbirds (
|
||
<taxonomicName id="79E84D22FFA2A620734913213777FEB7" authority="Linnaeus, 1766" box="[834,1065,351,372]" class="Aves" family="Icteridae" genus="Agelaius" higherTaxonomySource="GBIF" kingdom="Animalia" order="Passeriformes" pageId="15" pageNumber="774" phylum="Chordata" rank="species" species="phoeniceus">Agelaius phoeniceus</taxonomicName>
|
||
) causes hypertrophy of m. complexus. Longer exposure to testosterone gives later hatchlings a larger m. complexus, and increases the effectiveness of their ‘begging’ behaviour by head dorsiflexion.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA2A6207358138637E6FC79" blockId="15.[826,1442,198,954]" pageId="15" pageNumber="774">
|
||
EMG of m. transversospinalis of crocodilians suggests that the lateral part of this muscle has a head dorsiflexive function homologous with that of m. complexus of birds, although EMG studies have not discriminated between lateral and medial divisions (
|
||
<bibRefCitation id="DA794B50FFA2A620734910EF372FFD64" author="Cleuren J & De Vree F." box="[834,1137,657,679]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="15" pageNumber="774" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
). All of the other muscles described in this section for crocodilians insert laterally and dorsally onto the occipital condyle, in such a position that they can impose more lateral flexion than dorsiflexion of the head relative to the neck. EMG of m. spinocapitis posticus/m. semispinalis capitis of crocodilians indicates that the muscle is active during multiple activities, but is especially active during lateral flexion of the cranium versus the neck (
|
||
<bibRefCitation id="DA794B50FFA2A620738B11DA37F2FC79" author="Cleuren J & De Vree F." box="[896,1196,932,954]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="15" pageNumber="774" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA2A620733111AD376FFBCB" blockId="15.[826,1441,978,1215]" pageId="15" pageNumber="774">
|
||
M. splenius capitis (m. spl. cap.) (
|
||
<bibRefCitation id="DA794B50FFA2A62074EF11AD3088FBCB" author="Vanden Berge JC & Zweers GA" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="15" pageNumber="774" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFA2A62073F8118C3774FBCB" box="[1011,1066,1010,1032]" class="Aves" kingdom="Animalia" pageId="15" pageNumber="774" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA2A6207331166E370FFB7C" blockId="15.[826,1441,978,1215]" pageId="15" pageNumber="774">
|
||
M. obliquus capitis profundus (m. obl. cap. prof.) (
|
||
<bibRefCitation id="DA794B50FFA2A6207349165130B6FB86" author="Tsuihiji T." box="[834,1000,1071,1093]" journalOrPublisher="Journal of Vertebrate Paleontology" pageId="15" pageNumber="774" pagination="105" part="23" refId="ref29120" refString="Tsuihiji T. 2003. Evolutionary changes in attachments of the axial musculature in the occipital region in Marginocephalia (Dinosauria). Journal of Vertebrate Paleontology 23 (Suppl. to no. 3): 105 A." title="Evolutionary changes in attachments of the axial musculature in the occipital region in Marginocephalia (Dinosauria)." type="journal article" year="2003">Tsuihiji, 2003</bibRefCitation>
|
||
), m. epistropheo-capitis medialis (m. epist.-cap. med.) (
|
||
<bibRefCitation id="DA794B50FFA2A620745C163337B7FBA1" author="Seidel R." box="[1111,1257,1101,1123]" journalOrPublisher="City University of New York" pageId="15" pageNumber="774" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFA2A62074F1163330E9FB41" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="15" pageNumber="774" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
). m. altoïdius capitis (
|
||
<bibRefCitation id="DA794B50FFA2A62074C41612362EFB41" author="Tsuihiji T." box="[1231,1392,1132,1154]" journalOrPublisher="Journal of Morphology" pageId="15" pageNumber="774" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji, 2005</bibRefCitation>
|
||
). m. rectus capitis dorsalis minor (m. r.c.d.min.) (
|
||
<bibRefCitation id="DA794B50FFA2A620756D16F530E6FB7C" author="Cong L & Hou L & Wu X-C & Hou J." journalOrPublisher="Beijing: Science Press" pageId="15" pageNumber="774" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
) (
|
||
<taxonomicName id="79E84D22FFA2A62073C416D73714FB7C" box="[975,1098,1193,1215]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="15" pageNumber="774" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA2A620733116A63677FACF" blockId="15.[826,1441,1240,1292]" pageId="15" pageNumber="774">T. Tsuihiji (pers. comm.) was the first to establish the synonymy and homology of these muscles.</paragraph>
|
||
<paragraph id="BE5736A1FFA2A6207331173C365BF9CC" blockId="15.[826,1441,1346,1552]" pageId="15" pageNumber="774">
|
||
Origin: In dissected birds the origin of the medial belly of m. splenius capitis (
|
||
<figureCitation id="26D32A24FFA2A6207471171F3790FAB4" box="[1146,1230,1377,1399]" captionStart="Figure 7" captionStartId="13.[164,243,1260,1279]" captionTargetBox="[169,1450,206,1217]" captionTargetId="figure@13.[164,1451,195,1230]" captionTargetPageId="13" captionText="Figure 7. A, dorsal view of m. biventer cervicis (m. biv. c., dark outline) and m. longus colli dorsalis pars cranialis of Aquila chrysaetos. Note the tendon intervening between anterior and posterior bellies of m. biv. c. M. complexus has been removed. B, dorsal view of m. transversospinalis capitis (m. trans. cap., dark outline) of Alligator mississippiensis. Medial and lateral portions of m. trans. cap. in Alligator are not distinguished here. C, lateral view of m. trans. cap. of Alligator mississippiensis (dark outline). D, m. complexus (dark outline) and m. rectus capitis lateralis (light outline) of Pelicanus occidentalis in lateral view. E, m. complexus of Pelicanus occidentalis, outlined in dark grey on the right. This is a dorsal view, with anterior towards the top. F, dorsal view of dissected Alligator mississippiensis, with m. epistrpheo-capitis lateralis, m. spinocapitis posticus and m. transversospinalis cervicis outlined in grey. M. transversospinalis capitis has been removed. G, m. splenius capitis of Anas platyrhynchos, from C2 to the occiput, outlined in grey, in posterior view. M. complexus and m. biventer cervicis have been removed. H, m. epistropheo-capitis medialis/m. altoïdius capitis of Caiman crocodylus, outlined in grey. M. transversospinalis capitis and m. epistropheo-capitis lateralis have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734932" httpUri="https://zenodo.org/record/3734932/files/figure.png" pageId="15" pageNumber="774">Fig. 7G</figureCitation>
|
||
) is demarcated by a teardrop-shaped, dorsally placed scar on the axis and sometimes C3 (
|
||
<figureCitation id="26D32A24FFA2A620741117E03731FA77" box="[1050,1135,1438,1460]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="15" pageNumber="774">Fig. 5B</figureCitation>
|
||
). The equivalent muscle in crocodilians, m. epist.-cap. med. (
|
||
<figureCitation id="26D32A24FFA2A62074CB17C23646FA11" box="[1216,1304,1468,1490]" captionStart="Figure 7" captionStartId="13.[164,243,1260,1279]" captionTargetBox="[169,1450,206,1217]" captionTargetId="figure@13.[164,1451,195,1230]" captionTargetPageId="13" captionText="Figure 7. A, dorsal view of m. biventer cervicis (m. biv. c., dark outline) and m. longus colli dorsalis pars cranialis of Aquila chrysaetos. Note the tendon intervening between anterior and posterior bellies of m. biv. c. M. complexus has been removed. B, dorsal view of m. transversospinalis capitis (m. trans. cap., dark outline) of Alligator mississippiensis. Medial and lateral portions of m. trans. cap. in Alligator are not distinguished here. C, lateral view of m. trans. cap. of Alligator mississippiensis (dark outline). D, m. complexus (dark outline) and m. rectus capitis lateralis (light outline) of Pelicanus occidentalis in lateral view. E, m. complexus of Pelicanus occidentalis, outlined in dark grey on the right. This is a dorsal view, with anterior towards the top. F, dorsal view of dissected Alligator mississippiensis, with m. epistrpheo-capitis lateralis, m. spinocapitis posticus and m. transversospinalis cervicis outlined in grey. M. transversospinalis capitis has been removed. G, m. splenius capitis of Anas platyrhynchos, from C2 to the occiput, outlined in grey, in posterior view. M. complexus and m. biventer cervicis have been removed. H, m. epistropheo-capitis medialis/m. altoïdius capitis of Caiman crocodylus, outlined in grey. M. transversospinalis capitis and m. epistropheo-capitis lateralis have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734932" httpUri="https://zenodo.org/record/3734932/files/figure.png" pageId="15" pageNumber="774">Fig. 7H</figureCitation>
|
||
), originates from the dorsal surface of the long, laterally compressed axial spinous process (
|
||
<figureCitation id="26D32A24FFA2A62074A8178437A6F9CC" box="[1187,1272,1529,1552]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="15" pageNumber="774">Fig. 6B</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFA2A63F733114383289FEFB" blockId="15.[826,1441,1605,1903]" lastBlockId="16.[144,759,198,312]" lastPageId="16" lastPageNumber="775" pageId="15" pageNumber="774">
|
||
Insertion: The insertions of these muscles in extant archosaurs are deep and medial to those of m. complexus and similarly inserting muscles. In birds m. spl. cap. has a fleshy insertion on a large area of the parietal, the dorsolateral portion of the paroccipital process, and lateral portion of the supraoccipital (
|
||
<figureCitation id="26D32A24FFA2A6207349148330C9F8D0" box="[834,919,1789,1811]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="15" pageNumber="774">Fig. 5C</figureCitation>
|
||
). A lateral portion of this muscle, originating from C3, sometimes inserts onto the paroccipital process of birds (as in
|
||
<taxonomicName id="79E84D22FFA2A62074471544364CF88C" authority="Linnaeus, 1758" box="[1100,1298,1850,1871]" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="15" pageNumber="774" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
: this study;
|
||
<bibRefCitation id="DA794B50FFA2A620733115273084F8AC" author="Tsuihiji T." box="[826,986,1881,1903]" journalOrPublisher="Journal of Morphology" pageId="15" pageNumber="774" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji, 2005</bibRefCitation>
|
||
). In crocodilians m. epist.-cap. med. has a fleshy insertion along the suture between the squamosal and paroccipital process (
|
||
<figureCitation id="26D32A24FFBDA63F7219129A3138FF39" box="[530,614,228,250]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="16" pageNumber="775">Fig. 5B</figureCitation>
|
||
), ventral to and more medially extensive than the insertion of m. epistropheo-capitis lateralis.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F709B13013101FC5E" blockId="16.[144,759,383,925]" pageId="16" pageNumber="775">
|
||
Action/function: M. splenius capitis of birds and m. epistropheo-capitis medialis of crocodilians insert dorsal to the occipital condyle, and lateral to the sagittal midline of the skull.
|
||
<bibRefCitation id="DA794B50FFBDA63F71E613A531CEFE32" author="Burton PJK" box="[493,656,475,497]" journalOrPublisher="London: Trustees of the British Museum (Natural History)" pageId="16" pageNumber="775" refId="ref27275" refString="Burton PJK. 1974. Feeding and the feeding apparatus in aeaders. London: Trustees of the British Museum (Natural History)." title="Feeding and the feeding apparatus in aeaders" type="book" year="1974">Burton (1974)</bibRefCitation>
|
||
inferred kinematically that the muscle in birds is active during head dorsiflexion relative to the neck, and some capacity for lateral flexion is likely as well. The moment arms for both of these functions are shorter than those of the more superficial m. complexus, and m. spl. cap. may be effective in stabilizing the atlantooccipital joint. EMG of m. splenius capitis of chickens (
|
||
<bibRefCitation id="DA794B50FFBDA63F709C10B132FBFD25" author="Heidweiller J & Lendering B & Zweers GA" box="[151,421,719,742]" journalOrPublisher="Netherlands Journal of Zoology" pageId="16" pageNumber="775" pagination="1 - 22" part="42" refId="ref27942" refString="Heidweiller J, Lendering B, Zweers GA. 1992. Development of motor patterns in cervical muscles of drinking chickens. Netherlands Journal of Zoology 42: 1 - 22." title="Development of motor patterns in cervical muscles of drinking chickens" type="journal article" year="1992">Heidweiller et al., 1992</bibRefCitation>
|
||
) confirms that the muscle is active during head dorsiflexion, although only when the muscle is unstretched. Whereas m. epist.-cap. med. of crocodilians is one of the smallest craniocervical muscles, the topology of its moment arms and presumably dorsi- and lateroflexive capacity are similar to those of m. spl. cap. of birds.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F709B11C832D0FC29" blockId="16.[144,758,949,1155]" pageId="16" pageNumber="775">
|
||
M. longus colli dorsalis (m. l.c.d.) (
|
||
<bibRefCitation id="DA794B50FFBDA63F723711C83275FC29" author="Vanden Berge JC & Zweers GA" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="16" pageNumber="775" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFBDA63F714211AA32DDFC29" box="[329,387,980,1002]" class="Aves" kingdom="Animalia" pageId="16" pageNumber="775" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
.)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F709B118D32F2FB85" blockId="16.[144,758,949,1155]" pageId="16" pageNumber="775">
|
||
M. transversospinalis cervicis (m. trans. cerv.) (
|
||
<bibRefCitation id="DA794B50FFBDA63F709C166F3273FBE4" author="Seidel R." box="[151,301,1041,1063]" journalOrPublisher="City University of New York" pageId="16" pageNumber="775" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFBDA63F7149166F31DAFBE4" author="Cleuren J & De Vree F." box="[322,644,1041,1063]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="16" pageNumber="775" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFBDA63F7292166F3396FB85" author="Tsuihiji T." journalOrPublisher="Journal of Morphology" pageId="16" pageNumber="775" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji, 2005</bibRefCitation>
|
||
) (
|
||
<taxonomicName id="79E84D22FFBDA63F70EB164E3202FB85" box="[224,348,1072,1094]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="16" pageNumber="775" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFBDA63F7162164E32FCFB85" box="[361,418,1072,1094]" class="Aves" kingdom="Animalia" pageId="16" pageNumber="775" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
.)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F709B16313162FB40" blockId="16.[144,758,949,1155]" pageId="16" pageNumber="775">
|
||
M. longissimus cervicis (m. long. cerv.) (
|
||
<bibRefCitation id="DA794B50FFBDA63F72B616313397FB41" author="Frey E." journalOrPublisher="Biologie" pageId="16" pageNumber="775" pagination="1 - 106" part="424" refId="ref27770" refString="Frey E. 1988. Anatomie des Korperstammes von Alligator mississippiensis Daudin. Stuttgarter Beitrage zur Naturkunde (series A - Biologie) 424: 1 - 106." title="Anatomie des Korperstammes von Alligator mississippiensis Daudin. Stuttgarter Beitrage zur Naturkunde" type="journal article" year="1988">Frey, 1988</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFBDA63F70DC161332C3FB40" author="Cong L & Hou L & Wu X-C & Hou J." box="[215,413,1133,1155]" journalOrPublisher="Beijing: Science Press" pageId="16" pageNumber="775" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFBDA63F71B11613316BFB40" box="[442,565,1133,1155]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="16" pageNumber="775" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F709B16E0315AFB31" blockId="16.[144,758,1182,1266]" pageId="16" pageNumber="775">
|
||
These muscles are clearly homologous in extant archosaurs (
|
||
<bibRefCitation id="DA794B50FFBDA63F711616C332E1FB10" author="Tsuihiji T." box="[285,447,1213,1235]" journalOrPublisher="Journal of Morphology" pageId="16" pageNumber="775" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji, 2005</bibRefCitation>
|
||
), but differ greatly in form and are best treated separately.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F709B17743157FAE3" blockId="16.[144,521,1290,1312]" box="[144,521,1290,1312]" pageId="16" pageNumber="775">
|
||
<taxonomicName id="79E84D22FFBDA63F709B17743392FADC" box="[144,204,1290,1311]" class="Aves" kingdom="Animalia" pageId="16" pageNumber="775" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
: m. longus colli dorsalis
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F709B1742324BF8DF" blockId="16.[144,759,1339,1820]" pageId="16" pageNumber="775">
|
||
In birds m. longus colli dorsalis is a complex system involved in neck dorsiflexion (
|
||
<figureCitation id="26D32A24FFBDA63F71FC17243113FAB3" box="[503,589,1370,1392]" captionStart="Figure 8" captionStartId="17.[164,243,1414,1433]" captionTargetBox="[323,1283,195,1385]" captionTargetId="figure@17.[323,1283,195,1385]" captionTargetPageId="17" captionText="Figure 8. A, lateral view of m. longus colli dorsalis pars cranialis (m. l.c.d. cranialis), m. longus colli dorsalis pars caudalis (m. l.c.d. caudalis) and mm. intertransversarii (mm. intertrans.) of Cygnus columbianus. Note posterior slips contributing to m. l.c.d. cranialis, ventrally inserting heads of m. l.c.d. caudalis and multiple tendinous divisions of all mm. intertrans. B, left m. transversospinalis cervicis (m. trans. cerv., outlined in grey) of Caiman crocodylus, inserts by a white tendon onto C1. M. spinocapitis posticus (m. sp. cap. post.) and m. longissimus capitis superficialis (m. long. cap. sup., with part of surrounding fascia left on) are also outlined in grey. Superficial muscles have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734934" httpUri="https://zenodo.org/record/3734934/files/figure.png" pageId="16" pageNumber="775">Fig. 8A</figureCitation>
|
||
). It is divided into two major components – posterior and anterior, m. longus colli dosalis pars caudalis and m. longus colli dosalis pars cranialis. Collectively these muscles form large paired, fusiform masses that originate at the base of the neck (
|
||
<figureCitation id="26D32A24FFBDA63F719F178D3285F9CB" box="[404,475,1523,1545]" captionStart="Figure 8" captionStartId="17.[164,243,1414,1433]" captionTargetBox="[323,1283,195,1385]" captionTargetId="figure@17.[323,1283,195,1385]" captionTargetPageId="17" captionText="Figure 8. A, lateral view of m. longus colli dorsalis pars cranialis (m. l.c.d. cranialis), m. longus colli dorsalis pars caudalis (m. l.c.d. caudalis) and mm. intertransversarii (mm. intertrans.) of Cygnus columbianus. Note posterior slips contributing to m. l.c.d. cranialis, ventrally inserting heads of m. l.c.d. caudalis and multiple tendinous divisions of all mm. intertrans. B, left m. transversospinalis cervicis (m. trans. cerv., outlined in grey) of Caiman crocodylus, inserts by a white tendon onto C1. M. spinocapitis posticus (m. sp. cap. post.) and m. longissimus capitis superficialis (m. long. cap. sup., with part of surrounding fascia left on) are also outlined in grey. Superficial muscles have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734934" httpUri="https://zenodo.org/record/3734934/files/figure.png" pageId="16" pageNumber="775">Figs 8</figureCitation>
|
||
,
|
||
<figureCitation id="26D32A24FFBDA63F71E0178D316CF9CB" box="[491,562,1523,1544]" captionStart="Figure 9" captionStartId="18.[144,223,1608,1627]" captionTargetBox="[202,1364,195,1577]" captionTargetId="figure@18.[202,1366,195,1578]" captionTargetPageId="18" captionText="Figure 9. A, insertions of (dark grey) m. longus colli dorsalis pars cranialis onto anterior cervical epipophyses of Haliaeetus leucocephalus. B, schematic origin (light grey) of m. longus colli dorsalis pars cranialis, from cervicodorsal region of Struthio camelus. C, schematic origins (dark grey) of m. longus colli dorsalis pars cranialis from epipophyses (processes dorsales) of posterior cervicals in Struthio camelus. Slips from these origins coalasce with the main belly of the muscle, as demarcated by the light-shaded lines. The main belly of the muscle continues dorsally. D, schematic origin and insertions of m. longus colli dorsalis pars caudalis. This muscle subsystem originates from the cervicodorsal region and sends multiple bellies to insert on posterior cervical epipophyses. E, origins of m. longissimus cervicis/m interarticulares of Caiman crocodylus. The gradient-filled slips represent association of origins with the fascia surrounding the muscles. F, anteriormost insertions (dark grey) of m. longissimus cervicis/m. interarticulares, and m. transversospinalis cervicis, of Caiman crocodylus." figureDoi="http://doi.org/10.5281/zenodo.4032603" httpUri="https://zenodo.org/record/4032603/files/figure.png" pageId="16" pageNumber="775">9B, D</figureCitation>
|
||
). Their anteriormost extents (
|
||
<figureCitation id="26D32A24FFBDA63F7138146C32D8F9EB" box="[307,390,1554,1576]" captionStart="Figure 9" captionStartId="18.[144,223,1608,1627]" captionTargetBox="[202,1364,195,1577]" captionTargetId="figure@18.[202,1366,195,1578]" captionTargetPageId="18" captionText="Figure 9. A, insertions of (dark grey) m. longus colli dorsalis pars cranialis onto anterior cervical epipophyses of Haliaeetus leucocephalus. B, schematic origin (light grey) of m. longus colli dorsalis pars cranialis, from cervicodorsal region of Struthio camelus. C, schematic origins (dark grey) of m. longus colli dorsalis pars cranialis from epipophyses (processes dorsales) of posterior cervicals in Struthio camelus. Slips from these origins coalasce with the main belly of the muscle, as demarcated by the light-shaded lines. The main belly of the muscle continues dorsally. D, schematic origin and insertions of m. longus colli dorsalis pars caudalis. This muscle subsystem originates from the cervicodorsal region and sends multiple bellies to insert on posterior cervical epipophyses. E, origins of m. longissimus cervicis/m interarticulares of Caiman crocodylus. The gradient-filled slips represent association of origins with the fascia surrounding the muscles. F, anteriormost insertions (dark grey) of m. longissimus cervicis/m. interarticulares, and m. transversospinalis cervicis, of Caiman crocodylus." figureDoi="http://doi.org/10.5281/zenodo.4032603" httpUri="https://zenodo.org/record/4032603/files/figure.png" pageId="16" pageNumber="775">Fig. 9A</figureCitation>
|
||
) are the insertions of m. longus colli dorsalis pars anterior onto the epipophyses of the axis. The muscles are bound dorsally and laterally by a sheath of fascia (along with m. biventer cervicis), and contract and act on tendons of insertion within this sleeve. The profile of the posterior neck therefore follows the curve of the vertebrae, instead of filling out the entire dorsal concavity of this region.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F709B15463380F8AF" blockId="16.[144,758,1847,1900]" pageId="16" pageNumber="775">M. longus colli dorsalis pars caudalis (m. l.c.d. caud.)</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F732D12B837FBFE12" blockId="16.[806,1422,198,465]" pageId="16" pageNumber="775">
|
||
Origin: M. longus colli dorsalis pars caudalis ultimately originates from the aponeurosis notarii, arising from the neural arches and transverse processes of the anterior thoracic vertebrae and the last 1–3 cervical vertebrae, or tendinous slips arising from processes in this region (
|
||
<figureCitation id="26D32A24FFBDA63F7440132137FCFEB6" box="[1099,1186,351,373]" captionStart="Figure 9" captionStartId="18.[144,223,1608,1627]" captionTargetBox="[202,1364,195,1577]" captionTargetId="figure@18.[202,1366,195,1578]" captionTargetPageId="18" captionText="Figure 9. A, insertions of (dark grey) m. longus colli dorsalis pars cranialis onto anterior cervical epipophyses of Haliaeetus leucocephalus. B, schematic origin (light grey) of m. longus colli dorsalis pars cranialis, from cervicodorsal region of Struthio camelus. C, schematic origins (dark grey) of m. longus colli dorsalis pars cranialis from epipophyses (processes dorsales) of posterior cervicals in Struthio camelus. Slips from these origins coalasce with the main belly of the muscle, as demarcated by the light-shaded lines. The main belly of the muscle continues dorsally. D, schematic origin and insertions of m. longus colli dorsalis pars caudalis. This muscle subsystem originates from the cervicodorsal region and sends multiple bellies to insert on posterior cervical epipophyses. E, origins of m. longissimus cervicis/m interarticulares of Caiman crocodylus. The gradient-filled slips represent association of origins with the fascia surrounding the muscles. F, anteriormost insertions (dark grey) of m. longissimus cervicis/m. interarticulares, and m. transversospinalis cervicis, of Caiman crocodylus." figureDoi="http://doi.org/10.5281/zenodo.4032603" httpUri="https://zenodo.org/record/4032603/files/figure.png" pageId="16" pageNumber="775">Fig. 9D</figureCitation>
|
||
). Slips diverge from a dorsal tendon or muscle mass lateral to the m. biv. c., and are often suspended within fascia when separated from surrounding muscles.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F732D107230A5FCD5" blockId="16.[806,1421,524,790]" pageId="16" pageNumber="775">
|
||
Insertion: Usually slips of m. l.c.d. caud. insert medially to mm. cervicales ascendentes on the processes dorsales of the posterior cervicals, in the dorsally concave region of the neck (
|
||
<figureCitation id="26D32A24FFBDA63F747C10163790FDBD" box="[1143,1230,616,638]" captionStart="Figure 9" captionStartId="18.[144,223,1608,1627]" captionTargetBox="[202,1364,195,1577]" captionTargetId="figure@18.[202,1366,195,1578]" captionTargetPageId="18" captionText="Figure 9. A, insertions of (dark grey) m. longus colli dorsalis pars cranialis onto anterior cervical epipophyses of Haliaeetus leucocephalus. B, schematic origin (light grey) of m. longus colli dorsalis pars cranialis, from cervicodorsal region of Struthio camelus. C, schematic origins (dark grey) of m. longus colli dorsalis pars cranialis from epipophyses (processes dorsales) of posterior cervicals in Struthio camelus. Slips from these origins coalasce with the main belly of the muscle, as demarcated by the light-shaded lines. The main belly of the muscle continues dorsally. D, schematic origin and insertions of m. longus colli dorsalis pars caudalis. This muscle subsystem originates from the cervicodorsal region and sends multiple bellies to insert on posterior cervical epipophyses. E, origins of m. longissimus cervicis/m interarticulares of Caiman crocodylus. The gradient-filled slips represent association of origins with the fascia surrounding the muscles. F, anteriormost insertions (dark grey) of m. longissimus cervicis/m. interarticulares, and m. transversospinalis cervicis, of Caiman crocodylus." figureDoi="http://doi.org/10.5281/zenodo.4032603" httpUri="https://zenodo.org/record/4032603/files/figure.png" pageId="16" pageNumber="775">Fig. 9D</figureCitation>
|
||
). However, they may share a tendon of insertion with a given m. cervicalis ascendens (as in the dissected
|
||
<taxonomicName id="79E84D22FFBDA63F751410DB30F5FD1B" class="Reptilia" family="Tyrannosauridae" genus="Pelicanus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="16" pageNumber="775" phylum="Chordata" rank="species" species="occidentalis">Pelicanus occidentalis</taxonomicName>
|
||
) or even merge with bellies of mm. cervicales ascendentes (as in one adult specimen of
|
||
<taxonomicName id="79E84D22FFBDA63F732D117F30B5FCD5" authority="Linnaeus, 1758" box="[806,1003,769,790]" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="16" pageNumber="775" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F732D1140302FFCB1" blockId="16.[806,1421,829,882]" pageId="16" pageNumber="775">M. longus colli dosalis pars cranialis (m. l.c.d. cran.)</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F732D11F130C5FB14" blockId="16.[806,1421,911,1239]" pageId="16" pageNumber="775">
|
||
Origin: M. longus colli dorsalis pars cranialis originates from the aponeurosis notarii or tendinously from neural spines of the cervicodorsal region (
|
||
<figureCitation id="26D32A24FFBDA63F7325119530DDFBC2" box="[814,899,1003,1025]" captionStart="Figure 9" captionStartId="18.[144,223,1608,1627]" captionTargetBox="[202,1364,195,1577]" captionTargetId="figure@18.[202,1366,195,1578]" captionTargetPageId="18" captionText="Figure 9. A, insertions of (dark grey) m. longus colli dorsalis pars cranialis onto anterior cervical epipophyses of Haliaeetus leucocephalus. B, schematic origin (light grey) of m. longus colli dorsalis pars cranialis, from cervicodorsal region of Struthio camelus. C, schematic origins (dark grey) of m. longus colli dorsalis pars cranialis from epipophyses (processes dorsales) of posterior cervicals in Struthio camelus. Slips from these origins coalasce with the main belly of the muscle, as demarcated by the light-shaded lines. The main belly of the muscle continues dorsally. D, schematic origin and insertions of m. longus colli dorsalis pars caudalis. This muscle subsystem originates from the cervicodorsal region and sends multiple bellies to insert on posterior cervical epipophyses. E, origins of m. longissimus cervicis/m interarticulares of Caiman crocodylus. The gradient-filled slips represent association of origins with the fascia surrounding the muscles. F, anteriormost insertions (dark grey) of m. longissimus cervicis/m. interarticulares, and m. transversospinalis cervicis, of Caiman crocodylus." figureDoi="http://doi.org/10.5281/zenodo.4032603" httpUri="https://zenodo.org/record/4032603/files/figure.png" pageId="16" pageNumber="775">Fig. 9B</figureCitation>
|
||
), and is fairly massive and fusiform where it is separable from the posterior part of m. longus colli dorsalis pars caudalis (
|
||
<figureCitation id="26D32A24FFBDA63F7427165637DCFBFD" box="[1068,1154,1064,1086]" captionStart="Figure 8" captionStartId="17.[164,243,1414,1433]" captionTargetBox="[323,1283,195,1385]" captionTargetId="figure@17.[323,1283,195,1385]" captionTargetPageId="17" captionText="Figure 8. A, lateral view of m. longus colli dorsalis pars cranialis (m. l.c.d. cranialis), m. longus colli dorsalis pars caudalis (m. l.c.d. caudalis) and mm. intertransversarii (mm. intertrans.) of Cygnus columbianus. Note posterior slips contributing to m. l.c.d. cranialis, ventrally inserting heads of m. l.c.d. caudalis and multiple tendinous divisions of all mm. intertrans. B, left m. transversospinalis cervicis (m. trans. cerv., outlined in grey) of Caiman crocodylus, inserts by a white tendon onto C1. M. spinocapitis posticus (m. sp. cap. post.) and m. longissimus capitis superficialis (m. long. cap. sup., with part of surrounding fascia left on) are also outlined in grey. Superficial muscles have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734934" httpUri="https://zenodo.org/record/3734934/files/figure.png" pageId="16" pageNumber="775">Fig. 8A</figureCitation>
|
||
). Other slips arise from epipophyses (processes dorsales) of cervicals from the posterior portion of the neck, medial to the insertions of m. l.c.d. caud. and mm. cervicales ascendentes (
|
||
<figureCitation id="26D32A24FFBDA63F732516DC30DDFB7B" box="[814,899,1186,1208]" captionStart="Figure 9" captionStartId="18.[144,223,1608,1627]" captionTargetBox="[202,1364,195,1577]" captionTargetId="figure@18.[202,1366,195,1578]" captionTargetPageId="18" captionText="Figure 9. A, insertions of (dark grey) m. longus colli dorsalis pars cranialis onto anterior cervical epipophyses of Haliaeetus leucocephalus. B, schematic origin (light grey) of m. longus colli dorsalis pars cranialis, from cervicodorsal region of Struthio camelus. C, schematic origins (dark grey) of m. longus colli dorsalis pars cranialis from epipophyses (processes dorsales) of posterior cervicals in Struthio camelus. Slips from these origins coalasce with the main belly of the muscle, as demarcated by the light-shaded lines. The main belly of the muscle continues dorsally. D, schematic origin and insertions of m. longus colli dorsalis pars caudalis. This muscle subsystem originates from the cervicodorsal region and sends multiple bellies to insert on posterior cervical epipophyses. E, origins of m. longissimus cervicis/m interarticulares of Caiman crocodylus. The gradient-filled slips represent association of origins with the fascia surrounding the muscles. F, anteriormost insertions (dark grey) of m. longissimus cervicis/m. interarticulares, and m. transversospinalis cervicis, of Caiman crocodylus." figureDoi="http://doi.org/10.5281/zenodo.4032603" httpUri="https://zenodo.org/record/4032603/files/figure.png" pageId="16" pageNumber="775">Fig. 9C</figureCitation>
|
||
), and from epipophyses of some more anterior vertebrae.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F732D176D3094F9F8" blockId="16.[806,1422,1298,1595]" pageId="16" pageNumber="775">
|
||
Insertion: M. l.c.d. cran. inserts tendinously far anteriorly from its posterior origin, onto a posteriorly concave surface of the epipophysis of C2, and rarely C3 (
|
||
<figureCitation id="26D32A24FFBDA63F7353171030F3FA47" box="[856,941,1390,1412]" captionStart="Figure 9" captionStartId="18.[144,223,1608,1627]" captionTargetBox="[202,1364,195,1577]" captionTargetId="figure@18.[202,1366,195,1578]" captionTargetPageId="18" captionText="Figure 9. A, insertions of (dark grey) m. longus colli dorsalis pars cranialis onto anterior cervical epipophyses of Haliaeetus leucocephalus. B, schematic origin (light grey) of m. longus colli dorsalis pars cranialis, from cervicodorsal region of Struthio camelus. C, schematic origins (dark grey) of m. longus colli dorsalis pars cranialis from epipophyses (processes dorsales) of posterior cervicals in Struthio camelus. Slips from these origins coalasce with the main belly of the muscle, as demarcated by the light-shaded lines. The main belly of the muscle continues dorsally. D, schematic origin and insertions of m. longus colli dorsalis pars caudalis. This muscle subsystem originates from the cervicodorsal region and sends multiple bellies to insert on posterior cervical epipophyses. E, origins of m. longissimus cervicis/m interarticulares of Caiman crocodylus. The gradient-filled slips represent association of origins with the fascia surrounding the muscles. F, anteriormost insertions (dark grey) of m. longissimus cervicis/m. interarticulares, and m. transversospinalis cervicis, of Caiman crocodylus." figureDoi="http://doi.org/10.5281/zenodo.4032603" httpUri="https://zenodo.org/record/4032603/files/figure.png" pageId="16" pageNumber="775">Fig. 9A</figureCitation>
|
||
), or onto the dorsal surface of these processes. The anterior slips of the muscle insert on this tendon as well. They thus run anterodorsally from a bony origin, contrasting with slips of m. l.c.d. caud. that run anteroventrally towards the posterior epipophyses as they diverge ventrally from the main belly of the muscle.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F732D142A3706F927" blockId="16.[806,1421,1620,1764]" pageId="16" pageNumber="775">
|
||
<taxonomicName id="79E84D22FFBDA63F732D142A30EAF9A9" box="[806,948,1620,1642]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="16" pageNumber="775" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
: M. transversospinalis cervicis (m. trans. cerv.) (
|
||
<bibRefCitation id="DA794B50FFBDA63F73C4140D3731F94B" author="Tsuihiji T." box="[975,1135,1650,1673]" journalOrPublisher="Journal of Morphology" pageId="16" pageNumber="775" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji, 2005</bibRefCitation>
|
||
; m. longissimus cervicis:
|
||
<bibRefCitation id="DA794B50FFBDA63F736A14EF376BF964" author="Cong L & Hou L & Wu X-C & Hou J." box="[865,1077,1681,1703]" journalOrPublisher="Beijing: Science Press" pageId="16" pageNumber="775" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
). M. longissimus cervicis (m. long. cerv.)/m. interarticulares (
|
||
<bibRefCitation id="DA794B50FFBDA63F74E614CE30FDF927" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="16" pageNumber="775" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFBDA63F73B914B0370FF927" author="Tsuihiji T." box="[946,1105,1742,1764]" journalOrPublisher="Journal of Morphology" pageId="16" pageNumber="775" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji, 2005</bibRefCitation>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBDA63F732D1483303EF8AC" blockId="16.[806,1422,1789,1903]" pageId="16" pageNumber="775">These muscles have a confused nomenclature. They insert anteriorly at the same location, but are clearly discrete systems. They are treated together here.</paragraph>
|
||
<caption id="EA976629FFBCA63E70AF17F83611F9EF" ID-DOI="http://doi.org/10.5281/zenodo.3734934" ID-Zenodo-Dep="3734934" httpUri="https://zenodo.org/record/3734934/files/figure.png" pageId="17" pageNumber="776" startId="17.[164,243,1414,1433]" targetBox="[323,1283,195,1385]" targetPageId="17">
|
||
<paragraph id="BE5736A1FFBCA63E70AF17F83611F9EF" blockId="17.[164,1442,1414,1580]" pageId="17" pageNumber="776">
|
||
Figure 8. A, lateral view of m. longus colli dorsalis pars cranialis (m. l.c.d. cranialis), m. longus colli dorsalis pars caudalis (m. l.c.d. caudalis) and mm. intertransversarii (mm. intertrans.) of
|
||
<taxonomicName id="79E84D22FFBCA63E73EA17DA37E0FA74" baseAuthorityName="Ord" baseAuthorityYear="1815" box="[993,1214,1444,1463]" class="Aves" family="Anatidae" genus="Cygnus" kingdom="Animalia" order="Anseriformes" pageId="17" pageNumber="776" phylum="Chordata" rank="species" species="columbianus">Cygnus columbianus</taxonomicName>
|
||
. Note posterior slips contributing to m. l.c.d. cranialis, ventrally inserting heads of m. l.c.d. caudalis and multiple tendinous divisions of all mm. intertrans. B, left m. transversospinalis cervicis (m. trans. cerv., outlined in grey) of
|
||
<taxonomicName id="79E84D22FFBCA63E746A17A13674FA32" authorityName="Lehr" authorityYear="2002" box="[1121,1322,1502,1522]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="17" pageNumber="776" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
, inserts by a white tendon onto C1. M. spinocapitis posticus (m. sp. cap. post.) and m. longissimus capitis superficialis (m. long. cap. sup., with part of surrounding fascia left on) are also outlined in grey. Superficial muscles have been removed.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFBCA63E70AF141A360CF95A" blockId="17.[164,779,1636,1903]" lastBlockId="17.[826,1440,1636,1689]" pageId="17" pageNumber="776">
|
||
Origin: In
|
||
<taxonomicName id="79E84D22FFBCA63E7129141A311BF9B9" baseAuthorityName="Daudin" baseAuthorityYear="1802" box="[290,581,1636,1658]" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="17" pageNumber="776" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFBCA63E7275141A33A7F95B" authorityName="Lehr" authorityYear="2002" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="17" pageNumber="776" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
m. transversospinalis cervicis originates from the lateral surfaces of the neural spines ventral to the origins of m. transversospinalis capitis and m. spinocapitis posticus (
|
||
<figureCitation id="26D32A24FFBCA63E717A14A03299F937" box="[369,455,1758,1780]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="17" pageNumber="776">Fig. 6A</figureCitation>
|
||
), and just anterior to the postzygapophyses of C3–C9 (
|
||
<figureCitation id="26D32A24FFBCA63E71FE14833114F8D0" box="[501,586,1789,1811]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="17" pageNumber="776">Fig. 6A</figureCitation>
|
||
), by way of aponeuroses associated with the intermuscular septum that divides transversospinalis from longissimus systems. M. longissimus cervicis has similar aponeurotic origins from C4–C7 or C8, but also arises from the prezygapophyses of C4–C7 (
|
||
<figureCitation id="26D32A24FFBCA63E74FB14FD3618F95A" box="[1264,1350,1667,1689]" captionStart="Figure 9" captionStartId="18.[144,223,1608,1627]" captionTargetBox="[202,1364,195,1577]" captionTargetId="figure@18.[202,1366,195,1578]" captionTargetPageId="18" captionText="Figure 9. A, insertions of (dark grey) m. longus colli dorsalis pars cranialis onto anterior cervical epipophyses of Haliaeetus leucocephalus. B, schematic origin (light grey) of m. longus colli dorsalis pars cranialis, from cervicodorsal region of Struthio camelus. C, schematic origins (dark grey) of m. longus colli dorsalis pars cranialis from epipophyses (processes dorsales) of posterior cervicals in Struthio camelus. Slips from these origins coalasce with the main belly of the muscle, as demarcated by the light-shaded lines. The main belly of the muscle continues dorsally. D, schematic origin and insertions of m. longus colli dorsalis pars caudalis. This muscle subsystem originates from the cervicodorsal region and sends multiple bellies to insert on posterior cervical epipophyses. E, origins of m. longissimus cervicis/m interarticulares of Caiman crocodylus. The gradient-filled slips represent association of origins with the fascia surrounding the muscles. F, anteriormost insertions (dark grey) of m. longissimus cervicis/m. interarticulares, and m. transversospinalis cervicis, of Caiman crocodylus." figureDoi="http://doi.org/10.5281/zenodo.4032603" httpUri="https://zenodo.org/record/4032603/files/figure.png" pageId="17" pageNumber="776">Fig. 9E</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBCA63C733114BF32A8FEDA" blockId="17.[826,1441,1728,1903]" lastBlockId="19.[164,779,198,618]" lastPageId="19" lastPageNumber="778" pageId="17" pageNumber="776">
|
||
Insertion: M. trans. cerv. and m. long. cerv. insert on the posterodorsal portion of the postzygapophysis of C1 (
|
||
<figureCitation id="26D32A24FFBCA63E7362148330E3F8D0" box="[873,957,1789,1811]" captionStart="Figure 9" captionStartId="18.[144,223,1608,1627]" captionTargetBox="[202,1364,195,1577]" captionTargetId="figure@18.[202,1366,195,1578]" captionTargetPageId="18" captionText="Figure 9. A, insertions of (dark grey) m. longus colli dorsalis pars cranialis onto anterior cervical epipophyses of Haliaeetus leucocephalus. B, schematic origin (light grey) of m. longus colli dorsalis pars cranialis, from cervicodorsal region of Struthio camelus. C, schematic origins (dark grey) of m. longus colli dorsalis pars cranialis from epipophyses (processes dorsales) of posterior cervicals in Struthio camelus. Slips from these origins coalasce with the main belly of the muscle, as demarcated by the light-shaded lines. The main belly of the muscle continues dorsally. D, schematic origin and insertions of m. longus colli dorsalis pars caudalis. This muscle subsystem originates from the cervicodorsal region and sends multiple bellies to insert on posterior cervical epipophyses. E, origins of m. longissimus cervicis/m interarticulares of Caiman crocodylus. The gradient-filled slips represent association of origins with the fascia surrounding the muscles. F, anteriormost insertions (dark grey) of m. longissimus cervicis/m. interarticulares, and m. transversospinalis cervicis, of Caiman crocodylus." figureDoi="http://doi.org/10.5281/zenodo.4032603" httpUri="https://zenodo.org/record/4032603/files/figure.png" pageId="17" pageNumber="776">Fig. 9F</figureCitation>
|
||
). M. trans. cerv. also inserts posteriorly on slightly raised scars in this position on the postzygapophyses of C3 and C4 (
|
||
<figureCitation id="26D32A24FFBCA63E7458154437F9F893" box="[1107,1191,1850,1872]" captionStart="Figure 9" captionStartId="18.[144,223,1608,1627]" captionTargetBox="[202,1364,195,1577]" captionTargetId="figure@18.[202,1366,195,1578]" captionTargetPageId="18" captionText="Figure 9. A, insertions of (dark grey) m. longus colli dorsalis pars cranialis onto anterior cervical epipophyses of Haliaeetus leucocephalus. B, schematic origin (light grey) of m. longus colli dorsalis pars cranialis, from cervicodorsal region of Struthio camelus. C, schematic origins (dark grey) of m. longus colli dorsalis pars cranialis from epipophyses (processes dorsales) of posterior cervicals in Struthio camelus. Slips from these origins coalasce with the main belly of the muscle, as demarcated by the light-shaded lines. The main belly of the muscle continues dorsally. D, schematic origin and insertions of m. longus colli dorsalis pars caudalis. This muscle subsystem originates from the cervicodorsal region and sends multiple bellies to insert on posterior cervical epipophyses. E, origins of m. longissimus cervicis/m interarticulares of Caiman crocodylus. The gradient-filled slips represent association of origins with the fascia surrounding the muscles. F, anteriormost insertions (dark grey) of m. longissimus cervicis/m. interarticulares, and m. transversospinalis cervicis, of Caiman crocodylus." figureDoi="http://doi.org/10.5281/zenodo.4032603" httpUri="https://zenodo.org/record/4032603/files/figure.png" pageId="17" pageNumber="776">Fig. 9F</figureCitation>
|
||
). The postzygapophyseal insertion is similar to the insertion of m. longus colli dorsalis pars cranialis of birds. However, these muscles of crocodilians bypass C2, the site of the most prominent insertion in birds.
