528 lines
76 KiB
XML
528 lines
76 KiB
XML
<document id="A14B515F5550A852DCBE98F1B7966934" ID-DOI="10.1016/j.phytochem.2019.112179" ID-ISSN="1873-3700" ID-Zenodo-Dep="8293717" IM.bibliography_approvedBy="carolina" IM.illustrations_approvedBy="carolina" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.tables_approvedBy="carolina" IM.taxonomicNames_approvedBy="carolina" IM.treatments_approvedBy="carolina" checkinTime="1693253635936" checkinUser="felipe" docAuthor="Cuadra, Pedro, Guajardo, Joselin, Carrasco-Orellana, Cristian, Stappung, Yazmina, Fajardo, Víctor & Herrera, Raúl" docDate="2020" docId="03D71B6CFFFEFB63633EFD11FAF6C369" docLanguage="en" docName="Phytochemistry.169.112179.pdf" docOrigin="Phytochemistry (112179) 169" docSource="http://dx.doi.org/10.1016/j.phytochem.2019.112179" docStyle="DocumentStyle:F36D69FC8B198FBE91029DF9C24697D3.5:Phytochemistry.2020-.journal_article" docStyleId="F36D69FC8B198FBE91029DF9C24697D3" docStyleName="Phytochemistry.2020-.journal_article" docStyleVersion="5" docTitle="Deschampsia antarctica É.Desv." docType="treatment" docVersion="2" lastPageNumber="6" masterDocId="FFEE6314FFFFFB66600CFFDCFFA0C746" masterDocTitle="Differential expression after UV-B radiation and characterization of chalcone synthase from the Patagonian hairgrass Deschampsia antarctica" masterLastPageNumber="10" masterPageNumber="1" pageNumber="2" updateTime="1693404525653" updateUser="ExternalLinkService">
|
||
<mods:mods id="B6DB6C650ECB3C370727C7AD91A546B3" xmlns:mods="http://www.loc.gov/mods/v3">
|
||
<mods:titleInfo id="851368AE1ACE44028B96F3684D2DADBE">
|
||
<mods:title id="CD21049A8F757E36FCABA931144FB9FC">Differential expression after UV-B radiation and characterization of chalcone synthase from the Patagonian hairgrass Deschampsia antarctica</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:name id="8C2A6CCD834D996ECA20AFA5D0443977" type="personal">
|
||
<mods:role id="596EC17206EE9A7616AE7D11EFDE88C3">
|
||
<mods:roleTerm id="7EAAC4256655EA95F9414D0D6C8326BF">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="946E148BB986A5B6AB416140DA3D462A">Cuadra, Pedro</mods:namePart>
|
||
<mods:affiliation id="3E3C66D6881A671CDBF4121D8FA27E5F">∗∗ & Universidad de Magallanes, Laboratorio de Productos Naturales, P. O. Box 113 - D, Punta Arenas, Chile</mods:affiliation>
|
||
</mods:name>
|
||
<mods:name id="7C9E8CA547AC22B99F3455B3FAB7BFFA" type="personal">
|
||
<mods:role id="ED80FDFCC962907134094BF20815DD3D">
|
||
<mods:roleTerm id="3D8ECD553EF34DD72DD330F719E4496C">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="FF5797005BED221B611ACF336C822D82">Guajardo, Joselin</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="177809443C20BF5053422CA2EEE093ED" type="personal">
|
||
<mods:role id="EF1218082466F33ED295B74284F33837">
|
||
<mods:roleTerm id="A846CBFCE73A794BCA81A69162C07AD0">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="A287E26FB2CF865A5DF2A0C8AED61452">Carrasco-Orellana, Cristian</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="B6F3205A529AB688D014F400E35366FC" type="personal">
|
||
<mods:role id="B70650597A7D3C37CA0ADC9774B7B83C">
|
||
<mods:roleTerm id="E256608186090ECB1A46636E1E212F85">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="3A33FA5A328B5F07209657D9D2C532C7">Stappung, Yazmina</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="D44D3C6F3ED3C5F5B81FCA5EBCAE9C43" type="personal">
|
||
<mods:role id="8FC9F22F87DF7ABB96CC369AE118509A">
|
||
<mods:roleTerm id="DA54C41F2DEE5AD8C7F23BE6FB03EF4E">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="85395F8B89A2B7931E265D9FDCBCB30E">Fajardo, Víctor</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="047282403D1BAAB93692C514317E1A82" type="personal">
|
||
<mods:role id="D4352BF979512BD4EE446898C87D9D84">
|
||
<mods:roleTerm id="2B96F483A40C3E89F8314C27AADD85E3">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="9518AAD2E73C59C29900C9A31E7EFE2B">Herrera, Raúl</mods:namePart>
|
||
</mods:name>
|
||
<mods:typeOfResource id="8057EE7AD69296D26BD6EF9C5F978C06">text</mods:typeOfResource>
|
||
<mods:relatedItem id="62346A4A449B4EC0799B0F1F4B8B773C" type="host">
|
||
<mods:titleInfo id="830FB40994C98B55DA8A820D6F711160">
|
||
<mods:title id="2D0A9A87541A18AF900C8CDDED386DA9">Phytochemistry</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:part id="8664D875A65113634313FFEA7260DB94">
|
||
<mods:date id="065CB7D821F5867B1982E5980BBB6240">2020</mods:date>
|
||
<mods:detail id="1D302EF509820BDEE3651BFCF9A28DAD" type="series">
|
||
<mods:title id="5A2B64FB6C8968DB76F531CDC8921A43">112179</mods:title>
|
||
</mods:detail>
|
||
<mods:detail id="14D059ED9FA5CFFC30AE3FC8DA2A6E52" type="pubDate">
|
||
<mods:number id="6096A274A67BC84C32F1C0DE3AEA5C72">2020-01-31</mods:number>
|
||
</mods:detail>
|
||
<mods:detail id="DCD0C5AA9F3BB9B52F079CBC19435CEA" type="volume">
|
||
<mods:number id="C49BCFFCFB52C5353771B19272C4478D">169</mods:number>
|
||
</mods:detail>
|
||
<mods:extent id="7D051BBD553ADEE759CE2B32947F9AB4" unit="page">
|
||
<mods:start id="C1BF2504FFA1174B84EBDEDCDBEC8742">1</mods:start>
|
||
<mods:end id="7B067BE7FE57A02E8D9BB44FBDE94CD6">10</mods:end>
|
||
</mods:extent>
|
||
</mods:part>
|
||
</mods:relatedItem>
|
||
<mods:location id="399C8D47F5AF6121FB7EDE0679A3EC9C">
|
||
<mods:url id="50040798C151DE70A4E143AB0576DC60">http://dx.doi.org/10.1016/j.phytochem.2019.112179</mods:url>
|
||
</mods:location>
|
||
<mods:classification id="824B167ACFA3CCEF073F0B23B41D2ED7">journal article</mods:classification>
|
||
<mods:identifier id="50128D031342EC20B82E9DD1C8C1993D" type="DOI">10.1016/j.phytochem.2019.112179</mods:identifier>
|
||
<mods:identifier id="EEB95C04583AA78940ACE0DBB0B6D9B5" type="ISSN">1873-3700</mods:identifier>
|
||
<mods:identifier id="23C45EC40EF08F2F33159899E203451F" type="Zenodo-Dep">8293717</mods:identifier>
|
||
</mods:mods>
|
||
<treatment id="03D71B6CFFFEFB63633EFD11FAF6C369" ID-DOI="http://doi.org/10.5281/zenodo.8301817" ID-Zenodo-Dep="8301817" LSID="urn:lsid:plazi:treatment:03D71B6CFFFEFB63633EFD11FAF6C369" httpUri="http://treatment.plazi.org/id/03D71B6CFFFEFB63633EFD11FAF6C369" lastPageId="5" lastPageNumber="6" pageId="1" pageNumber="2">
|
||
<subSubSection id="C364F9F1FFFEFB67633EFD11FB6CC5A6" box="[818,1228,717,736]" pageId="1" pageNumber="2" type="nomenclature">
|
||
<paragraph id="8BC1AA7AFFFEFB67633EFD11FB6CC5A6" blockId="1.[818,1228,717,736]" box="[818,1228,717,736]" pageId="1" pageNumber="2">
|
||
<heading id="D0891D16FFFEFB67633EFD11FB6CC5A6" bold="true" box="[818,1228,717,736]" fontSize="36" level="1" pageId="1" pageNumber="2" reason="1">
|
||
<emphasis id="B90A7668FFFEFB67633EFD11FB6CC5A6" bold="true" box="[818,1228,717,736]" italics="true" pageId="1" pageNumber="2">
|
||
2.1. Analysis of CHS gene from
|
||
<taxonomicName id="4C7ED1F9FFFEFB676454FD11FB6CC5A6" ID-CoL="34Z4S" ID-ENA="159298" authorityName="É.Desv." box="[1112,1228,717,736]" class="Liliopsida" family="Poaceae" genus="Deschampsia" kingdom="Plantae" order="Poales" pageId="1" pageNumber="2" phylum="Tracheophyta" rank="species" species="antarctica">D. antarctica</taxonomicName>
|
||
</emphasis>
|
||
</heading>
|
||
</paragraph>
|
||
</subSubSection>
|
||
<subSubSection id="C364F9F1FFFEFB63635FFCD9FAF6C369" lastPageId="5" lastPageNumber="6" pageId="1" pageNumber="2" type="description">
|
||
<paragraph id="8BC1AA7AFFFEFB67635FFCD9FCC3C248" blockId="1.[818,1488,773,1294]" pageId="1" pageNumber="2">
|
||
DaCHS full-length cDNA was obtained using the partial sequence of an EST as the template, designing primers for 5′- and 3′-RACE-PCR reactions. A sequence of 1741 bp with a poly (A) tail, containing 143 bp and 407 bp of 5′- and 3′ -UTR sequences respectively, was obtained as well as an ORF of 1191 bp with a deduced polypeptide sequence of 397 amino acids. This sequence was deposited in GenBank (accession number MG766286). Analysis of the predicted DaCHS protein demonstrated the typical conserved structural features among CHSs. The mature protein has an estimated molecular weight of 43.53 kDa (pI 6.44). Important residues for the active site motif can be observed in DaCHS (C167, F218, H306 and N339). Moreover, the active site motif is formed by a variety of residues typical of the chalcone synthase family, which are also observed in the
|
||
<taxonomicName id="4C7ED1F9FFFEFB67645EFB8FFB64C320" box="[1106,1220,1107,1126]" class="Liliopsida" family="Poaceae" genus="Deschampsia" kingdom="Plantae" order="Poales" pageId="1" pageNumber="2" phylum="Tracheophyta" rank="genus">
|
||
<emphasis id="B90A7668FFFEFB67645EFB8FFB64C320" bold="true" box="[1106,1220,1107,1126]" italics="true" pageId="1" pageNumber="2">Deschampsia</emphasis>
|
||
</taxonomicName>
|
||
protein sequence. It has two domains: the N-terminal domain ranges from amino acid 8 to 231 and the C-terminal domain ranges from amino acid 241 to 391. Multiple alignment analysis with fourteen other CHS sequences of representative monocotyledons showed a highly conserved pattern among sequences (
|
||
<figureCitation id="1345B6FFFFFEFB676336FB03FCD0C3B4" box="[826,880,1247,1266]" captionStart="Fig" captionStartId="2.[100,130,919,936]" captionTargetBox="[227,1360,152,895]" captionTargetId="figure-276@2.[227,1361,152,896]" captionTargetPageId="2" captionText="Fig. 1. Multiple alignment of amino acids for monocotyledons sequences: H. vulgare HvCHS1 (ID: P26018.1), H. vulgare HvCHS2 (ID: Q96562.1), O. sativa subsp. japonica OsjCHS1(ID: XP_015618054.1), O. sativa subsp. japonica OsjCHS2(ID: XP_015646206.1), O. sativa subsp. indica OsiCHS1 (ID: A2ZEX7.1), Sorghum bicolor SbCHS1(ID: XP_002450874.1), S. bicolor SbCHS2(ID: XP_002450871.1), S. bicolor SbCHS3 (ID: XP_002450875.1), S. bicolor SbCHS4(ID: XP_002450870.1), S. bicolor SbCHS5(ID: XP_002449616.1), S. bicolor SbCHS6 (ID: XP_002450877.1), S. bicolor SbCHS7(ID: XP_002450876.1), Z. mays ZmCHS1 (ID: P24824.1), Z. mays ZmCHS2 (ID: NP_001142246.1). Arrows show active site residues, described for chalcone synthase (Cys 167, Phe 218, His 306 and Asn 339). N-terminal domain and Cterminal domain are shown." figureDoi="http://doi.org/10.5281/zenodo.8293719" httpUri="https://zenodo.org/record/8293719/files/figure.png" pageId="1" pageNumber="2">Fig. 1</figureCitation>
|
||
). All these findings suggest that DaCHS belongs to the CHS family.
