treatments-xml/data/AC/68/87/AC68879FFFB2BD19FFE0405633427CCF.xml
2024-06-21 12:47:31 +02:00

201 lines
30 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="9C76220467BAA9CD07D841AC4F5A2D5C" ID-CLB-Dataset="284782" ID-DOI="10.1016/j.phytochem.2019.05.009" ID-GBIF-Dataset="b6b9be71-bc68-4ec7-a82e-93da86a5eccd" ID-ISSN="1873-3700" ID-Zenodo-Dep="10483096" IM.bibliography_approvedBy="felipe" IM.illustrations_approvedBy="valdenar" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.tables_approvedBy="valdenar" IM.taxonomicNames_approvedBy="felipe" IM.treatments_approvedBy="valdenar" checkinTime="1704934017668" checkinUser="felipe" docAuthor="Rea, Kevin A, Casaretto, José A., Al-Abdul-Wahid, M. Sameer, Sukumaran, Arjun, Geddes-McAlister, Jennifer, Rothstein, Steven J. &amp; Akhtar, Tariq A." docDate="2019" docId="AC68879FFFB2BD19FFE0405633427CCF" docLanguage="en" docName="Phytochemistry.164.162-171.pdf" docOrigin="Phytochemistry 164" docSource="http://dx.doi.org/10.6084/m9.figshare.24741938.v1" docStyle="DocumentStyle:9E596C34F4E94307D29315B03ACE1007.6:Phytochemistry.2014-2019.journal_article" docStyleId="9E596C34F4E94307D29315B03ACE1007" docStyleName="Phytochemistry.2014-2019.journal_article" docStyleVersion="6" docTitle="Cannabis sativa" docType="treatment" docVersion="5" lastPageNumber="163" masterDocId="5051FFE7FFB3BD18FF84456536507E0B" masterDocTitle="Biosynthesis of cannflavins A and B from Cannabis sativa L" masterLastPageNumber="171" masterPageNumber="162" pageNumber="163" updateTime="1706534934623" updateUser="valdenar">
<mods:mods id="A4F8AAAFF0B0BFDD8953113014FC305A" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="717266AE0DABD41D1B6EB08B90FAF564">
<mods:title id="C1CB8884B93315D34485E115F57869EA">Biosynthesis of cannflavins A and B from Cannabis sativa L</mods:title>
</mods:titleInfo>
<mods:name id="B6310366EB948539D115F91513ADE757" type="personal">
<mods:role id="37695BCB369F4B54B183E5C47EF89F7C">
<mods:roleTerm id="F048CB12E0FCFD3EB84A723BB828F9DA">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="FECD4D5E66801BDE1BC17A7AE3F20FF2">Rea, Kevin A</mods:namePart>
<mods:affiliation id="267B330DB8468D3C35B09817190D66D7"> &amp; Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N 1 G 2 W 1, Canada</mods:affiliation>
</mods:name>
<mods:name id="18EBD969748980DF3A3F4449C374BCA8" type="personal">
<mods:role id="5CAF407A936E2CEE870F6164F3B940B5">
<mods:roleTerm id="75FF4E11B33E1605BA829BF6B27CD56D">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="37D2B07C43D71FEAFA801A12995F0B59">Casaretto, José A.</mods:namePart>
</mods:name>
<mods:name id="8F4F7D7A4E2C7999B13C7D87041B5CC6" type="personal">
<mods:role id="AEBCDC527A37935B8DCF5405257ED1E6">
<mods:roleTerm id="3862443742B9B1D5C5A5AE712D7A9D75">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="ECFC1A53FB8E5D426B11BEF376A47246">Al-Abdul-Wahid, M. Sameer</mods:namePart>
</mods:name>
<mods:name id="6CADC51A6C8CE04C2C8D0B6C62A44A3A" type="personal">
<mods:role id="CCA09CD348314635F770F86C268E1773">
<mods:roleTerm id="1EB57B67B281CC45C8232EE2492B60E7">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="8BF10FEA61F086A56927A4FCFE921B87">Sukumaran, Arjun</mods:namePart>
</mods:name>
<mods:name id="4D998471A1340D270169E111DDA729AE" type="personal">
<mods:role id="A41877209E4B60A619B8637CA565CA8C">
<mods:roleTerm id="E624C1930025DDE6306402C5E8FDEBB4">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="E5C90BFAB1B9FF40094E6B818331BF14">Geddes-McAlister, Jennifer</mods:namePart>
</mods:name>
<mods:name id="3442B3952E69E26DA7F8E3BCA2802FED" type="personal">
<mods:role id="40D11E6E610A043E4859E7ED18FDD197">