|
||
</paragraph>
|
||
<caption id="EA976629FFBFA63D709B14363222F8A0" ID-DOI="http://doi.org/10.5281/zenodo.4032603" ID-Zenodo-Dep="4032603" httpUri="https://zenodo.org/record/4032603/files/figure.png" pageId="18" pageNumber="777" startId="18.[144,223,1608,1627]" targetBox="[202,1364,195,1577]" targetPageId="18">
|
||
<paragraph id="BE5736A1FFBFA63D709B14363222F8A0" blockId="18.[144,1422,1608,1891]" pageId="18" pageNumber="777">
|
||
<caption id="EA976629FFBFA63D709B1436322BF8A1" ID-DOI="http://doi.org/10.5281/zenodo.3734936" ID-Zenodo-Dep="3734936" httpUri="https://zenodo.org/record/3734936/files/figure.png" pageId="18" pageNumber="777" targetBox="[202,1364,195,1577]" targetPageId="18">
|
||
Figure 9. A, insertions of (dark grey) m. longus colli dorsalis pars cranialis onto anterior cervical epipophyses of
|
||
<taxonomicName id="79E84D22FFBFA63D709B141B32C7F9BB" authority="Linnaeus, 1766" box="[144,409,1637,1656]" class="Aves" family="Accipitridae" genus="Haliaeetus" kingdom="Animalia" order="Accipitriformes" pageId="18" pageNumber="777" phylum="Chordata" rank="species" species="leucocephalus">Haliaeetus leucocephalus</taxonomicName>
|
||
. B, schematic origin (light grey) of m. longus colli dorsalis pars cranialis, from cervicodorsal region of
|
||
<taxonomicName id="79E84D22FFBFA63D70FD14FC32F1F956" authority="Linnaeus, 1758" box="[246,431,1666,1685]" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="18" pageNumber="777" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
. C, schematic origins (dark grey) of m. longus colli dorsalis pars cranialis from epipophyses (processes dorsales) of posterior cervicals in
|
||
<taxonomicName id="79E84D22FFBFA63D726A14DE304AF970" authority="Linnaeus, 1758" box="[609,788,1696,1715]" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="18" pageNumber="777" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
. Slips from these origins coalasce with the main belly of the muscle, as demarcated by the light-shaded lines. The main belly of the muscle continues dorsally. D, schematic origin and insertions of m. longus colli dorsalis pars caudalis. This muscle subsystem originates from the cervicodorsal region and sends multiple bellies to insert on posterior cervical epipophyses. E, origins of m. longissimus cervicis/m interarticulares of
|
||
<taxonomicName id="79E84D22FFBFA63D70A0156B322DF8EB" authorityName="Lehr" authorityYear="2002" box="[171,371,1813,1832]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="18" pageNumber="777" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
. The gradient-filled slips represent association of origins with the fascia surrounding the muscles. F, anteriormost insertions (dark grey) of m. longissimus cervicis/m. interarticulares, and m. transversospinalis cervicis, of
|
||
<taxonomicName id="79E84D22FFBFA63D70A0152E322BF8A1" authorityName="Lehr" authorityYear="2002" box="[171,373,1871,1891]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="18" pageNumber="777" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
</caption>
|
||
.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFBEA63C70B7135C31DAFDAA" blockId="19.[164,779,198,618]" pageId="19" pageNumber="778">
|
||
The name m. longissimus cervicis associates this muscle with the longissimus system, and
|
||
<bibRefCitation id="DA794B50FFBEA63C728D133F3055FE95" author="Frey E." box="[646,779,320,342]" journalOrPublisher="Biologie" pageId="19" pageNumber="778" pagination="1 - 106" part="424" refId="ref27770" refString="Frey E. 1988. Anatomie des Korperstammes von Alligator mississippiensis Daudin. Stuttgarter Beitrage zur Naturkunde (series A - Biologie) 424: 1 - 106." title="Anatomie des Korperstammes von Alligator mississippiensis Daudin. Stuttgarter Beitrage zur Naturkunde" type="journal article" year="1988">Frey (1988)</bibRefCitation>
|
||
and
|
||
<bibRefCitation id="DA794B50FFBEA63C70D0132132F3FEB6" author="Cong L & Hou L & Wu X-C & Hou J." box="[219,429,351,373]" journalOrPublisher="Beijing: Science Press" pageId="19" pageNumber="778" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al. (1998)</bibRefCitation>
|
||
do not differentiate m. long. cerv. from m. trans cerv. These are reasonable assignations, given that the muscles run together lateral to the neural arches, and have somewhat lateral insertions. However, because the origins of both muscles are from the base of the neural arch and not the transverse processes, they belong topologically to the transversospinalis system rather than the more ventrolaterally placed longissimus group.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63C70AF10EC33B6FBB1" blockId="19.[164,779,658,1138]" pageId="19" pageNumber="778">
|
||
Action/function: In birds multiple slips of m. l.c.d promote dorsiflexion of each postatlantal cervical relative to the immediately posterior vertebra. The tendinous insertion of m. l.c.d. cran. on the axis facilitates dorsiflexion of the entire ventrally concave anterior portion of the neck. EMG activity indicates a damping function during neck ventroflexion in chickens and ducks, and strong functions in neck retraction and dorsiflexion (
|
||
<bibRefCitation id="DA794B50FFBEA63C71A811F93182FC5E" author="van der Leeuw AHJ & Bout RG & Zweers GA" box="[419,732,903,925]" journalOrPublisher="Netherlands Journal of Zoology" pageId="19" pageNumber="778" pagination="243 - 262" part="51" refId="ref28293" refString="van der Leeuw AHJ, Bout RG, Zweers GA. 2001. Evolutionary morphology of the neck system in ratites, fowl and waterfowl. Netherlands Journal of Zoology 51: 243 - 262." title="Evolutionary morphology of the neck system in ratites, fowl and waterfowl" type="journal article" year="2001">van der Leeuw et al., 2001</bibRefCitation>
|
||
). In crocodilians m. trans. cerv. is in a position to dorsiflex the neck, an activity aided by the neck’s dorsally concave curvature. EMG activity in crocodilians confirms strong neck dorsiflexive action of this muscle (
|
||
<bibRefCitation id="DA794B50FFBEA63C70A0165E3284FBF5" author="Cleuren J & De Vree F." box="[171,474,1056,1078]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="19" pageNumber="778" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
). The function of m. long. cerv./m. interarticulares have not been tested by EMG.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63C70AF16F232B4FB62" blockId="19.[164,778,1164,1247]" box="[164,490,1164,1186]" pageId="19" pageNumber="778">B. M. longissimus system</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63C70AF16D532ECFB1C" blockId="19.[164,778,1164,1247]" pageId="19" pageNumber="778">
|
||
M. longissimus capitis superficialis (m. long. cap. sup.) (
|
||
<taxonomicName id="79E84D22FFBEA63C713A16B732F2FB1C" box="[305,428,1225,1247]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="19" pageNumber="778" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63C70AF1686313EF9BF" blockId="19.[164,779,1271,1661]" pageId="19" pageNumber="778">
|
||
As discussed, the ventral portion of m. complexus of birds, arising from the lateral tubercles of the transverse processes and sometimes inserting fleshily on the paroccipital processes, may be the homologue of m. longissimus capitis superficialis of crocodilians. Unlike this muscle in crocodilians, the ventral m. complexus of birds is anteriorly restricted to C1–C4. This homology is tentative, because the ventral portion of the body of m. complexus occurs only in some birds, and is continuous with the dorsal part. In contrast the crocodilian m. long. cap. sup. is a large discrete muscle, and is described in detail here. Its morphology is depicted in
|
||
<figureCitation id="26D32A24FFBEA63C71D214193102F9BF" box="[473,604,1639,1661]" captionStart="Figure 10" captionStartId="20.[144,223,1209,1228]" captionTargetBox="[367,1199,202,1177]" captionTargetId="figure@20.[367,1201,260,1157]" captionText="Figure 10. A, several muscles of Pelicanus occidentalis, disseted in lateral view. Abbreviations are as in the main text. Several slips of m. rectus capitis dorsalis (m. r.c.d.) converge ventrally, towards tendinous insertions on the basioccipital tuberosities. M. complexus has an unusual lateral, tendinous insertion. B, posterolateral view of m. longissimus capitis superficialis (outlined in dark grey) of Alligator mississippiensis. The posterior origin and the insertion are tendinous. M. iliocostallis capitis (m. il. cap.) is depicted, and m. constrictor colli has not been dissected away. The neck is slightly dorsiflexed in this view ." figureDoi="http://doi.org/10.5281/zenodo.4032605" httpUri="https://zenodo.org/record/4032605/files/figure.png" pageId="19" pageNumber="778">Figure 10B</figureCitation>
|
||
.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63C70AF14BE37A4FEDA" blockId="19.[164,779,1728,1903]" lastBlockId="19.[826,1441,198,281]" pageId="19" pageNumber="778">
|
||
Origin: In
|
||
<taxonomicName id="79E84D22FFBEA63C712C14BE3158F916" authorityName="Lehr" authorityYear="2002" box="[295,518,1728,1749]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="19" pageNumber="778" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFBEA63C724114BE324AF937" baseAuthorityName="Daudin" baseAuthorityYear="1802" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="19" pageNumber="778" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
, m. long. cap. sup. originates from the parapophyses and ventrolateral extent of the neural arches of C5–C9 (
|
||
<figureCitation id="26D32A24FFBEA63C717915623299F8F1" box="[370,455,1820,1842]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="19" pageNumber="778">Fig. 6A</figureCitation>
|
||
), dorsomedial to the origins of m. longissimus capitis profundus on C5–C7. On C8 and C9 the origins of m. long. cap. sup. origin extend ventrolaterally to cover the distal surface of the parapophysis. The origin was tendinous from C9 in the juvenile
|
||
<taxonomicName id="79E84D22FFBEA63C73C6137D37ADFEDA" baseAuthorityName="Daudin" baseAuthorityYear="1802" box="[973,1267,259,281]" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="19" pageNumber="778" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63C733113343733FE3B" blockId="19.[826,1441,329,504]" pageId="19" pageNumber="778">
|
||
Insertion: The insertion of m. long. cap. sup. of crocodilians is tendinous onto the lateral extremity of the paroccipital process (
|
||
<figureCitation id="26D32A24FFBEA63C742613F837DCFE5F" box="[1069,1154,390,412]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="19" pageNumber="778">Fig. 6B</figureCitation>
|
||
), ventral to the origin of m. depressor mandibulae and dorsolateral to the insertion of m. rectus capitis lateralis. The scar is rugose in most specimens.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63C733110563771FCF0" blockId="19.[826,1441,552,819]" pageId="19" pageNumber="778">
|
||
Action/function: Having the lateralmost insertion of any craniocervical muscle in crocodilians, m. longissimus capitis superficialis is kinematically positioned to impart a strong, laterally flexive moment on the skull relative to the neck. EMG reveals strong activity of m. long. cap. sup. during head lateral flexion on the ipsilateral side of the neck (
|
||
<bibRefCitation id="DA794B50FFBEA63C74BC109E302AFCD7" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="19" pageNumber="778" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
), with very little or no damping activity by the contralateral muscle.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63C733111353748FC5C" blockId="19.[826,1440,843,927]" pageId="19" pageNumber="778">
|
||
M. rectus capitis dorsalis (m. r.c.d.) (
|
||
<taxonomicName id="79E84D22FFBEA63C751C1135360FFCA2" box="[1303,1361,843,865]" class="Aves" kingdom="Animalia" pageId="19" pageNumber="778" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
). M. longissimus capitis profundus (m. long. cap. prof.) (Crododylia)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63C733111B137F9FB5F" blockId="19.[826,1441,974,1180]" pageId="19" pageNumber="778">
|
||
Origin: In birds, m. rectus capitis dorsalis (
|
||
<figureCitation id="26D32A24FFBEA63C753211B036C7FC26" box="[1337,1433,974,997]" captionStart="Figure 10" captionStartId="20.[144,223,1209,1228]" captionTargetBox="[367,1199,202,1177]" captionTargetId="figure@20.[367,1201,260,1157]" captionText="Figure 10. A, several muscles of Pelicanus occidentalis, disseted in lateral view. Abbreviations are as in the main text. Several slips of m. rectus capitis dorsalis (m. r.c.d.) converge ventrally, towards tendinous insertions on the basioccipital tuberosities. M. complexus has an unusual lateral, tendinous insertion. B, posterolateral view of m. longissimus capitis superficialis (outlined in dark grey) of Alligator mississippiensis. The posterior origin and the insertion are tendinous. M. iliocostallis capitis (m. il. cap.) is depicted, and m. constrictor colli has not been dissected away. The neck is slightly dorsiflexed in this view ." figureDoi="http://doi.org/10.5281/zenodo.4032605" httpUri="https://zenodo.org/record/4032605/files/figure.png" pageId="19" pageNumber="778">Fig. 10A</figureCitation>
|
||
) typically originates from the anterolateral surface of C1, and the costal processes of the transverse processes of C1–C6 (
|
||
<figureCitation id="26D32A24FFBEA63C744E165437C4FB83" box="[1093,1178,1066,1088]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="19" pageNumber="778">Fig. 5B</figureCitation>
|
||
). In crocodilians, m. longissimus capitis profundus originates from the transverse processes just dorsal to their articulations with the cervical ribs (
|
||
<figureCitation id="26D32A24FFBEA63C744E16F837C2FB5F" box="[1093,1180,1158,1180]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="19" pageNumber="778">Fig. 6A</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63C733116B33716FA7B" blockId="19.[826,1441,1228,1464]" pageId="19" pageNumber="778">
|
||
Insertion: In both birds and crocodilians these muscles insert on the basioccipital, ventrolateral to the occipital condyle in crocodilians, and anteroventrolateral in birds (
|
||
<figureCitation id="26D32A24FFBEA63C742D175637DEFAFE" box="[1062,1152,1320,1342]" captionStart="Figure 4" captionStartId="7.[164,243,1674,1693]" captionTargetId="figure@7.[514,1139,205,1644]" captionTargetPageId="7" captionText="Figure 4. Comparison of major sites of muscle attachment on the necks of tyrannosaurids versus crocodilians and birds. A, cervical series of Caiman crocodylus (above; C1–C9) and Tyrannosaurus rex (below; C1–C10), depicting similarities of posterior transverse process morpohology. B, cervical series of Asio flamaeus (above) and Tyrannosaurus rex (below), depicting morphological similarities of epipophysis and the C2 neural spine. In all three groups the anterior transverse processes are smaller than their posterior counterparts (to show this clearly the C2 cerivical rib of T. rex is not pictured). Cervical rib morphology differs markedly among these archosaurs. The specimens are scaled to similar lengths from C1 to C9. The Tyrannosaurus rex is a composite reconstruction of C1 from Osborn (1905), BHI 3033 (C2) and AMNH 5027 (the remaining bones)." figureDoi="http://doi.org/10.5281/zenodo.3734926" httpUri="https://zenodo.org/record/3734926/files/figure.png" pageId="19" pageNumber="778">Figs 4C</figureCitation>
|
||
,
|
||
<figureCitation id="26D32A24FFBEA63C749E175637E9FAFD" box="[1173,1207,1320,1342]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="19" pageNumber="778">5B</figureCitation>
|
||
). The scar can be rugose in large crocodilians and birds, such as the dissected
|
||
<taxonomicName id="79E84D22FFBEA63C73BC171B37C3FAB9" authorityName="Lehr" authorityYear="2002" box="[951,1181,1381,1402]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="19" pageNumber="778" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
and adult Struthio camelus, and on skulls of
|
||
<taxonomicName id="79E84D22FFBEA63C747217FA36FFFA5A" baseAuthorityName="Daudin" baseAuthorityYear="1802" box="[1145,1441,1412,1433]" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="19" pageNumber="778" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
and Crocodylus acutus.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63C73311796378BF954" blockId="19.[826,1441,1512,1687]" pageId="19" pageNumber="778">
|
||
Action/function: In both crocodilians and birds m. r.c.d./m. long. cap. prof. insert ventral to the occipitial condyle, and are ideally positioned for head ventroflexion relative to the neck. EMG of crocodilians (
|
||
<bibRefCitation id="DA794B50FFBEA63C7349141D3701F9BA" author="Cleuren J & De Vree F." box="[834,1119,1635,1657]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="19" pageNumber="778" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
) confirms that the muscle is strongly active during this activity.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63C733114CE36D0F8C0" blockId="19.[826,1441,1712,1795]" pageId="19" pageNumber="778">
|
||
Mm. intertransversarii (mm. intertrans.) (
|
||
<bibRefCitation id="DA794B50FFBEA63C734A14B037E7F927" author="Vanden Berge JC & Zweers GA" box="[833,1209,1742,1764]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="19" pageNumber="778" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFBEA63C74C714B136C7F926" author="Cong L & Hou L & Wu X-C & Hou J." box="[1228,1433,1742,1765]" journalOrPublisher="Beijing: Science Press" pageId="19" pageNumber="778" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
) (
|
||
<taxonomicName id="79E84D22FFBEA63C734914933024F8C1" box="[834,890,1773,1794]" class="Aves" kingdom="Animalia" pageId="19" pageNumber="778" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFBEA63C73831493375AF8C0" box="[904,1028,1773,1795]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="19" pageNumber="778" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFBEA63C741A149337D4F8C0" box="[1041,1162,1773,1795]" class="Reptilia" family="Varanidae" kingdom="Animalia" order="Squamata" pageId="19" pageNumber="778" phylum="Chordata" rank="family">Varanidae</taxonomicName>
|
||
). Mm. inclusii (
|
||
<taxonomicName id="79E84D22FFBEA63C755B149336D9F8C0" box="[1360,1415,1773,1795]" class="Aves" kingdom="Animalia" pageId="19" pageNumber="778" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBEA63B73311562338FF937" blockId="19.[826,1441,1820,1903]" lastBlockId="20.[144,759,1452,1903]" lastPageId="20" lastPageNumber="779" pageId="19" pageNumber="778">
|
||
Mm. intertransversarii (
|
||
<figureCitation id="26D32A24FFBEA63C745B156237F4F8F2" box="[1104,1194,1820,1842]" captionStart="Figure 8" captionStartId="17.[164,243,1414,1433]" captionTargetBox="[323,1283,195,1385]" captionTargetId="figure@17.[323,1283,195,1385]" captionTargetPageId="17" captionText="Figure 8. A, lateral view of m. longus colli dorsalis pars cranialis (m. l.c.d. cranialis), m. longus colli dorsalis pars caudalis (m. l.c.d. caudalis) and mm. intertransversarii (mm. intertrans.) of Cygnus columbianus. Note posterior slips contributing to m. l.c.d. cranialis, ventrally inserting heads of m. l.c.d. caudalis and multiple tendinous divisions of all mm. intertrans. B, left m. transversospinalis cervicis (m. trans. cerv., outlined in grey) of Caiman crocodylus, inserts by a white tendon onto C1. M. spinocapitis posticus (m. sp. cap. post.) and m. longissimus capitis superficialis (m. long. cap. sup., with part of surrounding fascia left on) are also outlined in grey. Superficial muscles have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734934" httpUri="https://zenodo.org/record/3734934/files/figure.png" pageId="19" pageNumber="778">Figs 8A</figureCitation>
|
||
,
|
||
<figureCitation id="26D32A24FFBEA63C74BE15623791F8F1" box="[1205,1231,1820,1842]" captionStart="Figure 11" captionStartId="21.[164,243,967,986]" captionTargetId="figure@21.[386,1218,197,937]" captionTargetPageId="21" captionText="Figure 11. A, origins (dark shapes) and insertions (lighter outlined shapes) of mm. intertransversarii aponeuroses on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of lateral tubercles, and insertions are onto posterior projections of the lateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins to effect intervertebral lateroflexion. B, origins (dark) and insertions (lighter) of mm. inclusii on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of the costal processes, and insertions are onto the lateral and dorsolateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins. C, origins (dark-filled shapes) and insertions (light-filled shapes) of lateral portions of mm. intertransversarii in Caiman crocodylus. Arrows represent lines of action from origin to insertion, by which the muscles would lateroflex the anterior vertebra of each pair relative to the posterior one." figureDoi="http://doi.org/10.5281/zenodo.3734940" httpUri="https://zenodo.org/record/3734940/files/figure.png" pageId="19" pageNumber="778">11</figureCitation>
|
||
) run between consecutive transverse processes in
|
||
<taxonomicName id="79E84D22FFBEA63C74BA154437B7F88C" box="[1201,1257,1850,1871]" class="Aves" kingdom="Animalia" pageId="19" pageNumber="778" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFBEA63C74FE15443630F893" box="[1269,1390,1850,1872]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="19" pageNumber="778" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFBEA63C7331152730EFF8AC" box="[826,945,1881,1903]" class="Reptilia" family="Varanidae" kingdom="Animalia" order="Squamata" pageId="19" pageNumber="778" phylum="Chordata" rank="family">Varanidae</taxonomicName>
|
||
, and are here considered to be uniarticular components of the longissimus system. In this description the posterior transverse process of each pair is considered the origin, and the anterior one the insertion. This is not a universal practice in the literature (
|
||
<bibRefCitation id="DA794B50FFB9A63B711E1459314FF9FE" author="Zusi RL & Storer RW" box="[277,529,1575,1597]" journalOrPublisher="Miscellaneous Publications of the Museum of Zoology, University of Michigan" pageId="20" pageNumber="779" pagination="1-49" part="139" refId="ref29391" refString="Zusi RL, Storer RW. 1969. Osteology and myology of the head and neck of the Pied-billed Grebe (Podilymbus). Miscellaneous Publications of the Museum of Zoology, Uni- Versity of Michigan 139: 1 - 49." title="Osteology and myology of the head and neck of the Pied-billed Grebe (Podilymbus)" type="book" year="1969">Zusi & Storer, 1969</bibRefCitation>
|
||
), but the anterior vertebrae are less massive than posterior ones and are likely to be displaced more by contraction of mm. intertrans. ‘Insertion’ is a more appropriate designation for an attachment on the element that moves over greater excursion relative to the body’s centre of mass.
|
||
</paragraph>
|
||
<caption id="EA976629FFB9A63B709B16C732D1FA9C" ID-DOI="http://doi.org/10.5281/zenodo.4032605" ID-Zenodo-Dep="4032605" httpUri="https://zenodo.org/record/4032605/files/figure.png" pageId="20" pageNumber="779" startId="20.[144,223,1209,1228]" subCaptionStartIDs="20.[1013,1159,1209,1228]" subCaptionStarts="Abbr" targetBox="[367,1199,202,1177]" targetPageId="20">
|
||
<caption id="EA976629FFB9A63B709B16C732D4FA9C" ID-DOI="http://doi.org/10.5281/zenodo.3734938" ID-Zenodo-Dep="3734938" httpUri="https://zenodo.org/record/3734938/files/figure.png" pageId="20" pageNumber="779" startId="20.[144,223,1209,1228]" subCaptionStartIDs="20.[1013,1159,1209,1228]" subCaptionStarts="Abbr" targetBox="[367,1199,202,1177]" targetPageId="20">
|
||
<paragraph id="BE5736A1FFB9A63B709B16C732D4FA9C" blockId="20.[144,1422,1209,1375]" pageId="20" pageNumber="779">
|
||
Figure 10. A, several muscles of
|
||
<taxonomicName id="79E84D22FFB9A63B71F116C731BCFB0F" box="[506,738,1209,1228]" class="Reptilia" family="Tyrannosauridae" genus="Pelicanus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="20" pageNumber="779" phylum="Chordata" rank="species" species="occidentalis">Pelicanus occidentalis</taxonomicName>
|
||
, disseted in lateral view. Abbreviations are as in the main text. Several slips of m. rectus capitis dorsalis (m. r.c.d.) converge ventrally, towards tendinous insertions on the basioccipital tuberosities. M. complexus has an unusual lateral, tendinous insertion. B, posterolateral view of m. longissimus capitis superficialis (outlined in dark grey) of
|
||
<taxonomicName id="79E84D22FFB9A63B7238176F301FFAE7" baseAuthorityName="Daudin" baseAuthorityYear="1802" box="[563,833,1297,1316]" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="20" pageNumber="779" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
. The posterior origin and the insertion are tendinous. M. iliocostallis capitis (m. il. cap.) is depicted, and m. constrictor colli has not been dissected away. The neck is slightly dorsiflexed in this view
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFB9A63B7180173232D1FA9C" blockId="20.[144,1422,1209,1375]" box="[395,399,1356,1375]" pageId="20" pageNumber="779">.</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFB9A63B70A31480378DF998" blockId="20.[144,759,1452,1903]" lastBlockId="20.[806,1421,1452,1627]" pageId="20" pageNumber="779">
|
||
Mm. intertrans. vary substantially in extant sauropsids (
|
||
<figureCitation id="26D32A24FFB9A63B70F11562320AF8F2" box="[250,340,1820,1842]" captionStart="Figure 8" captionStartId="17.[164,243,1414,1433]" captionTargetBox="[323,1283,195,1385]" captionTargetId="figure@17.[323,1283,195,1385]" captionTargetPageId="17" captionText="Figure 8. A, lateral view of m. longus colli dorsalis pars cranialis (m. l.c.d. cranialis), m. longus colli dorsalis pars caudalis (m. l.c.d. caudalis) and mm. intertransversarii (mm. intertrans.) of Cygnus columbianus. Note posterior slips contributing to m. l.c.d. cranialis, ventrally inserting heads of m. l.c.d. caudalis and multiple tendinous divisions of all mm. intertrans. B, left m. transversospinalis cervicis (m. trans. cerv., outlined in grey) of Caiman crocodylus, inserts by a white tendon onto C1. M. spinocapitis posticus (m. sp. cap. post.) and m. longissimus capitis superficialis (m. long. cap. sup., with part of surrounding fascia left on) are also outlined in grey. Superficial muscles have been removed." figureDoi="http://doi.org/10.5281/zenodo.3734934" httpUri="https://zenodo.org/record/3734934/files/figure.png" pageId="20" pageNumber="779">Figs 8A</figureCitation>
|
||
,
|
||
<figureCitation id="26D32A24FFB9A63B7163156232DAF8F1" box="[360,388,1820,1842]" captionStart="Figure 11" captionStartId="21.[164,243,967,986]" captionTargetId="figure@21.[386,1218,197,937]" captionTargetPageId="21" captionText="Figure 11. A, origins (dark shapes) and insertions (lighter outlined shapes) of mm. intertransversarii aponeuroses on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of lateral tubercles, and insertions are onto posterior projections of the lateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins to effect intervertebral lateroflexion. B, origins (dark) and insertions (lighter) of mm. inclusii on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of the costal processes, and insertions are onto the lateral and dorsolateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins. C, origins (dark-filled shapes) and insertions (light-filled shapes) of lateral portions of mm. intertransversarii in Caiman crocodylus. Arrows represent lines of action from origin to insertion, by which the muscles would lateroflex the anterior vertebra of each pair relative to the posterior one." figureDoi="http://doi.org/10.5281/zenodo.3734940" httpUri="https://zenodo.org/record/3734940/files/figure.png" pageId="20" pageNumber="779">11</figureCitation>
|
||
). As described by
|
||
<bibRefCitation id="DA794B50FFB9A63B727F15623389F893" author="Cong L & Hou L & Wu X-C & Hou J." journalOrPublisher="Beijing: Science Press" pageId="20" pageNumber="779" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al. (1998)</bibRefCitation>
|
||
they are dorsoventrally relatively thick bands in crocodilians, but are more dorsoventrally depressed in
|
||
<taxonomicName id="79E84D22FFB9A63B734617D33779FA02" box="[845,1063,1452,1474]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="20" pageNumber="779" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
. In birds these muscles are intricately subdivided and vary along the neck and among taxa. Only some of this variation is described here. Mm. inclusii, the medialmost components of this system, are present as short bellies in the posterior, dorsally concave portion of the neck.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB9A63A732D14FD32DFFA22" blockId="20.[806,1421,1667,1903]" lastBlockId="21.[164,779,1299,1505]" lastPageId="21" lastPageNumber="780" pageId="20" pageNumber="779">
|
||
Origin: In
|
||
<taxonomicName id="79E84D22FFB9A63B73A414FD30BAF95B" box="[943,996,1667,1688]" class="Aves" kingdom="Animalia" pageId="20" pageNumber="779" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
bellies of mm. intertransversarii originate by aponeuroses from the lateral and dorsolateral tubercles (
|
||
<figureCitation id="26D32A24FFB9A63B73F814BE370BF915" box="[1011,1109,1728,1750]" captionStart="Figure 11" captionStartId="21.[164,243,967,986]" captionTargetId="figure@21.[386,1218,197,937]" captionTargetPageId="21" captionText="Figure 11. A, origins (dark shapes) and insertions (lighter outlined shapes) of mm. intertransversarii aponeuroses on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of lateral tubercles, and insertions are onto posterior projections of the lateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins to effect intervertebral lateroflexion. B, origins (dark) and insertions (lighter) of mm. inclusii on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of the costal processes, and insertions are onto the lateral and dorsolateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins. C, origins (dark-filled shapes) and insertions (light-filled shapes) of lateral portions of mm. intertransversarii in Caiman crocodylus. Arrows represent lines of action from origin to insertion, by which the muscles would lateroflex the anterior vertebra of each pair relative to the posterior one." figureDoi="http://doi.org/10.5281/zenodo.3734940" httpUri="https://zenodo.org/record/3734940/files/figure.png" pageId="20" pageNumber="779">Fig. 11A</figureCitation>
|
||
). The origins are more discrete in the anterior portion of the neck, although dorsally the aponeuroses must sometimes be dissected free of superficial aponeuroses of origin for other muscles. In the posterior part of the neck, aponeuroses of mm. inclusii originate from the anterior face of the costal prosesses of birds (
|
||
<figureCitation id="26D32A24FFB8A63A7270176D3183FAE9" box="[635,733,1299,1322]" captionStart="Figure 11" captionStartId="21.[164,243,967,986]" captionTargetId="figure@21.[386,1218,197,937]" captionTargetPageId="21" captionText="Figure 11. A, origins (dark shapes) and insertions (lighter outlined shapes) of mm. intertransversarii aponeuroses on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of lateral tubercles, and insertions are onto posterior projections of the lateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins to effect intervertebral lateroflexion. B, origins (dark) and insertions (lighter) of mm. inclusii on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of the costal processes, and insertions are onto the lateral and dorsolateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins. C, origins (dark-filled shapes) and insertions (light-filled shapes) of lateral portions of mm. intertransversarii in Caiman crocodylus. Arrows represent lines of action from origin to insertion, by which the muscles would lateroflex the anterior vertebra of each pair relative to the posterior one." figureDoi="http://doi.org/10.5281/zenodo.3734940" httpUri="https://zenodo.org/record/3734940/files/figure.png" pageId="21" pageNumber="780">Fig. 11B</figureCitation>
|
||
). In crocodilians, the fleshy origins of m. intertrans. are deep and arise from along the anterior face of the transverse processes (
|
||
<figureCitation id="26D32A24FFB8A63A71AA1711315CFA46" box="[417,514,1391,1413]" captionStart="Figure 11" captionStartId="21.[164,243,967,986]" captionTargetId="figure@21.[386,1218,197,937]" captionTargetPageId="21" captionText="Figure 11. A, origins (dark shapes) and insertions (lighter outlined shapes) of mm. intertransversarii aponeuroses on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of lateral tubercles, and insertions are onto posterior projections of the lateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins to effect intervertebral lateroflexion. B, origins (dark) and insertions (lighter) of mm. inclusii on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of the costal processes, and insertions are onto the lateral and dorsolateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins. C, origins (dark-filled shapes) and insertions (light-filled shapes) of lateral portions of mm. intertransversarii in Caiman crocodylus. Arrows represent lines of action from origin to insertion, by which the muscles would lateroflex the anterior vertebra of each pair relative to the posterior one." figureDoi="http://doi.org/10.5281/zenodo.3734940" httpUri="https://zenodo.org/record/3734940/files/figure.png" pageId="21" pageNumber="780">Fig. 11C</figureCitation>
|
||
). In
|
||
<taxonomicName id="79E84D22FFB8A63A7232170E3055FA47" box="[569,779,1391,1413]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="21" pageNumber="780" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
the origin is dorsoventrally shallower than it is in crocodilians, and is ventrolaterally restricted on the transverse process.
|
||
</paragraph>
|
||
<caption id="EA976629FFB8A63A70AF11B9319CFB06" ID-DOI="http://doi.org/10.5281/zenodo.3734940" ID-Zenodo-Dep="3734940" httpUri="https://zenodo.org/record/3734940/files/figure.png" pageId="21" pageNumber="780" targetBox="[386,1218,198,937]" targetPageId="21">
|
||
<paragraph id="BE5736A1FFB8A63A70AF11B9319CFB06" blockId="21.[164,1442,967,1221]" pageId="21" pageNumber="780">
|
||
Figure 11. A, origins (dark shapes) and insertions (lighter outlined shapes) of mm. intertransversarii aponeuroses on posterior cervical vertebrae of
|
||
<taxonomicName id="79E84D22FFB8A63A71E7119B31FFFC3B" authority="Linnaeus, 1758" box="[492,673,997,1016]" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="21" pageNumber="780" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
. Origins are from anterior faces of lateral tubercles, and insertions are onto posterior projections of the lateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins to effect intervertebral lateroflexion. B, origins (dark) and insertions (lighter) of mm. inclusii on posterior cervical vertebrae of
|
||
<taxonomicName id="79E84D22FFB8A63A718B1642316AFB8C" authority="Linnaeus, 1758" box="[384,564,1084,1103]" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="21" pageNumber="780" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
. Origins are from anterior faces of the costal processes, and insertions are onto the lateral and dorsolateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins. C, origins (dark-filled shapes) and insertions (light-filled shapes) of lateral portions of mm. intertransversarii in
|
||
<taxonomicName id="79E84D22FFB8A63A75461609324FFB64" authorityName="Lehr" authorityYear="2002" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="21" pageNumber="780" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
. Arrows represent lines of action from origin to insertion, by which the muscles would lateroflex the anterior vertebra of each pair relative to the posterior one.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFB8A63A70AF147730EFFA00" blockId="21.[164,779,1544,1903]" lastBlockId="21.[826,1441,1299,1475]" pageId="21" pageNumber="780">
|
||
Insertion: In birds the insertions (anterior attachments) of m. intertransversarii are aponeurotic onto the lateral tubercles of the transverse processes (
|
||
<figureCitation id="26D32A24FFB8A63A70A7141A3250F9B9" box="[172,270,1636,1658]" captionStart="Figure 11" captionStartId="21.[164,243,967,986]" captionTargetId="figure@21.[386,1218,197,937]" captionTargetPageId="21" captionText="Figure 11. A, origins (dark shapes) and insertions (lighter outlined shapes) of mm. intertransversarii aponeuroses on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of lateral tubercles, and insertions are onto posterior projections of the lateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins to effect intervertebral lateroflexion. B, origins (dark) and insertions (lighter) of mm. inclusii on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of the costal processes, and insertions are onto the lateral and dorsolateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins. C, origins (dark-filled shapes) and insertions (light-filled shapes) of lateral portions of mm. intertransversarii in Caiman crocodylus. Arrows represent lines of action from origin to insertion, by which the muscles would lateroflex the anterior vertebra of each pair relative to the posterior one." figureDoi="http://doi.org/10.5281/zenodo.3734940" httpUri="https://zenodo.org/record/3734940/files/figure.png" pageId="21" pageNumber="780">Fig. 11A</figureCitation>
|
||
). Anteriorly, aponeuroses of mm. intertrans. to the dorsal and ventral lateral tubercles are separate, but posteriorly on the neck these aponeruroses appear to be conjoined dorsoventrally. In the anterior, dorsally convex portion of the neck in some taxa, long superficial bellies insert on the costal process of a vertebra, several cervicals anterior to the origin. This is an exception to the usually uniarticular morphology of the muscles. In the posterior portion of the neck, mm. inclusii insert on the lateral and dorsolateral crests of the posterior neural arch (
|
||
<figureCitation id="26D32A24FFB8A63A74C0174C3672FA8B" box="[1227,1324,1330,1352]" captionStart="Figure 11" captionStartId="21.[164,243,967,986]" captionTargetId="figure@21.[386,1218,197,937]" captionTargetPageId="21" captionText="Figure 11. A, origins (dark shapes) and insertions (lighter outlined shapes) of mm. intertransversarii aponeuroses on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of lateral tubercles, and insertions are onto posterior projections of the lateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins to effect intervertebral lateroflexion. B, origins (dark) and insertions (lighter) of mm. inclusii on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of the costal processes, and insertions are onto the lateral and dorsolateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins. C, origins (dark-filled shapes) and insertions (light-filled shapes) of lateral portions of mm. intertransversarii in Caiman crocodylus. Arrows represent lines of action from origin to insertion, by which the muscles would lateroflex the anterior vertebra of each pair relative to the posterior one." figureDoi="http://doi.org/10.5281/zenodo.3734940" httpUri="https://zenodo.org/record/3734940/files/figure.png" pageId="21" pageNumber="780">Fig. 11B</figureCitation>
|
||
). In crocodilians and
|
||
<taxonomicName id="79E84D22FFB8A63A73C6172F37FAFAA5" box="[973,1188,1361,1382]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="21" pageNumber="780" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
the insertions of m. intertransversarii are fleshy onto the transverse process of the anterior vertebrae of each pair (
|
||
<figureCitation id="26D32A24FFB8A63A734917D230FAFA00" box="[834,932,1452,1475]" captionStart="Figure 11" captionStartId="21.[164,243,967,986]" captionTargetId="figure@21.[386,1218,197,937]" captionTargetPageId="21" captionText="Figure 11. A, origins (dark shapes) and insertions (lighter outlined shapes) of mm. intertransversarii aponeuroses on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of lateral tubercles, and insertions are onto posterior projections of the lateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins to effect intervertebral lateroflexion. B, origins (dark) and insertions (lighter) of mm. inclusii on posterior cervical vertebrae of Struthio camelus. Origins are from anterior faces of the costal processes, and insertions are onto the lateral and dorsolateral tubercles. Arrows represent lines of action whereby insertions are drawn towards the origins. C, origins (dark-filled shapes) and insertions (light-filled shapes) of lateral portions of mm. intertransversarii in Caiman crocodylus. Arrows represent lines of action from origin to insertion, by which the muscles would lateroflex the anterior vertebra of each pair relative to the posterior one." figureDoi="http://doi.org/10.5281/zenodo.3734940" httpUri="https://zenodo.org/record/3734940/files/figure.png" pageId="21" pageNumber="780">Fig. 11C</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB8A6397331179432DEFF39" blockId="21.[826,1442,1514,1903]" lastBlockId="22.[144,759,198,434]" lastPageId="22" lastPageNumber="781" pageId="21" pageNumber="780">
|
||
Action/function: In extant archosaurs and
|
||
<taxonomicName id="79E84D22FFB8A63A7548179430FBF9DE" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="21" pageNumber="780" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
, mm. intertrans. are positioned to laterally flex pairs of vertebrae relative to each other. The muscles are especially important for this function in birds, which lack the capacity for laterally flexing the entire neck by large superficial longissimus muscles present in other reptiles. Mm. intertrans. of birds spanning caudal vertebral joints are probably those most strongly involved in lateroflexion of the neck (
|
||
<bibRefCitation id="DA794B50FFB8A63A734914833703F8D0" author="Heidweiller J & Lendering B & Zweers GA" box="[834,1117,1789,1811]" journalOrPublisher="Netherlands Journal of Zoology" pageId="21" pageNumber="780" pagination="1 - 22" part="42" refId="ref27942" refString="Heidweiller J, Lendering B, Zweers GA. 1992. Development of motor patterns in cervical muscles of drinking chickens. Netherlands Journal of Zoology 42: 1 - 22." title="Development of motor patterns in cervical muscles of drinking chickens" type="journal article" year="1992">Heidweiller et al., 1992</bibRefCitation>
|
||
). In both crocodilians and varanids the transverse processes are laterally (and somewhat ventrally) extensive, indicating the capacity of effective intervertebral lateroflexion. Bilateral contraction might conceivably stabilize the intervertebral joints.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBBA63970A3137D3187FE71" blockId="22.[144,759,198,434]" pageId="22" pageNumber="781">
|
||
Interestingly, EMG of dorsal slips of anterior mm. intertrans. of adult chickens (
|
||
<bibRefCitation id="DA794B50FFBBA63971EF135C31B1FEFB" author="Heidweiller J & Lendering B & Zweers GA" box="[484,751,290,312]" journalOrPublisher="Netherlands Journal of Zoology" pageId="22" pageNumber="781" pagination="1 - 22" part="42" refId="ref27942" refString="Heidweiller J, Lendering B, Zweers GA. 1992. Development of motor patterns in cervical muscles of drinking chickens. Netherlands Journal of Zoology 42: 1 - 22." title="Development of motor patterns in cervical muscles of drinking chickens" type="journal article" year="1992">Heidweiller et al., 1992</bibRefCitation>
|
||
) shows intense activity during intervertebral dorsiflexion. This compensates for other neck dorsiflexors, which have proportionally smaller cross-sectional area than they do in juveniles (
|
||
<bibRefCitation id="DA794B50FFBBA63971B413E23193FE71" author="Heidweiller J & Lendering B & Zweers GA" box="[447,717,412,434]" journalOrPublisher="Netherlands Journal of Zoology" pageId="22" pageNumber="781" pagination="1 - 22" part="42" refId="ref27942" refString="Heidweiller J, Lendering B, Zweers GA. 1992. Development of motor patterns in cervical muscles of drinking chickens. Netherlands Journal of Zoology 42: 1 - 22." title="Development of motor patterns in cervical muscles of drinking chickens" type="journal article" year="1992">Heidweiller et al., 1992</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBBA639709B13B43117FD98" blockId="22.[144,759,458,603]" pageId="22" pageNumber="781">
|
||
C. M. iliocostalis and m. longus systems M. rectus capitis lateralis (m. r.c.l.) (
|
||
<bibRefCitation id="DA794B50FFBBA639725D13973216FDDE" author="Vanden Berge JC & Zweers GA" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="22" pageNumber="781" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFBBA639715C10763143FDDD" author="Cong L & Hou L & Wu X-C & Hou J." box="[343,541,520,542]" journalOrPublisher="Beijing: Science Press" pageId="22" pageNumber="781" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
).
|
||
<taxonomicName id="79E84D22FFBBA639723A10763137FDDE" box="[561,617,520,541]" class="Aves" pageId="22" pageNumber="781" rank="class">Aves</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFBBA639727C107631ADFDDD" box="[631,755,520,542]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="22" pageNumber="781" phylum="Chordata" rank="order">Crododylia</taxonomicName>
|
||
M. iliocostalis capitis (m. il. cap.) (
|
||
<bibRefCitation id="DA794B50FFBBA6397254105831ACFDFF" author="Seidel R." box="[607,754,550,572]" journalOrPublisher="City University of New York" pageId="22" pageNumber="781" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFBBA639709B103B32E5FD98" author="Cleuren J & De Vree F." box="[144,443,581,603]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="22" pageNumber="781" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
).