|
||
</paragraph>
|
||
<paragraph id="8BC1AA7AFFFEFB67633EFAEFFBDDC200" blockId="1.[818,1149,1330,1350]" box="[818,1149,1330,1350]" pageId="1" pageNumber="2">
|
||
<heading id="D0891D16FFFEFB67633EFAEFFBDDC200" bold="true" box="[818,1149,1330,1350]" fontSize="36" level="1" pageId="1" pageNumber="2" reason="1">
|
||
<emphasis id="B90A7668FFFEFB67633EFAEFFBDDC200" bold="true" box="[818,1149,1330,1350]" italics="true" pageId="1" pageNumber="2">2.2. Phylogenetic analysis of DaCHS</emphasis>
|
||
</heading>
|
||
</paragraph>
|
||
<paragraph id="8BC1AA7AFFFEFB67635FFAB6FB20C2AB" blockId="1.[818,1487,1386,1517]" pageId="1" pageNumber="2">
|
||
Fifteen other CHS amino acid sequences were considered for phylogenetic analysis of DaCHS, including proteins from
|
||
<taxonomicName id="4C7ED1F9FFFEFB67652DFA5AFACFC2DF" box="[1313,1391,1414,1433]" class="Liliopsida" family="Poaceae" genus="Oryza" kingdom="Plantae" order="Poales" pageId="1" pageNumber="2" phylum="Tracheophyta" rank="species" species="sativa">
|
||
<emphasis id="B90A7668FFFEFB67652DFA5AFACFC2DF" bold="true" box="[1313,1391,1414,1433]" italics="true" pageId="1" pageNumber="2">O. sativa</emphasis>
|
||
</taxonomicName>
|
||
L,
|
||
<taxonomicName id="4C7ED1F9FFFEFB676586FA5BFA6FC2DC" box="[1418,1487,1415,1434]" class="Liliopsida" family="Poaceae" genus="Zea" kingdom="Plantae" order="Poales" pageId="1" pageNumber="2" phylum="Tracheophyta" rank="species" species="mays">
|
||
<emphasis id="B90A7668FFFEFB676586FA5BFA6FC2DC" bold="true" box="[1418,1487,1415,1434]" italics="true" pageId="1" pageNumber="2">Z. mays</emphasis>
|
||
</taxonomicName>
|
||
L. and
|
||
<taxonomicName id="4C7ED1F9FFFEFB676378FA7EFBF0C2F3" authority="L. According" authorityName="L. According" box="[884,1104,1442,1462]" class="Liliopsida" family="Poaceae" genus="Hordeum" kingdom="Plantae" order="Poales" pageId="1" pageNumber="2" phylum="Tracheophyta" rank="species" species="vulgare">
|
||
<emphasis id="B90A7668FFFEFB676378FA7EFC71C2F3" bold="true" box="[884,977,1442,1461]" italics="true" pageId="1" pageNumber="2">H. vulgare</emphasis>
|
||
L. According
|
||
</taxonomicName>
|
||
to these results, DaCHS can be grouped together with
|
||
<taxonomicName id="4C7ED1F9FFFEFB6763B6FA62FBECC297" authority="CHS" authorityName="CHS" box="[954,1100,1470,1489]" class="Liliopsida" family="Poaceae" genus="Hordeum" kingdom="Plantae" order="Poales" pageId="1" pageNumber="2" phylum="Tracheophyta" rank="species" species="vulgare">
|
||
<emphasis id="B90A7668FFFEFB6763B6FA62FBB7C297" bold="true" box="[954,1047,1470,1489]" italics="true" pageId="1" pageNumber="2">H. vulgare</emphasis>
|
||
CHS
|
||
</taxonomicName>
|
||
1 (
|
||
<figureCitation id="1345B6FFFFFEFB67646EFA62FB39C297" box="[1122,1177,1470,1489]" captionStart="Fig" captionStartId="2.[100,130,1593,1610]" captionTargetBox="[133,738,1103,1570]" captionTargetId="figure-385@2.[133,738,1103,1570]" captionTargetPageId="2" captionText="Fig. 2. Phylogenetic analysis of full-length predicted DaCHS protein compared with CHS proteins from: H. vulgare HvCHS1 (ID: P26018.1), H. vulgare HvCHS2 (ID: Q96562.1), O. sativa subsp. japonica OsjCHS1 (ID: XP_015618054.1), O. sativa subsp. japonica OsjCHS2(ID: XP_015646206.1), O. sativa subsp. indica OsiCHS1 (ID: A2ZEX7.1), S. bicolor SbCHS1(ID: XP_002450874.1), S. bicolor SbCHS2(ID: XP_002450871.1), S. bicolor SbCHS3 (ID: XP_002450875.1), S. bicolor SbCHS4(ID: XP_002450870.1), S. bicolor SbCHS5(ID: XP_002449616.1), S. bicolor SbCHS6 (ID: XP_002450877.1), S. bicolor SbCHS7(ID: XP_002450876.1), Z. mays ZmCHS1 (ID: P24824.1), Z. mays ZmCHS2 (ID: NP_001142246.1). Acetate kinase was used as the outlier (ID: WP_012677240.1). Numbers at each fork in the tree indicate the times that gene groups were clustered together in the 5000 bootstrap replicates." figureDoi="http://doi.org/10.5281/zenodo.8293721" httpUri="https://zenodo.org/record/8293721/files/figure.png" pageId="1" pageNumber="2">Fig. 2</figureCitation>
|
||
). Acetate kinase
|
||
<collectionCode id="ED6F32BFFFFEFB67654CFA62FAEEC297" box="[1344,1358,1470,1489]" country="USA" lsid="urn:lsid:biocol.org:col:15406" name="Harvard University - Arnold Arboretum" pageId="1" pageNumber="2" type="Herbarium">A</collectionCode>
|
||
from
|
||
<taxonomicName id="4C7ED1F9FFFEFB676586FA62FC37C2AB" authorityName="Sand & Jensen" authorityYear="1888" class="Bacilli" family="Streptococcaceae" genus="Streptococcus" kingdom="Bacteria" order="Lactobacillales" pageId="1" pageNumber="2" phylum="Firmicutes" rank="species" species="equi">
|
||
<emphasis id="B90A7668FFFEFB676586FA62FC37C2AB" bold="true" italics="true" pageId="1" pageNumber="2">Streptococcus equi</emphasis>
|
||
</taxonomicName>
|
||
was used as the outlier.
|
||
</paragraph>
|
||
<paragraph id="8BC1AA7AFFFEFB67633EF9CEFB9AC162" blockId="1.[818,1082,1553,1573]" box="[818,1082,1553,1573]" pageId="1" pageNumber="2">
|
||
<heading id="D0891D16FFFEFB67633EF9CEFB9AC162" bold="true" box="[818,1082,1553,1573]" fontSize="36" level="1" pageId="1" pageNumber="2" reason="1">
|
||
<emphasis id="B90A7668FFFEFB67633EF9CEFB9AC162" bold="true" box="[818,1082,1553,1573]" italics="true" pageId="1" pageNumber="2">2.3. DaCHS homology model</emphasis>
|
||
</heading>
|
||
</paragraph>
|
||
<paragraph id="8BC1AA7AFFFEFB64635FF996FB1FC26A" blockId="1.[818,1488,1610,1992]" lastBlockId="2.[818,1488,1109,1324]" lastPageId="2" lastPageNumber="3" pageId="1" pageNumber="2">
|
||
Analysis of the DaCHS 3D-structure showed one pocket in the middle zone of the protein. Substrates interact with the catalytic amino acids in this location. It contains the typical residues
|
||
<collectionCode id="ED6F32BFFFFEFB67652EF95DFA92C1D2" box="[1314,1330,1665,1684]" country="Denmark" name="University of Copenhagen" pageId="1" pageNumber="2" type="Herbarium">C</collectionCode>
|
||
167,
|
||
<collectionCode id="ED6F32BFFFFEFB676553F95DFACDC1D2" box="[1375,1389,1665,1684]" country="USA" lsid="urn:lsid:biocol.org:col:15707" name="Field Museum of Natural History, Botany Department" pageId="1" pageNumber="2" type="Herbarium">F</collectionCode>
|
||
218,
|
||
<collectionCode id="ED6F32BFFFFEFB676596F95DFA08C1D2" box="[1434,1448,1665,1684]" country="USA" lsid="urn:lsid:biocol.org:col:15707" name="Field Museum of Natural History, Botany Department" pageId="1" pageNumber="2" type="Herbarium">F</collectionCode>
|
||
268,
|
||
<collectionCode id="ED6F32BFFFFEFB67633EF941FCE3C1F6" box="[818,835,1693,1712]" country="Finland" lsid="urn:lsid:biocol.org:col:15618" name="University of Helsinki" pageId="1" pageNumber="2" type="Herbarium">H</collectionCode>
|
||
306 and
|
||
<collectionCode id="ED6F32BFFFFEFB676394F941FC0AC1F6" box="[920,938,1693,1712]" country="China" lsid="urn:lsid:biocol.org:col:13092" name="Nanjing University" pageId="1" pageNumber="2" type="Herbarium">N</collectionCode>
|
||
339. The protein is composed of 12 α helices, 8α helices
|
||
<subScript id="17FAA83FFFFEFB67633EF965FCF0C188" attach="none" box="[818,848,1721,1742]" fontSize="5" pageId="1" pageNumber="2">310</subScript>
|
||
, 13β sheets and 23 loops (
|
||
<figureCitation id="1345B6FFFFFEFB676465F965FB02C18A" box="[1129,1186,1721,1740]" captionStart="Fig" captionStartId="3.[1113,1143,152,169]" captionTargetBox="[100,1082,151,594]" captionTargetId="figure-125@3.[100,1082,151,594]" captionTargetPageId="3" captionText="Fig. 3. Model of DaCHS structure. The 3D model structure of DaCHS shows 13 β sheets (yellow), 12 α helices (purple) and 8 α helices 310 (blue) and 23 loops. The center core is shown where catalytic residues are positioned. Enlargement of the active site shows the three catalytic residues (Cys 167, His 306 and Asn 339) and the two structural Phe residues (Phe 218, Phe 268). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)" figureDoi="http://doi.org/10.5281/zenodo.8293723" httpUri="https://zenodo.org/record/8293723/files/figure.png" pageId="1" pageNumber="2">Fig. 3</figureCitation>
|
||
). The best coincidence in the pairwise alignment analysis was found with
|
||
<taxonomicName id="4C7ED1F9FFFEFB6764EEF909FA93C1AE" box="[1250,1331,1749,1768]" class="Liliopsida" family="Poaceae" genus="Oryza" kingdom="Plantae" order="Poales" pageId="1" pageNumber="2" phylum="Tracheophyta" rank="species" species="sativa">
|
||
<emphasis id="B90A7668FFFEFB6764EEF909FA93C1AE" bold="true" box="[1250,1331,1749,1768]" italics="true" pageId="1" pageNumber="2">O. sativa</emphasis>
|
||
</taxonomicName>
|
||
template (4YJY chain
|
||
<collectionCode id="ED6F32BFFFFEFB676360F92DFCDEC042" box="[876,894,1777,1796]" country="USA" lsid="urn:lsid:biocol.org:col:15406" name="Harvard University - Arnold Arboretum" pageId="1" pageNumber="2" type="Herbarium">A</collectionCode>
|
||
). Both sequences have a high homology index (92% sequence identity) and highly conserved secondary structures (
|
||
<figureCitation id="1345B6FFFFFEFB676522F8D1FAC4C066" box="[1326,1380,1805,1824]" captionStart="Fig" captionStartId="3.[100,130,1940,1957]" captionTargetBox="[304,1284,917,1918]" captionTargetId="figure-220@3.[303,1285,916,1918]" captionTargetPageId="3" captionText="Fig. 4. Lineal alignment and secondary structure comparison between DaCHS and the template (code 4YJY). Sequences have a high homology index (92% of sequence identity)." figureDoi="http://doi.org/10.5281/zenodo.8293725" httpUri="https://zenodo.org/record/8293725/files/figure.png" pageId="1" pageNumber="2">Fig. 4</figureCitation>
|
||
).