<mods:roleTerm id="E9F1306E53F26819BA8235A95BEAAB34">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="DBA3383A85D66D853C5E5EAB4871D38A">Rothstein, Steven J.</mods:namePart>
</mods:name>
<mods:name id="00A5546DB46BEA284C1A0CE1541F28AF" type="personal">
<mods:role id="5FD5041F5303BAEBF4F7B68B48E58F48">
<mods:roleTerm id="FA1D4FCAB0A7E33DC7959FA90DD10D74">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="A090BA02065E7D9A0609AC3E46C9C5B7">Akhtar, Tariq A.</mods:namePart>
</mods:name>
<mods:typeOfResource id="45B1F19143A734D98B33B525C6E94E6F">text</mods:typeOfResource>
<mods:relatedItem id="FFF710EA744EB9E99C33C77EEA5E22B0" type="host">
<mods:titleInfo id="CF1010FE0830ADE42200F4F2EDD2F18F">
<mods:title id="387DF7EE1A8EC4CAC065215442CA6132">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="FB74362E13F9792FDEF3885DB18E7339">
<mods:date id="6F3796FAA70985AFFFB88C87D2741850">2019</mods:date>
<mods:detail id="9A47234535657D04AEB6BE4509A6A8FA" type="pubDate">
<mods:number id="B41B58821FC145F9EC73F127B9C1E9EA">2019-05-28</mods:number>
</mods:detail>
<mods:detail id="8E441EE760E0F4B23525A297D2E7FA7F" type="volume">
<mods:number id="5533FD1118CD76EA2D43EC453D190C29">164</mods:number>
</mods:detail>
<mods:extent id="33FD21225ABECD268B87BA78DDF909D6" unit="page">
<mods:start id="A9CCF9C6A56B17170FAD04CB234B66B9">162</mods:start>
<mods:end id="CAE943B6EABC8D7D347356120CCA23EA">171</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="3A8DA2A9F126A067D2AC0676A93CBCD0">
<mods:url id="65D316C1260FD4A01A6B28FADBC61249">http://dx.doi.org/10.6084/m9.figshare.24741938.v1</mods:url>
</mods:location>
<mods:classification id="6B8CE1EEAE12A78D1E8C53F607F19CF4">journal article</mods:classification>
<mods:identifier id="27C9BAD19D06B4E7AE311A49F3EB272C" type="CLB-Dataset">284782</mods:identifier>
<mods:identifier id="0D537D16C514960A5EF14137C9E70F81" type="DOI">10.1016/j.phytochem.2019.05.009</mods:identifier>
<mods:identifier id="D27AE158794476BC79C87D50A2AE9CC5" type="GBIF-Dataset">b6b9be71-bc68-4ec7-a82e-93da86a5eccd</mods:identifier>
<mods:identifier id="79DA28F8F54A27B4F415C6C16CC33CFF" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="EB0D1488D9898B3EBD2C23F054B1A0D1" type="Zenodo-Dep">10483096</mods:identifier>
</mods:mods>
<treatment id="AC68879FFFB2BD19FFE0405633427CCF" ID-GBIF-Taxon="220662855" LSID="urn:lsid:plazi:treatment:AC68879FFFB2BD19FFE0405633427CCF" httpUri="http://treatment.plazi.org/id/AC68879FFFB2BD19FFE0405633427CCF" lastPageNumber="163" pageId="1" pageNumber="163">
<subSubSection id="6CDB6502FFB2BD19FFE0405634347B4D" box="[100,612,1331,1350]" pageId="1" pageNumber="163" type="nomenclature">
<paragraph id="247E3689FFB2BD19FFE0405634347B4D" blockId="1.[100,612,1331,1350]" box="[100,612,1331,1350]" pageId="1" pageNumber="163">
<heading id="7F3681E5FFB2BD19FFE0405634347B4D" bold="true" box="[100,612,1331,1350]" fontSize="36" level="1" pageId="1" pageNumber="163" reason="1">
<emphasis id="16B5EA9BFFB2BD19FFE0405634347B4D" bold="true" box="[100,612,1331,1350]" italics="true" pageId="1" pageNumber="163">
2.1. Phylogenetic analysis of
<taxonomicName id="E3C14D0AFFB2BD19FEEB405637ED7B4D" ID-CoL="QM84" baseAuthorityName="McPartland and Russo" baseAuthorityYear="2001" box="[367,445,1331,1350]" class="Magnoliopsida" family="Cannabaceae" genus="Cannabis" kingdom="Plantae" order="Rosales" pageId="1" pageNumber="163" phylum="Tracheophyta" rank="species" species="sativa">C. sativa</taxonomicName>
prenyltransferases
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="6CDB6502FFB2BD19FF01400E33427CCF" pageId="1" pageNumber="163" type="description">