|
||
<taxonomicName id="79E84D22FFBBA63971DB103B3117FD98" box="[464,585,581,603]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="22" pageNumber="781" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBBA639709B10F231CAFC76" blockId="22.[144,759,652,1225]" pageId="22" pageNumber="781">
|
||
Origin: In birds, m. rectus capitis lateralis (
|
||
<figureCitation id="26D32A24FFBBA639728510F231B1FD61" box="[654,751,652,674]" captionStart="Figure 10" captionStartId="20.[144,223,1209,1228]" captionTargetBox="[367,1199,202,1177]" captionTargetId="figure@20.[367,1201,260,1157]" captionText="Figure 10. A, several muscles of Pelicanus occidentalis, disseted in lateral view. Abbreviations are as in the main text. Several slips of m. rectus capitis dorsalis (m. r.c.d.) converge ventrally, towards tendinous insertions on the basioccipital tuberosities. M. complexus has an unusual lateral, tendinous insertion. B, posterolateral view of m. longissimus capitis superficialis (outlined in dark grey) of Alligator mississippiensis. The posterior origin and the insertion are tendinous. M. iliocostallis capitis (m. il. cap.) is depicted, and m. constrictor colli has not been dissected away. The neck is slightly dorsiflexed in this view ." figureDoi="http://doi.org/10.5281/zenodo.4032605" httpUri="https://zenodo.org/record/4032605/files/figure.png" pageId="22" pageNumber="781">Fig. 10A</figureCitation>
|
||
) originates from the lateral surface of an enlarged hypopophysis of C2 (
|
||
<figureCitation id="26D32A24FFBBA639719E10B73140FD1C" box="[405,542,713,735]" captionStart="Figure 12" captionStartId="22.[806,885,1671,1690]" captionTargetBox="[818,1410,196,1628]" captionTargetId="figure@22.[822,1411,196,1641]" captionTargetPageId="22" captionText="Figure 12. A, origins of m. rectus capitis lateralis (m. r.c.l.) and rectus capitis ventralis (m. r.c.v.) of Corvus brachyrhynchos, from C2 prosessus ventralis. B, all origins of m. r.c.v. from anterior cervicals of another specimen of Corvus brachyrhynchos, and its m. rectus capitis lateralis origin from C2. Both images are ventrolateral views. C, ventrolateral view of m. rectus capitis ventralis (with light outline) of Falco columbarius." figureDoi="http://doi.org/10.5281/zenodo.3734942" httpUri="https://zenodo.org/record/3734942/files/figure.png" pageId="22" pageNumber="781">Fig. 12A, B</figureCitation>
|
||
) posterior to the origins of m. rectus capitis ventralis, or from the ventrolateral surface of the centrum. In dissected birds m. r.c.l. never originated from the costal process of C2, homologous with the vertebra’s cervical rib in other amniotes. This represents a dramatic medial shift from the muscle’s likely plesiomorphic origin in Archosauria that is retained in crocodilians.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBBA63970A311C031F7FB0A" blockId="22.[144,759,652,1225]" pageId="22" pageNumber="781">
|
||
In
|
||
<taxonomicName id="79E84D22FFBBA63970DE11C032E5FC10" authorityName="Lehr" authorityYear="2002" box="[213,443,958,979]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="22" pageNumber="781" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFBBA639720611C03380FC31" baseAuthorityName="Daudin" baseAuthorityYear="1802" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="22" pageNumber="781" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
, m. iliocostalis capitis (
|
||
<bibRefCitation id="DA794B50FFBBA639720F11A33397FBD2" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="22" pageNumber="781" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
)/m. r.c.l. (
|
||
<bibRefCitation id="DA794B50FFBBA63971361185315CFBD2" author="Cong L & Hou L & Wu X-C & Hou J." box="[317,514,1019,1041]" journalOrPublisher="Beijing: Science Press" pageId="22" pageNumber="781" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
) originates ventrally from strong white fascia surrounding ribs of C1 and C2 (
|
||
<figureCitation id="26D32A24FFBBA63970B416463248FB8D" box="[191,278,1080,1102]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="22" pageNumber="781">Fig. 6A</figureCitation>
|
||
). Because the C1 rib is the ventralmost of the pair, the m. iliocostalis capitis origin appears to arise strictly from the C1 rib. Palpation of the ribs and incision into the fascia reveal the fascia’s continuity with the origin of m. iliocostalis capitis.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBBA639709B168431A9F9E0" blockId="22.[144,759,1274,1571]" pageId="22" pageNumber="781">
|
||
Insertion: In both birds and crocodilians m. r.c.l./m. il. cap. usually has a flat tendinous insertion along the ventral edge of the paroccipital processes (
|
||
<figureCitation id="26D32A24FFBBA6397293174931ACFA8E" box="[664,754,1335,1357]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="22" pageNumber="781">Figs 5C</figureCitation>
|
||
,
|
||
<figureCitation id="26D32A24FFBBA639709B172B33EFFAA8" box="[144,177,1365,1387]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="22" pageNumber="781">6B</figureCitation>
|
||
). In crocodilians the muscle is a mediolaterally broad band, but in most birds (e.g.
|
||
<taxonomicName id="79E84D22FFBBA639722E170A339CFA6B" class="Reptilia" family="Tyrannosauridae" genus="Pelicanus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="22" pageNumber="781" phylum="Chordata" rank="species" species="occidentalis">Pelicanus occidentalis</taxonomicName>
|
||
) the belly of m. rectus capitis lateralis is dorsoventrally deep where it runs lateral to m. rectus capitis dorsalis. The insertion of this muscle in
|
||
<taxonomicName id="79E84D22FFBBA639709B1791323EF9C0" box="[144,352,1518,1540]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="22" pageNumber="781" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
is onto the basioccipital, ventromedial to the position of insertion in extant archosaurs.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBBA639709B142A3102F8C0" blockId="22.[144,758,1620,1795]" pageId="22" pageNumber="781">
|
||
Action/function: In extant archosaurs this muscle is well positioned to impose lateral flexion of the head versus the neck. EMG of crocodilians indicates that it is also active during head rotation, and during elevation, when it may serve a damping function for head dorsiflexors (
|
||
<bibRefCitation id="DA794B50FFBBA639712E1493310FF8C0" author="Cleuren J & De Vree F." box="[293,593,1773,1795]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="22" pageNumber="781" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<caption id="EA976629FFBBA639732D14F93738F8A4" ID-DOI="http://doi.org/10.5281/zenodo.3734942" ID-Zenodo-Dep="3734942" httpUri="https://zenodo.org/record/3734942/files/figure.png" pageId="22" pageNumber="781" startId="22.[806,885,1671,1690]" targetBox="[818,1410,196,1628]" targetPageId="22">
|
||
<paragraph id="BE5736A1FFBBA639732D14F93738F8A4" blockId="22.[806,1421,1671,1895]" pageId="22" pageNumber="781">
|
||
Figure 12. A, origins of m. rectus capitis lateralis (m. r.c.l.) and rectus capitis ventralis (m. r.c.v.) of
|
||
<taxonomicName id="79E84D22FFBBA639754F14DA3095F917" authority="Brehm, 1822" class="Aves" family="Corvidae" genus="Corvus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Passeriformes" pageId="22" pageNumber="781" phylum="Chordata" rank="species" species=" brachyrhynchos">Corvus brachyrhynchos</taxonomicName>
|
||
, from C2 prosessus ventralis. B, all origins of m. r.c.
|
||
<taxonomicName id="79E84D22FFBBA639738814A13090F931" box="[899,974,1759,1778]" pageId="22" pageNumber="781" rank="variety" variety="from">v. from</taxonomicName>
|
||
anterior cervicals of another specimen of
|
||
<taxonomicName id="79E84D22FFBBA639732D14823743F8CC" authority="Brehm, 1822" box="[806,1053,1788,1807]" class="Aves" family="Corvidae" genus="Corvus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Passeriformes" pageId="22" pageNumber="781" phylum="Chordata" rank="species" species=" brachyrhynchos">Corvus brachyrhynchos</taxonomicName>
|
||
, and its m. rectus capitis lateralis origin from C2. Both images are ventrolateral views. C, ventrolateral view of m. rectus capitis ventralis (with light outline) of
|
||
<taxonomicName id="79E84D22FFBBA6397397152A373EF8A4" authority="Linnaeus, 1758" box="[924,1120,1876,1895]" class="Aves" family="Falconidae" genus="Falco" higherTaxonomySource="GBIF" kingdom="Animalia" order="Falconiformes" pageId="22" pageNumber="781" phylum="Chordata" rank="species" species="columbarius">Falco columbarius</taxonomicName>
|
||
.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFBBA639709B1562324AF8AC" blockId="22.[144,759,1819,1903]" pageId="22" pageNumber="781">
|
||
M. rectus capitis ventralis (m. r.c.v.) (
|
||
<bibRefCitation id="DA794B50FFBBA63972AB156232F5F88C" author="Vanden Berge JC & Zweers GA" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="22" pageNumber="781" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FFBBA63971CB154431C8F893" author="Cong L & Hou L & Wu X-C & Hou J." box="[448,662,1850,1872]" journalOrPublisher="Beijing: Science Press" pageId="22" pageNumber="781" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFBBA63972B1154431ACF88C" box="[698,754,1850,1871]" class="Aves" pageId="22" pageNumber="781" rank="class">Aves</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FFBBA639709B15273253F8AC" box="[144,269,1881,1903]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="22" pageNumber="781" phylum="Chordata" rank="order">Crododylia</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBAA63870AF12B833B7FEDA" blockId="23.[164,779,198,281]" pageId="23" pageNumber="782">
|
||
M. longus capitis (
|
||
<bibRefCitation id="DA794B50FFBAA638719912B83104FF1F" author="Cong L & Hou L & Wu X-C & Hou J." box="[402,602,198,220]" journalOrPublisher="Beijing: Science Press" pageId="23" pageNumber="782" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFBAA638727C12B831ACFF1F" box="[631,754,198,220]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="23" pageNumber="782" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
) M. flexor colli (
|
||
<bibRefCitation id="DA794B50FFBAA6387176129A31A1FF38" author="Vanden Berge JC & Zweers GA" box="[381,767,228,251]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="23" pageNumber="782" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFBAA63870A0137D33BCFEDA" box="[171,226,259,281]" class="Aves" kingdom="Animalia" pageId="23" pageNumber="782" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBAA63870AF134C33AAFE47" blockId="23.[164,778,306,388]" pageId="23" pageNumber="782">These muscles are associated with the processus spinosus ventralis and ventral surfaces of the cervical centra.</paragraph>
|
||
<paragraph id="BE5736A1FFBAA63870AF13B43055FD54" blockId="23.[164,779,458,1000]" pageId="23" pageNumber="782">
|
||
Origins: In birds, lateral and medial parts of m. rectus capitis ventralis (m. r.c.v.;
|
||
<figureCitation id="26D32A24FFBAA638722013963127FE3C" box="[555,633,488,511]" captionStart="Figure 12" captionStartId="22.[806,885,1671,1690]" captionTargetBox="[818,1410,196,1628]" captionTargetId="figure@22.[822,1411,196,1641]" captionTargetPageId="22" captionText="Figure 12. A, origins of m. rectus capitis lateralis (m. r.c.l.) and rectus capitis ventralis (m. r.c.v.) of Corvus brachyrhynchos, from C2 prosessus ventralis. B, all origins of m. r.c.v. from anterior cervicals of another specimen of Corvus brachyrhynchos, and its m. rectus capitis lateralis origin from C2. Both images are ventrolateral views. C, ventrolateral view of m. rectus capitis ventralis (with light outline) of Falco columbarius." figureDoi="http://doi.org/10.5281/zenodo.3734942" httpUri="https://zenodo.org/record/3734942/files/figure.png" pageId="23" pageNumber="782">Fig. 12</figureCitation>
|
||
) often originate from the ventral surface of processus spinosus ventralis (hypopophysis) of each vertebra from C2 to C5 or C6 (see
|
||
<figureCitation id="26D32A24FFBAA6387141103A32C4FD99" box="[330,410,580,602]" captionStart="Figure 18" captionStartId="32.[144,223,198,217]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="31" captionText="Figure 18. Topological appearance of (A) m. splenius capitis (medial part) and (B) m. longus colli dorsalis/ transversospinalis cervicis, on anterior vertebrae and skull of Tyrannosaurus rex skeleton (AMNH 5027). Note that the parietals are probably closer to the axial neural spine than in neutral life posture, and m. splenius capitis would be longer than shown here. C, topological appearance of m. splenius on another specimen of Tyrannosaurus rex (BHI 3033). M. complexus is also represented, and m. transversospinalis capits is depicted as though reflected back. D, E, appearance of m. longissimus capitis profundus (large anterior muscle), and cervical mm. intertransversarii (bands between transverse processes), on skeleton of Tyrannosaurus rex (AMNH 5027). A′–E′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. splenius capitis of tyrannosaurids, for head dorsiflexion and stabilization. The large inference space is possible by morphological and physiological bracketing between homologous muscles in birds and crocodilians. B′, strength of functional inference for m. transversospinalis cervicis of tyrannosaurids, for neck dorsiflexion. Inference strengh is particularly high for this muscle. D′, Level II′ inference for ventroflexion by m. longissimus capitis profundus. E′, inferernce for lateroflexion by mm. interntransversarii, with poor, Level III′ support from physiological data; EMG has been uninformative about mm. intertrans. lateroflexion in extant archosaurs ." figureDoi="http://doi.org/10.5281/zenodo.3734954" httpUri="https://zenodo.org/record/3734954/files/figure.png" pageId="23" pageNumber="782">Fig. 18</figureCitation>
|
||
). These slips coalesce to form a large muscle in many birds; it is especially large relative to the size of the head in
|
||
<taxonomicName id="79E84D22FFBAA638723B10FF305AFD55" authority="Linnaeus, 1758" box="[560,772,641,662]" class="Aves" family="Falconidae" genus="Falco" higherTaxonomySource="GBIF" kingdom="Animalia" order="Falconiformes" pageId="23" pageNumber="782" phylum="Chordata" rank="species" species="columbarius">Falco columbarius</taxonomicName>
|
||
.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBAA63870B710DE3180FC8C" blockId="23.[164,779,458,1000]" pageId="23" pageNumber="782">
|
||
In
|
||
<taxonomicName id="79E84D22FFBAA63870D410DE32E5FD76" authorityName="Lehr" authorityYear="2002" box="[223,443,672,693]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="23" pageNumber="782" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFBAA63871F310DE3055FD75" box="[504,779,672,694]" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="23" pageNumber="782" phylum="Chordata" rank="species" species="mississippiensis">Alligator misssippiensis</taxonomicName>
|
||
the origin of m. rectus capitis ventralis is restricted to the ventrolateral surfaces of the centra of C1 and C2 (
|
||
<figureCitation id="26D32A24FFBAA63870A710823251FCD1" box="[172,271,764,786]" captionStart="›" captionStartId="23.[1422,1441,1624,1644]" captionTargetId="figure@24.[173,1425,173,1832]" captionTargetPageId="24" captionText="› Figure 13. A, the posteriormost subdivision of m. longus colli ventralis of Leptoptilos crumeniferus, depitcted in ventrolateral view. The outlined bellies originate deep in the thoracic region, and insert on light-coloured tendons to the posterior cervical ribs. The inset shows the morphology without highlighting. B, C, anteroventral views of the anterior vertebrae of Asio flammeus, depicting origins (B) and insertions (C), in dark shading, of m. longus colli ventralis. In B arrows represent schematic action of multiple slips of m. l.c.v. converging on an anterior insertion. D, ventral view of insertions (light shading) of m. iliocostalis cervicis onto the cervical ribs of Caiman crocodylus, with arrows representing schematic ventroflexive action. E, cervical vertebrae and ribs of Caiman crocodylus in oblique ventral view, depicting origins (dark shading) of m. rectus capitis ventralis and m. longus capitis, and m. iliocostalis cervicis (lighter shading), from the ventral centra and ventral spinous processes." figureDoi="http://doi.org/10.5281/zenodo.3734944" httpUri="https://zenodo.org/record/3734944/files/figure.png" pageId="23" pageNumber="782">Fig. 13E</figureCitation>
|
||
). The origins of m. longus capitis are from the lateral surfaces of the processus spinosus ventralis of C3–C7, forming a large, anteriorly coursing belly.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBAA63870B71126324FFC2B" blockId="23.[164,779,458,1000]" pageId="23" pageNumber="782">M. flexor colli of birds typically originates aponeurotically from the ventrolateral surfaces of posterior vertebrae, associated with processus caroticus, when present, or with the processus spinosus ventralis.</paragraph>
|
||
<paragraph id="BE5736A1FFBAA63870AF165032A4FA50" blockId="23.[164,779,1069,1550]" pageId="23" pageNumber="782">
|
||
Insertions: In the dissected birds the insertion of m. r.c.
|
||
<taxonomicName id="79E84D22FFBAA63870CF16323252FBA2" box="[196,268,1100,1121]" pageId="23" pageNumber="782" rank="variety" variety="was">v. was</taxonomicName>
|
||
typically anteroventral to that of m. longissimus capitis profundus, onto the basitemporal plate (
|
||
<figureCitation id="26D32A24FFBAA63870A716F7325FFB5C" box="[172,257,1161,1183]" captionStart="Figure 5" captionStartId="11.[164,243,1709,1728]" captionTargetBox="[175,1430,202,1676]" captionTargetId="figure@11.[182,1370,242,1640]" captionTargetPageId="11" captionText="Figure 5. Attachments of muscles inserting on the occiput of birds. A, posterior cervical vertebrae of Strutio camelus, showing osteological origin of posterior belly of m. biventer cervicis. B, anterior cervical vertebrae of Haliaeetus leucocephalus, with origins of m. complexus, m. splenius capitis and m. rectus capitis dorsalis (outlined). M. complexus originates from the epipophyses dorsally (as in Haliaeetus leucocephalus), and sometimes the lateral tubercles ventrally. For adjoining origins of m. complexus and m. rectus capitis dorsalis from the lateral tubercles, the latter is the anterior of each pair. C, occiput of Struthio camelus, depicting all insertions. In Struthio camelus and many other birds m. splenius capitis lateralis inserts laterally onto the occiput, but in other birds part of m. complexus inserts here." figureDoi="http://doi.org/10.5281/zenodo.3734928" httpUri="https://zenodo.org/record/3734928/files/figure.png" pageId="23" pageNumber="782">Fig. 5C</figureCitation>
|
||
). In the crocodilians the insertion of m. r.c.v was onto the posteroventral surface of the basioccipital tuberosities (
|
||
<figureCitation id="26D32A24FFBAA638716316B832E2FB1F" box="[360,444,1222,1244]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="23" pageNumber="782">Fig. 6B</figureCitation>
|
||
), ventral to the insertion of m. longissimus capitis profundus. The insertion of m. longus capitis appeared to be continuous dorsally with that of m. r.c.v. (
|
||
<figureCitation id="26D32A24FFBAA63871BA175C315DFAFB" box="[433,515,1314,1336]" captionStart="Figure 6" captionStartId="12.[144,223,1502,1521]" captionTargetBox="[303,1261,200,1472]" captionTargetId="figure@12.[303,1263,195,1472]" captionTargetPageId="12" captionText="Figure 6. Neck muscle origins and insertions in crocodilians. A, muscle attachments on C1–C9 of Caiman crocodylus. B, muscle insertions on the occiput of Caiman crocodylus. m. trans. cap., m. transversospinalis capitis; m. epi.-cap. lat., m. epstropheo-capitis lateralis; m. epi.-cap. med., m. epstropheo-capitis medialis; m. sp.cap. post., m. spinocapitis posticus; m. trans. cerv., m. transversospinalis cervicis; m. long. cerv., m. longissimus cervicis (m. articulares/m. tendinoarticulares); m. long. cap., m. longus capitis; m. long. cap. sup., m. longissimus capitis superficialis; m. long. cap. prof., m. longissimus capitis profundus; m. il. cap., m. iliocostalis capitis; m. il. cerv., m. iliocostalis cervicis." figureDoi="http://doi.org/10.5281/zenodo.3734930" httpUri="https://zenodo.org/record/3734930/files/figure.png" pageId="23" pageNumber="782">Fig. 6B</figureCitation>
|
||
) The insertions of m. flexor colli of most dissected birds were onto the posterior surfaces of processus spinosus ventralis on vertebrae anterior the origin.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBAA63870B717E330F9FEDA" blockId="23.[164,779,1069,1550]" lastBlockId="23.[826,1441,198,281]" pageId="23" pageNumber="782">
|
||
M. r.c.v. of
|
||
<taxonomicName id="79E84D22FFBAA638714917E33149FA72" box="[322,535,1436,1458]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="23" pageNumber="782" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
is similar to that of crocodilians. M. flexor colli is similar to that of birds, but consists exclusively of uniarticular bellies running from the lateral surface of the processus spinosus ventralis of a posterior vertebra to the posterior surface of the preceding processus spinosus ventralis.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBAA638733113393612FD92" blockId="23.[826,1441,327,685]" pageId="23" pageNumber="782">
|
||
Action/function: The insertion of m. r.c.v. is ventral to the occipital condyle in crocodilians and anteroventral in birds, which indicates that the muscle ventroflexes the head relative to the vertebral column. The insertion of m. longus capitis of crocodilians is closer to the occiput than that of m. r.c.v., and, as with several such muscles in crocodilians (
|
||
<bibRefCitation id="DA794B50FFBAA63874F1138030E7FDF0" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="23" pageNumber="782" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
), probably acts to stabilize the craniocervical joint during vigorous feeding behaviour.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBAA6387358102437C5FD6E" blockId="23.[826,1441,327,685]" pageId="23" pageNumber="782">
|
||
Slips of m. flexor colli of birds (and
|
||
<taxonomicName id="79E84D22FFBAA63874E210253005FD4D" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="23" pageNumber="782" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
) are well positioned to ventroflex intervertebral cervical joints that they cross.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBAA638733110B83711FD38" blockId="23.[826,1441,710,824]" pageId="23" pageNumber="782">
|
||
M. longus colli ventralis (m. l.c.v.) (
|
||
<bibRefCitation id="DA794B50FFBAA63874F410B830AAFD38" author="Vanden Berge JC & Zweers GA" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="23" pageNumber="782" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFBAA638741A109B3716FD38" box="[1041,1096,741,763]" class="Aves" kingdom="Animalia" pageId="23" pageNumber="782" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBAA6387331117D3631FCFB" blockId="23.[826,1441,710,824]" pageId="23" pageNumber="782">
|
||
M. iliocostalis cervicis (m. il. cerv.) (
|
||
<bibRefCitation id="DA794B50FFBAA638750D117D36CAFCDA" author="Seidel R." box="[1286,1428,771,793]" journalOrPublisher="City University of New York" pageId="23" pageNumber="782" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
), m. longus colli (
|
||
<bibRefCitation id="DA794B50FFBAA6387402115C378FFCFB" author="Cong L & Hou L & Wu X-C & Hou J." box="[1033,1233,802,824]" journalOrPublisher="Beijing: Science Press" pageId="23" pageNumber="782" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFBAA63874E5115C3637FCFB" box="[1262,1385,802,824]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="23" pageNumber="782" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFBAA6387331112E3741FC3C" blockId="23.[826,1442,848,1023]" pageId="23" pageNumber="782">As with the major neck dorsiflexor (m. longus colli dorsalis/m. transversospinalis lateralis), m. longus colli ventralis/m. iliocostalis cervicis is greatly elaborated in birds relative to the condition in crocodilians. Its origins and insertions are considered separately for the extant taxa.</paragraph>
|
||
<paragraph id="BE5736A1FFBAA636733116533242FF38" blockId="23.[826,1441,1069,1550]" lastBlockId="25.[164,779,198,495]" lastPageId="25" lastPageNumber="784" pageId="23" pageNumber="782">
|
||
Origins: M. longus colli ventralis is divided in birds into multiple sets of interconnected origins, intervening tendons, bellies and insertions, each spanning several vertebrae (
|
||
<figureCitation id="26D32A24FFBAA638741E16F7373BFB5C" box="[1045,1125,1161,1183]" captionStart="›" captionStartId="23.[1422,1441,1624,1644]" captionTargetId="figure@24.[173,1425,173,1832]" captionTargetPageId="24" captionText="› Figure 13. A, the posteriormost subdivision of m. longus colli ventralis of Leptoptilos crumeniferus, depitcted in ventrolateral view. The outlined bellies originate deep in the thoracic region, and insert on light-coloured tendons to the posterior cervical ribs. The inset shows the morphology without highlighting. B, C, anteroventral views of the anterior vertebrae of Asio flammeus, depicting origins (B) and insertions (C), in dark shading, of m. longus colli ventralis. In B arrows represent schematic action of multiple slips of m. l.c.v. converging on an anterior insertion. D, ventral view of insertions (light shading) of m. iliocostalis cervicis onto the cervical ribs of Caiman crocodylus, with arrows representing schematic ventroflexive action. E, cervical vertebrae and ribs of Caiman crocodylus in oblique ventral view, depicting origins (dark shading) of m. rectus capitis ventralis and m. longus capitis, and m. iliocostalis cervicis (lighter shading), from the ventral centra and ventral spinous processes." figureDoi="http://doi.org/10.5281/zenodo.3734944" httpUri="https://zenodo.org/record/3734944/files/figure.png" pageId="23" pageNumber="782">Fig. 13</figureCitation>
|
||
). The posteriormost extent of a given system is usually a fleshy origin from the processus spinosus ventralis or sublateral process of a vertebra (
|
||
<figureCitation id="26D32A24FFBAA63873C9169A3778FB38" box="[962,1062,1252,1275]" captionStart="›" captionStartId="23.[1422,1441,1624,1644]" captionTargetId="figure@24.[173,1425,173,1832]" captionTargetPageId="24" captionText="› Figure 13. A, the posteriormost subdivision of m. longus colli ventralis of Leptoptilos crumeniferus, depitcted in ventrolateral view. The outlined bellies originate deep in the thoracic region, and insert on light-coloured tendons to the posterior cervical ribs. The inset shows the morphology without highlighting. B, C, anteroventral views of the anterior vertebrae of Asio flammeus, depicting origins (B) and insertions (C), in dark shading, of m. longus colli ventralis. In B arrows represent schematic action of multiple slips of m. l.c.v. converging on an anterior insertion. D, ventral view of insertions (light shading) of m. iliocostalis cervicis onto the cervical ribs of Caiman crocodylus, with arrows representing schematic ventroflexive action. E, cervical vertebrae and ribs of Caiman crocodylus in oblique ventral view, depicting origins (dark shading) of m. rectus capitis ventralis and m. longus capitis, and m. iliocostalis cervicis (lighter shading), from the ventral centra and ventral spinous processes." figureDoi="http://doi.org/10.5281/zenodo.3734944" httpUri="https://zenodo.org/record/3734944/files/figure.png" pageId="23" pageNumber="782">Fig. 13B</figureCitation>
|
||
). (The hypopophyses are usually large and medially placed fusions of processes caroticales, while the sublateral processes are smaller and paired.) More than one slip complex of m. l.c.
|
||
<taxonomicName id="79E84D22FFBAA6387551173E36FFFA95" box="[1370,1441,1344,1366]" pageId="23" pageNumber="782" rank="variety" variety="can">v. can</taxonomicName>
|
||
arise from a given origin, and more anteriorly originating, smaller bellies can insert on intervening tendons of a given slip. Posteriorly slips can originate from the body of the centrum. In
|
||
<taxonomicName id="79E84D22FFBAA63874E317C530F4FA2D" authority="Lesson, 1831" class="Aves" family="Ciconiidae" genus="Leptoptilos" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ciconiiformes" pageId="23" pageNumber="782" phylum="Chordata" rank="species" species="crumenifer">Leptoptilos crumeniferus</taxonomicName>
|
||
large fusiform bellies arise from the ventral surfaces of mid and anterior thoracic vertebrae of the notarium, deep in the thoracic region (
|
||
<figureCitation id="26D32A24FFB4A63670A7129A3251FF38" box="[172,271,228,251]" captionStart="›" captionStartId="23.[1422,1441,1624,1644]" captionTargetId="figure@24.[173,1425,173,1832]" captionTargetPageId="24" captionText="› Figure 13. A, the posteriormost subdivision of m. longus colli ventralis of Leptoptilos crumeniferus, depitcted in ventrolateral view. The outlined bellies originate deep in the thoracic region, and insert on light-coloured tendons to the posterior cervical ribs. The inset shows the morphology without highlighting. B, C, anteroventral views of the anterior vertebrae of Asio flammeus, depicting origins (B) and insertions (C), in dark shading, of m. longus colli ventralis. In B arrows represent schematic action of multiple slips of m. l.c.v. converging on an anterior insertion. D, ventral view of insertions (light shading) of m. iliocostalis cervicis onto the cervical ribs of Caiman crocodylus, with arrows representing schematic ventroflexive action. E, cervical vertebrae and ribs of Caiman crocodylus in oblique ventral view, depicting origins (dark shading) of m. rectus capitis ventralis and m. longus capitis, and m. iliocostalis cervicis (lighter shading), from the ventral centra and ventral spinous processes." figureDoi="http://doi.org/10.5281/zenodo.3734944" httpUri="https://zenodo.org/record/3734944/files/figure.png" pageId="25" pageNumber="784">Fig. 13A</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<caption id="EA976629FFBAA63870AF140E31AFF8AD" ID-DOI="http://doi.org/10.5281/zenodo.3734944" ID-Zenodo-Dep="3734944" httpUri="https://zenodo.org/record/3734944/files/figure.png" pageId="23" pageNumber="782" startId="23.[164,243,1648,1667]" subCaptionStartIDs="23.[164,243,1648,1667]" subCaptionStarts="Figure 13" targetBox="[144,1407,195,1819]" targetPageId="24">
|
||
<paragraph id="BE5736A1FFBAA63870AF140E31AFF8AD" blockId="23.[164,1441,1624,1902]" pageId="23" pageNumber="782">
|
||
Figure 13. A, the posteriormost subdivision of m. longus colli ventralis of
|
||
<taxonomicName id="79E84D22FFBAA63873F4140E3657F947" authority="Lesson, 1831" box="[1023,1289,1648,1668]" class="Aves" family="Ciconiidae" genus="Leptoptilos" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ciconiiformes" pageId="23" pageNumber="782" phylum="Chordata" rank="species" species="crumenifer">Leptoptilos crumeniferus</taxonomicName>
|
||
, depitcted in ventrolateral view. The outlined bellies originate deep in the thoracic region, and insert on light-coloured tendons to the posterior cervical ribs. The inset shows the morphology without highlighting. B, C, anteroventral views of the anterior vertebrae of
|
||
<taxonomicName id="79E84D22FFBAA638712614B73299F918" authority="Pontoppidan, 1763" box="[301,455,1736,1756]" class="Aves" family="Strigidae" genus="Asio" higherTaxonomySource="GBIF" kingdom="Animalia" order="Strigiformes" pageId="23" pageNumber="782" phylum="Chordata" rank="species" species="flammeus">Asio flammeus</taxonomicName>
|
||
, depicting origins (B) and insertions (C), in dark shading, of m. longus colli ventralis. In B arrows represent schematic action of multiple slips of m. l.c.
|
||
<taxonomicName id="79E84D22FFBAA63873381498309FF93A" box="[819,961,1766,1785]" pageId="23" pageNumber="782" rank="variety" variety="converging">v. converging</taxonomicName>
|
||
on an anterior insertion. D, ventral view of insertions (light shading) of m. iliocostalis cervicis onto the cervical ribs of
|
||
<taxonomicName id="79E84D22FFBAA63873B4157D37D9F8D5" authorityName="Lehr" authorityYear="2002" box="[959,1159,1795,1814]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="23" pageNumber="782" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
, with arrows representing schematic ventroflexive action. E, cervical vertebrae and ribs of
|
||
<taxonomicName id="79E84D22FFBAA6387369155E3773F8F0" authorityName="Lehr" authorityYear="2002" box="[866,1069,1824,1843]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="23" pageNumber="782" phylum="Chordata" rank="species" species="crocodylus">Caiman crocodylus</taxonomicName>
|
||
in oblique ventral view, depicting origins (dark shading) of m. rectus capitis ventralis and m. longus capitis, and m. iliocostalis cervicis (lighter shading), from the ventral centra and ventral spinous processes.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFB4A63670B7137A32DCFE2C" blockId="25.[164,779,198,495]" pageId="25" pageNumber="784">
|
||
In crocodilians, parts of the m. iliocostalis cervicis/m. longus colli (m. il. cerv.) system originate from the hypopophyses and ventral surfaces of the centra of the anterior thoracic and posterior cervical vertebrae (
|
||
<figureCitation id="26D32A24FFB4A636712E130332F3FE50" box="[293,429,381,403]" captionStart="›" captionStartId="23.[1422,1441,1624,1644]" captionTargetId="figure@24.[173,1425,173,1832]" captionTargetPageId="24" captionText="› Figure 13. A, the posteriormost subdivision of m. longus colli ventralis of Leptoptilos crumeniferus, depitcted in ventrolateral view. The outlined bellies originate deep in the thoracic region, and insert on light-coloured tendons to the posterior cervical ribs. The inset shows the morphology without highlighting. B, C, anteroventral views of the anterior vertebrae of Asio flammeus, depicting origins (B) and insertions (C), in dark shading, of m. longus colli ventralis. In B arrows represent schematic action of multiple slips of m. l.c.v. converging on an anterior insertion. D, ventral view of insertions (light shading) of m. iliocostalis cervicis onto the cervical ribs of Caiman crocodylus, with arrows representing schematic ventroflexive action. E, cervical vertebrae and ribs of Caiman crocodylus in oblique ventral view, depicting origins (dark shading) of m. rectus capitis ventralis and m. longus capitis, and m. iliocostalis cervicis (lighter shading), from the ventral centra and ventral spinous processes." figureDoi="http://doi.org/10.5281/zenodo.3734944" httpUri="https://zenodo.org/record/3734944/files/figure.png" pageId="25" pageNumber="784">Fig. 13D, E</figureCitation>
|
||
). Dorsal origins occur on the capitula of the ribs;
|
||
<bibRefCitation id="DA794B50FFB4A63671AE13E2311EFE71" author="Seidel R." box="[421,576,412,434]" journalOrPublisher="City University of New York" pageId="25" pageNumber="784" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel (1978)</bibRefCitation>
|
||
reported origins from the anterior portion of the myoseptum associated with each rib.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB4A63670AF10623055FD2B" blockId="25.[164,779,539,897]" pageId="25" pageNumber="784">
|
||
Insertions: Slips of m. l.c.v. insert by long tendons, 3–10 vertebrae anterior to their origin, with slips situated anteriorly crossing fewer joints than more posterior slips. These tendons run anterolaterally to insert on the cervical ribs (
|
||
<figureCitation id="26D32A24FFB4A63671D510EB3161FD68" box="[478,575,661,683]" captionStart="›" captionStartId="23.[1422,1441,1624,1644]" captionTargetId="figure@24.[173,1425,173,1832]" captionTargetPageId="24" captionText="› Figure 13. A, the posteriormost subdivision of m. longus colli ventralis of Leptoptilos crumeniferus, depitcted in ventrolateral view. The outlined bellies originate deep in the thoracic region, and insert on light-coloured tendons to the posterior cervical ribs. The inset shows the morphology without highlighting. B, C, anteroventral views of the anterior vertebrae of Asio flammeus, depicting origins (B) and insertions (C), in dark shading, of m. longus colli ventralis. In B arrows represent schematic action of multiple slips of m. l.c.v. converging on an anterior insertion. D, ventral view of insertions (light shading) of m. iliocostalis cervicis onto the cervical ribs of Caiman crocodylus, with arrows representing schematic ventroflexive action. E, cervical vertebrae and ribs of Caiman crocodylus in oblique ventral view, depicting origins (dark shading) of m. rectus capitis ventralis and m. longus capitis, and m. iliocostalis cervicis (lighter shading), from the ventral centra and ventral spinous processes." figureDoi="http://doi.org/10.5281/zenodo.3734944" httpUri="https://zenodo.org/record/3734944/files/figure.png" pageId="25" pageNumber="784">Fig. 13C</figureCitation>
|
||
) if these are well developed, or on the postlateral processes. Origins and insertions are difficult to tease apart in smaller birds.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB4A63670B7108C31CAFC42" blockId="25.[164,779,539,897]" pageId="25" pageNumber="784">
|
||
In crocodilians, m. il.cerv. inserts ventrally onto the posterior processes of the cervical ribs (
|
||
<figureCitation id="26D32A24FFB4A636726C116E3195FCE5" box="[615,715,784,806]" captionStart="›" captionStartId="23.[1422,1441,1624,1644]" captionTargetId="figure@24.[173,1425,173,1832]" captionTargetPageId="24" captionText="› Figure 13. A, the posteriormost subdivision of m. longus colli ventralis of Leptoptilos crumeniferus, depitcted in ventrolateral view. The outlined bellies originate deep in the thoracic region, and insert on light-coloured tendons to the posterior cervical ribs. The inset shows the morphology without highlighting. B, C, anteroventral views of the anterior vertebrae of Asio flammeus, depicting origins (B) and insertions (C), in dark shading, of m. longus colli ventralis. In B arrows represent schematic action of multiple slips of m. l.c.v. converging on an anterior insertion. D, ventral view of insertions (light shading) of m. iliocostalis cervicis onto the cervical ribs of Caiman crocodylus, with arrows representing schematic ventroflexive action. E, cervical vertebrae and ribs of Caiman crocodylus in oblique ventral view, depicting origins (dark shading) of m. rectus capitis ventralis and m. longus capitis, and m. iliocostalis cervicis (lighter shading), from the ventral centra and ventral spinous processes." figureDoi="http://doi.org/10.5281/zenodo.3734944" httpUri="https://zenodo.org/record/3734944/files/figure.png" pageId="25" pageNumber="784">Fig. 13D</figureCitation>
|
||
), and dorsally by short slips onto the myosepta of ribs just anterior to their origin. The anteriormost insertion is by a white aponeurosis onto the rib of C1.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB4A63670AF11D3326CFAD7" blockId="25.[164,779,941,1575]" pageId="25" pageNumber="784">
|
||
Action/function: The multiple slips of m. l.c.v. of birds potentially allow complex intervertebral ventroflexion. Anterior and posterior portions of the system are active during both approach and retraction phases of pecking and filter feeding, acting to ventroflex appropriate portions of the neck relative to posterior vertebrae, but also to damp the actions of dorsiflexive muscles (
|
||
<bibRefCitation id="DA794B50FFB4A636719516FD3185FB5A" author="van der Leeuw AHJ & Bout RG & Zweers GA" box="[414,731,1155,1177]" journalOrPublisher="Netherlands Journal of Zoology" pageId="25" pageNumber="784" pagination="243 - 262" part="51" refId="ref28293" refString="van der Leeuw AHJ, Bout RG, Zweers GA. 2001. Evolutionary morphology of the neck system in ratites, fowl and waterfowl. Netherlands Journal of Zoology 51: 243 - 262." title="Evolutionary morphology of the neck system in ratites, fowl and waterfowl" type="journal article" year="2001">van der Leeuw et al., 2001</bibRefCitation>
|
||
). In ducks the anterior and posterior slips fire asynchronously during approach, assisting with the complex rolling neck kinematics of feeding (
|
||
<bibRefCitation id="DA794B50FFB4A636725F16A13278FAD7" author="van der Leeuw AHJ & Bout RG & Zweers GA" journalOrPublisher="Netherlands Journal of Zoology" pageId="25" pageNumber="784" pagination="243 - 262" part="51" refId="ref28293" refString="van der Leeuw AHJ, Bout RG, Zweers GA. 2001. Evolutionary morphology of the neck system in ratites, fowl and waterfowl. Netherlands Journal of Zoology 51: 243 - 262." title="Evolutionary morphology of the neck system in ratites, fowl and waterfowl" type="journal article" year="2001">van der Leeuw et al., 2001</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB4A63670B7176330DFFEFB" blockId="25.[164,779,941,1575]" lastBlockId="25.[826,1441,198,312]" pageId="25" pageNumber="784">
|
||
Because insertions of m. il. cerv. in crocodilians lie lateral to the midline of the neck, kinematically the muscle complex appears capable of neck lateral flexion versus the trunk by unilateral contraction. The insertions are ventral to the intervertebral articulations, indicating the potential for neck ventroflexion as well. EMG of m. iliocostalis cervicis of crocodilians does indicate intense muscle activity during lateral flexion of the neck (
|
||
<bibRefCitation id="DA794B50FFB4A6367221146F302BFF1F" author="Cleuren J & De Vree F." box="[554,885,198,1575]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="25" pageNumber="784" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
). However, the muscles are not active during ventroflexion, and instead show damping and stabilizing activity during dorsiflexion (
|
||
<bibRefCitation id="DA794B50FFB4A63674C8137D302BFEFB" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="25" pageNumber="784" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB4A6367331132E367FFEA6" blockId="25.[826,1441,336,435]" box="[826,1313,336,358]" pageId="25" pageNumber="784">D. Complex and uniarticular muscles</paragraph>
|
||
<paragraph id="BE5736A1FFB4A6367331130136C2FE70" blockId="25.[826,1441,336,435]" pageId="25" pageNumber="784">Birds have several neck muscles with a distinct morphology that span one or more intervertebral joints.</paragraph>
|
||
<paragraph id="BE5736A1FFB4A636733113B236FFFE21" blockId="25.[826,1441,460,482]" box="[826,1441,460,482]" pageId="25" pageNumber="784">
|
||
Mm. intercristales (
|
||
<bibRefCitation id="DA794B50FFB4A636743C13B236C7FE21" author="Vanden Berge JC & Zweers GA" box="[1079,1433,460,482]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="25" pageNumber="784" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB4A6367331138536C1FD0B" blockId="25.[826,1442,507,712]" pageId="25" pageNumber="784">
|
||
Mm. intercristales appear quite large in birds, covering much of the dorsal surface of each post-C2 vertebra lateral to the spinous processes (
|
||
<figureCitation id="26D32A24FFB4A6367501104636CAFD8E" box="[1290,1428,568,590]" captionStart="Figure 14" captionStartId="25.[164,243,1648,1667]" captionTargetId="figure@26.[372,1193,194,1805]" captionTargetPageId="26" captionText="Figure 14. Mm. intercristales and mm. cervicales accendentes of birds. A, mm. intercristales shaded dark on the posterior cervicals of Leptoptilos crumeniferus. Inset to left depicts mm. intercristales in context on more of the neck. Recoil of the elastic ligament dorsiflexed the neck in this dissection specimen. B, mm. ascendentes cervicales on the posterior neck of Aquila chrysaetos (light outline). Most of m. transversospinalis capitis has been removed. C, origins and insertions of mm. intercristales (dark shapes), and cervicales ascendentes (lighter shapes), on the posterior cervicals of Struthio camelus. Arrows represent lines of action pulling the insertion towards the origin. In mm. intercristales, origins are from the anterior part of the attachment overlain in blue, and insertions from the posterior part of this area on the next anterior vertebra. For mm. cervicales ascendentes, several slips from posterior vertebrae converge upon a common insertion." figureDoi="http://doi.org/10.5281/zenodo.3734946" httpUri="https://zenodo.org/record/3734946/files/figure.png" pageId="25" pageNumber="784">Fig. 14A, B</figureCitation>
|
||
). They may be medially displaced homologues of mm. interarticulares of crocodilians, which strictly span the postzygapophyses, while mm. intercristales run between transverse oblique crests of vertebral pairs.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB4A6367331108F36DCFCA0" blockId="25.[826,1441,753,867]" pageId="25" pageNumber="784">
|
||
Origins: Each m. intercristalis originates from the anterior surface of the crista transversoobliqua of the posterior vertebra of each pair (
|
||
<figureCitation id="26D32A24FFB4A63674A711503651FC87" box="[1196,1295,814,836]" captionStart="Figure 14" captionStartId="25.[164,243,1648,1667]" captionTargetId="figure@26.[372,1193,194,1805]" captionTargetPageId="26" captionText="Figure 14. Mm. intercristales and mm. cervicales accendentes of birds. A, mm. intercristales shaded dark on the posterior cervicals of Leptoptilos crumeniferus. Inset to left depicts mm. intercristales in context on more of the neck. Recoil of the elastic ligament dorsiflexed the neck in this dissection specimen. B, mm. ascendentes cervicales on the posterior neck of Aquila chrysaetos (light outline). Most of m. transversospinalis capitis has been removed. C, origins and insertions of mm. intercristales (dark shapes), and cervicales ascendentes (lighter shapes), on the posterior cervicals of Struthio camelus. Arrows represent lines of action pulling the insertion towards the origin. In mm. intercristales, origins are from the anterior part of the attachment overlain in blue, and insertions from the posterior part of this area on the next anterior vertebra. For mm. cervicales ascendentes, several slips from posterior vertebrae converge upon a common insertion." figureDoi="http://doi.org/10.5281/zenodo.3734946" httpUri="https://zenodo.org/record/3734946/files/figure.png" pageId="25" pageNumber="784">Fig. 14C</figureCitation>
|
||
). Sometimes part of the origin is from the epipophysis as well.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB4A636733111F236D1FC1C" blockId="25.[826,1441,908,991]" pageId="25" pageNumber="784">
|
||
Insertions: Each m. intercristalis inserts onto the posterior edge of the crista transversoobliqua of each vertebra pair, medial to the epipophysis (
|
||
<figureCitation id="26D32A24FFB4A636751411B736DDFC1C" box="[1311,1411,969,991]" captionStart="Figure 14" captionStartId="25.[164,243,1648,1667]" captionTargetId="figure@26.[372,1193,194,1805]" captionTargetPageId="26" captionText="Figure 14. Mm. intercristales and mm. cervicales accendentes of birds. A, mm. intercristales shaded dark on the posterior cervicals of Leptoptilos crumeniferus. Inset to left depicts mm. intercristales in context on more of the neck. Recoil of the elastic ligament dorsiflexed the neck in this dissection specimen. B, mm. ascendentes cervicales on the posterior neck of Aquila chrysaetos (light outline). Most of m. transversospinalis capitis has been removed. C, origins and insertions of mm. intercristales (dark shapes), and cervicales ascendentes (lighter shapes), on the posterior cervicals of Struthio camelus. Arrows represent lines of action pulling the insertion towards the origin. In mm. intercristales, origins are from the anterior part of the attachment overlain in blue, and insertions from the posterior part of this area on the next anterior vertebra. For mm. cervicales ascendentes, several slips from posterior vertebrae converge upon a common insertion." figureDoi="http://doi.org/10.5281/zenodo.3734946" httpUri="https://zenodo.org/record/3734946/files/figure.png" pageId="25" pageNumber="784">Fig. 14C</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB4A636733116763775FB74" blockId="25.[826,1441,1032,1207]" pageId="25" pageNumber="784">Action/function: The insertions of mm. intercristales are dorsal and slightly lateral to the probable respective centres of rotation of each intervertebral pair. They are kinematically positioned for intervertebral dorsiflexion, and may play a role in stabilizing the intervertebral joints.</paragraph>
|
||
<paragraph id="BE5736A1FFB4A636733116B1360AFB27" blockId="25.[826,1286,1231,1284]" box="[826,1364,1231,1253]" lastBlockId="25.[1305,1364,1231,1252]" pageId="25" pageNumber="784">Mm. cervicales ascendentes (mm. cerv.</paragraph>
|
||
<paragraph id="BE5736A1FFB4A636756C16B136FFFB26" blockId="25.[1383,1441,1231,1253]" box="[1383,1441,1231,1253]" pageId="25" pageNumber="784">asc.)</paragraph>
|
||
<paragraph id="BE5736A1FFB4A63673311690365DFAC7" blockId="25.[826,1286,1231,1284]" box="[826,1283,1262,1284]" pageId="25" pageNumber="784">
|
||
(
|
||
<bibRefCitation id="DA794B50FFB4A636734A169037F6FAC7" author="Vanden Berge JC & Zweers GA" box="[833,1192,1262,1284]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="25" pageNumber="784" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFB4A63674CE169037A2FAC7" box="[1221,1276,1262,1284]" class="Aves" kingdom="Animalia" pageId="25" pageNumber="784" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB4A63473311762315EFEFB" blockId="25.[826,1441,1308,1575]" lastBlockId="27.[164,779,198,312]" lastPageId="27" lastPageNumber="786" pageId="25" pageNumber="784">
|
||
<bibRefCitation id="DA794B50FFB4A6367331176230BCFAF1" author="Tsuihiji T." box="[826,994,1308,1330]" journalOrPublisher="Journal of Vertebrate Paleontology" pageId="25" pageNumber="784" pagination="115" part="22" refId="ref29080" refString="Tsuihiji T. 2002. A preliminary assessment of the evolution of the cervical musculature in Diapsida with an emphasis on Dinosauria. Journal of Vertebrate Paleontology 22 (Suppl. to no. 3): 115 A." title="A preliminary assessment of the evolution of the cervical musculature in Diapsida with an emphasis on Dinosauria." type="journal article" year="2002">Tsuihiji (2002)</bibRefCitation>
|
||
identified mm. cervicales ascendentes (
|
||
<figureCitation id="26D32A24FFB4A6367349174530FDFA92" box="[834,931,1339,1361]" captionStart="Figure 14" captionStartId="25.[164,243,1648,1667]" captionTargetId="figure@26.[372,1193,194,1805]" captionTargetPageId="26" captionText="Figure 14. Mm. intercristales and mm. cervicales accendentes of birds. A, mm. intercristales shaded dark on the posterior cervicals of Leptoptilos crumeniferus. Inset to left depicts mm. intercristales in context on more of the neck. Recoil of the elastic ligament dorsiflexed the neck in this dissection specimen. B, mm. ascendentes cervicales on the posterior neck of Aquila chrysaetos (light outline). Most of m. transversospinalis capitis has been removed. C, origins and insertions of mm. intercristales (dark shapes), and cervicales ascendentes (lighter shapes), on the posterior cervicals of Struthio camelus. Arrows represent lines of action pulling the insertion towards the origin. In mm. intercristales, origins are from the anterior part of the attachment overlain in blue, and insertions from the posterior part of this area on the next anterior vertebra. For mm. cervicales ascendentes, several slips from posterior vertebrae converge upon a common insertion." figureDoi="http://doi.org/10.5281/zenodo.3734946" httpUri="https://zenodo.org/record/3734946/files/figure.png" pageId="25" pageNumber="784">Fig. 14B</figureCitation>
|
||
) as being homologous with the most lateral occurrence of the m. transversospinalis system of the trunk of crocodilians, the m. tendinoarticularis trunci (probably synonymous with m. multifidis spinae of
|
||
<bibRefCitation id="DA794B50FFB4A636733117CB30A5FA08" author="Cong L & Hou L & Wu X-C & Hou J." box="[826,1019,1461,1483]" journalOrPublisher="Beijing: Science Press" pageId="25" pageNumber="784" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
), subsumed into m. transversospinalis cervicis in the crocodilian neck. Dissection confirms that these muscles do not occur discretely in the neck of
|
||
<taxonomicName id="79E84D22FFB4A63673D5146F3652F9E4" baseAuthorityName="Daudin" baseAuthorityYear="1802" box="[990,1292,1553,1575]" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="25" pageNumber="784" phylum="Chordata" rank="species" species="mississippiensis">Alligator mississippiensis</taxonomicName>
|
||
or
|
||
<taxonomicName id="79E84D22FFB4A636754D146F36FFF9E5" box="[1350,1441,1553,1574]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="25" pageNumber="784" phylum="Chordata" rank="genus">Caiman</taxonomicName>
|
||
<taxonomicName id="79E84D22FFB6A63470AF12B83245FF18" authorityName="Lehr" authorityYear="2002" box="[164,283,198,219]" class="Reptilia" family="Alligatoridae" genus="Caiman" kingdom="Animalia" order="Crocodylia" pageId="27" pageNumber="786" phylum="Chordata" rank="species" species="crocodylus">crocodylus</taxonomicName>
|
||
, nor in
|
||
<taxonomicName id="79E84D22FFB6A634717F12B9311BFF18" box="[372,581,198,220]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="27" pageNumber="786" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
. In birds, slips of each m. cervicalis ascendens are traceable posteriorly from their common insertion back to their origins at least two vertebrae posteriad.