|
||
<collectionCode id="ED6F32BFFFFEFB676575F8D1FA27C066" box="[1401,1415,1805,1824]" country="USA" lsid="urn:lsid:biocol.org:col:15406" name="Harvard University - Arnold Arboretum" pageId="1" pageNumber="2" type="Herbarium">A</collectionCode>
|
||
similar degree of conservation is observed with protein sequences from other monocotyledons (Suppl.
|
||
<figureCitation id="1345B6FFFFFEFB67642AF899FBC1C01E" box="[1062,1121,1861,1880]" captionStart="Fig" captionStartId="2.[100,130,919,936]" captionTargetBox="[227,1360,152,895]" captionTargetId="figure-276@2.[227,1361,152,896]" captionTargetPageId="2" captionText="Fig. 1. Multiple alignment of amino acids for monocotyledons sequences: H. vulgare HvCHS1 (ID: P26018.1), H. vulgare HvCHS2 (ID: Q96562.1), O. sativa subsp. japonica OsjCHS1(ID: XP_015618054.1), O. sativa subsp. japonica OsjCHS2(ID: XP_015646206.1), O. sativa subsp. indica OsiCHS1 (ID: A2ZEX7.1), Sorghum bicolor SbCHS1(ID: XP_002450874.1), S. bicolor SbCHS2(ID: XP_002450871.1), S. bicolor SbCHS3 (ID: XP_002450875.1), S. bicolor SbCHS4(ID: XP_002450870.1), S. bicolor SbCHS5(ID: XP_002449616.1), S. bicolor SbCHS6 (ID: XP_002450877.1), S. bicolor SbCHS7(ID: XP_002450876.1), Z. mays ZmCHS1 (ID: P24824.1), Z. mays ZmCHS2 (ID: NP_001142246.1). Arrows show active site residues, described for chalcone synthase (Cys 167, Phe 218, His 306 and Asn 339). N-terminal domain and Cterminal domain are shown." figureDoi="http://doi.org/10.5281/zenodo.8293719" httpUri="https://zenodo.org/record/8293719/files/figure.png" pageId="1" pageNumber="2">Fig. 1</figureCitation>
|
||
) This high degree of structure conservation suggests that the spatial volume and amino acid position inside pockets of these two structures are similar (
|
||
<figureCitation id="1345B6FFFFFEFB67651FF8A0FAFEC0D6" box="[1299,1374,1916,1936]" captionStart="Fig" captionStartId="4.[100,130,1493,1514]" captionTargetBox="[227,1814,567,1470]" captionTargetId="figure-1@4.[227,1814,567,1470]" captionTargetPageId="4" captionText="Fig. 5. A) Structural alignment between DaCHS (red) and crystal 4YJY (cyan). The RMSD value was 0.25 Å. B) Molecular dynamics simulation analysis. The MDS was carried out using NAMD software and the trajectory analysis was carried out by using VMD software.C) Proteins' structural stability in the function of RMSD, during 2 ns of MDS.RMSF plots of DaCHS (red) and 4YJY chain A (blue) during MD simulation are compared.The greatest fluctuations are found in the loops region of proteins." figureDoi="http://doi.org/10.5281/zenodo.8293727" httpUri="https://zenodo.org/record/8293727/files/figure.png" pageId="1" pageNumber="2">Fig. 5A</figureCitation>
|
||
). Structural alignment analysis and an RMDS value of 0.25 corroborated this assumption and confirmed a high degree of structural conservation among both superposed proteins (
|
||
<figureCitation id="1345B6FFFFFDFB646478FB89FB1CC32E" box="[1140,1212,1109,1128]" captionStart="Fig" captionStartId="4.[100,130,1493,1514]" captionTargetBox="[227,1814,567,1470]" captionTargetId="figure-1@4.[227,1814,567,1470]" captionTargetPageId="4" captionText="Fig. 5. A) Structural alignment between DaCHS (red) and crystal 4YJY (cyan). The RMSD value was 0.25 Å. B) Molecular dynamics simulation analysis. The MDS was carried out using NAMD software and the trajectory analysis was carried out by using VMD software.C) Proteins' structural stability in the function of RMSD, during 2 ns of MDS.RMSF plots of DaCHS (red) and 4YJY chain A (blue) during MD simulation are compared.The greatest fluctuations are found in the loops region of proteins." figureDoi="http://doi.org/10.5281/zenodo.8293727" httpUri="https://zenodo.org/record/8293727/files/figure.png" pageId="2" pageNumber="3">Fig. 5A</figureCitation>
|
||
). MDS analysis showed more fluctuations in DaCHS’ structural stability at the beginning of the trajectory. It reaches a plateau after 1.5 ns. Similar behaviour was observed in template 4YJY. However, template values were always lower than the DaCHS model (
|
||
<figureCitation id="1345B6FFFFFDFB64642CFB19FBC8C39E" box="[1056,1128,1221,1240]" captionStart="Fig" captionStartId="4.[100,130,1493,1514]" captionTargetBox="[227,1814,567,1470]" captionTargetId="figure-1@4.[227,1814,567,1470]" captionTargetPageId="4" captionText="Fig. 5. A) Structural alignment between DaCHS (red) and crystal 4YJY (cyan). The RMSD value was 0.25 Å. B) Molecular dynamics simulation analysis. The MDS was carried out using NAMD software and the trajectory analysis was carried out by using VMD software.C) Proteins' structural stability in the function of RMSD, during 2 ns of MDS.RMSF plots of DaCHS (red) and 4YJY chain A (blue) during MD simulation are compared.The greatest fluctuations are found in the loops region of proteins." figureDoi="http://doi.org/10.5281/zenodo.8293727" httpUri="https://zenodo.org/record/8293727/files/figure.png" pageId="2" pageNumber="3">Fig. 5B</figureCitation>
|
||
). RMSF plotting of Cα-atom residues was generated in order to examine the flexible regions of model and template during the MD simulations. Residues in the protein loops showed the greater fluctuations (
|
||
<figureCitation id="1345B6FFFFFDFB646461FAC4FB14C26A" box="[1133,1204,1304,1324]" captionStart="Fig" captionStartId="4.[100,130,1493,1514]" captionTargetBox="[227,1814,567,1470]" captionTargetId="figure-1@4.[227,1814,567,1470]" captionTargetPageId="4" captionText="Fig. 5. A) Structural alignment between DaCHS (red) and crystal 4YJY (cyan). The RMSD value was 0.25 Å. B) Molecular dynamics simulation analysis. The MDS was carried out using NAMD software and the trajectory analysis was carried out by using VMD software.C) Proteins' structural stability in the function of RMSD, during 2 ns of MDS.RMSF plots of DaCHS (red) and 4YJY chain A (blue) during MD simulation are compared.The greatest fluctuations are found in the loops region of proteins." figureDoi="http://doi.org/10.5281/zenodo.8293727" httpUri="https://zenodo.org/record/8293727/files/figure.png" pageId="2" pageNumber="3">Fig. 5C</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<caption id="DF01FAF2FFFDFB646068FC4BFEF7C36E" ID-DOI="http://doi.org/10.5281/zenodo.8293719" ID-Zenodo-Dep="8293719" httpUri="https://zenodo.org/record/8293719/files/figure.png" pageId="2" pageNumber="3" startId="2.[100,130,919,936]" targetBox="[227,1360,152,895]" targetPageId="2" targetType="figure">
|
||
<paragraph id="8BC1AA7AFFFDFB646068FC4BFEF7C36E" blockId="2.[100,1488,919,1064]" pageId="2" pageNumber="3">
|
||
<emphasis id="B90A7668FFFDFB646068FC4BFF3EC4EE" bold="true" box="[100,158,919,936]" pageId="2" pageNumber="3">Fig. 1.</emphasis>
|
||
Multiple alignment of amino acids for monocotyledons sequences:
|
||
<taxonomicName id="4C7ED1F9FFFDFB6462EFFC4BFCDEC4EE" authority="HvCHS" authorityName="HvCHS" box="[739,894,919,936]" class="Liliopsida" family="Poaceae" genus="Hordeum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="vulgare">
|
||
<emphasis id="B90A7668FFFDFB6462EFFC4BFC96C4EE" bold="true" box="[739,822,919,936]" italics="true" pageId="2" pageNumber="3">H. vulgare</emphasis>
|
||
HvCHS
|
||
</taxonomicName>
|
||
1 (ID: P26018.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB646419FC4BFB0EC4EE" authority="HvCHS" authorityName="HvCHS" box="[1045,1198,919,936]" class="Liliopsida" family="Poaceae" genus="Hordeum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="vulgare">
|
||
<emphasis id="B90A7668FFFDFB646419FC4BFBC9C4EE" bold="true" box="[1045,1129,919,936]" italics="true" pageId="2" pageNumber="3">H. vulgare</emphasis>
|
||
HvCHS
|
||
</taxonomicName>
|
||
2 (ID: Q96562.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB646547FC4BFF56C484" authority="OsjCHS" authorityName="OsjCHS" class="Liliopsida" family="Poaceae" genus="Oryza" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="subSpecies" species="sativa" subSpecies="japonica">
|
||
<emphasis id="B90A7668FFFDFB646547FC4BFA34C4EE" bold="true" box="[1355,1428,919,936]" italics="true" pageId="2" pageNumber="3">O. sativa</emphasis>
|
||
subsp.