<paragraph id="247E3689FFB2BD19FF01400E33427CCF" blockId="1.[100,770,1386,1992]" lastBlockId="1.[818,1488,159,708]" pageId="1" pageNumber="163">
To synthesize cannflavins A and B, a prenyl moiety must be added to position 6 of a flavone that typically accumulates in
<taxonomicName id="E3C14D0AFFB2BD19FDCD40E234C67B91" baseAuthorityName="McPartland and Russo" baseAuthorityYear="2001" box="[585,662,1415,1434]" class="Magnoliopsida" family="Cannabaceae" genus="Cannabis" kingdom="Plantae" order="Rosales" pageId="1" pageNumber="163" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="16B5EA9BFFB2BD19FDCD40E234C67B91" bold="true" box="[585,662,1415,1434]" italics="true" pageId="1" pageNumber="163">C. sativa</emphasis>
</taxonomicName>
. Therefore, we first searched for gene sequences that were putatively annotated as flavonoid or related aromatic prenyltransferases in the Transcriptome Shotgun Assembly (TSA) database for
<taxonomicName id="E3C14D0AFFB2BD19FE6040BF34667BE6" baseAuthorityName="McPartland and Russo" baseAuthorityYear="2001" box="[484,566,1498,1517]" class="Magnoliopsida" family="Cannabaceae" genus="Cannabis" kingdom="Plantae" order="Rosales" pageId="1" pageNumber="163" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="16B5EA9BFFB2BD19FE6040BF34667BE6" bold="true" box="[484,566,1498,1517]" italics="true" pageId="1" pageNumber="163">C. sativa</emphasis>
</taxonomicName>
, which is accessible through NCBI. A previously described flavone prenyltransferase from
<taxonomicName id="E3C14D0AFFB2BD19FFE043773774782E" box="[100,292,1554,1573]" class="Magnoliopsida" family="Fabaceae" genus="Glycyrrhiza" kingdom="Plantae" order="Fabales" pageId="1" pageNumber="163" phylum="Tracheophyta" rank="species" species="uralensis">
<emphasis id="16B5EA9BFFB2BD19FFE043773774782E" bold="true" box="[100,292,1554,1573]" italics="true" pageId="1" pageNumber="163">Glycyrrhiza uralensis</emphasis>
</taxonomicName>
(GuA6DT; GenBank AIT11912.1) was used as a query in these searches (
<bibRefCitation id="40504B78FFB2BD19FED7434B378A784A" author="Li, J. &amp; Chen, R. &amp; Wang, R. &amp; Liu, X. &amp; Xie, D. &amp; Zou, J. &amp; Dai, J." box="[339,474,1582,1601]" pageId="1" pageNumber="163" pagination="1673 - 1681" refId="ref10488" refString="Li, J., Chen, R., Wang, R., Liu, X., Xie, D., Zou, J., Dai, J., 2014. GuA 6 DT, a regiospecific prenyltransferase from Glycyrrhiza uralensis, catalyzes the 6 - prenylation of flavones. Chembiochem 15, 1673 - 1681." type="journal article" year="2014">Li et al., 2014</bibRefCitation>
). GuA6DT prenylates apigenin which is a widespread plant flavone that also accumulates in
<taxonomicName id="E3C14D0AFFB2BD19FD37432F37D57872" authority="(McPartland and Russo, 2001)" baseAuthorityName="McPartland and Russo" baseAuthorityYear="2001" class="Magnoliopsida" family="Cannabaceae" genus="Cannabis" kingdom="Plantae" order="Rosales" pageId="1" pageNumber="163" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="16B5EA9BFFB2BD19FD37432F35527856" bold="true" box="[691,770,1610,1629]" italics="true" pageId="1" pageNumber="163">C. sativa</emphasis>
(
<bibRefCitation id="40504B78FFB2BD19FFE84303372C7872" author="McPartland, J. M. &amp; Russo, E. B." box="[108,380,1638,1657]" pageId="1" pageNumber="163" pagination="103 - 132" refId="ref10663" refString="McPartland, J. M., Russo, E. B., 2001. Cannabis and cannabis extracts: greater than the sum of their parts? J. Cannabis Ther. 1, 103 - 132." type="journal article" year="2001">McPartland and Russo, 2001</bibRefCitation>
)
</taxonomicName>
. This search uncovered eight full-length cDNA sequences from