|
||
</paragraph>
|
||
<caption id="EA976629FFB4A63670AF140E3257F8AD" ID-DOI="http://doi.org/10.5281/zenodo.3734946" ID-Zenodo-Dep="3734946" httpUri="https://zenodo.org/record/3734946/files/figure.png" pageId="25" pageNumber="784" startId="25.[164,243,1648,1667]" subCaptionStartIDs="25.[164,243,1648,1667]" subCaptionStarts="Figure 14" targetBox="[375,1166,194,1804]" targetPageId="26">
|
||
<paragraph id="BE5736A1FFB4A63670AF140E3257F8AD" blockId="25.[164,1442,1624,1902]" pageId="25" pageNumber="784">
|
||
Figure 14. Mm. intercristales and mm. cervicales accendentes of birds. A, mm. intercristales shaded dark on the posterior cervicals of
|
||
<taxonomicName id="79E84D22FFB4A636718714F031CCF962" authority="Lesson, 1831" box="[396,658,1678,1697]" class="Aves" family="Ciconiidae" genus="Leptoptilos" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ciconiiformes" pageId="25" pageNumber="784" phylum="Chordata" rank="species" species="crumenifer">Leptoptilos crumeniferus</taxonomicName>
|
||
. Inset to left depicts mm. intercristales in context on more of the neck. Recoil of the elastic ligament dorsiflexed the neck in this dissection specimen. B, mm. ascendentes cervicales on the posterior neck of
|
||
<taxonomicName id="79E84D22FFB4A636715114B6314DF918" authorityName="Linnaeus" authorityYear="1758" box="[346,531,1736,1755]" class="Aves" family="Accipitridae" genus="Aquila" kingdom="Animalia" order="Accipitriformes" pageId="25" pageNumber="784" phylum="Chordata" rank="species" species="chrysaetos">Aquila chrysaetos</taxonomicName>
|
||
(light outline). Most of m. transversospinalis capitis has been removed. C, origins and insertions of mm. intercristales (dark shapes), and cervicales ascendentes (lighter shapes), on the posterior cervicals of
|
||
<taxonomicName id="79E84D22FFB4A63670AF157D3206F8D5" authority="Linnaeus, 1758" box="[164,344,1795,1814]" class="Aves" family="Struthionidae" genus="Struthio" kingdom="Animalia" order="Struthioniformes" pageId="25" pageNumber="784" phylum="Chordata" rank="species" species="camelus">Struthio camelus</taxonomicName>
|
||
. Arrows represent lines of action pulling the insertion towards the origin. In mm. intercristales, origins are from the anterior part of the attachment overlain in blue, and insertions from the posterior part of this area on the next anterior vertebra. For mm. cervicales ascendentes, several slips from posterior vertebrae converge upon a common insertion.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFB6A63470AF131C3054FDD2" blockId="27.[164,779,354,529]" pageId="27" pageNumber="786">
|
||
Origins: In birds slips of these muscles originate from the dorsal surfaces of the transverse processes just ventral to the postzygapophyses, or aponeuroses associated with the transverse processes (
|
||
<figureCitation id="26D32A24FFB6A634726F13C03196FE17" box="[612,712,446,468]" captionStart="Figure 14" captionStartId="25.[164,243,1648,1667]" captionTargetId="figure@26.[372,1193,194,1805]" captionTargetPageId="26" captionText="Figure 14. Mm. intercristales and mm. cervicales accendentes of birds. A, mm. intercristales shaded dark on the posterior cervicals of Leptoptilos crumeniferus. Inset to left depicts mm. intercristales in context on more of the neck. Recoil of the elastic ligament dorsiflexed the neck in this dissection specimen. B, mm. ascendentes cervicales on the posterior neck of Aquila chrysaetos (light outline). Most of m. transversospinalis capitis has been removed. C, origins and insertions of mm. intercristales (dark shapes), and cervicales ascendentes (lighter shapes), on the posterior cervicals of Struthio camelus. Arrows represent lines of action pulling the insertion towards the origin. In mm. intercristales, origins are from the anterior part of the attachment overlain in blue, and insertions from the posterior part of this area on the next anterior vertebra. For mm. cervicales ascendentes, several slips from posterior vertebrae converge upon a common insertion." figureDoi="http://doi.org/10.5281/zenodo.3734946" httpUri="https://zenodo.org/record/3734946/files/figure.png" pageId="27" pageNumber="786">Fig. 14C</figureCitation>
|
||
). The anteriormost extent of the origins is typically caudal to the strong anterior ventral curvature of the neck.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB6A63470AF104233B6FCE4" blockId="27.[164,779,571,807]" pageId="27" pageNumber="786">
|
||
Insertions: Slips of each m. cervicalis ascendens converge onto a processus dorsalis/epipophysis at least two vertebrae anterior to its origin (
|
||
<figureCitation id="26D32A24FFB6A634726910063198FD4D" box="[610,710,632,654]" captionStart="Figure 14" captionStartId="25.[164,243,1648,1667]" captionTargetId="figure@26.[372,1193,194,1805]" captionTargetPageId="26" captionText="Figure 14. Mm. intercristales and mm. cervicales accendentes of birds. A, mm. intercristales shaded dark on the posterior cervicals of Leptoptilos crumeniferus. Inset to left depicts mm. intercristales in context on more of the neck. Recoil of the elastic ligament dorsiflexed the neck in this dissection specimen. B, mm. ascendentes cervicales on the posterior neck of Aquila chrysaetos (light outline). Most of m. transversospinalis capitis has been removed. C, origins and insertions of mm. intercristales (dark shapes), and cervicales ascendentes (lighter shapes), on the posterior cervicals of Struthio camelus. Arrows represent lines of action pulling the insertion towards the origin. In mm. intercristales, origins are from the anterior part of the attachment overlain in blue, and insertions from the posterior part of this area on the next anterior vertebra. For mm. cervicales ascendentes, several slips from posterior vertebrae converge upon a common insertion." figureDoi="http://doi.org/10.5281/zenodo.3734946" httpUri="https://zenodo.org/record/3734946/files/figure.png" pageId="27" pageNumber="786">Fig. 14C</figureCitation>
|
||
). The insertion is sometimes shared with an insertion of m. longus colli dorsalis pars cranialis, and sometimes is medial to the epipophysis, onto the transverse oblique crest connecting the postzygapophysis to the neural spine.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB6A63470AF112F3219FB36" blockId="27.[164,779,849,1269]" pageId="27" pageNumber="786">
|
||
Action/function: The insertions of mm. cerv. asc. are positioned dorsal and lateral to the likely centres of rotation of each vertebral pair.
|
||
<bibRefCitation id="DA794B50FFB6A634723B11F03055FC66" author="Heidweiller J." box="[560,779,910,933]" journalOrPublisher="Zoologische Jahrbucher Abteilung fur Anatomie" pageId="27" pageNumber="786" pagination="207 - 217" part="122" refId="ref27919" refString="Heidweiller J. 1992. Development of the chicken's cervical column. Zoologische Jahrbucher Abteilung fur Anatomie 122: 207 - 217." title="Development of the chicken's cervical column" type="journal article" year="1992">Heidweiller (1992)</bibRefCitation>
|
||
reports that mm. cervicales ascendentes contract during neck dorsiflexion in adult chickens, compensating for the m. longus colli dorsalis that is relatively smaller than it is in juveniles. Mm. cerv. asc. are extraordinarily massive in the posterior part of the neck of
|
||
<taxonomicName id="79E84D22FFB6A63470F416383294FB98" authorityName="Linnaeus" authorityYear="1758" box="[255,458,1094,1115]" class="Aves" family="Accipitridae" genus="Aquila" kingdom="Animalia" order="Accipitriformes" pageId="27" pageNumber="786" phylum="Chordata" rank="species" species="chrysaetos">Aquila chrysaetos</taxonomicName>
|
||
. Their large cross-sectional areas indicate forceful dorsiflexion of this part of the neck relative to the trunk, expected in a raptorial bird that tears carcasses of large prey. Other dorsiflexors, of both the neck and the cranium, are large in this taxon as well.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB6A63470E9175331A5FAA6" blockId="27.[179,763,1325,1381]" pageId="27" pageNumber="786">RESULTS: RECONSTRUCTED NECK MUSCULATURE OF TYRANNNOSAURIDAE</paragraph>
|
||
<paragraph id="BE5736A1FFB6A63470AF1703370FFD88" blockId="27.[164,779,1404,1518]" lastBlockId="27.[826,1442,198,587]" pageId="27" pageNumber="786">
|
||
Presence of most neck muscles in tyrannosaurids is inferable by bracketing between birds and crocodilians. For the sake of continuity, their description and illustration proceeds as for the muscles of extant archosaurs in the previous section. The tyrannosaurid neck muscles are first figured schematically and then reconstructed on a photograph of the skeleton of
|
||
<taxonomicName id="79E84D22FFB6A6347331135C374FFEF4" authority="Osborn, 1905" box="[826,1041,290,311]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="27" pageNumber="786" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
. These restorations are justifiable given strong inference of the occurrence of these muscles, but the accuracy of their appearance between origin and insertion must be viewed with caution. Muscle attachments are then mapped onto photographs of tyrannosaurid skeletal elements. When attachments are ambiguous, the likely alternatives are figured.
|
||
<figureCitation id="26D32A24FFB6A6347423138637FFFDCD" box="[1064,1185,504,526]" captionStart="Figure 15" captionStartId="27.[164,243,1590,1609]" captionTargetId="figure@28.[144,1412,194,1805]" captionTargetPageId="28" captionText="Figure 15. Photographic-style representation of Tyrannosaurus rex (AMNH 5027) neck muscles, with definitive osteological correlates, visible in lateral view. A–C represent successively deeper layers. Varying hues represent transversospinalis, longissimus, iliocostalis and longus derivatives derivatives, respectively. Some muscles are omitted for clarity, including mm. interspinales between neural spines, and m. iliocostalis cervicis that inserted medially on the cervical ribs. M. transversospinalis capitis and cervicis, and m. longissimus capitis superficialis, are drawn as gradients to show tendinous anterior insertions. M. transversospinalis capitis is depicted as reflected downwards to show epipophyses of several vertebrae, to which it would insert and/or posterior parts of M. complexus would originate. M. iliocostalis capitis is rendered as having individual slips that arose from heads of the cervical ribs, one interpretation of this muscle’s osteological origins. M. rectus capitis ventralis originates from the ventral surfaces of the anterior cervicals, and is restored here as passing medial to the anterior cervical ribs. The skull has been displaced slightly anteriorly, to compensate for an anteroposteriorly compressed C1 in this specimen." figureDoi="http://doi.org/10.5281/zenodo.3734948" httpUri="https://zenodo.org/record/3734948/files/figure.png" pageId="27" pageNumber="786">Figures 15</figureCitation>
|
||
and
|
||
<figureCitation id="26D32A24FFB6A63474FF13863651FDCD" box="[1268,1295,504,526]" captionStart="Figure 16" captionStartId="29.[164,243,1447,1466]" captionTargetBox="[323,1283,725,1416]" captionTargetId="figure@29.[328,1284,725,1361]" captionTargetPageId="29" captionText="Figure 16. Schematic diagram of major neck muscles of Tyrannosaurus rex in dorsal view. A–C represent successively deeper layers, and other conventions are as in Figure 15. M. complexus inserts dorsally on the squamosal, and m. iliocostalis capitis inserts along the ventral edge of the paroccipital process. M. longissimus capitis superficialis inserts between these on the lateral edge of the paroccipital process. In C a probable lateral part of m. spinalis capitis is signified by a ‘? ’ ." figureDoi="http://doi.org/10.5281/zenodo.3734950" httpUri="https://zenodo.org/record/3734950/files/figure.png" pageId="27" pageNumber="786">16</figureCitation>
|
||
depict the muscles in lateral and dorsal views, and
|
||
<figureCitation id="26D32A24FFB6A634752A106836C2FDEF" box="[1313,1436,534,556]" captionStart="Figure 17" captionStartId="29.[164,243,1678,1697]" captionTargetId="figure@30.[336,1227,196,1802]" captionTargetPageId="30" captionText="Figure 17. A, topological appearance of m. transversospinalis capitis on anterior vertebrae and skull of Tyrannosaurus rex (AMNH 5027). The insertion is inferred as strongly tendinous, and is rendered as white. B, topological appearance of m. longissimus capitis superficialis restored on the same skeleton. The posterior origin was tendinous, and its morphology is depicted as white. C, D, topological appearance of (C) m. complexus and (D) m. iliocostalis capitis on anterior axial skeleton of Tyrannosaurus rex skeleton (AMNH 5027). A′–D′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. transversospinalis capitis (m. trans. cap. strong Level I′ inference of dorsiflexion). B′, weaker, Level II′ inference of lateroflexion in m. longissimus capitis superficialis. C′, D′, Level II′ strengths of functional inference for m. complexus (m. compl.) and m. iliocostalis capitis (m. il. cap.)." figureDoi="http://doi.org/10.5281/zenodo.3734952" httpUri="https://zenodo.org/record/3734952/files/figure.png" pageId="27" pageNumber="786">Figures 17</figureCitation>
|
||
,
|
||
<figureCitation id="26D32A24FFB6A6347331104B300BFD89" box="[826,853,565,586]" captionStart="Figure 18" captionStartId="32.[144,223,198,217]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionText="Figure 18. Topological appearance of (A) m. splenius capitis (medial part) and (B) m. longus colli dorsalis/ transversospinalis cervicis, on anterior vertebrae and skull of Tyrannosaurus rex skeleton (AMNH 5027). Note that the parietals are probably closer to the axial neural spine than in neutral life posture, and m. splenius capitis would be longer than shown here. C, topological appearance of m. splenius on another specimen of Tyrannosaurus rex (BHI 3033). M. complexus is also represented, and m. transversospinalis capits is depicted as though reflected back. D, E, appearance of m. longissimus capitis profundus (large anterior muscle), and cervical mm. intertransversarii (bands between transverse processes), on skeleton of Tyrannosaurus rex (AMNH 5027). A′–E′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. splenius capitis of tyrannosaurids, for head dorsiflexion and stabilization. The large inference space is possible by morphological and physiological bracketing between homologous muscles in birds and crocodilians. B′, strength of functional inference for m. transversospinalis cervicis of tyrannosaurids, for neck dorsiflexion. Inference strengh is particularly high for this muscle. D′, Level II′ inference for ventroflexion by m. longissimus capitis profundus. E′, inferernce for lateroflexion by mm. interntransversarii, with poor, Level III′ support from physiological data; EMG has been uninformative about mm. intertrans. lateroflexion in extant archosaurs ." figureDoi="http://doi.org/10.5281/zenodo.3734954" httpUri="https://zenodo.org/record/3734954/files/figure.png" pageId="27" pageNumber="786">18</figureCitation>
|
||
and
|
||
<figureCitation id="26D32A24FFB6A634739F104B30F1FD89" box="[916,943,565,586]" captionStart="Figure 23" captionStartId="40.[144,223,1595,1614]" captionTargetBox="[305,1261,197,1565]" captionTargetId="figure@40.[403,1262,197,1562]" captionTargetPageId="40" captionText="Figure 23. A, topological appearance of m. rectus capitis ventralis (anterior muscles) and m. iliocostalis cervicis (posteroventrally originating muscles) on anterior axial skeleton of Tyrannosaurus rex (BHI 3033), ventral view. The moment arm for lateral flexion by m. iliocostalis cervicis is superimposed. B, m. r.c.v.: origins of m. rectus capitis ventralis from ventral spinous processes of Tyrannosaurus rex (BHI 3033) with arrow showing course of the muscle. m. il. cerv.: origin from ventral centra and insertions onto ventral fascia of cervical ribs of m. iliocostalis cervicis, with arrow showing course of the muscle. C, insertion of m. rectus capitis ventralis onto basioccipital of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), showing moment arms. Because the tyrannosaurid occiput slopes anteroventrally, the ventroflexion moment arm is somewhat longer than depicted in this view. D, strength of functional inference for head ventroflexion by m. rectus capitis ventralis in Tyrannosaurus rex. E, strength of functional inference for neck lateroflexion by m. iliocostalis cervicis of Tyrannosaurus rex." figureDoi="http://doi.org/10.5281/zenodo.3734964" httpUri="https://zenodo.org/record/3734964/files/figure.png" pageId="27" pageNumber="786">23</figureCitation>
|
||
show details.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB6A6347331101D378BFDBA" blockId="27.[826,1441,611,756]" box="[826,1237,611,633]" pageId="27" pageNumber="786">A. M. transversospinalis system</paragraph>
|
||
<paragraph id="BE5736A1FFB6A634733110FC376FFD74" blockId="27.[826,1441,611,756]" pageId="27" pageNumber="786">
|
||
M. biventer cervicis (m. biv. c) (
|
||
<bibRefCitation id="DA794B50FFB6A63474D510FC3088FD74" author="Vanden Berge JC & Zweers GA" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="27" pageNumber="786" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFB6A63473F810DF3774FD74" box="[1011,1066,673,695]" class="Aves" kingdom="Animalia" pageId="27" pageNumber="786" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB6A634733110BE372FFD37" blockId="27.[826,1441,611,756]" pageId="27" pageNumber="786">
|
||
M. transversospinais capitis (m. trans. cap.) (
|
||
<bibRefCitation id="DA794B50FFB6A634734910A0308DFD37" author="Seidel R." box="[834,979,734,756]" journalOrPublisher="City University of New York" pageId="27" pageNumber="786" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FFB6A63473FB10A03735FD37" box="[1008,1131,734,756]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="27" pageNumber="786" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB6A6347331116730D4FBE0" blockId="27.[826,1442,792,1518]" pageId="27" pageNumber="786">
|
||
Origin: Close association of the m. biventer cervicis/m. transversospinalis capitis (m.biv. c./trans. cap.) origin with the posterior cervical and anterior thoracic neural spines of extant archosaurs indicates a similar origin in tyrannosaurids (
|
||
<figureCitation id="26D32A24FFB6A63474FD11ED3604FC6A" box="[1270,1370,915,937]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="27" pageNumber="786">Fig. 19A</figureCitation>
|
||
). The anterior thoracic spines are broad and rugose in tyrannosaurids, and the m. biv. c./trans. cap. origins in this region were probably commensurately large and strong.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB6A634735816523765FA2D" blockId="27.[826,1442,792,1518]" pageId="27" pageNumber="786">
|
||
The rugose tips of the neural spines of C4–C10 contributed to the provision of origin of m. biv. c./trans. cap., similarly to the origin of the medial portion of the muscle in crocodilians (
|
||
<figureCitation id="26D32A24FFB6A634750016F93631FB5D" box="[1291,1391,1159,1182]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="27" pageNumber="786">Fig. 19A</figureCitation>
|
||
). In adult
|
||
<taxonomicName id="79E84D22FFB6A634738B16D837D5FB7F" authority="Russell, 1970" box="[896,1163,1190,1212]" class="Reptilia" family="Tyrannosauridae" genus="Daspletosaurus" kingdom="Animalia" order="Dinosauria" pageId="27" pageNumber="786" phylum="Chordata" rank="species" species="torosus">Daspletosaurus torosus</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FFB6A63474C116D936FFFB7F" authority="Osborn, 1905" box="[1226,1441,1191,1212]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="27" pageNumber="786" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
the posterior cervical neural spines are relatively taller than they are in adult
|
||
<taxonomicName id="79E84D22FFB6A63474A8169A36C4FB3B" authority="Lambe 1914" box="[1187,1434,1251,1273]" class="Reptilia" family="Tyrannosauridae" genus="Gorgosaurus" kingdom="Animalia" order="Dinosauria" pageId="27" pageNumber="786" phylum="Chordata" rank="species" species="libratus">Gorgosaurus libratus</taxonomicName>
|
||
, and appear more robust in
|
||
<taxonomicName id="79E84D22FFB6A634748F177D3602FADB" authority="Osborn, 1905" box="[1156,1372,1283,1304]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="27" pageNumber="786" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
. This may indicate more extensive origins for m. biv. c./trans. cap. in the tyrannosauroids. In all tyrannosaurids, the strong dorsally convex curvature of the neck from C1 to C5 placed the neural spine of C4 at the highest point of the neck, allowing a slip from this vertebra to descend over the anterior neural spines towards the insertion.
|
||
</paragraph>
|
||
<caption id="EA976629FFB6A63470AF144830D0F8AD" ID-DOI="http://doi.org/10.5281/zenodo.3734948" ID-Zenodo-Dep="3734948" httpUri="https://zenodo.org/record/3734948/files/figure.png" pageId="27" pageNumber="786" targetBox="[144,1410,196,1804]" targetPageId="28">
|
||
<paragraph id="BE5736A1FFB6A63470AF144830D0F8AD" blockId="27.[164,1442,1566,1902]" pageId="27" pageNumber="786">
|
||
Figure 15. Photographic-style representation of
|
||
<taxonomicName id="79E84D22FFB6A63472B814493027F98A" authority="Osborn, 1905" box="[691,889,1591,1609]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="27" pageNumber="786" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(AMNH 5027) neck muscles, with definitive osteological correlates, visible in lateral view. A–C represent successively deeper layers. Varying hues represent transversospinalis, longissimus, iliocostalis and longus derivatives derivatives, respectively. Some muscles are omitted for clarity, including mm. interspinales between neural spines, and m. iliocostalis cervicis that inserted medially on the cervical ribs. M. transversospinalis capitis and cervicis, and m. longissimus capitis superficialis, are drawn as gradients to show tendinous anterior insertions. M. transversospinalis capitis is depicted as reflected downwards to show epipophyses of several vertebrae, to which it would insert and/or posterior parts of M. complexus would originate. M. iliocostalis capitis is rendered as having individual slips that arose from heads of the cervical ribs, one interpretation of this muscle’s osteological origins. M. rectus capitis ventralis originates from the ventral surfaces of the anterior cervicals, and is restored here as passing medial to the anterior cervical ribs. The skull has been displaced slightly anteriorly, to compensate for an anteroposteriorly compressed C1 in this specimen.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FFB0A63270AF12B9308CFF39" blockId="29.[164,779,198,618]" lastBlockId="29.[826,1441,198,250]" pageId="29" pageNumber="788">
|
||
Insertion: In tyrannosaurids the general location of the inferred m. biventer cervicis/m. transversospinalis capits (m. biv. c./m. tr. cap.) insertion is similar to that of birds and crocodilians, but with a different bony attachment (
|
||
<figureCitation id="26D32A24FFB0A6327182133E3148FE95" box="[393,534,320,342]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="29" pageNumber="788">Fig. 19B, C</figureCitation>
|
||
). The posterodorsal surface of the parietals in tyrannosaurids forms a double arch dorsal to the inferred insertion of m. splenius capitis. These arches are often rugose (
|
||
<figureCitation id="26D32A24FFB0A63270A713C53250FE12" box="[172,270,443,465]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="29" pageNumber="788">Fig. 19B</figureCitation>
|
||
), indicating mineralization of Sharpey’s fibres parallel to the line of muscle pull, and a strong tendinous insertion for m. biv. c./m. tr. cap. In specimens of
|
||
<taxonomicName id="79E84D22FFB0A632711C106932ABFDEF" authority="Osborn, 1905" box="[279,501,535,556]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="29" pageNumber="788" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
these rugosities have extraordinarily high relief (
|
||
<figureCitation id="26D32A24FFB0A63271D7104B3160FD88" box="[476,574,565,587]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="29" pageNumber="788">Fig. 19B</figureCitation>
|
||
). The m. biv. c./m. tr. cap. tendon ran dorsal to the spinous process of the axis, and m. splenuis capitis, before inserting on the parietal scar.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB0A60E7331135C3297FEB6" blockId="29.[826,1441,290,618]" lastBlockId="33.[164,779,198,373]" lastPageId="33" lastPageNumber="792" pageId="29" pageNumber="788">
|
||
Action/function: By kinematic inference, the high dorsal position of the m. biventer cervicis/ transversospinalis capitis (m. biv. c./m. trans. cap.) insertion relative to the occipital condyle of tyrannosaurids indicates that the muscle bilaterally dorsiflexed the parietal (and thus the head) relative to the axis neural spine (
|
||
<figureCitation id="26D32A24FFB0A632741813A73728FE2C" box="[1043,1142,473,495]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="29" pageNumber="788">Fig. 19C</figureCitation>
|
||
). EMG confirms the muscle’s activity during this action in extant archosaurs (
|
||
<bibRefCitation id="DA794B50FFB0A63273491068370FFDEE" author="Heidweiller J & Lendering B & Zweers GA" box="[834,1105,534,557]" journalOrPublisher="Netherlands Journal of Zoology" pageId="29" pageNumber="788" pagination="1 - 22" part="42" refId="ref27942" refString="Heidweiller J, Lendering B, Zweers GA. 1992. Development of motor patterns in cervical muscles of drinking chickens. Netherlands Journal of Zoology 42: 1 - 22." title="Development of motor patterns in cervical muscles of drinking chickens" type="journal article" year="1992">Heidweiller et al., 1992</bibRefCitation>
|
||
), and a Level I′ physiological inference indicates that the muscle experienced the same activity in tyrannosaurids (26 C). Behavioural interpolation from observations of birds (
|
||
<bibRefCitation id="DA794B50FF8CA60E728412B83382FF38" author="Gussekloo SWS" journalOrPublisher="Leiden University" pageId="33" pageNumber="792" refId="ref27895" refString="Gussekloo SWS. 2000. The evolution of the palaeognathus birds. Functional morphology and evolutionary patterns. PhD thesis, Leiden University." title="The evolution of the palaeognathus birds. Functional morphology and evolutionary patterns" type="book" year="2000">Gussekloo, 2000</bibRefCitation>
|
||
) and crocodilians (
|
||
<bibRefCitation id="DA794B50FF8CA60E71CE129A3107FF38" author="Seidel R." box="[453,601,228,251]" journalOrPublisher="City University of New York" pageId="33" pageNumber="792" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
), coupled with physiological inferences, implies that tyannosaurids employed dorsiflexion by m. biv. c./m. tr. cap. during inertial feeding (
|
||
<bibRefCitation id="DA794B50FF8CA60E718B133E3114FE95" author="Gussekloo SWS" box="[384,586,320,342]" journalOrPublisher="Leiden University" pageId="33" pageNumber="792" refId="ref27895" refString="Gussekloo SWS. 2000. The evolution of the palaeognathus birds. Functional morphology and evolutionary patterns. PhD thesis, Leiden University." title="The evolution of the palaeognathus birds. Functional morphology and evolutionary patterns" type="book" year="2000">Gussekloo, 2000</bibRefCitation>
|
||
) and drinking (
|
||
<bibRefCitation id="DA794B50FF8CA60E70A0132132E3FEB6" author="Heidweiller J & Lendering B & Zweers GA" box="[171,445,351,373]" journalOrPublisher="Netherlands Journal of Zoology" pageId="33" pageNumber="792" pagination="1 - 22" part="42" refId="ref27942" refString="Heidweiller J, Lendering B, Zweers GA. 1992. Development of motor patterns in cervical muscles of drinking chickens. Netherlands Journal of Zoology 42: 1 - 22." title="Development of motor patterns in cervical muscles of drinking chickens" type="journal article" year="1992">Heidweiller et al., 1992</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<caption id="EA976629FFB0A63270AF17D933ABF9EC" ID-DOI="http://doi.org/10.5281/zenodo.3734950" ID-Zenodo-Dep="3734950" httpUri="https://zenodo.org/record/3734950/files/figure.png" pageId="29" pageNumber="788" startId="29.[164,243,1447,1466]" subCaptionStartIDs="29.[694,764,1476,1495]" subCaptionStarts="Figure 15" targetBox="[323,1283,725,1416]" targetPageId="29">
|
||
<paragraph id="BE5736A1FFB0A63270AF17D933B2F9EC" blockId="29.[164,1442,1447,1583]" pageId="29" pageNumber="788">
|
||
Figure 16. Schematic diagram of major neck muscles of
|
||
<taxonomicName id="79E84D22FFB0A632730517D6308DFA79" authority="Osborn, 1905" box="[782,979,1448,1466]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="29" pageNumber="788" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
in dorsal view. A–C represent successively deeper layers, and other conventions are as in
|
||
<figureCitation id="26D32A24FFB0A63272BD17BA301BFA1B" box="[694,837,1476,1496]" captionStart="Figure 15" captionStartId="27.[164,243,1590,1609]" captionTargetId="figure@28.[144,1412,194,1805]" captionTargetPageId="28" captionText="Figure 15. Photographic-style representation of Tyrannosaurus rex (AMNH 5027) neck muscles, with definitive osteological correlates, visible in lateral view. A–C represent successively deeper layers. Varying hues represent transversospinalis, longissimus, iliocostalis and longus derivatives derivatives, respectively. Some muscles are omitted for clarity, including mm. interspinales between neural spines, and m. iliocostalis cervicis that inserted medially on the cervical ribs. M. transversospinalis capitis and cervicis, and m. longissimus capitis superficialis, are drawn as gradients to show tendinous anterior insertions. M. transversospinalis capitis is depicted as reflected downwards to show epipophyses of several vertebrae, to which it would insert and/or posterior parts of M. complexus would originate. M. iliocostalis capitis is rendered as having individual slips that arose from heads of the cervical ribs, one interpretation of this muscle’s osteological origins. M. rectus capitis ventralis originates from the ventral surfaces of the anterior cervicals, and is restored here as passing medial to the anterior cervical ribs. The skull has been displaced slightly anteriorly, to compensate for an anteroposteriorly compressed C1 in this specimen." figureDoi="http://doi.org/10.5281/zenodo.3734948" httpUri="https://zenodo.org/record/3734948/files/figure.png" pageId="29" pageNumber="788">Figure 15. M</figureCitation>
|
||
. complexus inserts dorsally on the squamosal, and m. iliocostalis capitis inserts along the ventral edge of the paroccipital process. M. longissimus capitis superficialis inserts between these on the lateral edge of the paroccipital process. In C a probable lateral part of m. spinalis capitis is signified by a ‘?
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FFB0A63270E7146233AFF9EC" blockId="29.[164,1442,1447,1583]" box="[236,241,1564,1583]" pageId="29" pageNumber="788">’</paragraph>
|
||
<paragraph id="BE5736A1FFB0A63270FA146233ABF9EC" blockId="29.[164,1442,1447,1583]" box="[241,245,1564,1583]" pageId="29" pageNumber="788">.</paragraph>
|
||
</caption>
|
||
<caption id="EA976629FFB0A63270AF14F037B5F8AD" ID-DOI="http://doi.org/10.5281/zenodo.3734952" ID-Zenodo-Dep="3734952" httpUri="https://zenodo.org/record/3734952/files/figure.png" pageId="29" pageNumber="788" startId="29.[164,243,1678,1697]" subCaptionStartIDs="29.[164,243,1678,1697] 29.[263,333,1824,1843]" subCaptionStarts="Figure 17 & Figure 2" targetBox="[337,1227,196,1802]" targetPageId="30">
|
||
<paragraph id="BE5736A1FFB0A63270AF14F037B5F8AD" blockId="29.[164,1442,1654,1902]" pageId="29" pageNumber="788">
|
||
Figure 17. A, topological appearance of m. transversospinalis capitis on anterior vertebrae and skull of
|
||
<taxonomicName id="79E84D22FFB0A63274D414F036FFF963" authority="Osborn, 1905" box="[1247,1441,1678,1696]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="29" pageNumber="788" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<materialsCitation id="0E803CFCFFB0A63270A114D5326AF97D" ID-GBIF-Occurrence="3396397308" box="[170,308,1707,1726]" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&specimen_id=47761 " pageId="29" pageNumber="788" specimenCode="AMNH 5027">AMNH 5027</materialsCitation>
|
||
). The insertion is inferred as strongly tendinous, and is rendered as white. B, topological appearance of m. longissimus capitis superficialis restored on the same skeleton. The posterior origin was tendinous, and its morphology is depicted as white. C, D, topological appearance of (C) m. complexus and (D) m. iliocostalis capitis on anterior axial skeleton of
|
||
<taxonomicName id="79E84D22FFB0A63270B0157D3222F8D6" authority="Osborn, 1905" box="[187,380,1795,1813]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="29" pageNumber="788" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
skeleton (
|
||
<materialsCitation id="0E803CFCFFB0A63271EF157D3134F8D5" ID-GBIF-Occurrence="3396397304" box="[484,618,1795,1814]" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&specimen_id=47761 " pageId="29" pageNumber="788" specimenCode="AMNH 5027">AMNH 5027</materialsCitation>
|
||
). A′–D′, functional inference strengths of muscles after visualization of inference space in
|
||
<figureCitation id="26D32A24FFB0A632710C155E3220F8F0" box="[263,382,1824,1843]" captionStart="Figure 2" captionStartId="4.[144,223,1374,1393]" captionTargetBox="[366,1197,200,1347]" captionTargetId="figure@4.[377,1151,253,1249]" captionTargetPageId="4" captionText="Figure 2. A, inference of muscle function for turning the head in extant animals. Axes represent levels of corroboration of muscle topological and kinematic morphology, physiology and observed behaviour. The volume subtended by these levels of certainty is the behavioural inference space for the muscle. The muscles m. transversospinalis capitis lateralis and m. complexus, homologous and present in crocodilians and birds, respectively, are depicted as examples with different levels of corroboration along the axes and more or less certain inference of function. Physiological activity is shown as confirmed by electromyography in birds, but only hypothesized in crocodilians. B, inferring the function of m. complexus for turning the head in tyrannosaurids. Axes represent levels of inference (Witmer, 1995) for morphology and physiology, and level of inference for kinematic action of the muscle based on its reconstructed morphology (see text for explanation). Because physiological muscle function during movements is corroborated in only one pole of the extant bracket, and the physiology does not leave osteological correlates, a Level II′ inference is the best possible for the extinct taxon" figureDoi="http://doi.org/10.5281/zenodo.3734922" httpUri="https://zenodo.org/record/3734922/files/figure.png" pageId="29" pageNumber="788">Figure 2. A′</figureCitation>
|
||
, strength of functional inference for m. transversospinalis capitis (m. trans. cap. strong Level I′ inference of dorsiflexion). B′, weaker, Level II′ inference of lateroflexion in m. longissimus capitis superficialis. C′, D′, Level II′ strengths of functional inference for m. complexus (m. compl.) and m. iliocostalis capitis (m. il. cap.).
|
||
</paragraph>
|
||
</caption>
|
||
<caption id="EA976629FF8DA60F709B12B8322AFD95" ID-DOI="http://doi.org/10.5281/zenodo.3734954" ID-Zenodo-Dep="3734954" httpUri="https://zenodo.org/record/3734954/files/figure.png" pageId="32" pageNumber="791" startId="32.[144,223,198,217]" subCaptionStartIDs="32.[510,580,403,422]" subCaptionStarts="Figure 2" targetBox="[145,1421,733,1663]" targetPageId="32">
|
||
<paragraph id="BE5736A1FF8DA60F709B12B8322EFD95" blockId="32.[144,1422,198,598]" pageId="32" pageNumber="791">
|
||
Figure 18. Topological appearance of (A) m. splenius capitis (medial part) and (B) m. longus colli dorsalis/ transversospinalis cervicis, on anterior vertebrae and skull of
|
||
<taxonomicName id="79E84D22FF8DA60F7321129A30B1FF35" authority="Osborn, 1905" box="[810,1007,228,246]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="32" pageNumber="791" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
skeleton (
|
||
<materialsCitation id="0E803CFCFF8DA60F7454129A37B7FF34" ID-GBIF-Occurrence="3396397302" box="[1119,1257,228,247]" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&specimen_id=47761 " pageId="32" pageNumber="791" specimenCode="AMNH 5027">AMNH 5027</materialsCitation>
|
||
). Note that the parietals are probably closer to the axial neural spine than in neutral life posture, and m. splenius capitis would be longer than shown here. C, topological appearance of m. splenius on another specimen of
|
||
<taxonomicName id="79E84D22FF8DA60F7412136137BEFEF2" authority="Osborn, 1905" box="[1049,1248,287,305]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="32" pageNumber="791" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<materialsCitation id="0E803CFCFF8DA60F74FA13603600FEF2" ID-GBIF-Occurrence="3396397303" box="[1265,1374,286,305]" collectionCode="BHI" pageId="32" pageNumber="791" specimenCode="BHI 3033">BHI 3033</materialsCitation>
|
||
). M. complexus is also represented, and m. transversospinalis capits is depicted as though reflected back. D, E, appearance of m. longissimus capitis profundus (large anterior muscle), and cervical mm. intertransversarii (bands between transverse processes), on skeleton of
|
||
<taxonomicName id="79E84D22FF8DA60F71BC130931DFFE4A" authority="Osborn, 1905" box="[439,641,375,393]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="32" pageNumber="791" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<materialsCitation id="0E803CFCFF8DA60F729E1308307AFE4A" ID-GBIF-Occurrence="3396397313" box="[661,804,374,393]" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&specimen_id=47761 " pageId="32" pageNumber="791" specimenCode="AMNH 5027">AMNH 5027</materialsCitation>
|
||
). A′–E′, functional inference strengths of muscles after visualization of inference space in
|
||
<figureCitation id="26D32A24FF8DA60F71F513ED312DFE65" box="[510,627,403,422]" captionStart="Figure 2" captionStartId="4.[144,223,1374,1393]" captionTargetBox="[366,1197,200,1347]" captionTargetId="figure@4.[377,1151,253,1249]" captionTargetPageId="4" captionText="Figure 2. A, inference of muscle function for turning the head in extant animals. Axes represent levels of corroboration of muscle topological and kinematic morphology, physiology and observed behaviour. The volume subtended by these levels of certainty is the behavioural inference space for the muscle. The muscles m. transversospinalis capitis lateralis and m. complexus, homologous and present in crocodilians and birds, respectively, are depicted as examples with different levels of corroboration along the axes and more or less certain inference of function. Physiological activity is shown as confirmed by electromyography in birds, but only hypothesized in crocodilians. B, inferring the function of m. complexus for turning the head in tyrannosaurids. Axes represent levels of inference (Witmer, 1995) for morphology and physiology, and level of inference for kinematic action of the muscle based on its reconstructed morphology (see text for explanation). Because physiological muscle function during movements is corroborated in only one pole of the extant bracket, and the physiology does not leave osteological correlates, a Level II′ inference is the best possible for the extinct taxon" figureDoi="http://doi.org/10.5281/zenodo.3734922" httpUri="https://zenodo.org/record/3734922/files/figure.png" pageId="32" pageNumber="791">Figure 2. A′</figureCitation>
|
||
, strength of functional inference for m. splenius capitis of tyrannosaurids, for head dorsiflexion and stabilization. The large inference space is possible by morphological and physiological bracketing between homologous muscles in birds and crocodilians. B′, strength of functional inference for m. transversospinalis cervicis of tyrannosaurids, for neck dorsiflexion. Inference strengh is particularly high for this muscle. D′, Level II′ inference for ventroflexion by m. longissimus capitis profundus. E′, inferernce for lateroflexion by mm. interntransversarii, with poor, Level III′ support from physiological data; EMG has been uninformative about mm. intertrans. lateroflexion in extant archosaurs
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8DA60F717B103D322AFD95" blockId="32.[144,1422,198,598]" box="[368,372,579,598]" pageId="32" pageNumber="791">.</paragraph>
|
||
</caption>
|
||
<caption id="EA976629FF8DA60F709B14E03677F880" ID-DOI="http://doi.org/10.5281/zenodo.3734956" ID-Zenodo-Dep="3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="32" pageNumber="791" startId="32.[144,223,1694,1713]" targetBox="[145,1421,733,1663]" targetPageId="32">
|
||
<paragraph id="BE5736A1FF8DA60F709B14E03677F880" blockId="32.[144,1421,1694,1859]" pageId="32" pageNumber="791">
|
||
Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of
|
||
<taxonomicName id="79E84D22FF8DA60F717A14C23167F90D" authority="Osborn, 1905" box="[369,569,1724,1742]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="32" pageNumber="791" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<materialsCitation id="0E803CFCFF8DA60F724614C531E2F90D" ID-GBIF-Occurrence="3396397312" box="[589,700,1723,1742]" collectionCode="BHI" pageId="32" pageNumber="791" specimenCode="BHI 3033">BHI 3033</materialsCitation>
|
||
). B, rugose scarring of m. transversospinalis capitis insertion on parietals of
|
||
<taxonomicName id="79E84D22FF8DA60F711F14A73284F928" authority="Osborn, 1905" box="[276,474,1753,1771]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="32" pageNumber="791" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<materialsCitation id="0E803CFCFF8DA60F71E014A63129F928" ID-GBIF-Occurrence="3396397310" box="[491,631,1752,1771]" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&specimen_id=47763 " pageId="32" pageNumber="791" specimenCode="AMNH 5029">AMNH 5029</materialsCitation>
|
||
). C, insertion of m. transversospinalis capitis onto parietals of
|
||
<taxonomicName id="79E84D22FF8DA60F752014A63276F8CB" authority="Russell, 1970" class="Reptilia" family="Tyrannosauridae" genus="Daspletosaurus" kingdom="Animalia" order="Dinosauria" pageId="32" pageNumber="791" phylum="Chordata" rank="species" species="torosus">Daspletosaurus torosus</taxonomicName>
|
||
(CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of
|
||
<taxonomicName id="79E84D22FF8DA60F70A0154E32FFF880" authority="Russell, 1970" box="[171,417,1840,1859]" class="Reptilia" family="Tyrannosauridae" genus="Daspletosaurus" kingdom="Animalia" order="Dinosauria" pageId="32" pageNumber="791" phylum="Chordata" rank="species" species="torosus">Daspletosaurus torosus</taxonomicName>
|
||
(CMN 8506; the specimen is incomplete and the image partly mirrored for clarity).