|
||
<emphasis id="B90A7668FFFDFB646068FC6CFF08C487" bold="true" box="[100,168,944,961]" italics="true" pageId="2" pageNumber="3">japonica</emphasis>
|
||
OsjCHS
|
||
</taxonomicName>
|
||
1(ID: XP_015618054.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB6461CEFC6CFD7BC484" authority="OsjCHS" authorityName="OsjCHS" box="[450,731,944,962]" class="Liliopsida" family="Poaceae" genus="Oryza" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="subSpecies" species="sativa" subSpecies="japonica">
|
||
<emphasis id="B90A7668FFFDFB6461CEFC6CFDAAC487" bold="true" box="[450,522,944,961]" italics="true" pageId="2" pageNumber="3">O. sativa</emphasis>
|
||
subsp.
|
||
<emphasis id="B90A7668FFFDFB646240FC6CFD30C487" bold="true" box="[588,656,944,961]" italics="true" pageId="2" pageNumber="3">japonica</emphasis>
|
||
OsjCHS
|
||
</taxonomicName>
|
||
2(ID: XP_015646206.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB6463A6FC6CFB10C484" authority="OsiCHS" authorityName="OsiCHS" box="[938,1200,944,962]" class="Liliopsida" family="Poaceae" genus="Oryza" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="subSpecies" species="sativa" subSpecies="indica">
|
||
<emphasis id="B90A7668FFFDFB6463A6FC6CFC52C487" bold="true" box="[938,1010,944,961]" italics="true" pageId="2" pageNumber="3">O. sativa</emphasis>
|
||
subsp.
|
||
<emphasis id="B90A7668FFFDFB646438FC6CFBC5C487" bold="true" box="[1076,1125,944,961]" italics="true" pageId="2" pageNumber="3">indica</emphasis>
|
||
OsiCHS
|
||
</taxonomicName>
|
||
1 (ID: A2ZEX7.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB646540FC6CFF03C49D" authority="SbCHS" authorityName="SbCHS" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB646540FC6CFA6FC487" bold="true" box="[1356,1487,944,961]" italics="true" pageId="2" pageNumber="3">Sorghum bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
1(ID: XP_002450874.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB646162FC16FE5CC49D" authority="SbCHS" authorityName="SbCHS" box="[366,508,970,987]" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB646162FC16FE19C49D" bold="true" box="[366,441,970,987]" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
2(ID: XP_002450871.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB6462C5FC16FCF5C49D" authority="SbCHS" authorityName="SbCHS" box="[713,853,970,987]" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB6462C5FC16FCB4C49D" bold="true" box="[713,788,970,987]" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
3 (ID: XP_002450875.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB646425FC16FB17C49D" authority="SbCHS" authorityName="SbCHS" box="[1065,1207,970,987]" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB646425FC16FBD4C49D" bold="true" box="[1065,1140,970,987]" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
4(ID: XP_002450870.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB646588FC16FF02C4B2" authority="SbCHS" authorityName="SbCHS" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB646588FC16FA6FC49D" bold="true" box="[1412,1487,970,987]" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
5(ID: XP_002449616.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB646162FC3FFE59C4B2" authority="SbCHS" authorityName="SbCHS" box="[366,505,995,1012]" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB646162FC3FFE18C4B2" bold="true" box="[366,440,995,1012]" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
6 (ID: XP_002450877.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB6462C0FC3FFCF9C4B2" authority="SbCHS" authorityName="SbCHS" box="[716,857,995,1012]" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB6462C0FC3FFCB7C4B2" bold="true" box="[716,791,995,1012]" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
7(ID: XP_002450876.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB64642AFC38FB0DC4B3" authority="ZmCHS" authorityName="ZmCHS" box="[1062,1197,996,1013]" class="Liliopsida" family="Poaceae" genus="Zea" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="mays">
|
||
<emphasis id="B90A7668FFFDFB64642AFC38FBC4C4B2" bold="true" box="[1062,1124,996,1012]" italics="true" pageId="2" pageNumber="3">Z. mays</emphasis>
|
||
ZmCHS
|
||
</taxonomicName>
|
||
1 (ID: P24824.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB64654DFC38FA66C4B3" authority="ZmCHS" authorityName="ZmCHS" box="[1345,1478,996,1013]" class="Liliopsida" family="Poaceae" genus="Zea" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="mays">
|
||
<emphasis id="B90A7668FFFDFB64654DFC38FADFC4B2" bold="true" box="[1345,1407,996,1012]" italics="true" pageId="2" pageNumber="3">Z. mays</emphasis>
|
||
ZmCHS
|
||
</taxonomicName>
|
||
2 (ID: NP_001142246.1). Arrows show active site residues, described for chalcone synthase (Cys 167, Phe 218, His 306 and Asn 339). N-terminal domain and Cterminal domain are shown.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="8BC1AA7AFFFDFB64633EFA81FC53C237" blockId="2.[818,1011,1373,1393]" box="[818,1011,1373,1393]" pageId="2" pageNumber="3">
|
||
<heading id="D0891D16FFFDFB64633EFA81FC53C237" bold="true" box="[818,1011,1373,1393]" fontSize="36" level="1" pageId="2" pageNumber="3" reason="1">
|
||
<emphasis id="B90A7668FFFDFB64633EFA81FC53C237" bold="true" box="[818,1011,1373,1393]" italics="true" pageId="2" pageNumber="3">2.4. UV-B treatments</emphasis>
|
||
</heading>
|
||
</paragraph>
|
||
<paragraph id="8BC1AA7AFFFDFB64635FFA49FCDDC172" blockId="2.[818,1487,1429,1588]" pageId="2" pageNumber="3">
|
||
Accumulation of transcripts was determined on UV-B irradiated plants. Non-irradiated plants were used as controls. After 3.5 days of UV-B irradiation the accumulation of transcripts was higher in the treated group compared to non-irradiated plants. The maximum difference between both groups was reached after 7 days of treatment (
|
||
<figureCitation id="1345B6FFFFFDFB646336F9FDFCD0C172" box="[826,880,1569,1588]" captionStart="Fig" captionStartId="5.[100,130,522,539]" captionTargetBox="[133,738,152,499]" captionTargetId="figure-1198@5.[133,738,152,499]" captionTargetPageId="5" captionText="Fig. 6. Effect of UV-B radiation on DaCHS gene. Control plants were maintained in a growth chamber with a PAR regime (16/8 h). Treated plants underwent the same PAR regime daily, supplemented with UV-B radiation for 9 h. Measurements were made at 3.5 and 7 days. One-way ANOVA from Statistica 4.0 software was used for statistical analysis. Bars indicate standard deviation and letters indicate statistical difference (p ≤ 0.05)." figureDoi="http://doi.org/10.5281/zenodo.8293729" httpUri="https://zenodo.org/record/8293729/files/figure.png" pageId="2" pageNumber="3">Fig. 6</figureCitation>
|
||
).
|
||
</paragraph>
|
||
<caption id="DF01FAF2FFFDFB646068F9E5FEC5C025" ID-DOI="http://doi.org/10.5281/zenodo.8293721" ID-Zenodo-Dep="8293721" httpUri="https://zenodo.org/record/8293721/files/figure.png" pageId="2" pageNumber="3" startId="2.[100,130,1593,1610]" targetBox="[133,738,1103,1570]" targetPageId="2" targetType="figure">
|
||
<paragraph id="8BC1AA7AFFFDFB646068F9E5FEC5C025" blockId="2.[100,771,1593,1891]" pageId="2" pageNumber="3">
|
||
<emphasis id="B90A7668FFFDFB646068F9E5FF3EC10C" bold="true" box="[100,158,1593,1610]" pageId="2" pageNumber="3">Fig. 2.</emphasis>
|
||
Phylogenetic analysis of full-length predicted DaCHS protein compared with CHS proteins from:
|
||
<taxonomicName id="4C7ED1F9FFFDFB64613AF98FFE6FC122" authority="HvCHS" authorityName="HvCHS" box="[310,463,1619,1636]" class="Liliopsida" family="Poaceae" genus="Hordeum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="vulgare">
|
||
<emphasis id="B90A7668FFFDFB64613AF98FFE29C122" bold="true" box="[310,393,1619,1636]" italics="true" pageId="2" pageNumber="3">H. vulgare</emphasis>
|
||
HvCHS
|
||
</taxonomicName>
|
||
1 (ID: P26018.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB64626FF98FFD58C122" authority="HvCHS" authorityName="HvCHS" box="[611,760,1619,1636]" class="Liliopsida" family="Poaceae" genus="Hordeum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="vulgare">
|
||
<emphasis id="B90A7668FFFDFB64626FF98FFD15C122" bold="true" box="[611,693,1619,1636]" italics="true" pageId="2" pageNumber="3">H. vulgare</emphasis>
|
||
HvCHS
|
||
</taxonomicName>
|
||
2 (ID: Q96562.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB6460FAF9B0FDB5C13B" authority="OsjCHS" authorityName="OsjCHS" box="[246,533,1644,1661]" class="Liliopsida" family="Poaceae" genus="Oryza" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="subSpecies" species="sativa" subSpecies="japonica">
|
||
<emphasis id="B90A7668FFFDFB6460FAF9B0FEE0C13B" bold="true" box="[246,320,1644,1661]" italics="true" pageId="2" pageNumber="3">O. sativa</emphasis>
|
||
subsp.
|
||
<emphasis id="B90A7668FFFDFB646189F9B0FE69C13B" bold="true" box="[389,457,1644,1661]" italics="true" pageId="2" pageNumber="3">japonica</emphasis>
|
||
OsjCHS
|
||
</taxonomicName>
|
||
1 (ID: XP_015618054.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB6462E3F9B0FECBC1D1" authority="OsjCHS" authorityName="OsjCHS" class="Liliopsida" family="Poaceae" genus="Oryza" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="subSpecies" species="sativa" subSpecies="japonica">
|
||
<emphasis id="B90A7668FFFDFB6462E3F9B0FF33C1D1" bold="true" italics="true" pageId="2" pageNumber="3">O. sativa</emphasis>
|
||
subsp.