<taxonomicName id="E3C14D0AFFB2BD19FEBA43E737DE789E" baseAuthorityName="McPartland and Russo" baseAuthorityYear="2001" box="[318,398,1666,1685]" class="Magnoliopsida" family="Cannabaceae" genus="Cannabis" kingdom="Plantae" order="Rosales" pageId="1" pageNumber="163" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="16B5EA9BFFB2BD19FEBA43E737DE789E" bold="true" box="[318,398,1666,1685]" italics="true" pageId="1" pageNumber="163">C. sativa</emphasis>
</taxonomicName>
that exhibited 2253% identity at the amino acid level to GuA6DT and were putatively annotated as
<taxonomicName id="E3C14D0AFFB2BD19FD3143FB355278BA" baseAuthorityName="McPartland and Russo" baseAuthorityYear="2001" box="[693,770,1694,1713]" class="Magnoliopsida" family="Cannabaceae" genus="Cannabis" kingdom="Plantae" order="Rosales" pageId="1" pageNumber="163" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="16B5EA9BFFB2BD19FD3143FB355278BA" bold="true" box="[693,770,1694,1713]" italics="true" pageId="1" pageNumber="163">C. sativa</emphasis>
</taxonomicName>
prenyltransferases (
<emphasis id="16B5EA9BFFB2BD19FE9843DC373978C7" bold="true" box="[284,361,1721,1740]" italics="true" pageId="1" pageNumber="163">CsPT1-8</emphasis>
;
<figureCitation id="BCFA2A0CFFB2BD19FEF043DC37E378C7" box="[372,435,1721,1740]" captionStart="Fig" captionStartId="2.[100,130,1073,1090]" captionTargetBox="[267,1323,152,1050]" captionTargetId="graphics-408@2.[267,1323,153,1027]" captionTargetPageId="2" captionText="Fig. 1. Phylogenetic analysis of prenyltransferases from C. sativa. The eight putative CsPTs identified in the C. sativa genome were aligned with the amino acid sequences of various plant aromatic prenyltransferases that have been previously identified using Clustal W and a Neighbor-joining phylogenetic tree (1000 replicates) to illustrate their evolutionary relationships was then constructed using the MEGA 6.0 software package. Bootstrap values (&gt; 60%) are indicated at the nodes of each branch and the branch lengths are proportional to the number of amino acid substitutions per sequence. The sequences and species abbreviations for all of these prenyltransferases are listed in Supplemental Fig. S1 along with their corresponding GenBank accession numbers. Note that the eight CsPTs (bolded) distinctly fall into three groups, which are involved in either tocopherol (II), plastoquinone (V), or terpenophenolic (VI) biosynthesis." figureDoi="http://doi.org/10.5281/zenodo.10483098" httpUri="https://zenodo.org/record/10483098/files/figure.png" pageId="1" pageNumber="163">Fig. S1</figureCitation>
). One of the prenyltransferases that were identified in this search (
<emphasis id="16B5EA9BFFB2BD19FE1443B0379A78E3" bold="true" box="[400,458,1749,1768]" italics="true" pageId="1" pageNumber="163">CsPT1</emphasis>
) matched a previously reported enzyme from
<taxonomicName id="E3C14D0AFFB2BD19FF6043943760790F" baseAuthorityName="McPartland and Russo" baseAuthorityYear="2001" box="[228,304,1777,1796]" class="Magnoliopsida" family="Cannabaceae" genus="Cannabis" kingdom="Plantae" order="Rosales" pageId="1" pageNumber="163" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="16B5EA9BFFB2BD19FF6043943760790F" bold="true" box="[228,304,1777,1796]" italics="true" pageId="1" pageNumber="163">C. sativa</emphasis>
</taxonomicName>
that is known to be involved in the prenylation of olivetolic acid to cannabigerolic acid in the cannabinoid biosynthesis pathway (