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FF8CA60E70AF13F033AEFE01" blockId="33.[164,779,397,695]" pageId="33" pageNumber="792">
|
||
M. complexus (
|
||
<bibRefCitation id="DA794B50FF8CA60E717D13F331A1FE67" author="Vanden Berge JC & Zweers GA" box="[374,767,397,420]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="33" pageNumber="792" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FF8CA60E70A013D233BBFE01" box="[171,229,428,450]" class="Aves" kingdom="Animalia" pageId="33" pageNumber="792" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
.)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8CA60E70AF13B53144FD74" blockId="33.[164,779,397,695]" pageId="33" pageNumber="792">
|
||
M. spinocapitis posticus (
|
||
<bibRefCitation id="DA794B50FF8CA60E71FA13B531DFFE23" author="Seidel R." box="[497,641,459,481]" journalOrPublisher="City University of New York" pageId="33" pageNumber="792" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF8CA60E729A13B53218FE3C" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="33" pageNumber="792" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
), m. semispinalis capitis (
|
||
<bibRefCitation id="DA794B50FF8CA60E728113973380FDDD" author="Cong L & Hou L & Wu X-C & Hou J." journalOrPublisher="Beijing: Science Press" pageId="33" pageNumber="792" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
). Anterior portion: m. epistropheo-capitis lateralis (
|
||
<bibRefCitation id="DA794B50FF8CA60E70F4105832CFFDFF" author="Seidel R." box="[255,401,550,572]" journalOrPublisher="City University of New York" pageId="33" pageNumber="792" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF8CA60E71A91058318BFDFE" author="Cleuren J & De Vree F." box="[418,725,550,573]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="33" pageNumber="792" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
). m. rectus capitis dorsalis major (
|
||
<bibRefCitation id="DA794B50FF8CA60E723C103B305DFD98" author="Cong L & Hou L & Wu X-C & Hou J." box="[567,771,581,603]" journalOrPublisher="Beijing: Science Press" pageId="33" pageNumber="792" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
) (
|
||
<taxonomicName id="79E84D22FF8CA60E70A0101A3277FDB9" box="[171,297,612,634]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="33" pageNumber="792" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
). m. obliquus capitis magnus (
|
||
<bibRefCitation id="DA794B50FF8CA60E72A4101A3383FD5B" author="Oelrich TM" journalOrPublisher="Miscellaneous Publications of the Museum of Zoology, UniVersity of Michigan" pageId="33" pageNumber="792" pagination="1 - 122" part="94" refId="ref28511" refString="Oelrich TM. 1956. The anatomy of the head of Ctenosaura pectinata (Iguanidae). Miscellaneous Publications of the Museum of Zoology, UniVersity of Michigan 94: 1 - 122." title="The anatomy of the head of Ctenosaura pectinata (Iguanidae)" type="journal article" year="1956">Oelrich, 1956</bibRefCitation>
|
||
; ICVGAN, 1994;
|
||
<bibRefCitation id="DA794B50FF8CA60E71CB10FC31A1FD5B" author="Herrell A & De Vree F." box="[448,767,642,664]" journalOrPublisher="Belgian Journal of Zoology" pageId="33" pageNumber="792" pagination="175 - 186" part="129" refId="ref28038" refString="Herrell A, De Vree F. 1999. The cervical musculature in helodermatid lizards. Belgian Journal of Zoology 129: 175 - 186." title="The cervical musculature in helodermatid lizards" type="journal article" year="1999">Herrell & De Vree, 1999</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FF8CA60E70A010DF327FFD74" box="[171,289,673,695]" class="Reptilia" family="Varanidae" kingdom="Animalia" order="Squamata" pageId="33" pageNumber="792" phylum="Chordata" rank="family">Varanidae</taxonomicName>
|
||
) (
|
||
<figureCitation id="26D32A24FF8CA60E713110DF32CEFD74" box="[314,400,673,695]" captionStart="Figure 15" captionStartId="27.[164,243,1590,1609]" captionTargetId="figure@28.[144,1412,194,1805]" captionTargetPageId="28" captionText="Figure 15. Photographic-style representation of Tyrannosaurus rex (AMNH 5027) neck muscles, with definitive osteological correlates, visible in lateral view. A–C represent successively deeper layers. Varying hues represent transversospinalis, longissimus, iliocostalis and longus derivatives derivatives, respectively. Some muscles are omitted for clarity, including mm. interspinales between neural spines, and m. iliocostalis cervicis that inserted medially on the cervical ribs. M. transversospinalis capitis and cervicis, and m. longissimus capitis superficialis, are drawn as gradients to show tendinous anterior insertions. M. transversospinalis capitis is depicted as reflected downwards to show epipophyses of several vertebrae, to which it would insert and/or posterior parts of M. complexus would originate. M. iliocostalis capitis is rendered as having individual slips that arose from heads of the cervical ribs, one interpretation of this muscle’s osteological origins. M. rectus capitis ventralis originates from the ventral surfaces of the anterior cervicals, and is restored here as passing medial to the anterior cervical ribs. The skull has been displaced slightly anteriorly, to compensate for an anteroposteriorly compressed C1 in this specimen." figureDoi="http://doi.org/10.5281/zenodo.3734948" httpUri="https://zenodo.org/record/3734948/files/figure.png" pageId="33" pageNumber="792">Figs 15</figureCitation>
|
||
,
|
||
<figureCitation id="26D32A24FF8CA60E719410DF32E2FD74" box="[415,444,673,695]" captionStart="Figure 16" captionStartId="29.[164,243,1447,1466]" captionTargetBox="[323,1283,725,1416]" captionTargetId="figure@29.[328,1284,725,1361]" captionTargetPageId="29" captionText="Figure 16. Schematic diagram of major neck muscles of Tyrannosaurus rex in dorsal view. A–C represent successively deeper layers, and other conventions are as in Figure 15. M. complexus inserts dorsally on the squamosal, and m. iliocostalis capitis inserts along the ventral edge of the paroccipital process. M. longissimus capitis superficialis inserts between these on the lateral edge of the paroccipital process. In C a probable lateral part of m. spinalis capitis is signified by a ‘? ’ ." figureDoi="http://doi.org/10.5281/zenodo.3734950" httpUri="https://zenodo.org/record/3734950/files/figure.png" pageId="33" pageNumber="792">16</figureCitation>
|
||
,
|
||
<figureCitation id="26D32A24FF8CA60E71C010DF32B6FD75" box="[459,488,673,694]" captionStart="Figure 17" captionStartId="29.[164,243,1678,1697]" captionTargetId="figure@30.[336,1227,196,1802]" captionTargetPageId="30" captionText="Figure 17. A, topological appearance of m. transversospinalis capitis on anterior vertebrae and skull of Tyrannosaurus rex (AMNH 5027). The insertion is inferred as strongly tendinous, and is rendered as white. B, topological appearance of m. longissimus capitis superficialis restored on the same skeleton. The posterior origin was tendinous, and its morphology is depicted as white. C, D, topological appearance of (C) m. complexus and (D) m. iliocostalis capitis on anterior axial skeleton of Tyrannosaurus rex skeleton (AMNH 5027). A′–D′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. transversospinalis capitis (m. trans. cap. strong Level I′ inference of dorsiflexion). B′, weaker, Level II′ inference of lateroflexion in m. longissimus capitis superficialis. C′, D′, Level II′ strengths of functional inference for m. complexus (m. compl.) and m. iliocostalis capitis (m. il. cap.)." pageId="33" pageNumber="792">17</figureCitation>
|
||
,
|
||
<figureCitation id="26D32A24FF8CA60E71FC10DF314CFD74" box="[503,530,673,695]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="33" pageNumber="792">19</figureCitation>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8CA60E70AF10983244FBA8" blockId="33.[164,779,741,1437]" pageId="33" pageNumber="792">
|
||
Origin: Tyrannosaurids lack discrete lateral tubercles anterodorsal to the parapophyses for the cervical ribs, the position expected if they shared this origin of m. complexus with birds (
|
||
<bibRefCitation id="DA794B50FF8CA60E7250113F3380FCB5" author="Zusi RL & Storer RW" journalOrPublisher="Miscellaneous Publications of the Museum of Zoology, University of Michigan" pageId="33" pageNumber="792" pagination="1-49" part="139" refId="ref29391" refString="Zusi RL, Storer RW. 1969. Osteology and myology of the head and neck of the Pied-billed Grebe (Podilymbus). Miscellaneous Publications of the Museum of Zoology, Uni- Versity of Michigan 139: 1 - 49." title="Osteology and myology of the head and neck of the Pied-billed Grebe (Podilymbus)" type="book" year="1969">Zusi & Storer, 1969</bibRefCitation>
|
||
). However, C2–C5 have large anterodorsal surfaces of the epipophyses similar to those of birds (anterior to where the mm. cervicales ascendentes often insert), with a rugose ridge lateral to these surfaces on C2–C4. A system of tendons or aponeuroses arising from these surfaces was probably the origin for m. complexus in tyrannosaurids (
|
||
<figureCitation id="26D32A24FF8CA60E70A716483251FB8F" box="[172,271,1078,1100]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="33" pageNumber="792">Fig. 19A</figureCitation>
|
||
), forming several slips that would coalesce anteriorly.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8CA60E70B7160D3204FA5F" blockId="33.[164,779,741,1437]" pageId="33" pageNumber="792">
|
||
Slips of a muscle homologous with m. spino-capitis posticus/m.semispinalis capitis of crocodilians may have originated from lateral portions of the rugose posterior cervical neural arches, lateroventral to origins of m. transversospinalis capitis on the spinous processes. This origin (and therefore the presence of the muscle) is ambiguous in tyrannosaurids, as these surfaces may have served as origins and insertions of mm. intercristales or m. transversospinalis cervicis (
|
||
<bibRefCitation id="DA794B50FF8CA60E70A017F93211FA5F" author="Tsuihiji T." box="[171,335,1414,1437]" journalOrPublisher="Journal of Morphology" pageId="33" pageNumber="792" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji, 2005</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8CA60E70AF17B23738FF39" blockId="33.[164,779,1483,1903]" lastBlockId="33.[826,1441,198,587]" pageId="33" pageNumber="792">
|
||
Insertion: The insertion of the equivalent of the dorsal avian m. complexus was most likely along the posterodorsolateral edge of the squamosal, and was probably excluded from the parietals (
|
||
<figureCitation id="26D32A24FF8CA60E72541459319DF9FE" box="[607,707,1575,1597]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="33" pageNumber="792">Fig. 19D</figureCitation>
|
||
). This is similar to the insertion pattern of the crocodilian m. epistropheo-capitis lateralis, and the m. obliquus capitis magnus of
|
||
<taxonomicName id="79E84D22FF8CA60E718E14FD3102F95B" box="[389,604,1667,1688]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="33" pageNumber="792" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
. This inferred insertion is more discrete in
|
||
<taxonomicName id="79E84D22FF8CA60E71F414DF3054F974" authority="Russell, 1970" box="[511,778,1697,1719]" class="Reptilia" family="Tyrannosauridae" genus="Daspletosaurus" kingdom="Animalia" order="Dinosauria" pageId="33" pageNumber="792" phylum="Chordata" rank="species" species="torosus">Daspletosaurus torosus</taxonomicName>
|
||
than in some other tyrannosaurids. In one wellpreserved
|
||
<taxonomicName id="79E84D22FF8CA60E711714A132ADF937" authority="Osborn, 1905" box="[284,499,1759,1780]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="33" pageNumber="792" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
specimen (TMP 81.6.1), the left squamosal bears a long, narrow scar running ventrolaterally that may be the insertion for m. complexus. The insertion is preserved as a welldemarcated ridge of bone in the non-tyrannosaurid coelurosaurs
|
||
<taxonomicName id="79E84D22FF8CA60E73E112B83608FF18" authority="Osborn 1924" box="[1002,1366,198,219]" class="Reptilia" family="Troodontidae" genus="Saurornithoides" kingdom="Animalia" order="Dinosauria" pageId="33" pageNumber="792" phylum="Chordata" rank="species" species="mongoliensis">Saurornithoides mongoliensis</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FF8CA60E7331129A3701FF3A" authority="Osborn 1924" box="[826,1119,228,249]" class="Reptilia" family="Dromaeosauridae" genus="Velociraptor" kingdom="Animalia" order="Dinosauria" pageId="33" pageNumber="792" phylum="Chordata" rank="species" species="mongoliensis">Velociraptor mongoliensis</taxonomicName>
|
||
.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8CA60E7358137A37F6FD88" blockId="33.[826,1441,198,587]" pageId="33" pageNumber="792">By comparison with crocodilians, the insertion of m. spinocapitis posticus in tyrannosaurids, if present, would have been on the paroccipital processes medial to the insertion of m. longissimus capitis superficialis and dorsal to the insertion of m. iliocostalis capitis. There is a large area here where the muscle could have inserted by a fleshy attachment, or perhaps a broad yet dorsoventrally low aponeurosis, as seen in crocodilians. A discrete scar is not visible at this location in tyrannosaurids, but neither is it present on examined crocodilian skulls.</paragraph>
|
||
<paragraph id="BE5736A1FF8CA60E7331100C36FFFB0D" blockId="33.[826,1442,626,1902]" pageId="33" pageNumber="792">
|
||
Action/function: The insertion of m. complexus is dorsolateral to the occipital condyle in tyrannosaurids, well positioned for dorsolateral and dorsal flexion of the skull relative to the axis (with uni- and bilateral contraction, respectively) (
|
||
<figureCitation id="26D32A24FF8CA60E74D010933660FCC0" box="[1243,1342,749,771]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="33" pageNumber="792">Fig. 19C</figureCitation>
|
||
). Tyrannosaurid skulls are taller relative to their length than those of crocodilians, and the moment arm from the level of the occipital condyle to the squamosal is proportionally greater. Kinematic inference therefore indicates proportionally advantageous leverage for head dorsiflexion by m. complexus of tyrannosaurids, relative to the similarly inserting m. epistropheocapitis lateralis of crocodilians. Strict lateral flexion by m. complexus may have been relatively less effective in tyrannosaurids than in some birds, which have a more ventrally placed lateral insertion of this muscle. EMG shows that m. complexus of chickens is active during head dorsiflexion (
|
||
<bibRefCitation id="DA794B50FF8CA60E74C61604302AFB6C" author="Heidweiller J & Lendering B & Zweers GA" journalOrPublisher="Netherlands Journal of Zoology" pageId="33" pageNumber="792" pagination="1 - 22" part="42" refId="ref27942" refString="Heidweiller J, Lendering B, Zweers GA. 1992. Development of motor patterns in cervical muscles of drinking chickens. Netherlands Journal of Zoology 42: 1 - 22." title="Development of motor patterns in cervical muscles of drinking chickens" type="journal article" year="1992">Heidweiller et al., 1992</bibRefCitation>
|
||
), and by unipolar, Level II′ physiological inference the same is likely in tyrannosaurids (
|
||
<figureCitation id="26D32A24FF8CA60E753B16C636CBFB0D" box="[1328,1429,1208,1230]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="33" pageNumber="792">Fig. 19D</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8CA60E735816A936FCF9C3" blockId="33.[826,1442,626,1902]" pageId="33" pageNumber="792">
|
||
M. spinocapitis posticus of tyrannosaurids, if present and inserting on the same region of the paroccipital processes as in crocodilians, would insert dorsolateral to the occipital condyle but medial to the insertion of m. longissimus capitis superficialis. By kinematic inference this would position the muscle for high-geared lateral flexion of the head relative to the cervical vertebrae. Unipolar physiological inference by EMG of crocodilians supports the likelihood of this utility in tyrannosaurids (
|
||
<bibRefCitation id="DA794B50FF8CA60E7460179436C8F9C3" author="Cleuren J & De Vree F." box="[1131,1430,1514,1536]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="33" pageNumber="792" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8CA60E7358147630E1F8AD" blockId="33.[826,1442,626,1902]" pageId="33" pageNumber="792">If present separately from the m. complexus, the curvature of the tyrannosaurid neck would enforce an unusual relationship between m. sp. cap. post. and m. transversospinalis cervicis/m. longus colli dorsalis (m. l.c.d.). The origins of m. sp. cap. post., from the neural arches of C6 or C7 to C10, would lie dorsomedial to the origins, posterior insertions, and posterior portion of the mass of m. l.c.d. Anterior to C6 or C7, m. sp. cap. post. of tyrannosaurids would diverge laterally, enabling m. l.c.d to continue a course (towards its insertion on C2) dorsomedial to that of m. sp.cap.post.</paragraph>
|
||
<paragraph id="BE5736A1FF8FA60D709B12B8338BFF38" blockId="34.[144,759,198,404]" pageId="34" pageNumber="793">
|
||
M. splenius capitis (
|
||
<bibRefCitation id="DA794B50FF8FA60D718612B831B5FF1F" author="Vanden Berge JC & Zweers GA" box="[397,747,198,220]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="34" pageNumber="793" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FF8FA60D709C129B3390FF38" box="[151,206,229,251]" class="Aves" kingdom="Animalia" pageId="34" pageNumber="793" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8FA60D709B137D31CDFE57" blockId="34.[144,759,198,404]" pageId="34" pageNumber="793">
|
||
M. obliquus capitis profundus (
|
||
<bibRefCitation id="DA794B50FF8FA60D7249137D31B5FEDA" author="Tsuihiji T." box="[578,747,259,281]" journalOrPublisher="Journal of Vertebrate Paleontology" pageId="34" pageNumber="793" pagination="105" part="23" refId="ref29120" refString="Tsuihiji T. 2003. Evolutionary changes in attachments of the axial musculature in the occipital region in Marginocephalia (Dinosauria). Journal of Vertebrate Paleontology 23 (Suppl. to no. 3): 105 A." title="Evolutionary changes in attachments of the axial musculature in the occipital region in Marginocephalia (Dinosauria)." type="journal article" year="2003">Tsuihiji, 2003</bibRefCitation>
|
||
), m. epistropheo-capitis medialis (
|
||
<bibRefCitation id="DA794B50FF8FA60D725C135C31ACFEF4" author="Seidel R." box="[599,754,290,312]" journalOrPublisher="City University of New York" pageId="34" pageNumber="793" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF8FA60D709B133E328BFE95" author="Cleuren J & De Vree F." box="[144,469,320,342]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="34" pageNumber="793" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
). m. altoïdius capitis (
|
||
<bibRefCitation id="DA794B50FF8FA60D709C13213262FEB6" author="Tsuihiji T." box="[151,316,351,373]" journalOrPublisher="Journal of Morphology" pageId="34" pageNumber="793" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji, 2005</bibRefCitation>
|
||
). m. rectus capitis dorsalis minor (
|
||
<bibRefCitation id="DA794B50FF8FA60D709C13003205FE57" author="Cong L & Hou L & Wu X-C & Hou J." box="[151,347,381,404]" journalOrPublisher="Beijing: Science Press" pageId="34" pageNumber="793" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
) (
|
||
<taxonomicName id="79E84D22FF8FA60D717F130332B1FE50" box="[372,495,381,403]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="34" pageNumber="793" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
) (
|
||
<figureCitation id="26D32A24FF8FA60D7203130331D5FE57" box="[520,651,381,404]" captionStart="Figure 17" captionStartId="29.[164,243,1678,1697]" captionTargetId="figure@30.[336,1227,196,1802]" captionTargetPageId="30" captionText="Figure 17. A, topological appearance of m. transversospinalis capitis on anterior vertebrae and skull of Tyrannosaurus rex (AMNH 5027). The insertion is inferred as strongly tendinous, and is rendered as white. B, topological appearance of m. longissimus capitis superficialis restored on the same skeleton. The posterior origin was tendinous, and its morphology is depicted as white. C, D, topological appearance of (C) m. complexus and (D) m. iliocostalis capitis on anterior axial skeleton of Tyrannosaurus rex skeleton (AMNH 5027). A′–D′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. transversospinalis capitis (m. trans. cap. strong Level I′ inference of dorsiflexion). B′, weaker, Level II′ inference of lateroflexion in m. longissimus capitis superficialis. C′, D′, Level II′ strengths of functional inference for m. complexus (m. compl.) and m. iliocostalis capitis (m. il. cap.)." figureDoi="http://doi.org/10.5281/zenodo.3734952" httpUri="https://zenodo.org/record/3734952/files/figure.png" pageId="34" pageNumber="793">Fig. 17A, C</figureCitation>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8FA60D709B13BB32DAFCAA" blockId="34.[144,759,453,873]" pageId="34" pageNumber="793">
|
||
Origin: The anterior face of the neural spine of the axis of tyrannosaurids bears a teardrop-shaped scar, identical in outline to the scar related to the origin of m. splenius capitis in birds (
|
||
<figureCitation id="26D32A24FF8FA60D71FB105F3109FDF5" box="[496,599,545,567]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="34" pageNumber="793">Figs 19A</figureCitation>
|
||
,
|
||
<figureCitation id="26D32A24FF8FA60D7268105F31CBFDF4" box="[611,661,545,567]" captionStart="Figure 20" captionStartId="35.[164,243,1489,1508]" captionTargetBox="[189,1416,202,1459]" captionTargetId="figure@35.[189,1416,267,1459]" captionTargetPageId="35" captionText="Figure 20. A, origin scar of m. splenius capitis from C2 of Tyrannosaurus rex (BHI 3033), in anterodorsal view. B, area of possible insertions of m. splenius capitis (medial part) on the occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms shown for dorsiflexion and lateroflexion. C, insertions of m. longus colli dorsalis/m. transversospinalis cervicis onto posterior and dorsal surfaces of epipophyses, from C2 to C5. The most prominent insertion is a posteriorly concave scar on the C2 epipophysis. D, centres of rotation (white circles) and moment arms (lines) for insertions of m. longus colli dorsalis/m. transversospinalis cervicis, on cervical vertebrae of Tyrannosaurus rex (BHI 3033). Centres of rotation are estimated to be at positions similar to those Selbie, Thomson & Richmond (1993) determined for intervertebral flexion in cats." figureDoi="http://doi.org/10.5281/zenodo.3734958" httpUri="https://zenodo.org/record/3734958/files/figure.png" pageId="34" pageNumber="793">20A</figureCitation>
|
||
). A similar scar occurs on the axis of nearly all examined dinosaurs, including all birds and other tetanuran theropods, the basal theropods
|
||
<taxonomicName id="79E84D22FF8FA60D7217100231AEFD52" authority="Cope, 1887" box="[540,752,636,657]" class="Reptilia" family="Coelophysidae" genus="Daspletosaurus" kingdom="Animalia" order="Dinosauria" pageId="34" pageNumber="793" phylum="Chordata" rank="species" species="bauri">Coelophysis bauri</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FF8FA60D709B10E532ECFD73" authority="Welles, 1954" box="[144,434,667,688]" class="Reptilia" family="Dilophosauridae" genus="Dilophosaurus" kingdom="Animalia" order="Dinosauria" pageId="34" pageNumber="793" phylum="Chordata" rank="species" species="wetherelli">Dilophosaurus wetherelli</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FF8FA60D71FC10E533ECFD0C" authority="Marsh, 1884" class="Reptilia" family="Ceratosauridae" genus="Ceratosaurus" kingdom="Animalia" order="Dinosauria" pageId="34" pageNumber="793" phylum="Chordata" rank="species" species="nasicornis">Ceratosaurus nasicornis</taxonomicName>
|
||
, and the sauropods
|
||
<taxonomicName id="79E84D22FF8FA60D71BB10C431E0FD0C" authority="Marsh, 1877" box="[432,702,698,719]" class="Reptilia" family="Camarasauridae" genus="Camarasaurus" kingdom="Animalia" order="Dinosauria" pageId="34" pageNumber="793" phylum="Chordata" rank="species" species="grandis">Camarasaurus grandis</taxonomicName>
|
||
and Diplodocus longus. The origin in tyrannosaurids may have extended onto dorsolateral projections of the neural spines of C2 and C3 (forming the spine table of the axis:
|
||
<bibRefCitation id="DA794B50FF8FA60D70F4114A32EEFC89" author="Gauthier JA" box="[255,432,820,842]" editor="Padian K" journalOrPublisher="San Francisco: California Academy of Sciences" pageId="34" pageNumber="793" pagination="1 - 55" refId="ref27799" refString="Gauthier JA. 1986. Saurischian monophyly and the origin of birds. In: Padian K, ed. The origin of birds and the eVolution of flight. San Francisco: California Academy of Sciences, 1 - 55." title="Saurischian monophyly and the origin of birds" type="book chapter" volumeTitle="The origin of birds and the eVolution of flight" year="1986">Gauthier, 1986</bibRefCitation>
|
||
), which is common in large tetanuran theropods.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8FA60D709B11E5324EFADC" blockId="34.[144,759,922,1311]" pageId="34" pageNumber="793">
|
||
Insertion: The insertion of the m. splenius capitis was probably on a large depression on the parietal, just lateral to the supraoccipital (
|
||
<figureCitation id="26D32A24FF8FA60D720611A93131FC2E" box="[525,623,983,1005]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="34" pageNumber="793">Fig. 19B</figureCitation>
|
||
). In some
|
||
<taxonomicName id="79E84D22FF8FA60D709B1189323AFBCF" authority="Osborn, 1905" box="[144,356,1015,1036]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="34" pageNumber="793" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
specimens this area is convex, and the muscle may have inserted partly on the squamosal ventromedial to the insertion of m. complexus. The muscle is unlikely to have inserted along the entire opisthotic–squamosal suture, as it does in crocodilians, because a pneumatic foramen perforates this area (
|
||
<bibRefCitation id="DA794B50FF8FA60D711F16D332E6FB07" author="Brochu CA" box="[276,440,1197,1220]" journalOrPublisher="Journal of Vertebrate Paleontology" pageId="34" pageNumber="793" pagination="1 - 138" part="24" refId="ref27197" refString="Brochu CA. 2003. Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the cranium. Journal of Vertebrate Paleontology 24 (Suppl. 4): 1 - 138." title="Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the cranium" type="journal article" year="2003">Brochu, 2003</bibRefCitation>
|
||
). M. spl. cap. conceivably inserted lateral to this foramen, along the dorsal edge of the paroccipital process and ventral portion of the squamosal.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8FA60D709B172F326BF8AC" blockId="34.[144,759,1361,1903]" pageId="34" pageNumber="793">
|
||
Action/function: As with birds, the line of action of m. splenius capitis of tyrannosaurids lies dorsal and somewhat lateral to the occipital condyle (
|
||
<figureCitation id="26D32A24FF8FA60D728C17F031B4FA67" box="[647,746,1422,1444]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="34" pageNumber="793">Fig. 19B</figureCitation>
|
||
). Kinematic inference therefore indicates that the muscle bilaterally imparted dorsiflexion, and unilaterally some lateroflexion, to the cranium relative to the axial neural spine. Dorsolateral flexion of the head, and stabilization of the craniocervical joint, would have been possible as well. By Level II′ physiological inference, head dorsiflexion by m. splenius capitis in chickens (
|
||
<bibRefCitation id="DA794B50FF8FA60D71DA14FD31B1F95A" author="Heidweiller J & Lendering B & Zweers GA" box="[465,751,1667,1689]" journalOrPublisher="Netherlands Journal of Zoology" pageId="34" pageNumber="793" pagination="1 - 22" part="42" refId="ref27942" refString="Heidweiller J, Lendering B, Zweers GA. 1992. Development of motor patterns in cervical muscles of drinking chickens. Netherlands Journal of Zoology 42: 1 - 22." title="Development of motor patterns in cervical muscles of drinking chickens" type="journal article" year="1992">Heidweiller et al., 1992</bibRefCitation>
|
||
) corroborates the kinematic inference of dorsiflexion in tyrannosaurids (
|
||
<figureCitation id="26D32A24FF8FA60D717B14BE328DF915" box="[368,467,1728,1750]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="34" pageNumber="793">Fig. 19B</figureCitation>
|
||
). However, if m. spl. cap inserted along the opisthotic–squamosal suture lateral to the pneumatic foramen, lateral flexion may have been more pronounced, and head dorsiflexion less effective, than if the muscle inserted more dorsally.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8FA60D732D12B8309CFF38" blockId="34.[806,1421,198,404]" pageId="34" pageNumber="793">
|
||
M. longus colli dorsalis (
|
||
<bibRefCitation id="DA794B50FF8FA60D746312B8303EFF38" author="Vanden Berge JC & Zweers GA" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="34" pageNumber="793" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FF8FA60D7376129B30E9FF38" box="[893,951,229,251]" class="Aves" kingdom="Animalia" pageId="34" pageNumber="793" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
.)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8FA60D732D137D3034FE95" blockId="34.[806,1421,198,404]" pageId="34" pageNumber="793">
|
||
M. transversospinalis cervicis (
|
||
<bibRefCitation id="DA794B50FF8FA60D74E2137D36D6FEDB" author="Seidel R." box="[1257,1416,259,281]" journalOrPublisher="City University of New York" pageId="34" pageNumber="793" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF8FA60D732D135C3714FEF4" author="Cleuren J & De Vree F." box="[806,1098,290,312]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="34" pageNumber="793" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF8FA60D745C135C37A8FEFB" author="Tsuihiji T." box="[1111,1270,290,312]" journalOrPublisher="Journal of Vertebrate Paleontology" pageId="34" pageNumber="793" pagination="115" part="22" refId="ref29080" refString="Tsuihiji T. 2002. A preliminary assessment of the evolution of the cervical musculature in Diapsida with an emphasis on Dinosauria. Journal of Vertebrate Paleontology 22 (Suppl. to no. 3): 115 A." title="A preliminary assessment of the evolution of the cervical musculature in Diapsida with an emphasis on Dinosauria." type="journal article" year="2002">Tsuihiji, 2002</bibRefCitation>
|
||
) (
|
||
<taxonomicName id="79E84D22FF8FA60D7506135C36D7FEFB" box="[1293,1417,290,312]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="34" pageNumber="793" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FF8FA60D732D133E3001FE95" box="[806,863,320,342]" class="Aves" kingdom="Animalia" pageId="34" pageNumber="793" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
.)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8FA60D732D13213737FE57" blockId="34.[806,1421,198,404]" pageId="34" pageNumber="793">
|
||
M. longissimus cervicis (
|
||
<bibRefCitation id="DA794B50FF8FA60D7479132137ADFEB7" author="Frey E." box="[1138,1267,351,372]" journalOrPublisher="Biologie" pageId="34" pageNumber="793" pagination="1 - 106" part="424" refId="ref27770" refString="Frey E. 1988. Anatomie des Korperstammes von Alligator mississippiensis Daudin. Stuttgarter Beitrage zur Naturkunde (series A - Biologie) 424: 1 - 106." title="Anatomie des Korperstammes von Alligator mississippiensis Daudin. Stuttgarter Beitrage zur Naturkunde" type="journal article" year="1988">Frey, 1988</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF8FA60D750D1321303EFE57" author="Cong L & Hou L & Wu X-C & Hou J." journalOrPublisher="Beijing: Science Press" pageId="34" pageNumber="793" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
).