|
||
<emphasis id="B90A7668FFFDFB6460D6F95AFEBEC1D1" bold="true" box="[218,286,1670,1687]" italics="true" pageId="2" pageNumber="3">japonica</emphasis>
|
||
OsjCHS
|
||
</taxonomicName>
|
||
2(ID: XP_015646206.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB646233F95AFF08C1F6" authority="OsiCHS" authorityName="OsiCHS" class="Liliopsida" family="Poaceae" genus="Oryza" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="subSpecies" species="sativa" subSpecies="indica">
|
||
<emphasis id="B90A7668FFFDFB646233F95AFD2AC1D1" bold="true" box="[575,650,1670,1687]" italics="true" pageId="2" pageNumber="3">O. sativa</emphasis>
|
||
subsp.
|
||
<emphasis id="B90A7668FFFDFB6462DDF959FCA2C1D0" bold="true" box="[721,770,1669,1686]" italics="true" pageId="2" pageNumber="3">indica</emphasis>
|
||
OsiCHS
|
||
</taxonomicName>
|
||
1 (ID: A2ZEX7.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB646147F943FE41C1F6" authority="SbCHS" authorityName="SbCHS" box="[331,481,1695,1712]" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB646147F943FE39C1F6" bold="true" box="[331,409,1695,1712]" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
1(ID: XP_002450874.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB6462BFF943FF01C18C" authority="SbCHS" authorityName="SbCHS" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB6462BFF943FCA1C1F6" bold="true" box="[691,769,1695,1712]" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
2(ID: XP_002450871.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB64617DF965FE5FC18C" authority="SbCHS" authorityName="SbCHS" box="[369,511,1720,1738]" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB64617DF965FE1DC18F" bold="true" box="[369,445,1720,1738]" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
3 (ID: XP_002450875.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB6462DBF965FF6EC1A5" authority="SbCHS" authorityName="SbCHS" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB6462DBF965FF2CC1A5" bold="true" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
4(ID: XP_002450870.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB646196F90EFD88C1A5" authority="SbCHS" authorityName="SbCHS" box="[410,552,1746,1763]" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB646196F90EFE44C1A5" bold="true" box="[410,484,1746,1763]" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
5(ID: XP_002449616.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB6462FEF90EFF7BC1BB" authority="SbCHS" authorityName="SbCHS" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB6462FEF90EFF3AC1BA" bold="true" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
6 (ID: XP_002450877.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB6461A2F930FD9BC1BB" authority="SbCHS" authorityName="SbCHS" box="[430,571,1771,1789]" class="Liliopsida" family="Poaceae" genus="Sorghum" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="bicolor">
|
||
<emphasis id="B90A7668FFFDFB6461A2F930FE58C1BA" bold="true" box="[430,504,1771,1789]" italics="true" pageId="2" pageNumber="3">S. bicolor</emphasis>
|
||
SbCHS
|
||
</taxonomicName>
|
||
7(ID: XP_002450876.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB646068F8DAFF56C050" authority="ZmCHS" authorityName="ZmCHS" box="[100,246,1797,1814]" class="Liliopsida" family="Poaceae" genus="Zea" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="mays">
|
||
<emphasis id="B90A7668FFFDFB646068F8DAFF08C050" bold="true" box="[100,168,1798,1814]" italics="true" pageId="2" pageNumber="3">Z. mays</emphasis>
|
||
ZmCHS
|
||
</taxonomicName>
|
||
1 (ID: P24824.1),
|
||
<taxonomicName id="4C7ED1F9FFFDFB646194F8DAFD87C050" authority="ZmCHS" authorityName="ZmCHS" box="[408,551,1797,1814]" class="Liliopsida" family="Poaceae" genus="Zea" kingdom="Plantae" order="Poales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="mays">
|
||
<emphasis id="B90A7668FFFDFB646194F8DAFE7CC050" bold="true" box="[408,476,1798,1814]" italics="true" pageId="2" pageNumber="3">Z. mays</emphasis>
|
||
ZmCHS
|
||
</taxonomicName>
|
||
2 (ID: NP_001142246.1). Acetate kinase was used as the outlier (ID: WP_012677240.1). Numbers at each fork in the tree indicate the times that gene groups were clustered together in the 5000 bootstrap replicates.
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="8BC1AA7AFFFDFB64633EF9BAFBA0C13E" blockId="2.[818,1024,1637,1657]" box="[818,1024,1637,1657]" pageId="2" pageNumber="3">
|
||
<heading id="D0891D16FFFDFB64633EF9BAFBA0C13E" bold="true" box="[818,1024,1637,1657]" fontSize="36" level="1" pageId="2" pageNumber="3" reason="1">
|
||
<emphasis id="B90A7668FFFDFB64633EF9BAFBA0C13E" bold="true" box="[818,1024,1637,1657]" italics="true" pageId="2" pageNumber="3">2.5. Chemical analysis</emphasis>
|
||
</heading>
|
||
</paragraph>
|
||
<paragraph id="8BC1AA7AFFFDFB65635FF941FCECC5E7" blockId="2.[818,1488,1693,1992]" lastBlockId="3.[818,1487,653,756]" lastPageId="3" lastPageNumber="4" pageId="2" pageNumber="3">
|
||
Analysis by LC-DAD and LC-MS showed several peaks at 3.41, 5.57, 7.05, 7.50, 8.41, 8.98, 11.71 and 11.94 min, among others. LC-MS analysis showed signals at m/z 328.8 and 283, among others (see Supplementary data 1. and Supplementary data). The peak at 11.94 min observed in the LC-DAD traces was tentatively identified as luteolin by comparing its retention time with that of a reference standard. LC-MS traces showed a signal at m/z 328.8 which was attributed to the base peak in the negative ion mode of tricin molecule.
|
||
<collectionCode id="ED6F32BFFFFDFB64651CF8BDFABEC032" box="[1296,1310,1889,1908]" country="USA" lsid="urn:lsid:biocol.org:col:15406" name="Harvard University - Arnold Arboretum" pageId="2" pageNumber="3" type="Herbarium">A</collectionCode>
|
||
tiny signal at m/z 283 was similarly assigned to luteolin after some fragment losses of two
|
||
<collectionCode id="ED6F32BFFFFDFB64633EF845FCE5C0EA" box="[818,837,1945,1964]" country="Finland" lsid="urn:lsid:biocol.org:col:15618" name="University of Helsinki" pageId="2" pageNumber="3" type="Herbarium">H</collectionCode>
|
||
. EIMS spectra showed the molecular ion for two peaks at m/z 330 and 286, one as for a trihydroxy-dimethoxyflavone and a tetrahydroxyflavone, respectively. The UV spectra indicated a 5,7,4′- oxygenated system with a hydroxyl group at C-5. The bathochromic shift (
|
||
<quantity id="4C86079FFFFCFB6560ADFD19FF71C59E" box="[161,209,709,728]" metricMagnitude="-9" metricUnit="m" metricValue="5.0" pageId="3" pageNumber="4" unit="nm" value="5.0">5 nm</quantity>
|
||
) observed after addition of NaOAc in both compounds suggests a free hydroxyl at C-7. Classical purification and spectroscopic analyses led to the isolation from the EtOH extract of two major compounds. These were identified by comparing their UV, EIMS and NMR spectral properties to literature values as 5,7,4′-trihydroxy-3′,5′-dimethoxyflavone (tricin
|
||
<emphasis id="B90A7668FFFCFB65614BFC8DFEF3C422" bold="true" box="[327,339,849,868]" pageId="3" pageNumber="4">1</emphasis>
|
||
), and 3′,4′,5,7-tetrahydroxyflavone (luteolin
|
||
<emphasis id="B90A7668FFFCFB65633EFD51FC9EC5E6" bold="true" box="[818,830,653,672]" pageId="3" pageNumber="4">2</emphasis>
|
||
).
|
||
</paragraph>
|
||
<caption id="DF01FAF2FFFCFB656455FF44FAE7C684" ID-DOI="http://doi.org/10.5281/zenodo.8293723" ID-Zenodo-Dep="8293723" httpUri="https://zenodo.org/record/8293723/files/figure.png" pageId="3" pageNumber="4" startId="3.[1113,1143,152,169]" targetBox="[100,1082,151,594]" targetPageId="3" targetType="figure">
|
||
<paragraph id="8BC1AA7AFFFCFB656455FF44FAE7C684" blockId="3.[1113,1488,152,450]" pageId="3" pageNumber="4">
|
||
<emphasis id="B90A7668FFFCFB656455FF44FB35C7EF" bold="true" box="[1113,1173,152,169]" pageId="3" pageNumber="4">Fig. 3.</emphasis>
|
||
Model of DaCHS structure. The 3D model structure of DaCHS shows 13 β sheets (yellow), 12 α helices (purple) and 8 α helices
|
||
<subScript id="17FAA83FFFFCFB656484FF39FB03C7BE" attach="left" box="[1160,1187,229,248]" fontSize="5" pageId="3" pageNumber="4">310</subScript>
|
||
(blue) and 23 loops. The center core is shown where catalytic residues are positioned. Enlargement of the active site shows the three catalytic residues (Cys 167, His 306 and Asn 339) and the two structural Phe residues (Phe 218, Phe 268). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="8BC1AA7AFFFCFB65635FFD75FAE6C5B2" blockId="3.[818,1487,653,756]" pageId="3" pageNumber="4">Apart from these compounds there is no evidence of any flavonoid glucosides in the EtOH extract (the absence of signals at m/z 466 and at m/z 510 for luteolin and tricin glucosides respectively).</paragraph>
|
||
<paragraph id="8BC1AA7AFFFCFB65633EFCF7FC1BC478" blockId="3.[818,955,811,830]" box="[818,955,811,830]" pageId="3" pageNumber="4">
|
||
<heading id="D0891D16FFFCFB65633EFCF7FC1BC478" bold="true" box="[818,955,811,830]" fontSize="36" level="1" pageId="3" pageNumber="4" reason="1">
|
||
<emphasis id="B90A7668FFFCFB65633EFCF7FC1BC478" bold="true" box="[818,955,811,830]" pageId="3" pageNumber="4">3. Discussion</emphasis>
|
||
</heading>
|
||
</paragraph>
|
||
<paragraph id="8BC1AA7AFFFCFB63635FFCBFFD9DC338" blockId="3.[851,1488,867,886]" lastBlockId="5.[100,771,712,1987]" lastPageId="5" lastPageNumber="6" pageId="3" pageNumber="4">
|
||
In this study the cloning and characterization of the Chalcone synthase gene from
|
||