<bibRefCitation id="40504B78FFB2BD19FF46424C37FD7937" author="Page, J. E. &amp; Boubakir, Z. &amp; National Research Council of Canada &amp; University of Saskatchewan" box="[194,429,1833,1852]" pageId="1" pageNumber="163" pagination="20150128301" refId="ref11182" refString="Page, J. E., Boubakir, Z., inventors, National Research Council of Canada, University of Saskatchewan, assignee, 2014 Oct 9. Aromatic Prenyltransferase from Cannabis. US patent US 20150128301 A 1." type="journal article" year="2014">Page and Boubakir, 2014</bibRefCitation>
). We next performed a phylogenetic analysis that included
<emphasis id="16B5EA9BFFB2BD19FEB9422037267953" bold="true" box="[317,374,1861,1880]" italics="true" pageId="1" pageNumber="163">CsPT1</emphasis>
and these seven other prenyltransferases from
<taxonomicName id="E3C14D0AFFB2BD19FF1C420436B7797F" baseAuthorityName="McPartland and Russo" baseAuthorityYear="2001" box="[152,231,1889,1908]" class="Magnoliopsida" family="Cannabaceae" genus="Cannabis" kingdom="Plantae" order="Rosales" pageId="1" pageNumber="163" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="16B5EA9BFFB2BD19FF1C420436B7797F" bold="true" box="[152,231,1889,1908]" italics="true" pageId="1" pageNumber="163">C. sativa</emphasis>
</taxonomicName>
along with all known plant prenyltransferases that have been previously shown to accommodate aromatic substrates (
<figureCitation id="BCFA2A0CFFB2BD19FD47421834AC799B" box="[707,764,1917,1936]" captionStart="Fig" captionStartId="2.[100,130,1073,1090]" captionTargetBox="[267,1323,152,1050]" captionTargetId="graphics-408@2.[267,1323,153,1027]" captionTargetPageId="2" captionText="Fig. 1. Phylogenetic analysis of prenyltransferases from C. sativa. The eight putative CsPTs identified in the C. sativa genome were aligned with the amino acid sequences of various plant aromatic prenyltransferases that have been previously identified using Clustal W and a Neighbor-joining phylogenetic tree (1000 replicates) to illustrate their evolutionary relationships was then constructed using the MEGA 6.0 software package. Bootstrap values (&gt; 60%) are indicated at the nodes of each branch and the branch lengths are proportional to the number of amino acid substitutions per sequence. The sequences and species abbreviations for all of these prenyltransferases are listed in Supplemental Fig. S1 along with their corresponding GenBank accession numbers. Note that the eight CsPTs (bolded) distinctly fall into three groups, which are involved in either tocopherol (II), plastoquinone (V), or terpenophenolic (VI) biosynthesis." figureDoi="http://doi.org/10.5281/zenodo.10483098" httpUri="https://zenodo.org/record/10483098/files/figure.png" pageId="1" pageNumber="163">Fig. 1</figureCitation>
;
<figureCitation id="BCFA2A0CFFB2BD19FFE042FC36E179A7" box="[100,177,1945,1964]" captionStart="Fig" captionStartId="2.[100,130,1073,1090]" captionTargetBox="[267,1323,152,1050]" captionTargetId="graphics-408@2.[267,1323,153,1027]" captionTargetPageId="2" captionText="Fig. 1. Phylogenetic analysis of prenyltransferases from C. sativa. The eight putative CsPTs identified in the C. sativa genome were aligned with the amino acid sequences of various plant aromatic prenyltransferases that have been previously identified using Clustal W and a Neighbor-joining phylogenetic tree (1000 replicates) to illustrate their evolutionary relationships was then constructed using the MEGA 6.0 software package. Bootstrap values (&gt; 60%) are indicated at the nodes of each branch and the branch lengths are proportional to the number of amino acid substitutions per sequence. The sequences and species abbreviations for all of these prenyltransferases are listed in Supplemental Fig. S1 along with their corresponding GenBank accession numbers. Note that the eight CsPTs (bolded) distinctly fall into three groups, which are involved in either tocopherol (II), plastoquinone (V), or terpenophenolic (VI) biosynthesis." figureDoi="http://doi.org/10.5281/zenodo.10483098" httpUri="https://zenodo.org/record/10483098/files/figure.png" pageId="1" pageNumber="163">Fig. S1</figureCitation>