|
||
<taxonomicName id="79E84D22FF8FA60D737D130330B1FE50" box="[886,1007,381,403]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="34" pageNumber="793" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
(
|
||
<figureCitation id="26D32A24FF8FA60D740A1303373CFE57" box="[1025,1122,381,404]" captionStart="Figure 17" captionStartId="29.[164,243,1678,1697]" captionTargetId="figure@30.[336,1227,196,1802]" captionTargetPageId="30" captionText="Figure 17. A, topological appearance of m. transversospinalis capitis on anterior vertebrae and skull of Tyrannosaurus rex (AMNH 5027). The insertion is inferred as strongly tendinous, and is rendered as white. B, topological appearance of m. longissimus capitis superficialis restored on the same skeleton. The posterior origin was tendinous, and its morphology is depicted as white. C, D, topological appearance of (C) m. complexus and (D) m. iliocostalis capitis on anterior axial skeleton of Tyrannosaurus rex skeleton (AMNH 5027). A′–D′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. transversospinalis capitis (m. trans. cap. strong Level I′ inference of dorsiflexion). B′, weaker, Level II′ inference of lateroflexion in m. longissimus capitis superficialis. C′, D′, Level II′ strengths of functional inference for m. complexus (m. compl.) and m. iliocostalis capitis (m. il. cap.)." figureDoi="http://doi.org/10.5281/zenodo.3734952" httpUri="https://zenodo.org/record/3734952/files/figure.png" pageId="34" pageNumber="793">Fig. 17A</figureCitation>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8FA60D732D13B430E6FBC4" blockId="34.[806,1421,458,1031]" pageId="34" pageNumber="793">Origin: The origin of m. longus colli dorsalis/m. transversospinalis cervicis (m. l.c.d./trans. cerv.) is ambiguous in tyrannosaurids. Tyrannosaurids have several bony correlates that undefinitively resemble origins for the muscle in crocodilians and birds. Tyrannosaurids have rugose areas dorsal to the postzygapophyses of posterior cervicals, possibly homologous to the m. l.c.d./trans. cerv. origin in crocodilians. Dorsomedial to these rugosities, tyrannosaurid neural arches C6–C10 bear ridges running ventrolaterally. It is possible that these ridges and the postzygapophseal rugosities anchored an aponreurotic origin of m. l.c.d./ trans. cerv. similar to the medial portion of the aponeurosis notarii of birds. The identification of this muscle’s origin in tyrannosaurids can be no more precise than an association with the neural spines ventral to m. transversospinalis capitis, and dorsomedial to origins of m. longissimus capitis profundus and superficialis.</paragraph>
|
||
<paragraph id="BE5736A1FF8FA60D732D16403653FA22" blockId="34.[806,1422,1085,1903]" pageId="34" pageNumber="793">
|
||
Insertion: In contrast to its origin, the insertion of m. l.c.d./tr. ans. cerv. is well circumscribed in tyrannosaurids (
|
||
<figureCitation id="26D32A24FF8FA60D7381160430B3FB52" box="[906,1005,1146,1169]" captionStart="Figure 20" captionStartId="35.[164,243,1489,1508]" captionTargetBox="[189,1416,202,1459]" captionTargetId="figure@35.[189,1416,267,1459]" captionTargetPageId="35" captionText="Figure 20. A, origin scar of m. splenius capitis from C2 of Tyrannosaurus rex (BHI 3033), in anterodorsal view. B, area of possible insertions of m. splenius capitis (medial part) on the occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms shown for dorsiflexion and lateroflexion. C, insertions of m. longus colli dorsalis/m. transversospinalis cervicis onto posterior and dorsal surfaces of epipophyses, from C2 to C5. The most prominent insertion is a posteriorly concave scar on the C2 epipophysis. D, centres of rotation (white circles) and moment arms (lines) for insertions of m. longus colli dorsalis/m. transversospinalis cervicis, on cervical vertebrae of Tyrannosaurus rex (BHI 3033). Centres of rotation are estimated to be at positions similar to those Selbie, Thomson & Richmond (1993) determined for intervertebral flexion in cats." figureDoi="http://doi.org/10.5281/zenodo.3734958" httpUri="https://zenodo.org/record/3734958/files/figure.png" pageId="34" pageNumber="793">Fig. 20C</figureCitation>
|
||
). The epipophysis/processus dorsalis of C2 of tyrannosaurids has a posterolaterally concave scar similar to the tendinous m. l.c.d. insertion of some birds, except that the concavity in tyrannosaurids appears proportionally deeper than in avians. Unlike in birds, the epipophysis of C3, and sometimes C4 and C5, in tyrannosaurids also bears a posterolaterally concave scar, indicating other insertions similar to that on C2. Under this interpretation, insertion tendons of this muscle would have attached to the processes dorsales posteroventral to the origins of m. complexus, as occurs in some birds.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8FA60D7334179437E0F8AC" blockId="34.[806,1422,1085,1903]" pageId="34" pageNumber="793">There are some probable differences between tyrannosaurids and birds in the insertions of m. l.c.d./ trans. cerv. In tyrannosaurids insertions may have extended onto the epipophyses of C6 and C7. Many birds lack a posteriorly concave scar altogether on C2, and the insertions of all slips of m. longus colli dorsalis pars anterior (and the axial insertion of m. l.c.d.) are onto the dorsal surface of the C2 processus dorsalis, as for the other cervicals. Tyrannosaurids have dorsolateral projections of the atlas that are not present in birds. This may indicate an anterior extension of m. l.c.d./m. trans. cerv. in tyrannosaurids, somewhat like that of crocodilians.</paragraph>
|
||
<caption id="EA976629FF8EA60C70AF17AF309BF972" ID-DOI="http://doi.org/10.5281/zenodo.3734958" ID-Zenodo-Dep="3734958" httpUri="https://zenodo.org/record/3734958/files/figure.png" pageId="35" pageNumber="794" startId="35.[164,243,1489,1508]" targetBox="[189,1416,202,1459]" targetPageId="35">
|
||
<paragraph id="BE5736A1FF8EA60C70AF17AF309BF972" blockId="35.[164,1442,1489,1713]" pageId="35" pageNumber="794">
|
||
Figure 20. A, origin scar of m. splenius capitis from C2 of
|
||
<taxonomicName id="79E84D22FF8EA60C731517AC30BDFA27" authority="Osborn, 1905" box="[798,995,1490,1508]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="35" pageNumber="794" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<materialsCitation id="0E803CFCFF8EA60C73F917AF3702FA27" ID-GBIF-Occurrence="3396397306" box="[1010,1116,1489,1508]" collectionCode="BHI" pageId="35" pageNumber="794" specimenCode="BHI 3033">BHI 3033</materialsCitation>
|
||
), in anterodorsal view. B, area of possible insertions of m. splenius capitis (medial part) on the occiput of
|
||
<taxonomicName id="79E84D22FF8EA60C73E6179037BBF9C2" authority="Russell, 1970" box="[1005,1253,1518,1537]" class="Reptilia" family="Tyrannosauridae" genus="Daspletosaurus" kingdom="Animalia" order="Dinosauria" pageId="35" pageNumber="794" phylum="Chordata" rank="species" species="torosus">Daspletosaurus torosus</taxonomicName>
|
||
(CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms shown for dorsiflexion and lateroflexion. C, insertions of m. longus colli dorsalis/m. transversospinalis cervicis onto posterior and dorsal surfaces of epipophyses, from C2 to C5. The most prominent insertion is a posteriorly concave scar on the C2 epipophysis. D, centres of rotation (white circles) and moment arms (lines) for insertions of m. longus colli dorsalis/m. transversospinalis cervicis, on cervical vertebrae of
|
||
<taxonomicName id="79E84D22FF8EA60C712714FF32AFF950" authority="Osborn, 1905" box="[300,497,1665,1683]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="35" pageNumber="794" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<materialsCitation id="0E803CFCFF8EA60C720B14FF3132F957" ID-GBIF-Occurrence="3396397311" box="[512,620,1665,1684]" collectionCode="BHI" pageId="35" pageNumber="794" specimenCode="BHI 3033">BHI 3033</materialsCitation>
|
||
). Centres of rotation are estimated to be at positions similar to those
|
||
<bibRefCitation id="DA794B50FF8EA60C755014FE3282F972" author="Selbie WS & Thomson DB & Richmond FJR" journalOrPublisher="Journal of Biomechanics" pageId="35" pageNumber="794" pagination="917 - 927" part="26" refId="ref28788" refString="Selbie WS, Thomson DB, Richmond FJR. 1993. Sagittalplane mobility of the cat cervical spine. Journal of Biomechanics 26: 917 - 927." title="Sagittalplane mobility of the cat cervical spine" type="journal article" year="1993">Selbie, Thomson & Richmond (1993)</bibRefCitation>
|
||
determined for intervertebral flexion in cats.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FF8EA60B70AF14833162FE71" blockId="35.[164,779,1789,1903]" lastBlockId="36.[144,759,198,618]" lastPageId="36" lastPageNumber="795" pageId="35" pageNumber="794">
|
||
Action/function: Because the insertions of m. longus colli dorsalis/transversospinalis cervicis pars lateralis (m. l.c.d./trans. cerv.) lie dorsal to its origin in tyrannosaurids, kinematic inference indicates that the muscle dorsiflexed the entire neck relative to the trunk (
|
||
<figureCitation id="26D32A24FF8EA60C7380156230B0F8F1" box="[907,1006,1820,1842]" captionStart="Figure 20" captionStartId="35.[164,243,1489,1508]" captionTargetBox="[189,1416,202,1459]" captionTargetId="figure@35.[189,1416,267,1459]" captionTargetPageId="35" captionText="Figure 20. A, origin scar of m. splenius capitis from C2 of Tyrannosaurus rex (BHI 3033), in anterodorsal view. B, area of possible insertions of m. splenius capitis (medial part) on the occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms shown for dorsiflexion and lateroflexion. C, insertions of m. longus colli dorsalis/m. transversospinalis cervicis onto posterior and dorsal surfaces of epipophyses, from C2 to C5. The most prominent insertion is a posteriorly concave scar on the C2 epipophysis. D, centres of rotation (white circles) and moment arms (lines) for insertions of m. longus colli dorsalis/m. transversospinalis cervicis, on cervical vertebrae of Tyrannosaurus rex (BHI 3033). Centres of rotation are estimated to be at positions similar to those Selbie, Thomson & Richmond (1993) determined for intervertebral flexion in cats." figureDoi="http://doi.org/10.5281/zenodo.3734958" httpUri="https://zenodo.org/record/3734958/files/figure.png" pageId="35" pageNumber="794">Fig. 20D</figureCitation>
|
||
) by bilateral contraction. The sinusoidal curve of the neck would impart complexity to this dorsiflexion. The epipophysis insertions on C2 and C3 are dorsal to the centres of dorsiflexive rotation between these vertebrae and the posteriorly adjacent one. Kinematic inference thus also indicates that the muscle dorsiflexed C2 relative to C3, and C3 relative to C4. As C2 and C3 were retracted, vertebrae in the posterior, dorsally concave portion of the neck would be passively dorsiflexed relative to each other, additively raising the anterior vertebrae.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B70A313C53232FDAA" blockId="36.[144,759,198,618]" pageId="36" pageNumber="795">
|
||
The homologous muscles in crocodilians and birds show strong EMG activity during neck dorsiflexion (
|
||
<bibRefCitation id="DA794B50FF89A60B709C13863287FDCE" author="Cleuren J & De Vree F." box="[151,473,504,526]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="36" pageNumber="795" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF89A60B71E513863394FDEE" author="van der Leeuw AHJ & Bout RG & Zweers GA" journalOrPublisher="Netherlands Journal of Zoology" pageId="36" pageNumber="795" pagination="243 - 262" part="51" refId="ref28293" refString="van der Leeuw AHJ, Bout RG, Zweers GA. 2001. Evolutionary morphology of the neck system in ratites, fowl and waterfowl. Netherlands Journal of Zoology 51: 243 - 262." title="Evolutionary morphology of the neck system in ratites, fowl and waterfowl" type="journal article" year="2001">van der Leeuw et al., 2001</bibRefCitation>
|
||
); a Level I′ physiological inference thus clearly supports neck dorsiflexion by this muscle in tyrannosaurids (
|
||
<figureCitation id="26D32A24FF89A60B70FD102A3208FDAA" box="[246,342,596,618]" captionStart="Figure 18" captionStartId="32.[144,223,198,217]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="31" captionText="Figure 18. Topological appearance of (A) m. splenius capitis (medial part) and (B) m. longus colli dorsalis/ transversospinalis cervicis, on anterior vertebrae and skull of Tyrannosaurus rex skeleton (AMNH 5027). Note that the parietals are probably closer to the axial neural spine than in neutral life posture, and m. splenius capitis would be longer than shown here. C, topological appearance of m. splenius on another specimen of Tyrannosaurus rex (BHI 3033). M. complexus is also represented, and m. transversospinalis capits is depicted as though reflected back. D, E, appearance of m. longissimus capitis profundus (large anterior muscle), and cervical mm. intertransversarii (bands between transverse processes), on skeleton of Tyrannosaurus rex (AMNH 5027). A′–E′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. splenius capitis of tyrannosaurids, for head dorsiflexion and stabilization. The large inference space is possible by morphological and physiological bracketing between homologous muscles in birds and crocodilians. B′, strength of functional inference for m. transversospinalis cervicis of tyrannosaurids, for neck dorsiflexion. Inference strengh is particularly high for this muscle. D′, Level II′ inference for ventroflexion by m. longissimus capitis profundus. E′, inferernce for lateroflexion by mm. interntransversarii, with poor, Level III′ support from physiological data; EMG has been uninformative about mm. intertrans. lateroflexion in extant archosaurs ." figureDoi="http://doi.org/10.5281/zenodo.3734954" httpUri="https://zenodo.org/record/3734954/files/figure.png" pageId="36" pageNumber="795">Fig. 18B′</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B709B10FC328BFD54" blockId="36.[144,758,642,726]" box="[144,469,642,664]" pageId="36" pageNumber="795">B. M. longissimus system</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B709B10DF325EFD15" blockId="36.[144,758,642,726]" pageId="36" pageNumber="795">
|
||
M. longissimus capitis superficialis (
|
||
<taxonomicName id="79E84D22FF89A60B727F10DF31B1FD74" box="[628,751,673,695]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="36" pageNumber="795" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
) (
|
||
<figureCitation id="26D32A24FF89A60B709310C133A6FD15" box="[152,248,703,726]" captionStart="Figure 17" captionStartId="29.[164,243,1678,1697]" captionTargetId="figure@30.[336,1227,196,1802]" captionTargetPageId="30" captionText="Figure 17. A, topological appearance of m. transversospinalis capitis on anterior vertebrae and skull of Tyrannosaurus rex (AMNH 5027). The insertion is inferred as strongly tendinous, and is rendered as white. B, topological appearance of m. longissimus capitis superficialis restored on the same skeleton. The posterior origin was tendinous, and its morphology is depicted as white. C, D, topological appearance of (C) m. complexus and (D) m. iliocostalis capitis on anterior axial skeleton of Tyrannosaurus rex skeleton (AMNH 5027). A′–D′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. transversospinalis capitis (m. trans. cap. strong Level I′ inference of dorsiflexion). B′, weaker, Level II′ inference of lateroflexion in m. longissimus capitis superficialis. C′, D′, Level II′ strengths of functional inference for m. complexus (m. compl.) and m. iliocostalis capitis (m. il. cap.)." figureDoi="http://doi.org/10.5281/zenodo.3734952" httpUri="https://zenodo.org/record/3734952/files/figure.png" pageId="36" pageNumber="795">Fig. 17B</figureCitation>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B709B117C3227FBCF" blockId="36.[144,759,770,1373]" pageId="36" pageNumber="795">
|
||
Origin: There are proximal scars on the parapophyses of C7–C9 of large tyrannosaurids that may have served as origins for m. longissimus capitis superficialis (
|
||
<figureCitation id="26D32A24FF89A60B70D61123321FFCB0" box="[221,321,861,883]" captionStart="Figure 21" captionStartId="37.[164,243,1499,1518]" captionTargetBox="[330,1275,205,1466]" captionTargetId="figure@37.[335,1276,208,1418]" captionTargetPageId="37" captionText="Figure 21. A, origin scars of m. longissimus capitis superficialis (C7–D1 parapophyses) and m. longissimus capitis profundus (C6–C3 parapophyses) of Tyrannosaurus rex (AMNH 5027). B, short moment arm of m. longissimus capitis superficialis for neck plus head dorsiflexion. C, paroccipital process insertions and moment arms of m. longissimus capitis superficialis on Daspletosaurus torosus (CMN 8506). D, basioccipital insertions and moment arms of m. longissimus capitis profundus on Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the images are partly mirrored)." figureDoi="http://doi.org/10.5281/zenodo.3734960" httpUri="https://zenodo.org/record/3734960/files/figure.png" pageId="36" pageNumber="795">Fig. 21A</figureCitation>
|
||
). As with C8 of crocodilians, the posterior origins of m. long. cap. sup. probably extended onto the lateral portions of the parapophyses. Discrete ventrolateral scars are not present on the neural arches at the expected position on C6–C4, but fleshy origins are possible.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B70A3166B33ADFA9E" blockId="36.[144,759,770,1373]" pageId="36" pageNumber="795">
|
||
The broad, rounded parapophyses of C10 and the anteriormost dorsal vertebrae of tyrannosaurids have lateral scars similar to m. longissimus capitis origins on these vertebrae in
|
||
<taxonomicName id="79E84D22FF89A60B7199160F316DFB45" authority="Linnaeus, 1758" box="[402,563,1137,1158]" class="Mammalia" family="Hominidae" genus="Homo" kingdom="Animalia" order="Primates" pageId="36" pageNumber="795" phylum="Chordata" rank="species" species="sapiens">Homo sapiens</taxonomicName>
|
||
, lateral to areas of attachment for m. longissimus thoracis. It is possible that these scars were the location of stout tendinous origins of m. longissimus capitis superficialis in tyrannosaurids. However, differentiation is ambiguous between possible scars for this muscle, m. longissimus capitis profundus and m. longissimus thoracis.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B709B17F4317FF9F4" blockId="36.[144,759,1417,1592]" pageId="36" pageNumber="795">
|
||
Insertion: As in crocodilians, the insertion of m. longissimus capitis superficialis in tyrannosaurids was probably tendinously onto the lateral portion of the paroccipital process (
|
||
<figureCitation id="26D32A24FF89A60B718D179B32B7FA38" box="[390,489,1509,1531]" captionStart="Figure 21" captionStartId="37.[164,243,1499,1518]" captionTargetBox="[330,1275,205,1466]" captionTargetId="figure@37.[335,1276,208,1418]" captionTargetPageId="37" captionText="Figure 21. A, origin scars of m. longissimus capitis superficialis (C7–D1 parapophyses) and m. longissimus capitis profundus (C6–C3 parapophyses) of Tyrannosaurus rex (AMNH 5027). B, short moment arm of m. longissimus capitis superficialis for neck plus head dorsiflexion. C, paroccipital process insertions and moment arms of m. longissimus capitis superficialis on Daspletosaurus torosus (CMN 8506). D, basioccipital insertions and moment arms of m. longissimus capitis profundus on Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the images are partly mirrored)." figureDoi="http://doi.org/10.5281/zenodo.3734960" httpUri="https://zenodo.org/record/3734960/files/figure.png" pageId="36" pageNumber="795">Fig. 21C</figureCitation>
|
||
), just medial or dorsal to the origin of m. depressor mandibulae on the lateralmost surface of the process.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B709B141A3715FE2C" blockId="36.[144,759,1636,1903]" lastBlockId="36.[806,1421,197,495]" pageId="36" pageNumber="795">
|
||
Action/function: Kinematic inference implicates multiple functions for m. longissiumus capitis superficialis in tyrannosaurids. Its lateral insertion, distal to the occipital condyle, would provide a long moment arm for lateral flexion of the head versus the neck, especially in the tyrannosaurines and most markedly in
|
||
<taxonomicName id="79E84D22FF89A60B70BA156232D6F8F2" authority="Osborn, 1905" box="[177,392,1820,1841]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="36" pageNumber="795" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<figureCitation id="26D32A24FF89A60B7190156232A0F8F1" box="[411,510,1820,1842]" captionStart="Figure 21" captionStartId="37.[164,243,1499,1518]" captionTargetBox="[330,1275,205,1466]" captionTargetId="figure@37.[335,1276,208,1418]" captionTargetPageId="37" captionText="Figure 21. A, origin scars of m. longissimus capitis superficialis (C7–D1 parapophyses) and m. longissimus capitis profundus (C6–C3 parapophyses) of Tyrannosaurus rex (AMNH 5027). B, short moment arm of m. longissimus capitis superficialis for neck plus head dorsiflexion. C, paroccipital process insertions and moment arms of m. longissimus capitis superficialis on Daspletosaurus torosus (CMN 8506). D, basioccipital insertions and moment arms of m. longissimus capitis profundus on Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the images are partly mirrored)." figureDoi="http://doi.org/10.5281/zenodo.3734960" httpUri="https://zenodo.org/record/3734960/files/figure.png" pageId="36" pageNumber="795">Fig. 21C</figureCitation>
|
||
). Unipolar (Level II′) physiological inference by EMG in crocodilians supports the lateral flexion role for m. long. cap. sup. (
|
||
<figureCitation id="26D32A24FF89A60B732512B830D0FF18" box="[814,910,198,220]" captionStart="Figure 17" captionStartId="29.[164,243,1678,1697]" captionTargetId="figure@30.[336,1227,196,1802]" captionTargetPageId="30" captionText="Figure 17. A, topological appearance of m. transversospinalis capitis on anterior vertebrae and skull of Tyrannosaurus rex (AMNH 5027). The insertion is inferred as strongly tendinous, and is rendered as white. B, topological appearance of m. longissimus capitis superficialis restored on the same skeleton. The posterior origin was tendinous, and its morphology is depicted as white. C, D, topological appearance of (C) m. complexus and (D) m. iliocostalis capitis on anterior axial skeleton of Tyrannosaurus rex skeleton (AMNH 5027). A′–D′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. transversospinalis capitis (m. trans. cap. strong Level I′ inference of dorsiflexion). B′, weaker, Level II′ inference of lateroflexion in m. longissimus capitis superficialis. C′, D′, Level II′ strengths of functional inference for m. complexus (m. compl.) and m. iliocostalis capitis (m. il. cap.)." figureDoi="http://doi.org/10.5281/zenodo.3734952" httpUri="https://zenodo.org/record/3734952/files/figure.png" pageId="36" pageNumber="795">Fig. 17B′</figureCitation>
|
||
). However, in tyrannosaurids the insertion of m. long. cap. sup. was positioned dorsally relative to the centres of intervertebral rotation in the posterior part of the neck. This would result in a moment arm for dorsiflexion of the head relative to the base of the neck, should both muscles contract synchronously (
|
||
<figureCitation id="26D32A24FF89A60B7325130330CFFE57" box="[814,913,381,404]" captionStart="Figure 21" captionStartId="37.[164,243,1499,1518]" captionTargetBox="[330,1275,205,1466]" captionTargetId="figure@37.[335,1276,208,1418]" captionTargetPageId="37" captionText="Figure 21. A, origin scars of m. longissimus capitis superficialis (C7–D1 parapophyses) and m. longissimus capitis profundus (C6–C3 parapophyses) of Tyrannosaurus rex (AMNH 5027). B, short moment arm of m. longissimus capitis superficialis for neck plus head dorsiflexion. C, paroccipital process insertions and moment arms of m. longissimus capitis superficialis on Daspletosaurus torosus (CMN 8506). D, basioccipital insertions and moment arms of m. longissimus capitis profundus on Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the images are partly mirrored)." figureDoi="http://doi.org/10.5281/zenodo.3734960" httpUri="https://zenodo.org/record/3734960/files/figure.png" pageId="36" pageNumber="795">Fig. 21B</figureCitation>
|
||
). Because the insertions are lateral to the occipital condyle, the rostrum would not tip upwards under this activity; instead, the entire head would be retracted posterodorsally.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B732D1076366CFDDD" blockId="36.[806,1421,520,603]" box="[806,1330,520,542]" pageId="36" pageNumber="795">
|
||
M. rectus capitis superior/dorsalis (
|
||
<taxonomicName id="79E84D22FF89A60B74FF10763675FDDD" box="[1268,1323,520,542]" class="Aves" kingdom="Animalia" pageId="36" pageNumber="795" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B732D105930C6FD98" blockId="36.[806,1421,520,603]" pageId="36" pageNumber="795">
|
||
M. longissimus capitis profundus (Crododylia) (
|
||
<figureCitation id="26D32A24FF89A60B7325103B30CEFD98" box="[814,912,581,603]" captionStart="Figure 18" captionStartId="32.[144,223,198,217]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="31" captionText="Figure 18. Topological appearance of (A) m. splenius capitis (medial part) and (B) m. longus colli dorsalis/ transversospinalis cervicis, on anterior vertebrae and skull of Tyrannosaurus rex skeleton (AMNH 5027). Note that the parietals are probably closer to the axial neural spine than in neutral life posture, and m. splenius capitis would be longer than shown here. C, topological appearance of m. splenius on another specimen of Tyrannosaurus rex (BHI 3033). M. complexus is also represented, and m. transversospinalis capits is depicted as though reflected back. D, E, appearance of m. longissimus capitis profundus (large anterior muscle), and cervical mm. intertransversarii (bands between transverse processes), on skeleton of Tyrannosaurus rex (AMNH 5027). A′–E′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. splenius capitis of tyrannosaurids, for head dorsiflexion and stabilization. The large inference space is possible by morphological and physiological bracketing between homologous muscles in birds and crocodilians. B′, strength of functional inference for m. transversospinalis cervicis of tyrannosaurids, for neck dorsiflexion. Inference strengh is particularly high for this muscle. D′, Level II′ inference for ventroflexion by m. longissimus capitis profundus. E′, inferernce for lateroflexion by mm. interntransversarii, with poor, Level III′ support from physiological data; EMG has been uninformative about mm. intertrans. lateroflexion in extant archosaurs ." figureDoi="http://doi.org/10.5281/zenodo.3734954" httpUri="https://zenodo.org/record/3734954/files/figure.png" pageId="36" pageNumber="795">Fig. 18D</figureCitation>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B732D10F437F6FC12" blockId="36.[806,1421,650,977]" pageId="36" pageNumber="795">
|
||
Origin: Following the extant phylogenetic bracket, m. rectus capitis superior/m. longissimus capitis profundus (m.r.c.s./m.l.c.p.) of tyrannosaurids could have originated from the parapophyses of C1–C7 (
|
||
<figureCitation id="26D32A24FF89A60B7325117A30CDFCD9" box="[814,915,772,794]" captionStart="Figure 21" captionStartId="37.[164,243,1499,1518]" captionTargetBox="[330,1275,205,1466]" captionTargetId="figure@37.[335,1276,208,1418]" captionTargetPageId="37" captionText="Figure 21. A, origin scars of m. longissimus capitis superficialis (C7–D1 parapophyses) and m. longissimus capitis profundus (C6–C3 parapophyses) of Tyrannosaurus rex (AMNH 5027). B, short moment arm of m. longissimus capitis superficialis for neck plus head dorsiflexion. C, paroccipital process insertions and moment arms of m. longissimus capitis superficialis on Daspletosaurus torosus (CMN 8506). D, basioccipital insertions and moment arms of m. longissimus capitis profundus on Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the images are partly mirrored)." figureDoi="http://doi.org/10.5281/zenodo.3734960" httpUri="https://zenodo.org/record/3734960/files/figure.png" pageId="36" pageNumber="795">Fig. 21A</figureCitation>
|
||
). Because the neck is ventrally concave anteriorly, as in birds, the origins of m.r.c.s./m.l.c.p. may have been restricted to the parapophyses of C1–C6 for an unobstructed line of pull. It is possible that (as occurs in birds) tyrannosaurids possessed multiple bellies of m.r.c.s./m.l.c.p., each originating from its respective parapophysis.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B732D167F3669FB2F" blockId="36.[806,1421,1024,1260]" pageId="36" pageNumber="795">
|
||
Insertion: The insertion of m. rectus capitis dorsalis/m. longissimus capitis profundus of tyrannosaurids is less ambiguous than its origin. The basioccipital has large ventrolaterally projecting tuberosities, and m.r.c.s./m.l.c.p. probably inserted along their lateral margins, as in crocodilians (
|
||
<figureCitation id="26D32A24FF89A60B732516C630CDFB0D" box="[814,915,1208,1230]" captionStart="Figure 21" captionStartId="37.[164,243,1499,1518]" captionTargetBox="[330,1275,205,1466]" captionTargetId="figure@37.[335,1276,208,1418]" captionTargetPageId="37" captionText="Figure 21. A, origin scars of m. longissimus capitis superficialis (C7–D1 parapophyses) and m. longissimus capitis profundus (C6–C3 parapophyses) of Tyrannosaurus rex (AMNH 5027). B, short moment arm of m. longissimus capitis superficialis for neck plus head dorsiflexion. C, paroccipital process insertions and moment arms of m. longissimus capitis superficialis on Daspletosaurus torosus (CMN 8506). D, basioccipital insertions and moment arms of m. longissimus capitis profundus on Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the images are partly mirrored)." figureDoi="http://doi.org/10.5281/zenodo.3734960" httpUri="https://zenodo.org/record/3734960/files/figure.png" pageId="36" pageNumber="795">Fig. 21D</figureCitation>
|
||
). Multiple bellies of the muscle would have converged on the same insertion, as in birds.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B732D176537A0F9E6" blockId="36.[806,1422,1307,1573]" pageId="36" pageNumber="795">
|
||
Action/function: The insertion of m. rectus capitis superior/m. longissimus capitis profundus is ventrolateral to the occipital condyle of tyrannosaurids, with a short moment arm relative to the length of the skull (
|
||
<figureCitation id="26D32A24FF89A60B732517EB30CDFA68" box="[814,915,1429,1451]" captionStart="Figure 18" captionStartId="32.[144,223,198,217]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="31" captionText="Figure 18. Topological appearance of (A) m. splenius capitis (medial part) and (B) m. longus colli dorsalis/ transversospinalis cervicis, on anterior vertebrae and skull of Tyrannosaurus rex skeleton (AMNH 5027). Note that the parietals are probably closer to the axial neural spine than in neutral life posture, and m. splenius capitis would be longer than shown here. C, topological appearance of m. splenius on another specimen of Tyrannosaurus rex (BHI 3033). M. complexus is also represented, and m. transversospinalis capits is depicted as though reflected back. D, E, appearance of m. longissimus capitis profundus (large anterior muscle), and cervical mm. intertransversarii (bands between transverse processes), on skeleton of Tyrannosaurus rex (AMNH 5027). A′–E′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. splenius capitis of tyrannosaurids, for head dorsiflexion and stabilization. The large inference space is possible by morphological and physiological bracketing between homologous muscles in birds and crocodilians. B′, strength of functional inference for m. transversospinalis cervicis of tyrannosaurids, for neck dorsiflexion. Inference strengh is particularly high for this muscle. D′, Level II′ inference for ventroflexion by m. longissimus capitis profundus. E′, inferernce for lateroflexion by mm. interntransversarii, with poor, Level III′ support from physiological data; EMG has been uninformative about mm. intertrans. lateroflexion in extant archosaurs ." figureDoi="http://doi.org/10.5281/zenodo.3734954" httpUri="https://zenodo.org/record/3734954/files/figure.png" pageId="36" pageNumber="795">Fig. 18D</figureCitation>
|
||
). Kinematic inference (
|
||
<figureCitation id="26D32A24FF89A60B74A117EB3652FA69" box="[1194,1292,1429,1451]" captionStart="Figure 18" captionStartId="32.[144,223,198,217]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="31" captionText="Figure 18. Topological appearance of (A) m. splenius capitis (medial part) and (B) m. longus colli dorsalis/ transversospinalis cervicis, on anterior vertebrae and skull of Tyrannosaurus rex skeleton (AMNH 5027). Note that the parietals are probably closer to the axial neural spine than in neutral life posture, and m. splenius capitis would be longer than shown here. C, topological appearance of m. splenius on another specimen of Tyrannosaurus rex (BHI 3033). M. complexus is also represented, and m. transversospinalis capits is depicted as though reflected back. D, E, appearance of m. longissimus capitis profundus (large anterior muscle), and cervical mm. intertransversarii (bands between transverse processes), on skeleton of Tyrannosaurus rex (AMNH 5027). A′–E′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. splenius capitis of tyrannosaurids, for head dorsiflexion and stabilization. The large inference space is possible by morphological and physiological bracketing between homologous muscles in birds and crocodilians. B′, strength of functional inference for m. transversospinalis cervicis of tyrannosaurids, for neck dorsiflexion. Inference strengh is particularly high for this muscle. D′, Level II′ inference for ventroflexion by m. longissimus capitis profundus. E′, inferernce for lateroflexion by mm. interntransversarii, with poor, Level III′ support from physiological data; EMG has been uninformative about mm. intertrans. lateroflexion in extant archosaurs ." figureDoi="http://doi.org/10.5281/zenodo.3734954" httpUri="https://zenodo.org/record/3734954/files/figure.png" pageId="36" pageNumber="795">Fig. 18D′</figureCitation>
|
||
) indicates that the muscle was used for rapid lateral or ventrolateral flexion of the head versus the anterior cervicals. Bilateral contraction of m.r.c.s./m.l.c.p. would ventroflex the head relative to the neck.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60B732D14403796F997" blockId="36.[806,1224,1598,1620]" box="[806,1224,1598,1620]" pageId="36" pageNumber="795">
|
||
Mm. intertransversarii (
|
||
<figureCitation id="26D32A24FF89A60B746B1440379EF997" box="[1120,1216,1598,1620]" captionStart="Figure 18" captionStartId="32.[144,223,198,217]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="31" captionText="Figure 18. Topological appearance of (A) m. splenius capitis (medial part) and (B) m. longus colli dorsalis/ transversospinalis cervicis, on anterior vertebrae and skull of Tyrannosaurus rex skeleton (AMNH 5027). Note that the parietals are probably closer to the axial neural spine than in neutral life posture, and m. splenius capitis would be longer than shown here. C, topological appearance of m. splenius on another specimen of Tyrannosaurus rex (BHI 3033). M. complexus is also represented, and m. transversospinalis capits is depicted as though reflected back. D, E, appearance of m. longissimus capitis profundus (large anterior muscle), and cervical mm. intertransversarii (bands between transverse processes), on skeleton of Tyrannosaurus rex (AMNH 5027). A′–E′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. splenius capitis of tyrannosaurids, for head dorsiflexion and stabilization. The large inference space is possible by morphological and physiological bracketing between homologous muscles in birds and crocodilians. B′, strength of functional inference for m. transversospinalis cervicis of tyrannosaurids, for neck dorsiflexion. Inference strengh is particularly high for this muscle. D′, Level II′ inference for ventroflexion by m. longissimus capitis profundus. E′, inferernce for lateroflexion by mm. interntransversarii, with poor, Level III′ support from physiological data; EMG has been uninformative about mm. intertrans. lateroflexion in extant archosaurs ." figureDoi="http://doi.org/10.5281/zenodo.3734954" httpUri="https://zenodo.org/record/3734954/files/figure.png" pageId="36" pageNumber="795">Fig. 18E</figureCitation>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF89A60A732D14FD3141F8D0" blockId="36.[806,1421,1667,1903]" lastBlockId="37.[164,779,1758,1903]" lastPageId="37" lastPageNumber="796" pageId="36" pageNumber="795">
|
||
Origin: M. intertransversarii of tyrannosaurids probably originated from the anterior surfaces of the parapophyses of C10–C6 (
|
||
<figureCitation id="26D32A24FF89A60B747F14BE3787F915" box="[1140,1241,1728,1750]" captionStart="Figure 22" captionStartId="38.[144,223,1143,1162]" captionTargetBox="[310,1256,198,1113]" captionTargetId="figure@38.[310,1256,197,1113]" captionTargetPageId="38" captionText="Figure 22. A, origins and insertions of mm. intercristales (top, light-fill shapes), mm. intertransversarii (dark-fill shapes) and an interpretation of dorsal, rib head origins (large light-filled shapes) of m. iliocostalis capitis, of Tyrannosaurus rex (AMNH 5027). B, moment arms for lateroflexion by mm. intertransversarii on C6–C8 of Tyrannosaurus rex (BHI 3033, ventral view)." figureDoi="http://doi.org/10.5281/zenodo.3734962" httpUri="https://zenodo.org/record/3734962/files/figure.png" pageId="36" pageNumber="795">Fig. 22A</figureCitation>
|
||
). Because the parapophyses are robust in this region, there may have been superficial and deep divisions of m. intertransversarii, as seen in
|
||
<taxonomicName id="79E84D22FF89A60B745115623789F8F2" authority="Wiegmann, 1829" box="[1114,1239,1820,1841]" class="Reptilia" family="Helodermatidae" genus="Heloderma" kingdom="Animalia" order="Squamata" pageId="36" pageNumber="795" phylum="Chordata" rank="genus">Heloderma</taxonomicName>
|
||
(
|
||
<bibRefCitation id="DA794B50FF89A60B74E7156230F9F893" author="Herrell A & De Vree F." journalOrPublisher="Belgian Journal of Zoology" pageId="36" pageNumber="795" pagination="175 - 186" part="129" refId="ref28038" refString="Herrell A, De Vree F. 1999. The cervical musculature in helodermatid lizards. Belgian Journal of Zoology 129: 175 - 186." title="The cervical musculature in helodermatid lizards" type="journal article" year="1999">Herrell & De Vree, 1999</bibRefCitation>
|
||
). Anterior cervicals in some tyrannosaurids display a groove posteroventral to the prezygapophyses that may have served as origin for m. intertransversarii in this region.
|
||
</paragraph>
|
||
<caption id="EA976629FF88A60A70AF17A5324EF942" ID-DOI="http://doi.org/10.5281/zenodo.3734960" ID-Zenodo-Dep="3734960" httpUri="https://zenodo.org/record/3734960/files/figure.png" pageId="37" pageNumber="796" startId="37.[164,243,1499,1518]" targetBox="[330,1275,205,1466]" targetPageId="37">
|
||
<paragraph id="BE5736A1FF88A60A70AF17A5324EF942" blockId="37.[164,1441,1499,1665]" pageId="37" pageNumber="796">
|
||
Figure 21. A, origin scars of m. longissimus capitis superficialis (C7–D1 parapophyses) and m. longissimus capitis profundus (C6–C3 parapophyses) of
|
||
<taxonomicName id="79E84D22FF88A60A7226178731ADF9C8" authority="Osborn, 1905" box="[557,755,1529,1547]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="37" pageNumber="796" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<materialsCitation id="0E803CFCFF88A60A7308178730D1F9CF" ID-GBIF-Occurrence="3396397309" box="[771,911,1529,1548]" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&specimen_id=47761 " pageId="37" pageNumber="796" specimenCode="AMNH 5027">AMNH 5027</materialsCitation>
|
||
). B, short moment arm of m. longissimus capitis superficialis for neck plus head dorsiflexion. C, paroccipital process insertions and moment arms of m. longissimus capitis superficialis on
|
||
<taxonomicName id="79E84D22FF88A60A71AA144D31C6F985" authority="Russell, 1970" box="[417,664,1587,1606]" class="Reptilia" family="Tyrannosauridae" genus="Daspletosaurus" kingdom="Animalia" order="Dinosauria" pageId="37" pageNumber="796" phylum="Chordata" rank="species" species="torosus">Daspletosaurus torosus</taxonomicName>
|
||
(CMN 8506). D, basioccipital insertions and moment arms of m. longissimus capitis profundus on
|
||
<taxonomicName id="79E84D22FF88A60A71D5142F318CF9A0" authority="Russell, 1970" box="[478,722,1617,1636]" class="Reptilia" family="Tyrannosauridae" genus="Daspletosaurus" kingdom="Animalia" order="Dinosauria" pageId="37" pageNumber="796" phylum="Chordata" rank="species" species="torosus">Daspletosaurus torosus</taxonomicName>
|
||
(CMN 8506; the specimen is incomplete and the images are partly mirrored).
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FF88A60970AF154531C8F975" blockId="37.[164,779,1758,1903]" lastBlockId="38.[144,759,1359,1718]" lastPageId="38" lastPageNumber="797" pageId="37" pageNumber="796">
|
||
Insertion: Posterior cervical insertions of m. intertransversarii in tyrannosaurids would have been on the posterior parapophyseal surface of the anterior vertebra of each pair, from C9 to C5 (
|
||
<figureCitation id="26D32A24FF88A60A74EC14833615F8D0" box="[1255,1355,1789,1811]" captionStart="Figure 22" captionStartId="38.[144,223,1143,1162]" captionTargetBox="[310,1256,198,1113]" captionTargetId="figure@38.[310,1256,197,1113]" captionTargetPageId="38" captionText="Figure 22. A, origins and insertions of mm. intercristales (top, light-fill shapes), mm. intertransversarii (dark-fill shapes) and an interpretation of dorsal, rib head origins (large light-filled shapes) of m. iliocostalis capitis, of Tyrannosaurus rex (AMNH 5027). B, moment arms for lateroflexion by mm. intertransversarii on C6–C8 of Tyrannosaurus rex (BHI 3033, ventral view)." figureDoi="http://doi.org/10.5281/zenodo.3734962" httpUri="https://zenodo.org/record/3734962/files/figure.png" pageId="37" pageNumber="796">Fig. 22A</figureCitation>
|
||
). Insertions on anterior vertebrae are ambiguous, and may have been onto fascia attaching to the posterior parapophyses of C4–C1 Action/function: The laterally extensive posterior transverse processes of tyannosaurids suggest long moment arms for lateroflexion of vertebrae relative to each other in this region (
|
||
<figureCitation id="26D32A24FF8BA60971CF17D53175FA03" box="[452,555,1451,1473]" captionStart="Figure 18" captionStartId="32.[144,223,198,217]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="31" captionText="Figure 18. Topological appearance of (A) m. splenius capitis (medial part) and (B) m. longus colli dorsalis/ transversospinalis cervicis, on anterior vertebrae and skull of Tyrannosaurus rex skeleton (AMNH 5027). Note that the parietals are probably closer to the axial neural spine than in neutral life posture, and m. splenius capitis would be longer than shown here. C, topological appearance of m. splenius on another specimen of Tyrannosaurus rex (BHI 3033). M. complexus is also represented, and m. transversospinalis capits is depicted as though reflected back. D, E, appearance of m. longissimus capitis profundus (large anterior muscle), and cervical mm. intertransversarii (bands between transverse processes), on skeleton of Tyrannosaurus rex (AMNH 5027). A′–E′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. splenius capitis of tyrannosaurids, for head dorsiflexion and stabilization. The large inference space is possible by morphological and physiological bracketing between homologous muscles in birds and crocodilians. B′, strength of functional inference for m. transversospinalis cervicis of tyrannosaurids, for neck dorsiflexion. Inference strengh is particularly high for this muscle. D′, Level II′ inference for ventroflexion by m. longissimus capitis profundus. E′, inferernce for lateroflexion by mm. interntransversarii, with poor, Level III′ support from physiological data; EMG has been uninformative about mm. intertrans. lateroflexion in extant archosaurs ." figureDoi="http://doi.org/10.5281/zenodo.3734954" httpUri="https://zenodo.org/record/3734954/files/figure.png" pageId="38" pageNumber="797">Figs 18B</figureCitation>
|
||
,
|
||
<figureCitation id="26D32A24FF8BA609723117D53134FA02" box="[570,618,1451,1473]" captionStart="Figure 22" captionStartId="38.[144,223,1143,1162]" captionTargetBox="[310,1256,198,1113]" captionTargetId="figure@38.[310,1256,197,1113]" captionTargetPageId="38" captionText="Figure 22. A, origins and insertions of mm. intercristales (top, light-fill shapes), mm. intertransversarii (dark-fill shapes) and an interpretation of dorsal, rib head origins (large light-filled shapes) of m. iliocostalis capitis, of Tyrannosaurus rex (AMNH 5027). B, moment arms for lateroflexion by mm. intertransversarii on C6–C8 of Tyrannosaurus rex (BHI 3033, ventral view)." figureDoi="http://doi.org/10.5281/zenodo.3734962" httpUri="https://zenodo.org/record/3734962/files/figure.png" pageId="38" pageNumber="797">22B</figureCitation>
|
||
). The slight opisthocoely of the centra in this region suggests limited displacement, and possible functions of damping and stabilization of lateral flexion by contralateral muscles. The anterior mm. intertransversarii are bracketable as being present in tyrannosaurids. They had shorter lever arms, and were kinematically less suited for intervertebral lateroflexion than were the posterior bellies.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF88A60A74451527370CF8AD" blockId="37.[826,1441,1758,1903]" box="[1102,1106,1881,1902]" pageId="37" pageNumber="796">.</paragraph>
|
||
<caption id="EA976629FF8BA609709B1609327DFB21" ID-DOI="http://doi.org/10.5281/zenodo.3734962" ID-Zenodo-Dep="3734962" httpUri="https://zenodo.org/record/3734962/files/figure.png" pageId="38" pageNumber="797" startId="38.[144,223,1143,1162]" targetBox="[310,1256,198,1113]" targetPageId="38">
|
||
<paragraph id="BE5736A1FF8BA609709B1609327DFB21" blockId="38.[144,1421,1143,1250]" pageId="38" pageNumber="797">
|
||
Figure 22. A, origins and insertions of mm. intercristales (top, light-fill shapes), mm. intertransversarii (dark-fill shapes) and an interpretation of dorsal, rib head origins (large light-filled shapes) of m. iliocostalis capitis, of
|
||
<taxonomicName id="79E84D22FF8BA60974C316EB36D3FB64" authority="Osborn, 1905" box="[1224,1421,1173,1191]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="38" pageNumber="797" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<materialsCitation id="0E803CFCFF8BA609709D16CC327FFB07" ID-GBIF-Occurrence="3396397305" box="[150,289,1201,1221]" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&specimen_id=47761 " pageId="38" pageNumber="797" specimenCode="AMNH 5027">AMNH 5027</materialsCitation>
|
||
). B, moment arms for lateroflexion by mm. intertransversarii on C6–C8 of
|
||
<taxonomicName id="79E84D22FF8BA609744116CC3651FB07" authority="Osborn, 1905" box="[1098,1295,1202,1220]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="38" pageNumber="797" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<materialsCitation id="0E803CFCFF8BA609751416CC36D4FB06" ID-GBIF-Occurrence="3396397315" box="[1311,1418,1202,1221]" collectionCode="BHI" pageId="38" pageNumber="797" specimenCode="BHI 3033">BHI 3033</materialsCitation>
|
||
, ventral view).
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FF8BA609709B14A031C8F937" blockId="38.[144,758,1758,1903]" box="[144,662,1758,1780]" pageId="38" pageNumber="797">C. M. iliocostalis and m. longus systems</paragraph>
|
||
<paragraph id="BE5736A1FF8BA609709B14833146F8AC" blockId="38.[144,758,1758,1903]" pageId="38" pageNumber="797">
|
||
M. rectus capitis lateralis (
|
||
<bibRefCitation id="DA794B50FF8BA609721514833274F8F2" author="Vanden Berge JC & Zweers GA" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="38" pageNumber="797" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF8BA6097132156232A1F8F1" author="Cong L & Hou L & Wu X-C & Hou J." box="[313,511,1820,1842]" journalOrPublisher="Beijing: Science Press" pageId="38" pageNumber="797" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
).
|
||
<taxonomicName id="79E84D22FF8BA609721F15623112F8F2" box="[532,588,1820,1841]" class="Aves" pageId="38" pageNumber="797" rank="class">Aves</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FF8BA60972521562318BF8F1" box="[601,725,1820,1842]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="38" pageNumber="797" phylum="Chordata" rank="order">Crododylia</taxonomicName>
|
||
M. iliocostalis capitis (
|
||
<bibRefCitation id="DA794B50FF8BA60971BE1544311BF88C" author="Seidel R." box="[437,581,1850,1872]" journalOrPublisher="City University of New York" pageId="38" pageNumber="797" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF8BA609725F15443251F8AC" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="38" pageNumber="797" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
).
|
||
<taxonomicName id="79E84D22FF8BA6097128152732C2F8AC" box="[291,412,1881,1903]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="38" pageNumber="797" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
(
|
||
<figureCitation id="26D32A24FF8BA60971A51527314EF8AC" box="[430,528,1881,1903]" captionStart="Figure 17" captionStartId="29.[164,243,1678,1697]" captionTargetId="figure@30.[336,1227,196,1802]" captionTargetPageId="30" captionText="Figure 17. A, topological appearance of m. transversospinalis capitis on anterior vertebrae and skull of Tyrannosaurus rex (AMNH 5027). The insertion is inferred as strongly tendinous, and is rendered as white. B, topological appearance of m. longissimus capitis superficialis restored on the same skeleton. The posterior origin was tendinous, and its morphology is depicted as white. C, D, topological appearance of (C) m. complexus and (D) m. iliocostalis capitis on anterior axial skeleton of Tyrannosaurus rex skeleton (AMNH 5027). A′–D′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. transversospinalis capitis (m. trans. cap. strong Level I′ inference of dorsiflexion). B′, weaker, Level II′ inference of lateroflexion in m. longissimus capitis superficialis. C′, D′, Level II′ strengths of functional inference for m. complexus (m. compl.) and m. iliocostalis capitis (m. il. cap.)." figureDoi="http://doi.org/10.5281/zenodo.3734952" httpUri="https://zenodo.org/record/3734952/files/figure.png" pageId="38" pageNumber="797">Fig. 17D</figureCitation>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8BA609732D172E3768F8F3" blockId="38.[806,1422,1359,1901]" pageId="38" pageNumber="797">
|
||
Origin: The origin of this muscle is ambiguous in tyrannosaurids (
|
||
<figureCitation id="26D32A24FF8BA60973E117103711FA47" box="[1002,1103,1390,1412]" captionStart="Figure 22" captionStartId="38.[144,223,1143,1162]" captionTargetBox="[310,1256,198,1113]" captionTargetId="figure@38.[310,1256,197,1113]" captionTargetPageId="38" captionText="Figure 22. A, origins and insertions of mm. intercristales (top, light-fill shapes), mm. intertransversarii (dark-fill shapes) and an interpretation of dorsal, rib head origins (large light-filled shapes) of m. iliocostalis capitis, of Tyrannosaurus rex (AMNH 5027). B, moment arms for lateroflexion by mm. intertransversarii on C6–C8 of Tyrannosaurus rex (BHI 3033, ventral view)." figureDoi="http://doi.org/10.5281/zenodo.3734962" httpUri="https://zenodo.org/record/3734962/files/figure.png" pageId="38" pageNumber="797">Fig. 22A</figureCitation>
|
||
). The morphology of their cervical ribs and ventral portion of the anterior cervicals differ from those of both extant archosaur clades. Large non-avian theropods lack the large axial hypopophysis that serves as the site of origin of m. rectus capitis lateralis in birds. The cervical rib shafts of archosaurs primitively are long, slender structures in which the anterior rib overlaps the succeeding one ventrally. The shafts are especially long in large theropods, and in
|
||
<taxonomicName id="79E84D22FF8BA60974B914FC36D3F954" authority="Osborn, 1905" box="[1202,1421,1666,1687]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="38" pageNumber="797" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
run ventrolateral to the centra of up to five vertebrae posterior to that of the rib’s attachment. Except for the atlantal rib, the ribs form large proximal plates lateral to the parapophyses and diapophyses (
|
||
<figureCitation id="26D32A24FF8BA60973CD15643775F8F3" box="[966,1067,1818,1840]" captionStart="Figure 22" captionStartId="38.[144,223,1143,1162]" captionTargetBox="[310,1256,198,1113]" captionTargetId="figure@38.[310,1256,197,1113]" captionTargetPageId="38" captionText="Figure 22. A, origins and insertions of mm. intercristales (top, light-fill shapes), mm. intertransversarii (dark-fill shapes) and an interpretation of dorsal, rib head origins (large light-filled shapes) of m. iliocostalis capitis, of Tyrannosaurus rex (AMNH 5027). B, moment arms for lateroflexion by mm. intertransversarii on C6–C8 of Tyrannosaurus rex (BHI 3033, ventral view)." figureDoi="http://doi.org/10.5281/zenodo.3734962" httpUri="https://zenodo.org/record/3734962/files/figure.png" pageId="38" pageNumber="797">Fig. 22A</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8BA60873341547320BFDA9" blockId="38.[806,1422,1359,1901]" lastBlockId="39.[164,779,198,1138]" lastPageId="39" lastPageNumber="798" pageId="38" pageNumber="797">
|
||
This morphology contrasts markedly with the poles of the extant bracket, and complicates identification of the muscle’s origin in tyrannosaurids. In crocodilians only the altantal and axial cervical ribs have long and overlapping shafts. In birds cervical ribs are absent or reduced to a costal process.