<taxonomicName id="4C7ED1F9FFFAFB636112FD15FE31C59D" box="[286,401,712,732]" class="Liliopsida" family="Poaceae" genus="Deschampsia" kingdom="Plantae" order="Poales" pageId="5" pageNumber="6" phylum="Tracheophyta" rank="species" species="antarctica">
|
||
<emphasis id="B90A7668FFFAFB636112FD15FE31C59D" bold="true" box="[286,401,712,732]" italics="true" pageId="5" pageNumber="6">D. antarctica</emphasis>
|
||
</taxonomicName>
|
||
(
|
||
<emphasis id="B90A7668FFFAFB636193FD14FE4CC59D" bold="true" box="[415,492,712,731]" italics="true" pageId="5" pageNumber="6">DaCHS1</emphasis>
|
||
) is reported. Four amino acid residues were identified in the active motif site of DaCHS (
|
||
<collectionCode id="ED6F32BFFFFAFB636282FD38FD3EC5B1" box="[654,670,740,759]" country="Denmark" name="University of Copenhagen" pageId="5" pageNumber="6" type="Herbarium">C</collectionCode>
|
||
167,
|
||
<collectionCode id="ED6F32BFFFFAFB6362C0FD38FD7AC5B1" box="[716,730,740,759]" country="USA" lsid="urn:lsid:biocol.org:col:15707" name="Field Museum of Natural History, Botany Department" pageId="5" pageNumber="6" type="Herbarium">F</collectionCode>
|
||
218,
|
||
<collectionCode id="ED6F32BFFFFAFB636068FCDCFFD5C455" box="[100,117,768,787]" country="Finland" lsid="urn:lsid:biocol.org:col:15618" name="University of Helsinki" pageId="5" pageNumber="6" type="Herbarium">H</collectionCode>
|
||
306 and
|
||
<collectionCode id="ED6F32BFFFFAFB6360C0FCDCFF7EC455" box="[204,222,768,787]" country="China" lsid="urn:lsid:biocol.org:col:13092" name="Nanjing University" pageId="5" pageNumber="6" type="Herbarium">N</collectionCode>
|
||
339). The presence of these residues in the active site of proteins tallies with previous reports (Zhou et al., 2011;
|
||
<bibRefCitation id="EFEFD78BFFFAFB63627FFCC0FD5CC469" author="Go, M. & Wongsantichon, J. & Cheung, V. & Chow, J. & Robinson, R. & Yew, W." box="[627,764,796,816]" pageId="5" pageNumber="6" pagination="4033 - 4042" refId="ref9429" refString="Go, M., Wongsantichon, J., Cheung, V., Chow, J., Robinson, R., Yew, W., 2015. Synthetic polyketide enzymology: platform for biosynthesis of antimicrobial polyketides. ACS Catal. 5, 4033 - 4042." type="journal article" year="2015">Go et al., 2015</bibRefCitation>
|
||
; Wannapinpong et al., 2015). However, in these studies the main role at the catalytic site has been assigned to just three residues (
|
||
<bibRefCitation id="EFEFD78BFFFAFB6362AFFC88FF34C4C5" author="Jez, J. & Austin, M. & Ferrer, J. L. & Bowman, M. & Schroder, J. & Noel, J." pageId="5" pageNumber="6" pagination="919 - 930" refId="ref9763" refString="Jez, J., Austin, M., Ferrer, J. L., Bowman, M., Schroder, J., Noel, J., 2000. Structural control of polyketide formation in plant-specific polyketide synthases. Chem. Biol. 7, 919 - 930." type="journal article" year="2000">Jez et al., 2000</bibRefCitation>
|
||
; Wang et al., 2017b;
|
||
<bibRefCitation id="EFEFD78BFFFAFB63617FFCACFDD9C4C5" author="Sanmugavelan, R. & Teoch, T. & Roslan, N. & Mohamed, Z." box="[371,633,880,899]" pageId="5" pageNumber="6" pagination="213 - 223" refId="ref11985" refString="Sanmugavelan, R., Teoch, T., Roslan, N., Mohamed, Z., 2018. In vitro and in silico studies of chalcone synthase variant 2 in Boesenbergia rotunda and its substrate specificity. Turk. J. Biol. 42, 213 - 223." type="journal article" year="2018">Sanmugavelan et al., 2018</bibRefCitation>
|
||
). These three residues are involved in decarboxylation and condensation reactions. Furthermore, phenylalanine plays a more structural role in the formation of the active site by giving specificity to CHS (
|
||
<bibRefCitation id="EFEFD78BFFFAFB63624CFC18FD73C490" author="Sun, W. & Meng, X. & Liang, L. & Jiang, W. & Huang, Y. & He, J. & Hu, H. & Almqvist, J. & Gao, X. & Wang, L." box="[576,723,963,983]" pageId="5" pageNumber="6" refId="ref12230" refString="Sun, W., Meng, X., Liang, L., Jiang, W., Huang, Y., He, J., Hu, H., Almqvist, J., Gao, X., Wang, L., 2015. Molecular and biochemical analysis of Chalcone synthase from" type="book" year="2015">Sun et al., 2015</bibRefCitation>
|
||
). On the other hand, DaCHS1 showed a variety of conserved residues in the Chalcone synthase family (P141, G166, G166, L217, D220, G265, P307, G308, G309, G338, G377, P378 and G379). DaCHS protein contains two domains: the N-terminal domain ranges from amino acid 8 to 231 and the C-terminal domain ranges from amino acid 241 to 391, as previously reported (Wannapinpong et al., 2015).
|
||
</paragraph>
|
||
<caption id="DF01FAF2FFFCFB656068F848FEA7C0F8" ID-DOI="http://doi.org/10.5281/zenodo.8293725" ID-Zenodo-Dep="8293725" httpUri="https://zenodo.org/record/8293725/files/figure.png" pageId="3" pageNumber="4" startId="3.[100,130,1940,1957]" targetBox="[304,1284,917,1918]" targetPageId="3" targetType="figure">
|
||
<paragraph id="8BC1AA7AFFFCFB656068F848FEA7C0F8" blockId="3.[100,1487,1940,1982]" pageId="3" pageNumber="4">
|
||
<emphasis id="B90A7668FFFCFB656068F848FF00C0E3" bold="true" box="[100,160,1940,1957]" pageId="3" pageNumber="4">Fig. 4.</emphasis>
|
||
Lineal alignment and secondary structure comparison between DaCHS and the template (code 4YJY). Sequences have a high homology index (92% of sequence identity).
|
||
</paragraph>
|
||
</caption>
|
||
<caption id="DF01FAF2FFFBFB626068FA09FDDAC15B" ID-DOI="http://doi.org/10.5281/zenodo.8293727" ID-Zenodo-Dep="8293727" httpUri="https://zenodo.org/record/8293727/files/figure.png" pageId="4" pageNumber="5" startId="4.[100,130,1493,1514]" targetBox="[227,1814,567,1470]" targetPageId="4" targetType="figure">
|
||
<paragraph id="8BC1AA7AFFFBFB626068FA09FDDAC15B" blockId="4.[100,1941,1493,1565]" pageId="4" pageNumber="5">
|
||
<emphasis id="B90A7668FFFBFB626068FA09FF18C2AC" bold="true" box="[100,184,1493,1514]" pageId="4" pageNumber="5">Fig. 5. A)</emphasis>
|
||
Structural alignment between DaCHS (red) and crystal 4YJY (cyan). The RMSD value was 0.25 Å.
|
||
<emphasis id="B90A7668FFFBFB6263F9FA09FBA9C2AC" bold="true" box="[1013,1033,1493,1514]" pageId="4" pageNumber="5">B)</emphasis>
|
||
Molecular dynamics simulation analysis. The MDS was carried out using NAMD software and the trajectory analysis was carried out by using VMD software.
|
||
<emphasis id="B90A7668FFFBFB6261F3FA32FDB3C145" bold="true" box="[511,531,1518,1539]" pageId="4" pageNumber="5">C)</emphasis>
|
||
Proteins' structural stability in the function of RMSD, during 2 ns of MDS. RMSF plots of DaCHS (red) and 4YJY chain A (blue) during MD simulation are compared. The greatest fluctuations are found in the loops region of proteins.
|
||
</paragraph>
|
||
</caption>
|
||
<caption id="DF01FAF2FFFAFB636068FDD6FD81C5DD" ID-DOI="http://doi.org/10.5281/zenodo.8293729" ID-Zenodo-Dep="8293729" httpUri="https://zenodo.org/record/8293729/files/figure.png" pageId="5" pageNumber="6" startId="5.[100,130,522,539]" targetBox="[133,738,152,499]" targetPageId="5" targetType="figure">
|
||
<paragraph id="8BC1AA7AFFFAFB636068FDD6FD81C5DD" blockId="5.[100,771,522,667]" pageId="5" pageNumber="6">
|
||
<emphasis id="B90A7668FFFAFB636068FDD6FF3CC55D" bold="true" box="[100,156,522,539]" pageId="5" pageNumber="6">Fig. 6.</emphasis>
|
||
Effect of UV-B radiation on
|
||
<emphasis id="B90A7668FFFAFB636184FDD6FE63C55D" bold="true" box="[392,451,522,539]" italics="true" pageId="5" pageNumber="6">DaCHS</emphasis>
|
||
gene. Control plants were maintained in a growth chamber with a PAR regime (16/8 h). Treated plants underwent the same PAR regime daily, supplemented with UV-B radiation for 9 h. Measurements were made at 3.5 and 7 days. One-way ANOVA from Statistica 4.0 software was used for statistical analysis. Bars indicate standard deviation and letters indicate statistical difference (p ≤ 0.05).
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="8BC1AA7AFFFAFB636089FB5BFD23C23F" blockId="5.[100,771,712,1987]" pageId="5" pageNumber="6">
|
||
The phylogenetic tree grouped both sequences: DaCHS1 and HvCHS
|
||
<quantity id="4C86079FFFFAFB6360A1FB7FFF6BC3F0" box="[173,203,1187,1206]" metricMagnitude="-2" metricUnit="m" metricValue="2.54" pageId="5" pageNumber="6" unit="in" value="1.0">1 in</quantity>
|
||
the same branch. CHS from other monocotyledons was used in this analysis because monocotyledons and dicotyledons species are constituted by two different clades that form a monophyletic group (
|
||
<bibRefCitation id="EFEFD78BFFFAFB636060FB2AFE9DC24F" author="Nakatsuka, A. & Izumi, I. & Yamagashi, M." box="[108,317,1270,1290]" pageId="5" pageNumber="6" pagination="759 - 767" refId="ref10837" refString="Nakatsuka, A., Izumi, I., Yamagashi, M., 2003. Spatial and temporal expression of chalcone synthase and dihydroflavonol 4 - reductase genes in the Asiatic hybrid lily. Plant Sci. 165, 759 - 767." type="journal article" year="2003">Nakatsuka et al., 2003</bibRefCitation>
|
||
; Zhou et al., 2011).
|
||
<collectionCode id="ED6F32BFFFFAFB6361F6FB2BFDA8C24C" box="[506,520,1271,1290]" country="USA" lsid="urn:lsid:biocol.org:col:15406" name="Harvard University - Arnold Arboretum" pageId="5" pageNumber="6" type="Herbarium">A</collectionCode>
|
||
high degree of identity for all sequences was indicated by the predicted DaCHS1 protein. Furthermore, the estimated molecular weight is within the range for this protein but DaCHS exhibited a slight difference from the closest HvCHS1 (Zhou et al., 2011; Wannapinpong et al., 2015).