|
||
<bibRefCitation id="DA794B50FF8AA608727B135C32C6FE95" author="Bakker RT & Williams M & Currie PJ" journalOrPublisher="Hunteria" pageId="39" pageNumber="798" pagination="1 - 30" part="1" refId="ref27054" refString="Bakker RT, Williams M, Currie PJ. 1986. Nanotyrannus, a new genus of pygmy tyrannosaur, from the latest Cretaceous of Montana. Hunteria 1: 1 - 30." title="Nanotyrannus, a new genus of pygmy tyrannosaur, from the latest Cretaceous of Montana" type="journal article" year="1986">Bakker, Williams & Currie (1986)</bibRefCitation>
|
||
and
|
||
<bibRefCitation id="DA794B50FF8AA60871DA133E312AFE95" author="Bakker RT" box="[465,628,320,342]" journalOrPublisher="Gaia" pageId="39" pageNumber="798" pagination="145 - 158" part="15" refId="ref27031" refString="Bakker RT. 2000. Brontosaur killers: late Jurassic allosaurids as sabre-tooth cat analogues. Gaia 15: 145 - 158." title="Brontosaur killers: late Jurassic allosaurids as sabre-tooth cat analogues" type="journal article" year="2000">Bakker (2000)</bibRefCitation>
|
||
propose that in large theropods m. rectus capitis lateralis/m. iliocostalis capitis (which they termed m. longissimus transversarius) originated from a tendinous sheath that surrounded the overlapping shafts of the anterior cervical ribs. This is similar to the origin from C1 and C2 ribs in crocodilians, which represent an anterior restriction of multiple overlapping cervical ribs that probably occurred ancestrally in archosaurs (
|
||
<bibRefCitation id="DA794B50FF8AA60870A0102A3214FDA9" author="Bakker RT" box="[171,330,596,618]" journalOrPublisher="Gaia" pageId="39" pageNumber="798" pagination="145 - 158" part="15" refId="ref27031" refString="Bakker RT. 2000. Brontosaur killers: late Jurassic allosaurids as sabre-tooth cat analogues. Gaia 15: 145 - 158." title="Brontosaur killers: late Jurassic allosaurids as sabre-tooth cat analogues" type="journal article" year="2000">Bakker, 2000</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8AA60870B7100D32D9FBB1" blockId="39.[164,779,198,1138]" pageId="39" pageNumber="798">
|
||
However, because the cervical rib shafts are proportionally much more slender in tyrannosaurids than are the C1 and C2 ribs of crocodilians, an origin of m. rectus capitis lateralis (m. r.c.l.) from a sheath surrounding the ribs may have been relatively weak. This conflicts with a large possible insertion for this muscle, which indicates a large cross-section and high force-generating capacity. An alternative possibility is that m. rectus capitis lateralis of tyrannosaurids was dorsally displaced and originated from the robust heads of the cervical ribs (
|
||
<figureCitation id="26D32A24FF8AA60871FC11DA3104FC79" box="[503,602,932,954]" captionStart="Figure 22" captionStartId="38.[144,223,1143,1162]" captionTargetBox="[310,1256,198,1113]" captionTargetId="figure@38.[310,1256,197,1113]" captionTargetPageId="38" captionText="Figure 22. A, origins and insertions of mm. intercristales (top, light-fill shapes), mm. intertransversarii (dark-fill shapes) and an interpretation of dorsal, rib head origins (large light-filled shapes) of m. iliocostalis capitis, of Tyrannosaurus rex (AMNH 5027). B, moment arms for lateroflexion by mm. intertransversarii on C6–C8 of Tyrannosaurus rex (BHI 3033, ventral view)." figureDoi="http://doi.org/10.5281/zenodo.3734962" httpUri="https://zenodo.org/record/3734962/files/figure.png" pageId="39" pageNumber="798">Fig. 22A</figureCitation>
|
||
), and that m. iliocostalis cervicis inserted on a tubular sheath of fascia that enveloped the shafts. Because this arrangement differs from that of crocodilians and birds, it must be considered tentative, but can be tested by histological examination of the rib heads for tendon attachment.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8AA60870AF16D7317EF9CC" blockId="39.[164,779,1192,1551]" pageId="39" pageNumber="798">
|
||
Insertion: In both birds and crocodilians, and in tyrannosaurids by EPB, the m. rectus capitis lateralis inserts onto a distinct ridge on the ventral margin of the paroccipital processes (
|
||
<figureCitation id="26D32A24FF8AA60871D0177A311EFAD9" box="[475,576,1284,1306]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="39" pageNumber="798">Fig. 19D</figureCitation>
|
||
). The insertion is broader dorsoventrally in crocodilians than in birds. In tyrannosaurids a large triangular concavity, broad medially and tapering laterally, occurs dorsal to the ventral edge of the paroccipital processes (
|
||
<figureCitation id="26D32A24FF8AA6087291170131A1FA56" box="[666,767,1407,1429]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="39" pageNumber="798">Fig. 19D</figureCitation>
|
||
). It is possible that m. rectus capitis lateralis extended dorsally onto this entire indentation, but a ventrally restricted insertion is more parsimonious given its occurrence in extant archosaurs.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8AA60870AF143B31D8F8AC" blockId="39.[164,779,1605,1903]" pageId="39" pageNumber="798">
|
||
Action/function: M. rectus capitis lateralis/m. iliocostalis capitis of tyrannosaurids inserts laterally and somewhat ventrally to the occipital condyle, indicating primarily lateral flexion of the head versus the neck by each muscle (
|
||
<figureCitation id="26D32A24FF8AA60871BA14BE3148F915" box="[433,534,1728,1750]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionTargetPageId="32" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="39" pageNumber="798">Fig. 19D</figureCitation>
|
||
), and some capacity for head ventroflexion. Kinematic inference of the muscle’s action in
|
||
<taxonomicName id="79E84D22FF8AA608717C14833167F8D0" authorityName="Osborn" authorityYear="1906" box="[375,569,1789,1811]" class="Reptilia" family="Tyrannosauridae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="39" pageNumber="798" phylum="Chordata" rank="family">Tyrannosauridae</taxonomicName>
|
||
is consistent with crocodilian EMG showing activity during head lateral flexion and rotation, as well as damping activity during head dorsiflexion (
|
||
<figureCitation id="26D32A24FF8AA60871DB15273164F8AD" box="[464,570,1881,1903]" captionStart="Figure 17" captionStartId="29.[164,243,1678,1697]" captionTargetId="figure@30.[336,1227,196,1802]" captionTargetPageId="30" captionText="Figure 17. A, topological appearance of m. transversospinalis capitis on anterior vertebrae and skull of Tyrannosaurus rex (AMNH 5027). The insertion is inferred as strongly tendinous, and is rendered as white. B, topological appearance of m. longissimus capitis superficialis restored on the same skeleton. The posterior origin was tendinous, and its morphology is depicted as white. C, D, topological appearance of (C) m. complexus and (D) m. iliocostalis capitis on anterior axial skeleton of Tyrannosaurus rex skeleton (AMNH 5027). A′–D′, functional inference strengths of muscles after visualization of inference space in Figure 2. A′, strength of functional inference for m. transversospinalis capitis (m. trans. cap. strong Level I′ inference of dorsiflexion). B′, weaker, Level II′ inference of lateroflexion in m. longissimus capitis superficialis. C′, D′, Level II′ strengths of functional inference for m. complexus (m. compl.) and m. iliocostalis capitis (m. il. cap.)." figureDoi="http://doi.org/10.5281/zenodo.3734952" httpUri="https://zenodo.org/record/3734952/files/figure.png" pageId="39" pageNumber="798">Figs 17D</figureCitation>
|
||
,
|
||
<figureCitation id="26D32A24FF8AA608724315273127F8AC" box="[584,633,1881,1903]" captionStart="Figure 19" captionStartId="32.[144,223,1694,1713]" captionTargetBox="[145,1421,733,1663]" captionTargetId="figure@32.[145,1422,778,1621]" captionText="Figure 19. A, origins of m. transversospinalis capitis (C2–C9), m. complexus (C2–C5) and m. splenius capitis from C2 and possibly C3, of Tyrannosaurus rex (BHI 3033). B, rugose scarring of m. transversospinalis capitis insertion on parietals of Tyrannosaurus rex (AMNH 5029). C, insertion of m. transversospinalis capitis onto parietals of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), with moment arms for lateral and dorsiflexion. D, insertions and moment arms for m. complexus (two dorsal) and m. iliocostalis capitis (ventral) on occiput of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored for clarity)." figureDoi="http://doi.org/10.5281/zenodo.3734956" httpUri="https://zenodo.org/record/3734956/files/figure.png" pageId="39" pageNumber="798">19D</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8AA608733112B830A4FE95" blockId="39.[826,1441,198,342]" pageId="39" pageNumber="798">
|
||
M. rectus capitis ventralis. (
|
||
<bibRefCitation id="DA794B50FF8AA60874C612B8308BFF39" author="Vanden Berge JC & Zweers GA" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="39" pageNumber="798" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF8AA60873E8129B37F4FF38" author="Cong L & Hou L & Wu X-C & Hou J." box="[995,1194,228,251]" journalOrPublisher="Beijing: Science Press" pageId="39" pageNumber="798" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FF8AA60874CC129B37A1FF39" box="[1223,1279,229,250]" class="Aves" pageId="39" pageNumber="798" rank="class">Aves</taxonomicName>
|
||
,
|
||
<taxonomicName id="79E84D22FF8AA6087506129A36D4FF39" box="[1293,1418,228,250]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="39" pageNumber="798" phylum="Chordata" rank="order">Crododylia</taxonomicName>
|
||
) M. longus capitis (
|
||
<bibRefCitation id="DA794B50FF8AA6087422137D37AEFEDA" author="Cong L & Hou L & Wu X-C & Hou J." box="[1065,1264,259,281]" journalOrPublisher="Beijing: Science Press" pageId="39" pageNumber="798" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FF8AA6087506137D36D6FEDA" box="[1293,1416,259,281]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="39" pageNumber="798" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
) M. flexor colli (
|
||
<bibRefCitation id="DA794B50FF8AA6087418135C36CBFEFB" author="Vanden Berge JC & Zweers GA" box="[1043,1429,290,312]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="39" pageNumber="798" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FF8AA608734A133E3026FE95" box="[833,888,320,342]" class="Aves" kingdom="Animalia" pageId="39" pageNumber="798" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
) (
|
||
<figureCitation id="26D32A24FF8AA608739A133E30ADFE95" box="[913,1011,320,342]" captionStart="Figure 23" captionStartId="40.[144,223,1595,1614]" captionTargetBox="[305,1261,197,1565]" captionTargetId="figure@40.[403,1262,197,1562]" captionTargetPageId="40" captionText="Figure 23. A, topological appearance of m. rectus capitis ventralis (anterior muscles) and m. iliocostalis cervicis (posteroventrally originating muscles) on anterior axial skeleton of Tyrannosaurus rex (BHI 3033), ventral view. The moment arm for lateral flexion by m. iliocostalis cervicis is superimposed. B, m. r.c.v.: origins of m. rectus capitis ventralis from ventral spinous processes of Tyrannosaurus rex (BHI 3033) with arrow showing course of the muscle. m. il. cerv.: origin from ventral centra and insertions onto ventral fascia of cervical ribs of m. iliocostalis cervicis, with arrow showing course of the muscle. C, insertion of m. rectus capitis ventralis onto basioccipital of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), showing moment arms. Because the tyrannosaurid occiput slopes anteroventrally, the ventroflexion moment arm is somewhat longer than depicted in this view. D, strength of functional inference for head ventroflexion by m. rectus capitis ventralis in Tyrannosaurus rex. E, strength of functional inference for neck lateroflexion by m. iliocostalis cervicis of Tyrannosaurus rex." figureDoi="http://doi.org/10.5281/zenodo.3734964" httpUri="https://zenodo.org/record/3734964/files/figure.png" pageId="39" pageNumber="798">Fig. 23A</figureCitation>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8AA608733113113747FD98" blockId="39.[826,1441,367,603]" pageId="39" pageNumber="798">Unlike in many extant archosaurs, the ventral spinous processes of tyrannosaurids are small, which complicates inferences about these muscles. The only one that can be readily bracketed is m. rectus capitis ventralis. The presence of m. longus capitis, as seen in crocodilians, and of m. flexor colli, as in birds, are equivocal in tyrannosaurids; hence these muscles are not discussed here.</paragraph>
|
||
<paragraph id="BE5736A1FF8AA608733110FB37A4FCF7" blockId="39.[826,1441,645,820]" pageId="39" pageNumber="798">
|
||
Origin: The small, anterior ventral spinous processes of tyrannosaurids bear surfaces visible in anterior view that may have served as origins for m. rectus capitis ventralis (
|
||
<figureCitation id="26D32A24FF8AA608741A109F372BFD34" box="[1041,1141,737,759]" captionStart="Figure 23" captionStartId="40.[144,223,1595,1614]" captionTargetBox="[305,1261,197,1565]" captionTargetId="figure@40.[403,1262,197,1562]" captionTargetPageId="40" captionText="Figure 23. A, topological appearance of m. rectus capitis ventralis (anterior muscles) and m. iliocostalis cervicis (posteroventrally originating muscles) on anterior axial skeleton of Tyrannosaurus rex (BHI 3033), ventral view. The moment arm for lateral flexion by m. iliocostalis cervicis is superimposed. B, m. r.c.v.: origins of m. rectus capitis ventralis from ventral spinous processes of Tyrannosaurus rex (BHI 3033) with arrow showing course of the muscle. m. il. cerv.: origin from ventral centra and insertions onto ventral fascia of cervical ribs of m. iliocostalis cervicis, with arrow showing course of the muscle. C, insertion of m. rectus capitis ventralis onto basioccipital of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), showing moment arms. Because the tyrannosaurid occiput slopes anteroventrally, the ventroflexion moment arm is somewhat longer than depicted in this view. D, strength of functional inference for head ventroflexion by m. rectus capitis ventralis in Tyrannosaurus rex. E, strength of functional inference for neck lateroflexion by m. iliocostalis cervicis of Tyrannosaurus rex." figureDoi="http://doi.org/10.5281/zenodo.3734964" httpUri="https://zenodo.org/record/3734964/files/figure.png" pageId="39" pageNumber="798">Fig. 23B</figureCitation>
|
||
). The origins could also have extended onto the ventral surfaces of the anterior cervical centra, as in crocodilians.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8AA6087331112030A2FC2D" blockId="39.[826,1441,862,1006]" pageId="39" pageNumber="798">
|
||
Insertion: The insertion of m. rectus capitis ventralis of tyrannosaurids could have been either onto the ventral surface of the basioccipital tuberosities (
|
||
<figureCitation id="26D32A24FF8AA608734911C730FAFC13" box="[834,932,953,976]" captionStart="Figure 23" captionStartId="40.[144,223,1595,1614]" captionTargetBox="[305,1261,197,1565]" captionTargetId="figure@40.[403,1262,197,1562]" captionTargetPageId="40" captionText="Figure 23. A, topological appearance of m. rectus capitis ventralis (anterior muscles) and m. iliocostalis cervicis (posteroventrally originating muscles) on anterior axial skeleton of Tyrannosaurus rex (BHI 3033), ventral view. The moment arm for lateral flexion by m. iliocostalis cervicis is superimposed. B, m. r.c.v.: origins of m. rectus capitis ventralis from ventral spinous processes of Tyrannosaurus rex (BHI 3033) with arrow showing course of the muscle. m. il. cerv.: origin from ventral centra and insertions onto ventral fascia of cervical ribs of m. iliocostalis cervicis, with arrow showing course of the muscle. C, insertion of m. rectus capitis ventralis onto basioccipital of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), showing moment arms. Because the tyrannosaurid occiput slopes anteroventrally, the ventroflexion moment arm is somewhat longer than depicted in this view. D, strength of functional inference for head ventroflexion by m. rectus capitis ventralis in Tyrannosaurus rex. E, strength of functional inference for neck lateroflexion by m. iliocostalis cervicis of Tyrannosaurus rex." figureDoi="http://doi.org/10.5281/zenodo.3734964" httpUri="https://zenodo.org/record/3734964/files/figure.png" pageId="39" pageNumber="798">Fig. 23B</figureCitation>
|
||
), as in crocodilians, or onto the basioccipital, as seen in birds.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8AA60873311666363CFB6B" blockId="39.[826,1441,1048,1192]" pageId="39" pageNumber="798">
|
||
Action/function: Regardless of whether either likely insertion was present, m. rectus capitis ventralis would have attached ventrally to the occipital condyle of tyrannosaurids. Kinematic inference indicates head ventroflexion relative to the neck (
|
||
<figureCitation id="26D32A24FF8AA60874DB16EC360BFB6B" box="[1232,1365,1170,1192]" captionStart="Figure 23" captionStartId="40.[144,223,1595,1614]" captionTargetBox="[305,1261,197,1565]" captionTargetId="figure@40.[403,1262,197,1562]" captionTargetPageId="40" captionText="Figure 23. A, topological appearance of m. rectus capitis ventralis (anterior muscles) and m. iliocostalis cervicis (posteroventrally originating muscles) on anterior axial skeleton of Tyrannosaurus rex (BHI 3033), ventral view. The moment arm for lateral flexion by m. iliocostalis cervicis is superimposed. B, m. r.c.v.: origins of m. rectus capitis ventralis from ventral spinous processes of Tyrannosaurus rex (BHI 3033) with arrow showing course of the muscle. m. il. cerv.: origin from ventral centra and insertions onto ventral fascia of cervical ribs of m. iliocostalis cervicis, with arrow showing course of the muscle. C, insertion of m. rectus capitis ventralis onto basioccipital of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), showing moment arms. Because the tyrannosaurid occiput slopes anteroventrally, the ventroflexion moment arm is somewhat longer than depicted in this view. D, strength of functional inference for head ventroflexion by m. rectus capitis ventralis in Tyrannosaurus rex. E, strength of functional inference for neck lateroflexion by m. iliocostalis cervicis of Tyrannosaurus rex." figureDoi="http://doi.org/10.5281/zenodo.3734964" httpUri="https://zenodo.org/record/3734964/files/figure.png" pageId="39" pageNumber="798">Fig. 23C, E</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8AA608733116BF3088FB35" blockId="39.[826,1441,1217,1331]" pageId="39" pageNumber="798">
|
||
M. longus colli ventralis. (
|
||
<bibRefCitation id="DA794B50FF8AA608748E16BF302AFB35" author="Vanden Berge JC & Zweers GA" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="39" pageNumber="798" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FF8AA608739A169E3095FB35" box="[913,971,1248,1270]" class="Aves" kingdom="Animalia" pageId="39" pageNumber="798" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
.)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8AA60873311680362EFAF0" blockId="39.[826,1441,1217,1331]" pageId="39" pageNumber="798">
|
||
M. iliocostalis cervicis (
|
||
<bibRefCitation id="DA794B50FF8AA608747E16803656FAD7" author="Seidel R." box="[1141,1288,1278,1300]" journalOrPublisher="City University of New York" pageId="39" pageNumber="798" refId="ref28761" refString="Seidel R. 1978. The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis. PhD dissertation, City University of New York." title="The somatic musculature of the cerVical and occipital regions of Alligator mississippiensis" type="book" year="1978">Seidel, 1978</bibRefCitation>
|
||
), m. longus colli. (
|
||
<bibRefCitation id="DA794B50FF8AA60873821763370FFAF0" author="Cong L & Hou L & Wu X-C & Hou J." box="[905,1105,1309,1331]" journalOrPublisher="Beijing: Science Press" pageId="39" pageNumber="798" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FF8AA6087465176337B2FAF0" box="[1134,1260,1309,1331]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="39" pageNumber="798" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
.) (
|
||
<figureCitation id="26D32A24FF8AA608750317633637FAF0" box="[1288,1385,1309,1331]" captionStart="Figure 23" captionStartId="40.[144,223,1595,1614]" captionTargetBox="[305,1261,197,1565]" captionTargetId="figure@40.[403,1262,197,1562]" captionTargetPageId="40" captionText="Figure 23. A, topological appearance of m. rectus capitis ventralis (anterior muscles) and m. iliocostalis cervicis (posteroventrally originating muscles) on anterior axial skeleton of Tyrannosaurus rex (BHI 3033), ventral view. The moment arm for lateral flexion by m. iliocostalis cervicis is superimposed. B, m. r.c.v.: origins of m. rectus capitis ventralis from ventral spinous processes of Tyrannosaurus rex (BHI 3033) with arrow showing course of the muscle. m. il. cerv.: origin from ventral centra and insertions onto ventral fascia of cervical ribs of m. iliocostalis cervicis, with arrow showing course of the muscle. C, insertion of m. rectus capitis ventralis onto basioccipital of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), showing moment arms. Because the tyrannosaurid occiput slopes anteroventrally, the ventroflexion moment arm is somewhat longer than depicted in this view. D, strength of functional inference for head ventroflexion by m. rectus capitis ventralis in Tyrannosaurus rex. E, strength of functional inference for neck lateroflexion by m. iliocostalis cervicis of Tyrannosaurus rex." figureDoi="http://doi.org/10.5281/zenodo.3734964" httpUri="https://zenodo.org/record/3734964/files/figure.png" pageId="39" pageNumber="798">Fig. 23A</figureCitation>
|
||
)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8AA608733117353793FA1F" blockId="39.[826,1442,1355,1500]" pageId="39" pageNumber="798">As for the origins of m. rectus capitis lateralis/m. iliocostalis capitis, origins and insertions of m. logus colli ventralis/m. iliocostalis cervicis (m. l.c.v./m. il. cerv.) of tyrannosaurids are bracketable between extant archosaurian morphologies.</paragraph>
|
||
<paragraph id="BE5736A1FF8AA608733114783777F976" blockId="39.[826,1441,1542,1717]" pageId="39" pageNumber="798">
|
||
Origins: Tyrannosaurids lack large hypopophyses, such as those present on the posterior cervicals of crocodilians and many birds, so the medial origins of m. l.c.v/m. il. cerv. were probably from the ventral surfaces of the anterior thoracic and posterior cervical vertebrae (
|
||
<figureCitation id="26D32A24FF8AA60873B214E13743F976" box="[953,1053,1695,1717]" captionStart="Figure 23" captionStartId="40.[144,223,1595,1614]" captionTargetBox="[305,1261,197,1565]" captionTargetId="figure@40.[403,1262,197,1562]" captionTargetPageId="40" captionText="Figure 23. A, topological appearance of m. rectus capitis ventralis (anterior muscles) and m. iliocostalis cervicis (posteroventrally originating muscles) on anterior axial skeleton of Tyrannosaurus rex (BHI 3033), ventral view. The moment arm for lateral flexion by m. iliocostalis cervicis is superimposed. B, m. r.c.v.: origins of m. rectus capitis ventralis from ventral spinous processes of Tyrannosaurus rex (BHI 3033) with arrow showing course of the muscle. m. il. cerv.: origin from ventral centra and insertions onto ventral fascia of cervical ribs of m. iliocostalis cervicis, with arrow showing course of the muscle. C, insertion of m. rectus capitis ventralis onto basioccipital of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), showing moment arms. Because the tyrannosaurid occiput slopes anteroventrally, the ventroflexion moment arm is somewhat longer than depicted in this view. D, strength of functional inference for head ventroflexion by m. rectus capitis ventralis in Tyrannosaurus rex. E, strength of functional inference for neck lateroflexion by m. iliocostalis cervicis of Tyrannosaurus rex." figureDoi="http://doi.org/10.5281/zenodo.3734964" httpUri="https://zenodo.org/record/3734964/files/figure.png" pageId="39" pageNumber="798">Fig. 23B</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF8AA606733114A132CBFEDA" blockId="39.[826,1441,1758,1903]" lastBlockId="41.[164,778,198,281]" lastPageId="41" lastPageNumber="800" pageId="39" pageNumber="798">
|
||
Insertions: If present, dorsal components of m. l.c.v./m. il. cerv. of tyrannosaurids may have inserted on the posterior edges of the proximal cervical ribs (
|
||
<figureCitation id="26D32A24FF8AA6087349154430F8F893" box="[834,934,1850,1872]" captionStart="Figure 23" captionStartId="40.[144,223,1595,1614]" captionTargetBox="[305,1261,197,1565]" captionTargetId="figure@40.[403,1262,197,1562]" captionTargetPageId="40" captionText="Figure 23. A, topological appearance of m. rectus capitis ventralis (anterior muscles) and m. iliocostalis cervicis (posteroventrally originating muscles) on anterior axial skeleton of Tyrannosaurus rex (BHI 3033), ventral view. The moment arm for lateral flexion by m. iliocostalis cervicis is superimposed. B, m. r.c.v.: origins of m. rectus capitis ventralis from ventral spinous processes of Tyrannosaurus rex (BHI 3033) with arrow showing course of the muscle. m. il. cerv.: origin from ventral centra and insertions onto ventral fascia of cervical ribs of m. iliocostalis cervicis, with arrow showing course of the muscle. C, insertion of m. rectus capitis ventralis onto basioccipital of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), showing moment arms. Because the tyrannosaurid occiput slopes anteroventrally, the ventroflexion moment arm is somewhat longer than depicted in this view. D, strength of functional inference for head ventroflexion by m. rectus capitis ventralis in Tyrannosaurus rex. E, strength of functional inference for neck lateroflexion by m. iliocostalis cervicis of Tyrannosaurus rex." figureDoi="http://doi.org/10.5281/zenodo.3734964" httpUri="https://zenodo.org/record/3734964/files/figure.png" pageId="39" pageNumber="798">Fig. 23B</figureCitation>
|
||
). As mentioned in the description of m. iliocostalis capitis, the insertions of medially originating components of m. l.c.v/m. il. cerv. may have been aponeurotic onto fascia surrounding bundled cervical rib shafts (
|
||
<figureCitation id="26D32A24FF84A606712E137D32D7FEDA" box="[293,393,259,281]" captionStart="Figure 23" captionStartId="40.[144,223,1595,1614]" captionTargetBox="[305,1261,197,1565]" captionTargetId="figure@40.[403,1262,197,1562]" captionTargetPageId="40" captionText="Figure 23. A, topological appearance of m. rectus capitis ventralis (anterior muscles) and m. iliocostalis cervicis (posteroventrally originating muscles) on anterior axial skeleton of Tyrannosaurus rex (BHI 3033), ventral view. The moment arm for lateral flexion by m. iliocostalis cervicis is superimposed. B, m. r.c.v.: origins of m. rectus capitis ventralis from ventral spinous processes of Tyrannosaurus rex (BHI 3033) with arrow showing course of the muscle. m. il. cerv.: origin from ventral centra and insertions onto ventral fascia of cervical ribs of m. iliocostalis cervicis, with arrow showing course of the muscle. C, insertion of m. rectus capitis ventralis onto basioccipital of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), showing moment arms. Because the tyrannosaurid occiput slopes anteroventrally, the ventroflexion moment arm is somewhat longer than depicted in this view. D, strength of functional inference for head ventroflexion by m. rectus capitis ventralis in Tyrannosaurus rex. E, strength of functional inference for neck lateroflexion by m. iliocostalis cervicis of Tyrannosaurus rex." figureDoi="http://doi.org/10.5281/zenodo.3734964" httpUri="https://zenodo.org/record/3734964/files/figure.png" pageId="41" pageNumber="800">Fig. 23B</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<caption id="EA976629FF85A607709B144530BEF895" ID-DOI="http://doi.org/10.5281/zenodo.3734964" ID-Zenodo-Dep="3734964" httpUri="https://zenodo.org/record/3734964/files/figure.png" pageId="40" pageNumber="799" startId="40.[144,223,1595,1614]" targetBox="[305,1261,197,1565]" targetPageId="40">
|
||
<paragraph id="BE5736A1FF85A607709B144530BEF895" blockId="40.[144,1422,1595,1878]" pageId="40" pageNumber="799">
|
||
Figure 23. A, topological appearance of m. rectus capitis ventralis (anterior muscles) and m. iliocostalis cervicis (posteroventrally originating muscles) on anterior axial skeleton of
|
||
<taxonomicName id="79E84D22FF85A607737814273765F9A8" authority="Osborn, 1905" box="[883,1083,1625,1643]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="40" pageNumber="799" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<materialsCitation id="0E803CFCFF85A6077446142737E7F9AF" ID-GBIF-Occurrence="3396397301" box="[1101,1209,1625,1644]" collectionCode="BHI" pageId="40" pageNumber="799" specimenCode="BHI 3033">BHI 3033</materialsCitation>
|
||
), ventral view. The moment arm for lateral flexion by m. iliocostalis cervicis is superimposed. B, m. r.c.v.: origins of m. rectus capitis ventralis from ventral spinous processes of
|
||
<taxonomicName id="79E84D22FF85A60771F414EA319AF965" authority="Osborn, 1905" box="[511,708,1684,1702]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="40" pageNumber="799" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<materialsCitation id="0E803CFCFF85A60772DE14ED3060F965" ID-GBIF-Occurrence="3396397314" box="[725,830,1683,1702]" collectionCode="BHI" pageId="40" pageNumber="799" specimenCode="BHI 3033">BHI 3033</materialsCitation>
|
||
) with arrow showing course of the muscle. m. il. cerv.: origin from ventral centra and insertions onto ventral fascia of cervical ribs of m. iliocostalis cervicis, with arrow showing course of the muscle. C, insertion of m. rectus capitis ventralis onto basioccipital of
|
||
<taxonomicName id="79E84D22FF85A607741A14B0365BF923" authority="Russell, 1970" box="[1041,1285,1742,1761]" class="Reptilia" family="Tyrannosauridae" genus="Daspletosaurus" kingdom="Animalia" order="Dinosauria" pageId="40" pageNumber="799" phylum="Chordata" rank="species" species="torosus">Daspletosaurus torosus</taxonomicName>
|
||
(CMN 8506; the specimen is incomplete and the image partly mirrored), showing moment arms. Because the tyrannosaurid occiput slopes anteroventrally, the ventroflexion moment arm is somewhat longer than depicted in this view. D, strength of functional inference for head ventroflexion by m. rectus capitis ventralis in
|
||
<taxonomicName id="79E84D22FF85A60773BE15583724F8FB" authority="Osborn, 1905" box="[949,1146,1830,1848]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="40" pageNumber="799" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
. E, strength of functional inference for neck lateroflexion by m. iliocostalis cervicis of
|
||
<taxonomicName id="79E84D22FF85A607731F153D3084F896" authority="Osborn, 1905" box="[788,986,1859,1877]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="40" pageNumber="799" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="BE5736A1FF84A60670AF134C32DEFDDD" blockId="41.[164,779,306,878]" pageId="41" pageNumber="800">
|
||
Action/function: As in both crocodilians and birds, the position of possible m.l.c.v./m. il.cerv. insertions of tyrannosaurids are ventral to the intervertebral articulations, which, by kinematic inference, supports a function of head ventroflexion relative to the neck. The insertions are also lateral to the centres of the centra, which indicates that head lateral flexion was possible (
|
||
<figureCitation id="26D32A24FF84A606711B1076322AFDDD" box="[272,372,520,542]" captionStart="Figure 23" captionStartId="40.[144,223,1595,1614]" captionTargetBox="[305,1261,197,1565]" captionTargetId="figure@40.[403,1262,197,1562]" captionTargetPageId="40" captionText="Figure 23. A, topological appearance of m. rectus capitis ventralis (anterior muscles) and m. iliocostalis cervicis (posteroventrally originating muscles) on anterior axial skeleton of Tyrannosaurus rex (BHI 3033), ventral view. The moment arm for lateral flexion by m. iliocostalis cervicis is superimposed. B, m. r.c.v.: origins of m. rectus capitis ventralis from ventral spinous processes of Tyrannosaurus rex (BHI 3033) with arrow showing course of the muscle. m. il. cerv.: origin from ventral centra and insertions onto ventral fascia of cervical ribs of m. iliocostalis cervicis, with arrow showing course of the muscle. C, insertion of m. rectus capitis ventralis onto basioccipital of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), showing moment arms. Because the tyrannosaurid occiput slopes anteroventrally, the ventroflexion moment arm is somewhat longer than depicted in this view. D, strength of functional inference for head ventroflexion by m. rectus capitis ventralis in Tyrannosaurus rex. E, strength of functional inference for neck lateroflexion by m. iliocostalis cervicis of Tyrannosaurus rex." figureDoi="http://doi.org/10.5281/zenodo.3734964" httpUri="https://zenodo.org/record/3734964/files/figure.png" pageId="41" pageNumber="800">Fig. 23C</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF84A60670B7105832E5FCAD" blockId="41.[164,779,306,878]" pageId="41" pageNumber="800">
|
||
Level II′, unipolar physiological inference with reference to crocodilians (
|
||
<figureCitation id="26D32A24FF84A60671A4103B314FFD98" box="[431,529,581,603]" captionStart="Figure 23" captionStartId="40.[144,223,1595,1614]" captionTargetBox="[305,1261,197,1565]" captionTargetId="figure@40.[403,1262,197,1562]" captionTargetPageId="40" captionText="Figure 23. A, topological appearance of m. rectus capitis ventralis (anterior muscles) and m. iliocostalis cervicis (posteroventrally originating muscles) on anterior axial skeleton of Tyrannosaurus rex (BHI 3033), ventral view. The moment arm for lateral flexion by m. iliocostalis cervicis is superimposed. B, m. r.c.v.: origins of m. rectus capitis ventralis from ventral spinous processes of Tyrannosaurus rex (BHI 3033) with arrow showing course of the muscle. m. il. cerv.: origin from ventral centra and insertions onto ventral fascia of cervical ribs of m. iliocostalis cervicis, with arrow showing course of the muscle. C, insertion of m. rectus capitis ventralis onto basioccipital of Daspletosaurus torosus (CMN 8506; the specimen is incomplete and the image partly mirrored), showing moment arms. Because the tyrannosaurid occiput slopes anteroventrally, the ventroflexion moment arm is somewhat longer than depicted in this view. D, strength of functional inference for head ventroflexion by m. rectus capitis ventralis in Tyrannosaurus rex. E, strength of functional inference for neck lateroflexion by m. iliocostalis cervicis of Tyrannosaurus rex." figureDoi="http://doi.org/10.5281/zenodo.3734964" httpUri="https://zenodo.org/record/3734964/files/figure.png" pageId="41" pageNumber="800">Fig. 23D</figureCitation>
|
||
) indicates a laterally flexive function, and, as in birds, the possibility of the muscles’ activity during protraction of the head. The bundled shafts of the cervical ribs, and concomitantly ambiguous insertions, preclude kinematic assessment of the preponderance of these respective functions. However, by both kinematic and physiological bracketing between extant archosaurs, m. l.c.v./m. il. cerv. of tyrannosaurids were most likely active in damping dorsiflexion of the neck.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF84A60670AF11F931D4FC5F" blockId="41.[164,779,903,986]" box="[164,650,903,925]" pageId="41" pageNumber="800">D. Complex and uniarticular muscles</paragraph>
|
||
<paragraph id="BE5736A1FF84A60670AF11D833AEFC19" blockId="41.[164,779,903,986]" pageId="41" pageNumber="800">
|
||
Mm. intercristales. (
|
||
<bibRefCitation id="DA794B50FF84A60671A811DB31A1FC7F" author="Vanden Berge JC & Zweers GA" box="[419,767,933,956]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="41" pageNumber="800" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FF84A60670A011BA33BBFC19" box="[171,229,964,986]" class="Aves" kingdom="Animalia" pageId="41" pageNumber="800" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
.)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF84A60670AF118D3185FB03" blockId="41.[164,779,1011,1216]" pageId="41" pageNumber="800">
|
||
Origins: Tyrannosaurids have prominent transverse oblique crests, especially on C5–C10, from the dorsally projecting neural spines running laterally to the postzygapophyeses (
|
||
<figureCitation id="26D32A24FF84A6067187163032AFFBA7" box="[396,497,1102,1124]" captionStart="Figure 22" captionStartId="38.[144,223,1143,1162]" captionTargetBox="[310,1256,198,1113]" captionTargetId="figure@38.[310,1256,197,1113]" captionTargetPageId="38" captionText="Figure 22. A, origins and insertions of mm. intercristales (top, light-fill shapes), mm. intertransversarii (dark-fill shapes) and an interpretation of dorsal, rib head origins (large light-filled shapes) of m. iliocostalis capitis, of Tyrannosaurus rex (AMNH 5027). B, moment arms for lateroflexion by mm. intertransversarii on C6–C8 of Tyrannosaurus rex (BHI 3033, ventral view)." figureDoi="http://doi.org/10.5281/zenodo.3734962" httpUri="https://zenodo.org/record/3734962/files/figure.png" pageId="41" pageNumber="800">Fig. 22A</figureCitation>
|
||
). It is possible that mm. intercristales originated from the anterior surfaces of these crests, but they could serve as origins for large components of the m. transversospinalis system.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF84A60670AF16A73242FA88" blockId="41.[164,779,1241,1355]" pageId="41" pageNumber="800">Insertions: Mm. intercristales could have inserted on the posterior surface of the crista transversoobliqua of each intervertebral pair, from C2 posteriorly (Fig. 34A).</paragraph>
|
||
<paragraph id="BE5736A1FF84A60670AF171D33BBFA16" blockId="41.[164,779,1379,1493]" pageId="41" pageNumber="800">Action/function: If present, these muscles would be kinematically positioned for slight intervertebral dorsiflexion, as well as more for lateral flexion than in birds.</paragraph>
|
||
<paragraph id="BE5736A1FF84A60670AF179332FCF9E1" blockId="41.[164,779,1517,1570]" pageId="41" pageNumber="800">
|
||
Mm. cervicales ascendentes. (
|
||
<bibRefCitation id="DA794B50FF84A60672311793321EF9E1" author="Vanden Berge JC & Zweers GA" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="41" pageNumber="800" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
). (
|
||
<taxonomicName id="79E84D22FF84A6067156147232C9F9E1" box="[349,407,1548,1570]" class="Aves" kingdom="Animalia" pageId="41" pageNumber="800" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
.)
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF84A60670AF144532E4F96F" blockId="41.[164,779,1594,1708]" pageId="41" pageNumber="800">
|
||
In configuration these muscles are probably unique to birds (
|
||
<bibRefCitation id="DA794B50FF84A606711D142732E2F9AC" author="Tsuihiji T." box="[278,444,1625,1647]" journalOrPublisher="Journal of Morphology" pageId="41" pageNumber="800" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji, 2005</bibRefCitation>
|
||
), and there are no discrete attachment sites in tyrannosaurids that would contradict this assessment.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF84A606717414B53171F920" blockId="41.[164,779,1739,1903]" box="[383,559,1739,1763]" pageId="41" pageNumber="800">DISCUSSION</paragraph>
|
||
<paragraph id="BE5736A1FF84A60670BF148A318FF8EB" blockId="41.[164,779,1739,1903]" pageId="41" pageNumber="800">EXAMPLES OF COMMON AND DIVERGENT PATTERNS OF NECK MUSCLES IN EXTANT ARCHOSAURS</paragraph>
|
||
<paragraph id="BE5736A1FF84A60670AF154530C2FDEF" blockId="41.[164,779,1739,1903]" lastBlockId="41.[826,1442,198,1903]" pageId="41" pageNumber="800">By the criterion of position, most neck muscles are recognizable as homologous between birds and crocodilians. For example, m. rectus capitis lateralis is establishable as homologous in extant archosaur clades, despite differing origins. M. rectus capitis lateralis originates from an enlarged hypopophysis of the axis in birds, or from the lateral surface of the centrum, and in crocodilians from the proximal portion of the C2 rib and an aponeurosis of the ventral surfaces of the C1 and C2 cervical ribs. Mm. intertransversarii span the transverse processes in specimens of both birds and crocodilians, although these muscles are greatly subdivided and elaborated in birds.</paragraph>
|
||
<paragraph id="BE5736A1FF84A6067358104B303FFBD6" blockId="41.[826,1442,198,1903]" pageId="41" pageNumber="800">
|
||
Other muscles are less readily identified as homologous, or vary substantially between modern
|
||
<taxonomicName id="79E84D22FF84A6067532102A3630FDAA" box="[1337,1390,596,617]" class="Aves" kingdom="Animalia" pageId="41" pageNumber="800" phylum="Chordata" rank="class">Aves</taxonomicName>
|
||
and
|
||
<taxonomicName id="79E84D22FF84A6067331100C30E8FD4B" box="[826,950,626,648]" class="Reptilia" kingdom="Animalia" order="Crocodylia" pageId="41" pageNumber="800" phylum="Chordata" rank="order">Crocodylia</taxonomicName>
|
||
. M. longus colli dorsalis inserts onto a posteriorly facing concavity of the processus dorsalis of the axis of birds. Its crocodilian homologue (m. transversospinalis lateralis) inserts by a flat tendon primarily onto the atlas, but in
|
||
<taxonomicName id="79E84D22FF84A60675031093302CFCE2" authorityName="Fauvel" authorityYear="1879" class="Reptilia" family="Alligatoridae" genus="Alligator" kingdom="Animalia" order="Crocodylia" pageId="41" pageNumber="800" phylum="Chordata" rank="species" species="sinensis">Alligator sinensis</taxonomicName>
|
||
this tendon has also been reported to insert onto the axis, in a position ventral to the postzygapophysis (
|
||
<bibRefCitation id="DA794B50FF84A606734A11373750FC9C" author="Cong L & Hou L & Wu X-C & Hou J." box="[833,1038,840,863]" journalOrPublisher="Beijing: Science Press" pageId="41" pageNumber="800" refId="ref27427" refString="Cong L, Hou L, Wu X-C, Hou J. 1998. The gross anatomy of Alligator sinensis fauVel. Beijing: Science Press." title="The gross anatomy of Alligator sinensis fauVel" type="book" year="1998">Cong et al., 1998</bibRefCitation>
|
||
). M. longus colli dorsalis is enormously complex in birds. Multiple, long heads of m. l.c.d. insert onto the processes dorsales (epipophyses) above the postzygapophyses of anterior cervical vertebrae, and slips run from the posterior cervicals to the long tendon, inserting on the processus dorsalis of C2.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF84A6057358166131C2FE50" blockId="41.[826,1442,198,1903]" lastBlockId="42.[144,759,198,1903]" lastPageId="42" lastPageNumber="801" pageId="41" pageNumber="800">
|
||
Several issues of homology have been controversial, and some muscles are exclusive to either birds or crocodilians. M. complexus of birds is most difficult to reconcile with positionally similar muscles of other reptiles, such as m. spinocapitis posticus, m. epistropheo-capitis lateralis and m. obliquus capitis magnus. Fusion of dorsomedial and ventrolateral portions of m. complexus of some birds bestows on the muscle a configuration unique to birds among extant amniotes. In crocodilians,
|
||
<taxonomicName id="79E84D22FF84A606746C174D3666FA84" box="[1127,1336,1330,1352]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="41" pageNumber="800" phylum="Chordata" rank="species" species="dumerilii">Varanus dumerilii</taxonomicName>
|
||
and partially in some adult birds, these muscles originate from the neural arches, spines, and from flat surfaces (crocodilians and
|
||
<taxonomicName id="79E84D22FF84A606740317F137D1FA60" box="[1032,1167,1422,1444]" class="Reptilia" family="Varanidae" genus="Varanus" kingdom="Animalia" order="Squamata" pageId="41" pageNumber="800" phylum="Chordata" rank="species" species="dumerilii">V. dumerilii</taxonomicName>
|
||
) or epipophyses (birds) dorsal to the postzygapophyses. These origins indicate affinity with the transversospinalis system, associated with portions of vertebrae dorsal to the centrum and transverse processes. Insertions dorsal to the paroccipital processes in both taxa support the transversospinalis assignment (including a dorsomedial insertion in midstage bird embryos:
|
||
<bibRefCitation id="DA794B50FF84A606755B141A302AF95A" author="Noden DM" journalOrPublisher="American Journal of Anatomy" pageId="41" pageNumber="800" pagination="257 - 276" part="168" refId="ref28482" refString="Noden DM. 1983. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. American Journal of Anatomy 168: 257 - 276." title="The embryonic origins of avian cephalic and cervical muscles and associated connective tissues" type="journal article" year="1983">Noden, 1983</bibRefCitation>
|
||
).
|
||
<bibRefCitation id="DA794B50FF84A606739914FD371DF95B" author="Tsuihiji T." box="[914,1091,1666,1689]" journalOrPublisher="Journal of Morphology" pageId="41" pageNumber="800" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji (2005)</bibRefCitation>
|
||
noted that a spinal nerve ventral to m. complexus allied it with m. transversospinalis capitis lateralis of crocodilians. However, in some birds the anteroventral origins of m. complexus arise from the lateral tubercles of the transverse processes, as expected of derivatives of the longissimus system. The position of the lateral tubercles on the transverse processes of birds indicates that ventral slips contributing to m. complexus may be homologous with origins of m. longissimus capitis superficialis of crocodilians. M. complexus of some birds may form from a unique dorsoventral fusion of transversospinalis and longissimus derivatives;
|
||
<bibRefCitation id="DA794B50FF87A605709B13213204FEB6" author="Tsuihiji T." box="[144,346,351,373]" journalOrPublisher="Journal of Morphology" pageId="42" pageNumber="801" pagination="151 - 178" part="263" refId="ref29160" refString="Tsuihiji T. 2005. Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida). Journal of Morphology 263: 151 - 178." title="Homologies of the transVersospinalis muscles in the anterior presacral region of Sauria (crown Diapsida)" type="journal article" year="2005">Tsuihiji’s (2005)</bibRefCitation>
|
||
neuroanatomical evidence will provide a guide for falsification in each case.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF87A60570A313E23382FC1A" blockId="42.[144,759,198,1903]" pageId="42" pageNumber="801">
|
||
The breadth and superficial placement of m. complexus in birds led some workers to associate it with m. cucularis (
|
||
<bibRefCitation id="DA794B50FF87A605713A13A73102FE2C" author="Fisher HI & Goodman DC" box="[305,604,473,495]" journalOrPublisher="Urbana: The University of Illinois Press" pageId="42" pageNumber="801" pagination="2" part="24" refId="ref27668" refString="Fisher HI, Goodman DC. 1955. The myology of the whooping crane, Grus americana. In: Illinois Biological Monographs 24 (2). Urbana: The University of Illinois Press." title="The myology of the whooping crane, Grus americana" type="book chapter" volumeTitle="Illinois Biological Monographs" year="1955">Fisher & Goodman, 1955</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF87A605726013A73278FDCD" author="Goodman DC & Fisher HI" journalOrPublisher="Carbondale: Southern Illinois University Press" pageId="42" pageNumber="801" refId="ref27841" refString="Goodman DC, Fisher HI. 1962. Functional anatomy of the feeding apparatus in aeaterfoael (AVes: Anatidae) Carbondale: Southern Illinois University Press." title="Functional anatomy of the feeding apparatus in aeaterfoael (AVes: Anatidae)" type="book" year="1962">Goodman & Fisher, 1962</bibRefCitation>
|
||
), a subcutaneous muscle derived from branchial levator musculature. Craniocervical insertions and origins, and primary motor innervation by the first six spinal nerves (
|
||
<bibRefCitation id="DA794B50FF87A60571C6102A3106FDA9" author="Gross GH" box="[461,600,596,618]" journalOrPublisher="Journal of Computer Neurology" pageId="42" pageNumber="801" pagination="180 - 189" part="232" refId="ref27869" refString="Gross GH. 1985. Innervation of the complexus ' hatching' muscle of the chick. Journal of Computer Neurology 232: 180 - 189." title="Innervation of the complexus ' hatching' muscle of the chick" type="journal article" year="1985">Gross, 1985</bibRefCitation>
|
||
), rather than the accessory (
|
||
<bibRefCitation id="DA794B50FF87A6057136100C31F6FD4B" author="Vanden Berge JC & Zweers GA" box="[317,680,626,648]" editor="Baumel JJ & King AS & Breazile JE & Evans HE & Vanden Berge JC" journalOrPublisher="Cambridge: Nuttall Ornithological Club" pageId="42" pageNumber="801" pagination="189 - 250" refId="ref29191" refString="Vanden Berge JC, Zweers GA. 1993. Myologia. In: Baumel JJ, King AS, Breazile JE, Evans HE, Vanden Berge JC, eds. Handbook of aVian anatomy: nomina anatomica aVium. Cambridge: Nuttall Ornithological Club, 189 - 250." title="Myologia" type="book chapter" volumeTitle="Handbook of aVian anatomy: nomina anatomica aVium" year="1993">Vanden Berge & Zweers, 1993</bibRefCitation>
|
||
), have indicated the muscle’s homology with axial musculature in other amniotes. Interestingly, however,
|
||
<bibRefCitation id="DA794B50FF87A60572BE10CE3389FD27" author="Gross GH" journalOrPublisher="Journal of Computer Neurology" pageId="42" pageNumber="801" pagination="180 - 189" part="232" refId="ref27869" refString="Gross GH. 1985. Innervation of the complexus ' hatching' muscle of the chick. Journal of Computer Neurology 232: 180 - 189." title="Innervation of the complexus ' hatching' muscle of the chick" type="journal article" year="1985">Gross (1985)</bibRefCitation>
|
||
discovered motor efferents from the accessory and even the facial cranial nerves serving the complexus, and afferents to the tangential nucleus of the brain. Because the tangential nucleus also receives inputs from the vestibulocochlear apparatus and sends motor signals to the spinal nerves, this circuit shows how sensory input from spindles of complexus provide feedback for modulating this muscle’s own action.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF87A60570A3119F32A1FAC8" blockId="42.[144,759,198,1903]" pageId="42" pageNumber="801">While homology between m. rectus capitis dorsalis and m. longissimus capitis profundus is less problematic than the issues surrounding m. complexus, several factors introduce ambiguity. Origins of m. rect. cap. dors. are restricted to the anterior cervicals of birds, and, unlike in birds, m. long. cap. prof. does not originate from the atlas in crocodilians. M. long. cap. prof. is unitary in crocodilians, but in birds the origins of m. rect. cap. dors. are discrete slips that converge towards the insertion.</paragraph>
|
||
<paragraph id="BE5736A1FF87A60570A3176A3148F998" blockId="42.[144,759,198,1903]" pageId="42" pageNumber="801">However, the apparent anterior restriction of the muscle in birds is a consequence of the posteriorly elongate neck. In both extant archosaur clades the muscles originate from the anterior portions of the transverse processes of about six vertebrae; the set is displaced posteriorly by one vertebra in crocodilians. These muscles share a similar insertion on the basioccipital of birds and crocodilians, dorsolateral to the insertion of m. rectus capitis ventralis on the basioccipital and medial to the paroccipital process insertion of m. rectus capitis lateralis.</paragraph>
|
||
<paragraph id="BE5736A1FF87A60570A3141A36D0FEFB" blockId="42.[144,759,198,1903]" lastBlockId="42.[806,1422,198,312]" pageId="42" pageNumber="801">The main differences between bird and crocodilian neck muscles involve consequences of the elongation and sinusoidal curvature of the neck in birds, and the heavier head skeleton of crocodilians. For example, with m. longus colli dorsalis and ventralis of birds, the complexity of dorsi- and ventroflexors is greatly increased over the crocodilian, and probably original archosaurian, morphology. Long tendons connect multiple bellies of these muscles to multiple insertions, often following the curvature of the neck within long fascical sheaths. Conversely, crocodilians retain heavy musculature that runs along the entire neck (m. longissimus capitis superficialis) for turning the head.</paragraph>
|
||
<paragraph id="BE5736A1FF87A6057326130B361AFE6A" blockId="42.[806,1422,373,1903]" pageId="42" pageNumber="801">MORPHOLOGICAL AFFINITIES AND UNIQUE PATTERNS OF TYRANNOSAURID NECK MUSCULATURE</paragraph>
|
||
<paragraph id="BE5736A1FF87A605732D13C53702FCE2" blockId="42.[806,1422,373,1903]" pageId="42" pageNumber="801">Generally tyrannosaurids combined the curvature and some of the muscular complexity of bird necks with the bulkiness of crocodilian neck musculature. In tyrannosaurids the insertions of m. longus colli dorsalis/m. transversospinalis cervicis, and the origin of m. splenius capitis, are strikingly similar to those of birds. However, m. longissimus capitis superficialis was present, and probably massive, as in crocodilians. Tyrannosaurids have features of the cervical series and occiput not found in either clade of the extant bracket, and probably had muscular morphologies not seen in extant archosaurs.</paragraph>
|
||
<paragraph id="BE5736A1FF87A605733411543768FAEA" blockId="42.[806,1422,373,1903]" pageId="42" pageNumber="801">
|
||
The spinous processes of C2 and C3 in tyrannosaurids may reflect the morphology of the m. biv. c./m. trans. cap. insertion.