|
||
</paragraph>
|
||
<paragraph id="8BC1AA7AFFFAFB636089FA5EFB8AC5A6" blockId="5.[100,771,712,1987]" lastBlockId="5.[818,1488,159,1071]" pageId="5" pageNumber="6">
|
||
The
|
||
<emphasis id="B90A7668FFFAFB6360BDFA5EFF5FC2D3" bold="true" box="[177,255,1410,1429]" italics="true" pageId="5" pageNumber="6">DaCHS1</emphasis>
|
||
expression profile was analysed in response to UV-B radiation. After seven days of UV-B exposure, a high level of transcripts was observed in the irradiated plants compared to controls. These results agreed with those reported in
|
||
<taxonomicName id="4C7ED1F9FFFAFB6361C4FA09FD13C2AE" box="[456,691,1493,1512]" class="Magnoliopsida" family="Fabaceae" genus="Astragalus" kingdom="Plantae" order="Fabales" pageId="5" pageNumber="6" phylum="Tracheophyta" rank="species" species="membranaceus">
|
||
<emphasis id="B90A7668FFFAFB6361C4FA09FD13C2AE" bold="true" box="[456,691,1493,1512]" italics="true" pageId="5" pageNumber="6">Astragalus membranaceus</emphasis>
|
||
</taxonomicName>
|
||
. In this study, CHS and other enzymes of the flavonoid pathway were expressed at their maximum level after 8 days of UV-B treatment (Xu et al., 2011). On the other hand, a rapid response within the first 3 h was reported from
|
||
<taxonomicName id="4C7ED1F9FFFAFB636097F999FEACC11E" box="[155,268,1605,1624]" class="Liliopsida" family="Poaceae" genus="Deschampsia" kingdom="Plantae" order="Poales" pageId="5" pageNumber="6" phylum="Tracheophyta" rank="species" species="antarctica">
|
||
<emphasis id="B90A7668FFFAFB636097F999FEACC11E" bold="true" box="[155,268,1605,1624]" italics="true" pageId="5" pageNumber="6">D antarctica</emphasis>
|
||
</taxonomicName>
|
||
subjected to UV-B radiation (
|
||
<bibRefCitation id="EFEFD78BFFFAFB636235F999FD54C11E" author="Kohler, H. & Contreras, R. A. & Pizarro, M. & Cortes-Antiquera, R. & Zuniga, G. E." box="[569,756,1605,1624]" pageId="5" pageNumber="6" pagination="921" refId="ref9944" refString="Kohler, H., Contreras, R. A., Pizarro, M., Cortes-Antiquera, R., Zuniga, G. E., 2017. Antioxidant responses induced by UVB radiation in Deschampsia antarctica Desv. Front. Plant Sci. 8, 921. https: // doi. org / 10.3389 / fpls. 2017.00921." type="journal article" year="2017">Köhler et al., 2017</bibRefCitation>
|
||
). These findings may be regarded as a plant response to this harmful radiation. Although the enzymatic content was not measured in our study, the increased transcriptional activity and accumulation of transcripts presumably results in more traduced products and/or an increased content of end-metabolites. This latter assumption may be partially supported by the presence of two flavones, luteolin
|
||
<emphasis id="B90A7668FFFAFB6362C4F930FD74C1B9" bold="true" box="[712,724,1772,1791]" pageId="5" pageNumber="6">1</emphasis>
|
||
and tricin
|
||
<emphasis id="B90A7668FFFAFB636092F8D4FF0AC05D" bold="true" box="[158,170,1800,1819]" pageId="5" pageNumber="6">2</emphasis>
|
||
, identified in the EtOH extract of the Patagonian
|
||
<taxonomicName id="4C7ED1F9FFFAFB63628BF8D4FD5CC05D" box="[647,764,1800,1819]" class="Liliopsida" family="Poaceae" genus="Deschampsia" kingdom="Plantae" order="Poales" pageId="5" pageNumber="6" phylum="Tracheophyta" rank="species" species="antarctica">
|
||
<emphasis id="B90A7668FFFAFB63628BF8D4FD5CC05D" bold="true" box="[647,764,1800,1819]" italics="true" pageId="5" pageNumber="6">D. antarctica</emphasis>
|
||
</taxonomicName>
|
||
. The presence of flavonoids in the specialised metabolite profile can be seen as part of a plant response to UV-B radiation (
|
||
<bibRefCitation id="EFEFD78BFFFAFB63624DF89DFD5CC015" author="Rozema, J. & Broekman, R. A. & Blokker, P. & Meijkamp, B. B. & de Bakker, N. & van de Staaij, J. & van Beem, A. & Ariese, F. & Kars, S. M." box="[577,764,1856,1876]" pageId="5" pageNumber="6" pagination="108 - 117" refId="ref11633" refString="Rozema, J., Broekman, R. A., Blokker, P., Meijkamp, B. B., de Bakker, N., van de Staaij, J., van Beem, A., Ariese, F., Kars, S. M., 2001. UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levels. J. Photochem. Photobiol., B 62, 108 - 117." type="journal article" year="2001">Rozema et al., 2001</bibRefCitation>
|
||
,
|
||
<bibRefCitation id="EFEFD78BFFFAFB636068F880FF34C029" author="Rozema, J. & Bjorn, L. O. & Bornman, J. F. & Gaberscik, A. & Hader, D. P. & Trost, T. & Germ, M. & Klisch, M. & Groniger, A. & Sinha, R. P. & Lebert, M. & He, Y. Y. & Buffoni-Hall, R. & de Bakker, N. V. J. & van de Staaij, J. & Meijkamp, B. B." box="[100,148,1884,1903]" pageId="5" pageNumber="6" pagination="2 - 12" refId="ref11495" refString="Rozema, J., Bjorn, L. O., Bornman, J. F., Gaberscik, A., Hader, D. P., Trost, T., Germ, M., Klisch, M., Groniger, A., Sinha, R. P., Lebert, M., He, Y. Y., Buffoni-Hall, R., de Bakker, N. V. J., van de Staaij, J., Meijkamp, B. B., 2002. The role of UV-B radiation in aquatic and terrestrial ecosystems - an experimental and functional analysis of the evolution of UV-absorbing compounds. J. Photochem. Photobiol., B 66, 2 - 12." type="journal article" year="2002">2002</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFEFD78BFFFAFB6360AFF880FEE8C029" author="Berg, T. B. & Schmidt, N. M. & Hoye, T. T. & Aastrup, P. J. & Hendrichsen, D. K. & Forchhammer, M. C. & Klein, D. R." box="[163,328,1884,1903]" pageId="5" pageNumber="6" pagination="275 - 298" refId="ref8354" refString="Berg, T. B., Schmidt, N. M., Hoye, T. T., Aastrup, P. J., Hendrichsen, D. K., Forchhammer, M. C., Klein, D. R., 2008. High-arctic plant-herbivore interactions under climate influence. In: In: Meltofte, H., Christensen, T. R., Elberling, B., Forchhammer, M. C., Rasch, M. (Eds.), Advances in Ecological Research. High-Arctic Ecosystem Dynamics in a Changing Climate, vol. 40. Elsevier Ltd., London, pp. 275 - 298." type="book chapter" year="2008">Berg et al., 2008</bibRefCitation>
|
||
). Chalcones, flavonols, anthocyanins and flavones have often been involved in many ecological interactions and their production at increased levels has been regarded as a response to environmental stress (
|
||
<bibRefCitation id="EFEFD78BFFFAFB636141F86CFE69C085" author="Fluck, H." box="[333,457,1968,1987]" pageId="5" pageNumber="6" pagination="167 - 186" refId="ref9287" refString="Fluck, H., 1963. Intrinsic and extrinsic factors affecting the production of secondary plant products. In: In: Swain, T. (Ed.), Chemical Plant Taxonomy, vol. 7. Academic Press, London, pp. 167 - 186." type="book chapter" year="1963">Flück, 1963</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFEFD78BFFFAFB6361EDF86CFD74C085" author="Hoffmann, J. J. & Kingsolver, B. E. & Mc Laughlin, S. P. & Timmermann, B. N." box="[481,724,1968,1987]" pageId="5" pageNumber="6" pagination="251 - 271" refId="ref9679" refString="Hoffmann, J. J., Kingsolver, B. E., Mc Laughlin, S. P., Timmermann, B. N., 1983. Recent advances in phytochemistry. In: In: Timmerman, B. N., Steelnik, C., Loewus, F. A. (Eds.), Phytochemical Adaptations to Stress, vol. 9. Plenum Press, New York, pp. 251 - 271." type="book chapter" year="1983">Hoffmann et al., 1983</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFEFD78BFFFAFB6362E0F86CFB8EC7F4" author="Di Ferdinando, M. & Brunetti, C. & Fini, A. & Tattini, M." box="[748,1070,159,1987]" pageId="5" pageNumber="6" pagination="159 - 179" refId="ref9058" refString="Di Ferdinando, M., Brunetti, C., Fini, A., Tattini, M., 2012. Flavonoids as antioxidants in plants under abiotic stresses. In: Parvaiz, A., Prasad, M. N. V. (Eds.), Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability. Springer-Verlag, New York, pp. 159 - 179." type="book chapter" year="2012">Di Ferdinando et al., 2012</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFEFD78BFFFAFB636449FF7CFA84C7F4" author="Petrussa, E. & Braidot, E. & Zancani, M. & Peresson, C. & Bertolini, A. & Patui, S. & Vianello, A." box="[1093,1316,159,179]" pageId="5" pageNumber="6" pagination="14950 - 14973" refId="ref11330" refString="Petrussa, E., Braidot, E., Zancani, M., Peresson, C., Bertolini, A., Patui, S., Vianello, A., 2013. Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 14, 14950 - 14973." type="journal article" year="2013">Petrussa et al., 2013</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFEFD78BFFFAFB636537FF43FC49C788" author="Mouradov, A. & Spangenberg, G." pageId="5" pageNumber="6" pagination="620" refId="ref10741" refString="Mouradov, A., Spangenberg, G., 2014. Flavonoids: a metabolic network mediating plants adaptation to their real estate. Front. Plant Sci. 5, 620. https: // doi. org / 10.3389 / fpls. 2014.00620." type="journal article" year="2014">Mouradov and Spangenberg, 2014</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFEFD78BFFFAFB6363F4FF67FB15C788" author="Daniels, C. W. & Rautenbach, F. & Marnewick, J. L. & Valentine, A. J. & Babajide, O. J. & Mabusela, W. T." box="[1016,1205,187,206]" pageId="5" pageNumber="6" pagination="29 - 36" refId="ref8980" refString="Daniels, C. W., Rautenbach, F., Marnewick, J. L., Valentine, A. J., Babajide, O. J., Mabusela, W. T., 2015. Environmental stress effect on the phytochemistry and antioxidant activity of a South African bulbous geophyte. Gethyllis multifolia L. Bolus. S. Afr. J. Bot. 96, 29 - 36." type="journal article" year="2015">Daniels et al., 2015</bibRefCitation>
|
||
). One of the most important roles of flavonoids might be that of absorbing compounds, screening the UV solar radiation as a natural filter. Given their absorption spectra (
|
||
<emphasis id="B90A7668FFFAFB636336FED2FCE6C667" bold="true" box="[826,838,270,289]" italics="true" pageId="5" pageNumber="6">λ</emphasis>
|
||
<subScript id="17FAA83FFFFAFB63634AFEC4FCC4C662" attach="left" box="[838,868,280,292]" fontSize="5" pageId="5" pageNumber="6">max</subScript>
|
||
<quantity id="4C86079FFFFAFB636367FED3FC42C664" box="[875,994,271,290]" metricMagnitude="-7" metricUnit="m" metricValue="3.08" metricValueMax="3.46" metricValueMin="2.7" pageId="5" pageNumber="6" unit="nm" value="308.0" valueMax="346.0" valueMin="270.0">270–346 nm</quantity>
|
||
), these compounds are likely to be involved in protecting plants against UV-B radiation. As pointed out by
|
||
<bibRefCitation id="EFEFD78BFFFAFB636568FEF7FCD2C61F" author="Kunz, B. A. & Cahill, D. M. & Mohor, P. G. & Osmond, M. J. & Vonarx, E. J." pageId="5" pageNumber="6" pagination="1 - 40" refId="ref10008" refString="Kunz, B. A., Cahill, D. M., Mohor, P. G., Osmond, M. J., Vonarx, E. J., 2006. Plant responses to UV radiation and links to pathogen resistance. Int. Rev. Cytol. 255, 1 - 40." type="journal article" year="2006">Kunz et al. (2006)</bibRefCitation>
|
||
, plants counteract cell damage by attenuating the received UV-B dose through the accumulation of UV-absorbing secondary metabolites. Another piece of experimental evidence relating to the role of phenylpropanoids in plant UV-B protection is found in
|
||
<bibRefCitation id="EFEFD78BFFFAFB6364F4FE46FA6AC6EB" author="Burchard, P. & Bilger, W. & Weissenbock, G." box="[1272,1482,410,430]" pageId="5" pageNumber="6" pagination="1373 - 1380" refId="ref8703" refString="Burchard, P., Bilger, W., Weissenbock, G., 2000. Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ. 23, 1373 - 1380." type="journal article" year="2000">Burchard et al. (2000)</bibRefCitation>
|
||
. The contribution of these metabolites to the epidermal shielding of rye primary leaves was studied. Good correlation between the epidermal UV-A and UV-B absorbance and the content of flavonoids was found. All these plant responses to UV-B radiation are based on the absorption bands of hydroxycinnamic esters within the UV-B range. Tricin
|
||
<emphasis id="B90A7668FFFAFB63659BFDFAFA03C57F" bold="true" box="[1431,1443,550,569]" pageId="5" pageNumber="6">2</emphasis>
|
||
was previously reported in Antarctic specimens of
|
||
<taxonomicName id="4C7ED1F9FFFAFB6364EFFD9EFC76C537" authority="(Webby and Markham, 1994)" baseAuthorityName="Webby and Markham" baseAuthorityYear="1994" class="Liliopsida" family="Poaceae" genus="Deschampsia" kingdom="Plantae" order="Poales" pageId="5" pageNumber="6" phylum="Tracheophyta" rank="species" species="antarctica">
|
||
<emphasis id="B90A7668FFFAFB6364EFFD9EFAF7C512" bold="true" box="[1251,1367,577,597]" italics="true" pageId="5" pageNumber="6">D. antarctica</emphasis>
|
||
(Webby and Markham, 1994)
|
||
</taxonomicName>
|
||
and in other
|
||
<taxonomicName id="4C7ED1F9FFFAFB63647CFD81FA92C536" box="[1136,1330,605,624]" pageId="5" pageNumber="6">
|
||
<emphasis id="B90A7668FFFAFB63647CFD81FB42C536" bold="true" box="[1136,1250,605,624]" italics="true" pageId="5" pageNumber="6">Deschampsia</emphasis>
|
||
species
|
||
</taxonomicName>
|
||
(
|
||
<bibRefCitation id="EFEFD78BFFFAFB63654AFD81FC65C5CA" author="Harborne, J. B. & Williams, C. A." pageId="5" pageNumber="6" pagination="267 - 280" refId="ref9614" refString="Harborne, J. B., Williams, C. A., 1976. Flavonoid patterns in leaves of the gramineae. Biochem. Syst. Ecol. 4, 267 - 280." type="journal article" year="1976">Harborne and Williams, 1976</bibRefCitation>
|
||
). The other metabolite (luteolin
|
||
<emphasis id="B90A7668FFFAFB63651EFDA5FABEC5CA" bold="true" box="[1298,1310,633,652]" pageId="5" pageNumber="6">1</emphasis>
|
||
) is a well-known flavone which has previously been isolated from many other plant families (
|
||
<bibRefCitation id="EFEFD78BFFFAFB636377FD6DFBEBC582" author="Ulubelen, A. & Miski, M. & Neuman, P. & Mabry, T. J." box="[891,1099,689,708]" pageId="5" pageNumber="6" pagination="261 - 2633" refId="ref12468" refString="Ulubelen, A., Miski, M., Neuman, P., Mabry, T. J., 1979. Flavonoids of Salvia tomentosa (labiatae). J. Nat. Prod. 42 261 - 2633." type="journal article" year="1979">Ulubelen et al., 1979</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFEFD78BFFFAFB636457FD6DFA8BC582" author="Barberan, F. A. & Hernandez, L. & Ferreres, F. & Tomas, F." box="[1115,1323,689,708]" pageId="5" pageNumber="6" pagination="452 - 454" refId="ref8249" refString="Barberan, F. A., Hernandez, L., Ferreres, F., Tomas, F., 1985. Highly methylated- 6 - hydroxyflavones and other flavonoids from Thymus piperella. Planta Med. 51, 452 - 454." type="journal article" year="1985">Barberan et al., 1985</bibRefCitation>
|
||
; Williams et al., 1996; Zhang et al., 2007).
|
||
</paragraph>
|
||
<paragraph id="8BC1AA7AFFFAFB63635FFD35FAF6C369" blockId="5.[818,1488,159,1071]" pageId="5" pageNumber="6">
|
||
Flavonoids are derived from the phenylpropanoid pathway after deamination of aromatic amino acids (phenylalanine or tyrosine).
|
||
<collectionCode id="ED6F32BFFFFAFB6365CDFCD9FA6FC45E" box="[1473,1487,773,792]" country="USA" lsid="urn:lsid:biocol.org:col:15406" name="Harvard University - Arnold Arboretum" pageId="5" pageNumber="6" type="Herbarium">A</collectionCode>
|
||
critical role is played by Chalcone synthase, the key enzyme for the synthesis of flavonoids and anthocyanins (
|
||
<bibRefCitation id="EFEFD78BFFFAFB6364B1FCE1FA39C416" author="Beritognolo, I. & Magel, E. & Abdel-Latif, A. & Charpentier, J. P. & Jay-Allemand, C. & Breton, C." box="[1213,1433,829,848]" pageId="5" pageNumber="6" pagination="291 - 300" refId="ref8478" refString="Beritognolo, I., Magel, E., Abdel-Latif, A., Charpentier, J. P., Jay-Allemand, C., Breton, C., 2002. Expression of genes encoding chalcone synthase, flavanone 3 - hydroxylase and dihydroflavonol 4 - reductase correlates with flavanol accumulation during heartwood formation in Juglans nigra. Tree Physiol. 22, 291 - 300." type="journal article" year="2002">Beritognolo et al., 2002</bibRefCitation>
|
||
). The expression of the gene is modulated by UVR8 when
|
||
<taxonomicName id="4C7ED1F9FFFAFB636524FC84FA2FC42D" baseAuthorityName="Grotewold" baseAuthorityYear="2006" box="[1320,1423,856,875]" class="Magnoliopsida" family="Brassicaceae" genus="Arabidopsis" kingdom="Plantae" order="Brassicales" pageId="5" pageNumber="6" phylum="Tracheophyta" rank="genus">
|
||
<emphasis id="B90A7668FFFAFB636524FC84FA2FC42D" bold="true" box="[1320,1423,856,875]" italics="true" pageId="5" pageNumber="6">Arabidopsis</emphasis>
|
||
</taxonomicName>
|
||
plants are subjected to sunfleck (
|
||
<bibRefCitation id="EFEFD78BFFFAFB636420FCA8FB54C4CE" author="Moriconi, V. & Binkert, M. & Costigliolo, C. & Sellaro, R. & Ulm, R. & Casal, J. J." box="[1068,1268,884,904]" pageId="5" pageNumber="6" pagination="75 - 81" refId="ref10686" refString="Moriconi, V., Binkert, M., Costigliolo, C., Sellaro, R., Ulm, R., Casal, J. J., 2018. Perception of sunflecks by the UV-B photoreceptor UV resistance locus 8. Plant Physiol. 177, 75 - 81." type="journal article" year="2018">Moriconi et al., 2018</bibRefCitation>
|
||
), although this gene is not modulated by a MYB transcription factor (
|
||
<bibRefCitation id="EFEFD78BFFFAFB6364E5FC4CFA61C4E5" author="Salvatierra, A. & Pimentel, P. & Moya-Leon, M. A. & Herrera, R." box="[1257,1473,912,932]" pageId="5" pageNumber="6" pagination="25 - 36" refId="ref11938" refString="Salvatierra, A., Pimentel, P., Moya-Leon, M. A., Herrera, R., 2013. Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB 1 gene. Phytochemistry 90, 25 - 36." type="journal article" year="2013">Salvatierra et al., 2013</bibRefCitation>
|
||
). Furthermore, UVR8 has been involved in several plant protective responses under UV-B inducing growth, accumulation of flavonoids and DNA repair (
|
||
<bibRefCitation id="EFEFD78BFFFAFB6363A2FC38FB38C4B1" author="Kliebenstein, D. & Lim, J. & Landry, L. & Last, R." box="[942,1176,996,1015]" pageId="5" pageNumber="6" pagination="234 - 243" refId="ref9892" refString="Kliebenstein, D., Lim, J., Landry, L., Last, R., 2002. Arabidopsis UVR 8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol. 130, 234 - 243." type="journal article" year="2002">Kliebenstein et al., 2002</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFEFD78BFFFAFB6364AAFC38FAF9C4B1" author="Brown, B. & Cloix, C. & Jiang, G. & Kaiserli, E. & Herzyk, P. & Kliebenstein, D. & Jenkins, G." box="[1190,1369,996,1015]" pageId="5" pageNumber="6" pagination="18225 - 18230" refId="ref8636" refString="Brown, B., Cloix, C., Jiang, G., Kaiserli, E., Herzyk, P., Kliebenstein, D., Jenkins, G., 2005. A UV-B specific signaling component orchestrates plant UV protection. Proc. Natl. Acad. Sci. U. S. A. 102, 18225 - 18230." type="journal article" year="2005">Brown et al., 2005</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFEFD78BFFFAFB63656BFC38FC39C355" author="Heijde, M. & Ulm, R." pageId="5" pageNumber="6" pagination="230 - 237" refId="ref9650" refString="Heijde, M., Ulm, R., 2012. UV-B photoreceptor mediated signaling in plants. Trends Plant Sci. 17, 230 - 237." type="journal article" year="2012">Heijde and Ulm, 2012</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFEFD78BFFFAFB6363A4FBDCFBFAC355" author="Singh, S. & Agrawal, S. & Agrawal, M." box="[936,1114,1024,1043]" pageId="5" pageNumber="6" pagination="67 - 70" refId="ref12038" refString="Singh, S., Agrawal, S., Agrawal, M., 2014. UVR 8 mediated plant protective responses under low UV-B radiation leading to photosynthetic acclimation. J. Photochem. Photobiol., B 137, 67 - 70." type="journal article" year="2014">Singh et al., 2014</bibRefCitation>
|
||
). All of this evidence reported in the literature is in agreement with the results described here.
|
||
</paragraph>
|
||
</subSubSection>
|
||
</treatment>
|
||
</document> |