|
||
<bibRefCitation id="DA794B50FF87A605741411193786FCBE" author="Gauthier JA" box="[1055,1240,871,893]" editor="Padian K" journalOrPublisher="San Francisco: California Academy of Sciences" pageId="42" pageNumber="801" pagination="1 - 55" refId="ref27799" refString="Gauthier JA. 1986. Saurischian monophyly and the origin of birds. In: Padian K, ed. The origin of birds and the eVolution of flight. San Francisco: California Academy of Sciences, 1 - 55." title="Saurischian monophyly and the origin of birds" type="book chapter" volumeTitle="The origin of birds and the eVolution of flight" year="1986">Gauthier (1986)</bibRefCitation>
|
||
noted dorsolateral projections of the C2 neural spine in tyrannosaurids and some other large theropods. He collectively termed the two projections the spine table of the axis for their flat, wide appearance in anterior or posterior view. Lateral projections of the spinous process of C3 in tyrannosaurids have a similar morphology, although they are narrower and form more of a W-shape than a T-shape in coronal section. The insertion tendon of m. biv. c./m. trans. cap., or the collagenous ventral portion of the perimysium that enveloped the muscle, ran over the C3 and spine table of the axis. The breadth of these structures suggests decreased pressure (force/area) on the ventral surface of the tendon or fascla.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF87A6057334174D37BFF9B9" blockId="42.[806,1422,373,1903]" pageId="42" pageNumber="801">
|
||
In tyrannosaurids the posterior origin of m. longissimus capitis superficialis may have been caudally displaced relative to the condition in crocodilians, arising from the parapophysis of the anteriormost dorsal, instead of from C7 as in crocodilians. This surface in tyrannosaurids is large and knob-like, suggesting a strong attachment and a bulky, forcefully contracting m. long. cap. sup. This is a logical interpretation of muscle size, but is based on an extrapolatory, Level II inference (
|
||
<bibRefCitation id="DA794B50FF87A605746C143836D6F998" author="Bryant HN & Russell AP" box="[1127,1416,1605,1627]" journalOrPublisher="Philosophical Transactions of the Royal Society of London B" pageId="42" pageNumber="801" pagination="405 - 418" part="337" refId="ref27237" refString="Bryant HN, Russell AP. 1992. The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa. Philosophical Transactions of the Royal Society of London B 337: 405 - 418." title="The role of phylogenetic analysis in the inference of unpreserved attributes of extinct taxa" type="journal article" year="1992">Bryant & Russell, 1992</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF87A605732D141A309CF9B9" author="Witmer LM" box="[806,962,1636,1658]" editor="Thomason JJ" journalOrPublisher="Cambridge: Cambridge University Press" pageId="42" pageNumber="801" pagination="19 - 33" refId="ref29291" refString="Witmer LM. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ, ed. Functional morphology in Vertebrate paleontology. Cambridge: Cambridge University Press, 19 - 33." title="The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils" type="book chapter" volumeTitle="Functional morphology in Vertebrate paleontology" year="1995">Witmer, 1995</bibRefCitation>
|
||
) of attachment position.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF87A604733414FD3160FE71" blockId="42.[806,1422,373,1903]" lastBlockId="43.[164,779,198,648]" lastPageId="43" lastPageNumber="802" pageId="42" pageNumber="801">
|
||
Conversely, the muscle’s moment arms are more strongly inferable, both lateral to the occipital condyle and dorsal to the centre of sagittal rotation of the entire neck. The breadth of the skull of the tyrannosaurine tyrannosaurids
|
||
<taxonomicName id="79E84D22FF87A605747E148336D3F8D0" authority="Russell, 1970" box="[1141,1421,1789,1811]" class="Reptilia" family="Tyrannosauridae" genus="Daspletosaurus" kingdom="Animalia" order="Dinosauria" pageId="42" pageNumber="801" phylum="Chordata" rank="species" species="torosus">Daspletosaurus torosus</taxonomicName>
|
||
(
|
||
<bibRefCitation id="DA794B50FF87A605732515623084F8F1" author="Russell DA" box="[814,986,1820,1842]" journalOrPublisher="National Museum of Natural Sciences, Publications in Palaeontology" pageId="42" pageNumber="801" pagination="1 - 34" part="1" refId="ref28643" refString="Russell DA. 1970. Tyrannosaurs of the Late Cretaceous of western Canada. National Museum of Natural Sciences, Publications in Palaeontology 1: 1 - 34." title="Tyrannosaurs of the Late Cretaceous of western Canada" type="journal article" year="1970">Russell, 1970</bibRefCitation>
|
||
),
|
||
<taxonomicName id="79E84D22FF87A60573F6156237B1F8F2" authority="Maleev, 1955" box="[1021,1263,1820,1841]" class="Reptilia" family="Tyrannosauridae" genus="Tarbosaurus" kingdom="Animalia" order="Dinosauria" pageId="42" pageNumber="801" phylum="Chordata" rank="species" species="bataar">Tarbosaurus bataar</taxonomicName>
|
||
(
|
||
<bibRefCitation id="DA794B50FF87A605750515623094F893" author="Hurum JH & Sabath K." journalOrPublisher="Acta Palaeontologica Polonica" pageId="42" pageNumber="801" pagination="161 - 190" part="48" refId="ref28183" refString="Hurum JH, Sabath K. 2003. Giant theropod dinosaurs from Asia and North America: crania of Tarbosaurus bataar and Tyrannosaurus rex compared. Acta Palaeontologica Polonica 48: 161 - 190." title="Giant theropod dinosaurs from Asia and North America: crania of Tarbosaurus bataar and Tyrannosaurus rex compared" type="journal article" year="2003">Hurum & Sabath, 2003</bibRefCitation>
|
||
) and especially
|
||
<taxonomicName id="79E84D22FF87A60574A0154536D3F893" authority="Osborn, 1905" box="[1195,1421,1851,1872]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="42" pageNumber="801" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
(
|
||
<bibRefCitation id="DA794B50FF87A605732515273098F8AC" author="Brochu CA" box="[814,966,1881,1903]" journalOrPublisher="Journal of Vertebrate Paleontology" pageId="42" pageNumber="801" pagination="1 - 138" part="24" refId="ref27197" refString="Brochu CA. 2003. Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the cranium. Journal of Vertebrate Paleontology 24 (Suppl. 4): 1 - 138." title="Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the cranium" type="journal article" year="2003">Brochu, 2003</bibRefCitation>
|
||
) provided m. longissimus capitis superficialis with long moment arms for lateral flexion of the cranium. The posterior origins of this muscle on the laterally inclined parapophyses of C10 and T1 are dorsal to the likely rotation centre of the neck between C10 and C9. This vertical moment arm indicates the capacity for dorsiflexion of the neck and retraction of the head when left and right m. long. cap. sup. contracted synchronously.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF86A60470B713C531BBFD4B" blockId="43.[164,779,198,648]" pageId="43" pageNumber="802">This rectractive function was the consequence of bird-like neck curvature, a crocodilian-like m. longissimus capitis superficialis, and tall vertebrae in the cervicodorsal region. The bird-like posterior U-curve of the neck and tall posterior centra of tyrannosaurids resulted in an unusual dorsiflexive moment arm for m. l. cap. sup. not present in either extant clade.</paragraph>
|
||
<paragraph id="BE5736A1FF86A60470BE10BD3175FCF4" blockId="43.[164,779,707,1903]" pageId="43" pageNumber="802">BEHAVIOURAL INTERPOLATION OF TYRANNOSAURID FEEDING ACTIVITY: EXAMPLES FROM BEHAVIOUR OF EXTANT ARCHOSAURS AND CORROBORATIVE BIOMECHANICS</paragraph>
|
||
<paragraph id="BE5736A1FF86A60470AF113632A2FB90" blockId="43.[164,779,707,1903]" pageId="43" pageNumber="802">
|
||
With physiological and kinematic inferences of muscle function possible for tyrannosaurids, is it feasible to interpolate between extant taxa to deduce correlations between muscle use and behaviour? The most likely broad behaviours would involve dorsiflexive and even laterally flexive muscles for inertial feeding, assisted by the inertia of a non-muscular tongue at it was moved by hyolingual muscles (
|
||
<bibRefCitation id="DA794B50FF86A60472561661327FFB91" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="43" pageNumber="802" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF86A6047124164332AFFB90" author="Tomlinson CA" box="[303,497,1085,1107]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="43" pageNumber="802" pagination="359 - 394" refId="ref29041" refString="Tomlinson CA. 2000. Feeding in paleognathus birds. In: Schwenk K, ed. Feeding: form, function, and eVolution in tetrapod Vertebrates. San Diego: Academic Press, 359 - 394." title="Feeding in paleognathus birds" type="book chapter" volumeTitle="Feeding: form, function, and eVolution in tetrapod Vertebrates" year="2000">Tomlinson, 2000</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF86A60470B71622326CF998" blockId="43.[164,779,707,1903]" pageId="43" pageNumber="802">
|
||
EMG upholds the muscular/behaviour bracket for inertial feeding in crocodilians and palaeognathous birds (
|
||
<bibRefCitation id="DA794B50FF86A60470F916E73157FB6D" author="Heidweiller J & Lendering B & Zweers GA" box="[242,521,1177,1199]" journalOrPublisher="Netherlands Journal of Zoology" pageId="43" pageNumber="802" pagination="1 - 22" part="42" refId="ref27942" refString="Heidweiller J, Lendering B, Zweers GA. 1992. Development of motor patterns in cervical muscles of drinking chickens. Netherlands Journal of Zoology 42: 1 - 22." title="Development of motor patterns in cervical muscles of drinking chickens" type="journal article" year="1992">Heidweiller et al., 1992</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF86A604721016E73383FB0E" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="43" pageNumber="802" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF86A60470FB16C632ECFB0E" author="Gussekloo SWS" box="[240,434,1208,1230]" journalOrPublisher="Leiden University" pageId="43" pageNumber="802" refId="ref27895" refString="Gussekloo SWS. 2000. The evolution of the palaeognathus birds. Functional morphology and evolutionary patterns. PhD thesis, Leiden University." title="The evolution of the palaeognathus birds. Functional morphology and evolutionary patterns" type="book" year="2000">Gussekloo, 2000</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF86A60471CE16C631D5FB0D" author="Tomlinson CA" box="[453,651,1208,1230]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="43" pageNumber="802" pagination="359 - 394" refId="ref29041" refString="Tomlinson CA. 2000. Feeding in paleognathus birds. In: Schwenk K, ed. Feeding: form, function, and eVolution in tetrapod Vertebrates. San Diego: Academic Press, 359 - 394." title="Feeding in paleognathus birds" type="book chapter" volumeTitle="Feeding: form, function, and eVolution in tetrapod Vertebrates" year="2000">Tomlinson, 2000</bibRefCitation>
|
||
). Crocodilians often transport pieces of flesh or bodies of smaller prey towards the pharynx by tossing the head dorsally and laterally, throwing and catching the food until it reaches the proper orientation for swallowing. The animals are versatile and adaptable with these inertial movements, which are less stereotyped than mammalian intraoral transport (
|
||
<bibRefCitation id="DA794B50FF86A604722817F03381FA00" author="Cleuren J & De Vree F." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="43" pageNumber="802" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
). Palaeognaths employ a throw and catch method of inertial transport similar to that of crocodilians (
|
||
<bibRefCitation id="DA794B50FF86A604710E17943297F9C3" author="Gussekloo SWS" box="[261,457,1514,1536]" journalOrPublisher="Leiden University" pageId="43" pageNumber="802" refId="ref27895" refString="Gussekloo SWS. 2000. The evolution of the palaeognathus birds. Functional morphology and evolutionary patterns. PhD thesis, Leiden University." title="The evolution of the palaeognathus birds. Functional morphology and evolutionary patterns" type="book" year="2000">Gussekloo, 2000</bibRefCitation>
|
||
). The smaller relative size of the food items of palaeognaths necessitates less intricate modulation of the movements than in crocodilians.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF86A60470B7141A3786FF39" blockId="43.[164,779,707,1903]" lastBlockId="43.[826,1442,198,1903]" pageId="43" pageNumber="802">The similarities of muscle activation patterns during these behaviours are striking, given the differences between crocodilian and avian neck osteology and details of musculature. This makes behavioural interpolation of this style of inertial feeding particularly strong for tyrannosaurids. The divergences in anatomy between tyrannosaurids and their extant relatives signal some caution in restricting the animals to inertial feeding seen in the extant bracket, but hypotheses of somewhat different actions will be testable by biomechanical methods.</paragraph>
|
||
<paragraph id="BE5736A1FF86A6047358137D3095FD05" blockId="43.[826,1442,198,1903]" pageId="43" pageNumber="802">
|
||
Other behaviours are less confidently inferable in tyrannosaurids, but are possible to deduce through unbracketed comparisons with extant archosaurs. The curvature of theropod necks suggests an approach phase to food common to Mesozoic and extant forms. The long, sagittally sinusoidal necks of birds, and similar cervical motor patterns in birds with diverse diets (
|
||
<bibRefCitation id="DA794B50FF86A60473E813A7360DFE2C" author="Zweers GA & Vanden Berge JC" box="[995,1363,473,495]" journalOrPublisher="Netherlands Journal of Zoology" pageId="43" pageNumber="802" pagination="255-287" part="47" refId="ref29456" refString="Zweers GA, Vanden Berge JC. 1997. Evolutionary transi- tions in the trophic system of the wader-waterfowl complex. Netherlands Journal of Zooogy 47: 255 - 287." title="Evolutionary transitions in the trophic system of the wader-waterfowl complex" type="book" year="1997">Zweers & Vanden Berge, 1997</bibRefCitation>
|
||
), indicate that pecking and retracting the head to procure food were present in their common ancestor (
|
||
<bibRefCitation id="DA794B50FF86A6047349104B30BEFD88" author="Zweers GA" box="[834,992,565,587]" journalOrPublisher="BehaViour" pageId="43" pageNumber="802" pagination="173 - 230" part="81" refId="ref29433" refString="Zweers GA. 1992. Pecking of the pigeon (Columba liVia L.). BehaViour 81: 173 - 230." title="Pecking of the pigeon (Columba liVia L.)" type="journal article" year="1992">Zweers, 1992</bibRefCitation>
|
||
). Birds employ similar motions when drinking, although these are more complex in anseriforms, which have large numbers of cervical vertebrae (
|
||
<bibRefCitation id="DA794B50FF86A60473B610EF3789FD65" author="Heidweiller J & Lendering B & Zweers GA" box="[957,1239,657,679]" journalOrPublisher="Netherlands Journal of Zoology" pageId="43" pageNumber="802" pagination="1 - 22" part="42" refId="ref27942" refString="Heidweiller J, Lendering B, Zweers GA. 1992. Development of motor patterns in cervical muscles of drinking chickens. Netherlands Journal of Zoology 42: 1 - 22." title="Development of motor patterns in cervical muscles of drinking chickens" type="journal article" year="1992">Heidweiller et al., 1992</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF86A60474E110EF30E1FD05" author="van der Leeuw AHJ & Bout RG & Zweers GA" journalOrPublisher="Netherlands Journal of Zoology" pageId="43" pageNumber="802" pagination="243 - 262" part="51" refId="ref28293" refString="van der Leeuw AHJ, Bout RG, Zweers GA. 2001. Evolutionary morphology of the neck system in ratites, fowl and waterfowl. Netherlands Journal of Zoology 51: 243 - 262." title="Evolutionary morphology of the neck system in ratites, fowl and waterfowl" type="journal article" year="2001">van der Leeuw et al., 2001</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF86A604735810B13732FC34" blockId="43.[826,1442,198,1903]" pageId="43" pageNumber="802">
|
||
In tyrannosaurids, elevation and retraction by neck dorsiflexors, and the unusual kinematics of m. longissimus capitis superficialis, would facilitate extension and retraction behaviour to procure food. This provides a mechanism for puncture-and-pull feeding recorded by tooth marks in bone (
|
||
<bibRefCitation id="DA794B50FF86A60474C01119302DFC5F" author="Erickson GM & Olson KH" journalOrPublisher="Journal of Vertebrate Paleontology" pageId="43" pageNumber="802" pagination="175 - 178" part="16" refId="ref27490" refString="Erickson GM, Olson KH. 1996. Bite marks attributable to Tyrannosaurus rex: a preliminary description and implications. Journal of Vertebrate Paleontology 16: 175 - 178." title="Bite marks attributable to Tyrannosaurus rex: a preliminary description and implications" type="journal article" year="1996">Erickson & Olson, 1996</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF86A604738A11F83731FC58" author="Erickson GM & Makovicky PJ & Currie PJ & Norell MA & Yerby SA & Brochu CA" box="[897,1135,902,924]" journalOrPublisher="Nature" pageId="43" pageNumber="802" pagination="772 - 775" part="430" refId="ref27454" refString="Erickson GM, Makovicky PJ, Currie PJ, Norell MA, Yerby SA, Brochu CA. 2004. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430: 772 - 775." title="Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs" type="journal article" year="2004">Erickson et al., 2004</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF86A604747711F8367AFC5F" author="Rayfield EJ" box="[1148,1316,902,924]" journalOrPublisher="Proceedings of the Royal Society of London B" pageId="43" pageNumber="802" pagination="1451 - 1459" part="271" refId="ref28594" refString="Rayfield EJ. 2004. Cranial mechanics and feeding in Tyrannosaurus rex. Proceedings of the Royal Society of London B 271: 1451 - 1459." title="Cranial mechanics and feeding in Tyrannosaurus rex" type="journal article" year="2004">Rayfield, 2004</bibRefCitation>
|
||
), but more critically allows inference of bird-like musculoskeletal kinematics during drinking, which would not leave traces in the fossil record.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF86A6047358167E3759FA01" blockId="43.[826,1442,198,1903]" pageId="43" pageNumber="802">
|
||
Parallels between tyrannosaurid and crocodilian neck musculature may indicate feeding behaviours shared by these taxa that birds generally do not undertake. Crocodilians sweep their heads sideways when attacking prey and tearing meat (
|
||
<bibRefCitation id="DA794B50FF86A6047508160436C2FB53" author="Busbey AB" box="[1283,1436,1146,1168]" journalOrPublisher="Journal of Morphology" pageId="43" pageNumber="802" pagination="99 - 127" part="202" refId="ref27300" refString="Busbey AB. 1989. Form and function of the feeding apparatus of Alligator mississippiensis. Journal of Morphology 202: 99 - 127." title="Form and function of the feeding apparatus of Alligator mississippiensis" type="journal article" year="1989">Busbey, 1989</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF86A604733116E737DFFB6C" author="Cleuren J & De Vree F." box="[826,1153,1177,1199]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="43" pageNumber="802" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
), using m. longissimus capitis superficialis and m. spino-capitis posticus as the main lateroflexors (
|
||
<bibRefCitation id="DA794B50FF86A604744816A8363DFB2F" author="Cleuren J & De Vree F." box="[1091,1379,1238,1260]" editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="43" pageNumber="802" pagination="337 - 358" refId="ref27386" refString="Cleuren J, De Vree F. 2000. Feeding in crocodilians. In: Schwenk K, ed. Feeding form, function, and eVolution in tetrapod Vertebates. San Diego: Academic Press, 337 - 358." title="Feeding in crocodilians" type="book chapter" volumeTitle="Feeding form, function, and eVolution in tetrapod Vertebates" year="2000">Cleuren & De Vree, 2000</bibRefCitation>
|
||
). The large m. long. cap. sup. inferred in tyrannosaurids would have enabled powerful lateral flexion of the head and neck, augmented by m. complexus. Thus, kinematically and by unipolar physiological inference, tyrannosaurids were capable of lateral strikes at prey with a combination of, respectively, crocodilian- and bird-like muscles.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF86A604735817B53727F8AD" blockId="43.[826,1442,198,1903]" pageId="43" pageNumber="802">
|
||
These inferences seem obvious, but become informative about specific behaviours through quantitative testing. Calculations from 3D dynamic modelling of an adult
|
||
<taxonomicName id="79E84D22FF86A60473C7145937FBF9FF" authority="Osborn, 1905" box="[972,1189,1575,1596]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="43" pageNumber="802" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
indicate rapid accelerations for both dorsi- and lateroflexion, with high moment-generating capacity overcoming rotational inertias of the head and neck (
|
||
<bibRefCitation id="DA794B50FF86A60474C414FD362DF95A" author="Snively E." box="[1231,1395,1667,1689]" journalOrPublisher="University of Calgary" pageId="43" pageNumber="802" refId="ref28816" refString="Snively E. 2006. Neck musculoskeletal function in the Tyrannosauridae (Theropoda, Coelurosauria): implications for feeding dynamics. PhD dissertation, Univesity of Calgary." title="Neck musculoskeletal function in the Tyrannosauridae (Theropoda, Coelurosauria): implications for feeding dynamics" type="book" year="2006">Snively, 2006</bibRefCitation>
|
||
; E. Snively & A. P. Russell, unpubl. data; E. Snively et al., unpubl. data). Rotational inertias are proportional to the fifth power of linear size while muscle force is proportional to the square. Thus, even with much lower moment-generating capacity, smaller tyrannosaurids could probably strike even more quickly than adults of the largest taxon.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF81A60370A312B83268FD64" blockId="44.[144,759,198,1719]" pageId="44" pageNumber="803">
|
||
Shaking of the head to subdue smaller prey is seen in chickens (with muscle use documented in EMG studies:
|
||
<bibRefCitation id="DA794B50FF81A60370E4137D32D6FEDA" author="Snively E." box="[239,392,259,281]" journalOrPublisher="University of Calgary" pageId="44" pageNumber="803" refId="ref28816" refString="Snively E. 2006. Neck musculoskeletal function in the Tyrannosauridae (Theropoda, Coelurosauria): implications for feeding dynamics. PhD dissertation, Univesity of Calgary." title="Neck musculoskeletal function in the Tyrannosauridae (Theropoda, Coelurosauria): implications for feeding dynamics" type="book" year="2006">Snively, 2006</bibRefCitation>
|
||
), scleoglossan lizards (
|
||
<bibRefCitation id="DA794B50FF81A6037283137D338BFEFB" author="Schwenk K." editor="Schwenk K" journalOrPublisher="San Diego: Academic Press" pageId="44" pageNumber="803" pagination="175 - 291" refId="ref28722" refString="Schwenk K. 2000 b. Feeding in lepidosaurs. In: Schwenk K, ed. Feeding: form, function, and eVolution in tetrapod Vertebrates. San Diego: Academic Press, 175 - 291." title="Feeding in lepidosaurs" type="book chapter" volumeTitle="Feeding: form, function, and eVolution in tetrapod Vertebrates" year="2000">Schwenk, 2000b</bibRefCitation>
|
||
) and even in some crocodilians when feeding on fish (
|
||
<bibRefCitation id="DA794B50FF81A60370DB133E328DFE95" author="Thorbjarnarson JB" box="[208,467,320,342]" journalOrPublisher="Copeia" pageId="44" pageNumber="803" pagination="1166 - 1171" part="1993" refId="ref29018" refString="Thorbjarnarson JB. 1993. Fishing behavior of the spectacled caiman in the Venezuelan Llanos. Copeia 1993: 1166 - 1171." title="Fishing behavior of the spectacled caiman in the Venezuelan Llanos" type="journal article" year="1993">Thorbjarnarson, 1993</bibRefCitation>
|
||
).
|
||
<bibRefCitation id="DA794B50FF81A60371E6133E31A9FE95" author="Lingham-Soliar T." box="[493,759,320,342]" journalOrPublisher="Geology Today" pageId="44" pageNumber="803" pagination="16 - 20" part="14" refId="ref28329" refString="Lingham-Soliar T. 1998. Guess who's coming to dinner: a portrait of Tyrannosaurus as a predator. Geology Today 14: 16 - 20." title="Guess who's coming to dinner: a portrait of Tyrannosaurus as a predator" type="journal article" year="1998">Lingham-Soliar (1998)</bibRefCitation>
|
||
and
|
||
<bibRefCitation id="DA794B50FF81A60370C01321315BFEB6" author="Fowler DW & Sullivan RM" box="[203,517,351,373]" editor="Lucas S. G. & Sullivan R. M." pageId="44" pageNumber="803" pagination="127-130" part="35" refId="ref27704" refString="Fowler DW, Sullivan RM. 2006. A ceratopsid pelvis with tooth marks from the Upper Cretacesous Kirtland Forma- tion, New Mexico: evidence of Late Campanial tyrannosaurid feeding behavior. In: Lucas SG, Sullivan RM, eds. Late Cretaceous Vertebrates from the Western Interior. Neae Mexico Museum of Natural History and Science Bulletin 35: 127 - 130." title="A ceratopsid pelvis with tooth marks from the Upper Cretacesous Kirtland Formation, New Mexico: evidence of Late Campanial tyrannosaurid feeding behavior." type="book" volumeTitle="Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin" year="2006">Fowler & Sullivan (2006)</bibRefCitation>
|
||
suggest that large tyrannosauirds engaged in shake-feeding to excise flesh or dispatch prey. Behavioural interpolation of this activity is more tenuous than the others proposed here, as it is based on observations and not physiological bracketing between extant taxa. More importantly, shake-feeding by tyrannosaurids to kill prey is unsupported by quantitative data. However, as with inference of rapid lateral strikes and gaze shifts, biomechanics of flesh extraction has been tested quantitatively.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF81A60370A310CE31D4F974" blockId="44.[144,759,198,1719]" pageId="44" pageNumber="803">
|
||
For example, lateroflexive neck muscles of adult
|
||
<taxonomicName id="79E84D22FF81A603709B10B1323BFD27" authority="Osborn, 1905" box="[144,357,719,740]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="44" pageNumber="803" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
|
||
had enormous capacity to perform work of fracture on food (
|
||
<bibRefCitation id="DA794B50FF81A60371EA109331D9FCC0" author="Snively E." box="[481,647,749,771]" journalOrPublisher="University of Calgary" pageId="44" pageNumber="803" refId="ref28816" refString="Snively E. 2006. Neck musculoskeletal function in the Tyrannosauridae (Theropoda, Coelurosauria): implications for feeding dynamics. PhD dissertation, Univesity of Calgary." title="Neck musculoskeletal function in the Tyrannosauridae (Theropoda, Coelurosauria): implications for feeding dynamics" type="book" year="2006">Snively, 2006</bibRefCitation>
|
||
). Section moduli indicate that
|
||
<taxonomicName id="79E84D22FF81A60371891172329EFCE2" authority="Osborn, 1905" box="[386,448,780,801]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="44" pageNumber="803" phylum="Chordata" rank="species" species="rex">T. rex</taxonomicName>
|
||
maxillary teeth were were coevally strong in lateral and anteroposterior bending (
|
||
<bibRefCitation id="DA794B50FF81A603709C1136316DFC9D" author="Henderson DM & Weishampel DB" box="[151,563,840,862]" journalOrPublisher="Senckenbergiana Lethaea" pageId="44" pageNumber="803" pagination="77 - 92" part="82" refId="ref28012" refString="Henderson DM, Weishampel DB. 2002. Convergent evolution of the maxilla-dental complex among carnivorous archosaurs. Senckenbergiana Lethaea 82: 77 - 92." title="Convergent evolution of the maxilla-dental complex among carnivorous archosaurs" type="journal article" year="2002">Henderson & Weishampel, 2002</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF81A603724511363394FCBE" author="Snively E & Henderson DM & Phillips DS" journalOrPublisher="Acta Palaeontologica Polonica" pageId="44" pageNumber="803" pagination="435 - 454" part="51" refId="ref28845" refString="Snively E, Henderson DM, Phillips DS. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs: implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica 51: 435 - 454." title="Fused and vaulted nasals of tyrannosaurid dinosaurs: implications for cranial strength and feeding mechanics" type="journal article" year="2006">Snively et al., 2006</bibRefCitation>
|
||
), and much stronger in lateral bending than teeth of other large theropods (
|
||
<bibRefCitation id="DA794B50FF81A603720A11F83397FC7A" author="Farlow JO & Brinkman DL" editor="Rosenberg GD & Wolberg DL" journalOrPublisher="Palaeontological Society Special Publications" pageId="44" pageNumber="803" pagination="165 - 175" part="7" refId="ref27558" refString="Farlow JO, Brinkman DL. 1994. Wear surfaces on the teeth of tyrannosaurs. In: Rosenberg GD, Wolberg DL, eds. Dinofest: Proceedings of a Conference for the General Public. Palaeontological Society Special Publications 7: 165 - 175." title="Wear surfaces on the teeth of tyrannosaurs" type="journal article" volumeTitle="Dinofest: Proceedings of a Conference for the General Public" year="1994">Farlow & Brinkman, 1994</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF81A60370D711DA3297FC79" author="Snively E & Henderson DM & Phillips DS" box="[220,457,932,954]" journalOrPublisher="Acta Palaeontologica Polonica" pageId="44" pageNumber="803" pagination="435 - 454" part="51" refId="ref28845" refString="Snively E, Henderson DM, Phillips DS. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs: implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica 51: 435 - 454." title="Fused and vaulted nasals of tyrannosaurid dinosaurs: implications for cranial strength and feeding mechanics" type="journal article" year="2006">Snively et al., 2006</bibRefCitation>
|
||
). Muscular capacity and tooth strength suggest that
|
||
<taxonomicName id="79E84D22FF81A60371E711BA3174FC1A" authority="Osborn, 1905" box="[492,554,964,985]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="44" pageNumber="803" phylum="Chordata" rank="species" species="rex">T. rex</taxonomicName>
|
||
could tug alternately with lateroflexors, the ipsilateral teeth producing puncture-and-pull tooth marks roughly parallel with the carinae (
|
||
<bibRefCitation id="DA794B50FF81A603716E166131DCFBF6" author="Erickson GM & Olson KH" box="[357,642,1055,1077]" journalOrPublisher="Journal of Vertebrate Paleontology" pageId="44" pageNumber="803" pagination="175 - 178" part="16" refId="ref27490" refString="Erickson GM, Olson KH. 1996. Bite marks attributable to Tyrannosaurus rex: a preliminary description and implications. Journal of Vertebrate Paleontology 16: 175 - 178." title="Bite marks attributable to Tyrannosaurus rex: a preliminary description and implications" type="journal article" year="1996">Erickson & Olson, 1996</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF81A60372991661324AFB90" author="Erickson GM & Olson KH" journalOrPublisher="Journal of Vertebrate Paleontology" pageId="44" pageNumber="803" pagination="175 - 178" part="16" refId="ref27490" refString="Erickson GM, Olson KH. 1996. Bite marks attributable to Tyrannosaurus rex: a preliminary description and implications. Journal of Vertebrate Paleontology 16: 175 - 178." title="Bite marks attributable to Tyrannosaurus rex: a preliminary description and implications" type="journal article" year="1996">Erickson et al., 1996</bibRefCitation>
|
||
), while the contralateral teeth remained relatively stationary. This alternate tearing action would be similar to behaviour seen in varanid lizards, canids, and even in predatory birds as they grip and tear soft tissue of prey. The lateral component of this tearing action may have been less vigorous in smaller tyrannosaurids, which had weaker teeth (
|
||
<bibRefCitation id="DA794B50FF81A603728E168B320AFAEA" author="Farlow JO & Brinkman DL" editor="Rosenberg GD & Wolberg DL" journalOrPublisher="Palaeontological Society Special Publications" pageId="44" pageNumber="803" pagination="165 - 175" part="7" refId="ref27558" refString="Farlow JO, Brinkman DL. 1994. Wear surfaces on the teeth of tyrannosaurs. In: Rosenberg GD, Wolberg DL, eds. Dinofest: Proceedings of a Conference for the General Public. Palaeontological Society Special Publications 7: 165 - 175." title="Wear surfaces on the teeth of tyrannosaurs" type="journal article" volumeTitle="Dinofest: Proceedings of a Conference for the General Public" year="1994">Farlow & Brinkman, 1994</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF81A6037163176D310DFAEA" author="Snively E & Henderson DM & Phillips DS" box="[360,595,1299,1321]" journalOrPublisher="Acta Palaeontologica Polonica" pageId="44" pageNumber="803" pagination="435 - 454" part="51" refId="ref28845" refString="Snively E, Henderson DM, Phillips DS. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs: implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica 51: 435 - 454." title="Fused and vaulted nasals of tyrannosaurid dinosaurs: implications for cranial strength and feeding mechanics" type="journal article" year="2006">Snively et al., 2006</bibRefCitation>
|
||
) and shorter lateroflexive moment arms (
|
||
<bibRefCitation id="DA794B50FF81A60371D8174C3133FA8B" author="Snively E." box="[467,621,1330,1352]" journalOrPublisher="University of Calgary" pageId="44" pageNumber="803" refId="ref28816" refString="Snively E. 2006. Neck musculoskeletal function in the Tyrannosauridae (Theropoda, Coelurosauria): implications for feeding dynamics. PhD dissertation, Univesity of Calgary." title="Neck musculoskeletal function in the Tyrannosauridae (Theropoda, Coelurosauria): implications for feeding dynamics" type="book" year="2006">Snively, 2006</bibRefCitation>
|
||
) than adult
|
||
<taxonomicName id="79E84D22FF81A603709B172F3393FAA5" authority="Osborn, 1905" box="[144,205,1361,1382]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" kingdom="Animalia" order="Dinosauria" pageId="44" pageNumber="803" phylum="Chordata" rank="species" species="rex">T. rex</taxonomicName>
|
||
. However, linear retraction by simultaneous contraction of certain dorsiflexors, lateroflexors and anterior ventroflexors in all tyrannosaurids is supported by kinematic and physiological inference, and observation of these behaviours in both carnivorous birds (
|
||
<bibRefCitation id="DA794B50FF81A60370D617943224F9C3" author="Snively E." box="[221,378,1514,1536]" journalOrPublisher="University of Calgary" pageId="44" pageNumber="803" refId="ref28816" refString="Snively E. 2006. Neck musculoskeletal function in the Tyrannosauridae (Theropoda, Coelurosauria): implications for feeding dynamics. PhD dissertation, Univesity of Calgary." title="Neck musculoskeletal function in the Tyrannosauridae (Theropoda, Coelurosauria): implications for feeding dynamics" type="book" year="2006">Snively, 2006</bibRefCitation>
|
||
) and crocodilians. EBI and biomechanics thus refine the picture of puncture-andpull feeding in tyrannosaurids (
|
||
<bibRefCitation id="DA794B50FF81A603721C14593397F998" author="Erickson GM & Olson KH" journalOrPublisher="Journal of Vertebrate Paleontology" pageId="44" pageNumber="803" pagination="175 - 178" part="16" refId="ref27490" refString="Erickson GM, Olson KH. 1996. Bite marks attributable to Tyrannosaurus rex: a preliminary description and implications. Journal of Vertebrate Paleontology 16: 175 - 178." title="Bite marks attributable to Tyrannosaurus rex: a preliminary description and implications" type="journal article" year="1996">Erickson & Olson, 1996</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF81A60370EB143B32BDF998" author="Erickson GM & Van Kirk SD & Su J & Levenston ME & Caler WE & Carter DR" box="[224,483,1605,1627]" journalOrPublisher="Nature" pageId="44" pageNumber="803" pagination="706 - 708" part="382" refId="ref27521" refString="Erickson GM, Van Kirk SD, Su J, Levenston ME, Caler WE, Carter DR. 1996. Bite-force estimation for Tyrannosaurus rex from tooth-marked bones. Nature 382: 706 - 708." title="Bite-force estimation for Tyrannosaurus rex from tooth-marked bones" type="journal article" year="1996">Erickson et al., 1996</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF81A60371F0143B31F3F99F" author="Rayfield EJ" box="[507,685,1605,1628]" journalOrPublisher="Proceedings of the Royal Society of London B" pageId="44" pageNumber="803" pagination="1451 - 1459" part="271" refId="ref28594" refString="Rayfield EJ. 2004. Cranial mechanics and feeding in Tyrannosaurus rex. Proceedings of the Royal Society of London B 271: 1451 - 1459." title="Cranial mechanics and feeding in Tyrannosaurus rex" type="journal article" year="2004">Rayfield, 2004</bibRefCitation>
|
||
), and predict that bilateral tooth drag marks of tyrannosaurids will be found on fossil bones large enough to record scoring by left and right tooth rows.
|
||
</paragraph>
|
||
<paragraph id="BE5736A1FF81A603715014973174F8C2" blockId="44.[347,554,1769,1793]" box="[347,554,1769,1793]" pageId="44" pageNumber="803">CONCLUSIONS</paragraph>
|
||
<paragraph id="BE5736A1FF81A603709B1567362AFCC0" blockId="44.[144,759,1817,1900]" lastBlockId="44.[806,1422,198,771]" pageId="44" pageNumber="803">
|
||
Our methods are potentially applicable to reconstructing many functional systems in extinct animals, and the archosaurian neck provides a morphologically grounded and complexly challenging trial. This study presents an example of both soft-tissue and behavioural inference in a well-represented fossil clade, and demonstrates the correlative necessity of understanding musculoskeletal systems in extant vertebrates. Neck musculature of birds and crocodilians is highly divergent in detail. However, morphological, physiological and behavioural commonalities highlight the power of archosaurian homologies to elucidate unpreserved attributes of extinct relatives. Tyrannosaurid bite forces and skull strengths were among the most formidable of any archosaurs (
|
||
<bibRefCitation id="DA794B50FF81A603749F106836D6FDEF" author="Erickson GM & Van Kirk SD & Su J & Levenston ME & Caler WE & Carter DR" box="[1172,1416,534,556]" journalOrPublisher="Nature" pageId="44" pageNumber="803" pagination="706 - 708" part="382" refId="ref27521" refString="Erickson GM, Van Kirk SD, Su J, Levenston ME, Caler WE, Carter DR. 1996. Bite-force estimation for Tyrannosaurus rex from tooth-marked bones. Nature 382: 706 - 708." title="Bite-force estimation for Tyrannosaurus rex from tooth-marked bones" type="journal article" year="1996">Erickson et al., 1996</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF81A603732D104830E0FD89" author="Meers MB" box="[806,958,565,587]" journalOrPublisher="Historical Biology" pageId="44" pageNumber="803" pagination="1 - 12" part="16" refId="ref28396" refString="Meers MB. 2003. Maximum bite force and prey size of Tyrannosaurus rex and their relationship to the inference of feeding behaviour. Historical Biology 16: 1 - 12." title="Maximum bite force and prey size of Tyrannosaurus rex and their relationship to the inference of feeding behaviour" type="journal article" year="2003">Meers, 2003</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF81A60373DF104B378CFD88" author="Therrien F & Henderson DM & Ruff CB" box="[980,1234,565,587]" editor="Carpenter K" journalOrPublisher="Bloomington: Indiana University Press" pageId="44" pageNumber="803" pagination="179 - 237" refId="ref28972" refString="Therrien F, Henderson DM, Ruff CB. 2005. Bite me: biomechanical models of theropod mandibles and implications for feeding behavior. In: Carpenter K, ed. The carniVorous dinosaurs. Bloomington: Indiana University Press, 179 - 237." title="Bite me: biomechanical models of theropod mandibles and implications for feeding behavior" type="book chapter" volumeTitle="The carniVorous dinosaurs" year="2005">Therrien et al., 2005</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="DA794B50FF81A60374E3104B303EFDA9" author="Snively E & Henderson DM & Phillips DS" journalOrPublisher="Acta Palaeontologica Polonica" pageId="44" pageNumber="803" pagination="435 - 454" part="51" refId="ref28845" refString="Snively E, Henderson DM, Phillips DS. 2006. Fused and vaulted nasals of tyrannosaurid dinosaurs: implications for cranial strength and feeding mechanics. Acta Palaeontologica Polonica 51: 435 - 454." title="Fused and vaulted nasals of tyrannosaurid dinosaurs: implications for cranial strength and feeding mechanics" type="journal article" year="2006">Snively et al., 2006</bibRefCitation>
|
||
), and the neck muscles of adults exerted higher forces than in other theropod clades (
|
||
<bibRefCitation id="DA794B50FF81A603751A100C3098FD64" author="Snively E & Russell AP" journalOrPublisher="Anatomical Record" pageId="44" pageNumber="803" pagination="934 - 957" part="290" refId="ref28937" refString="Snively E, Russell AP. 2007. Functional variation of neck muscles and their relation to feeding style in Tyrannosauridae and other large theropod dinosaurs. Anatomical Record 290: 934 - 957." title="Functional variation of neck muscles and their relation to feeding style in Tyrannosauridae and other large theropod dinosaurs" type="journal article" year="2007">Snively & Russell, 2007</bibRefCitation>
|
||
). EBI and biomechanics applied to the tyrannosaurid neck yield a rigorous, yet expansive and vivid picture of feeding and other craniocervically mediated behaviours in these powerful carnivores.
|
||
</paragraph>
|
||
</subSubSection>
|
||
</treatment>
|
||
</document> |