). This analysis demonstrated that plant aromatic prenyltransferases fall into six distinct groups, which are conveniently defined by the specific branch of aromatic metabolism in which they participate. The eight CsPTs occupy three of these six groups:
<emphasis id="16B5EA9BFFB2BD19FA1245DE339F7EC5" bold="true" box="[1430,1487,187,206]" italics="true" pageId="1" pageNumber="163">CsPT2</emphasis>
and
<emphasis id="16B5EA9BFFB2BD19FCDB45B235C87EE1" bold="true" box="[863,920,215,234]" italics="true" pageId="1" pageNumber="163">CsPT6</emphasis>
reside in a unique clade of prenyltransferases (Group 2) which have been shown to participate in the tocopherol biosynthetic pathway (
<bibRefCitation id="40504B78FFB2BD19FC16446A329A7F29" author="Collakova, E. &amp; DellaPenna, D." box="[914,1226,271,290]" pageId="1" pageNumber="163" pagination="1113 - 1124" refId="ref9774" refString="Collakova, E., DellaPenna, D., 2001. Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol. 127, 1113 - 1124." type="journal article" year="2001">Collakova and DellaPenna, 2001</bibRefCitation>
;
<bibRefCitation id="40504B78FFB2BD19FB5C446A33C77F29" author="Savidge, B. &amp; Weiss, J. D. &amp; Wong, Y. H. H. &amp; Lassner, M. W. &amp; Mitsky, T. A. &amp; Shewmaker, C. K. &amp; Post-Beittenmiller, D. &amp; Valentin, H. E." box="[1240,1431,271,290]" pageId="1" pageNumber="163" pagination="321 - 332" refId="ref11711" refString="Savidge, B., Weiss, J. D., Wong, Y. H. H., Lassner, M. W., Mitsky, T. A., Shewmaker, C. K., Post-Beittenmiller, D., Valentin, H. E., 2002. Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol. 129, 321 - 332." type="journal article" year="2002">Savidge et al., 2002</bibRefCitation>
;
<bibRefCitation id="40504B78FFB2BD19FA21446A35F07F35" author="Tian, L. &amp; DellaPenna, D. &amp; Dixon, R. A." pageId="1" pageNumber="163" pagination="1067 - 1073" refId="ref12294" refString="Tian, L., DellaPenna, D., Dixon, R. A., 2007. The pds 2 mutation is a lesion in the Arabidopsis homogentisate solanesyltransferase gene involved in plastoquinone biosynthesis. Planta 226, 1067 - 1073." type="journal article" year="2007">Tian et al., 2007</bibRefCitation>
).
<emphasis id="16B5EA9BFFB2BD19FC31444E35BF7F35" bold="true" box="[949,1007,299,318]" italics="true" pageId="1" pageNumber="163">CsPT5</emphasis>
appears to be orthologous to homogentisate solanesyltransferases (Group V) that function in plastoquinone biosynthesis (
<bibRefCitation id="40504B78FFB2BD19FCBE440632427F7D" author="Venkatesh, T. V. &amp; Karunanandaa, B. &amp; Free, D. L. &amp; Rottnek, J. M. &amp; Baszis, S. R. &amp; Valentin, H. E." box="[826,1042,355,374]" pageId="1" pageNumber="163" pagination="1134 - 1144" refId="ref12586" refString="Venkatesh, T. V., Karunanandaa, B., Free, D. L., Rottnek, J. M., Baszis, S. R., Valentin, H. E., 2006. Identification and characterization of an Arabidopsis homogentisate phytyltransferase paralog. Planta 223, 1134 - 1144." type="journal article" year="2006">Venkatesh et al., 2006</bibRefCitation>
;
<bibRefCitation id="40504B78FFB2BD19FBA5440632927F7D" author="Tian, L. &amp; DellaPenna, D. &amp; Dixon, R. A." box="[1057,1218,355,374]" pageId="1" pageNumber="163" pagination="1067 - 1073" refId="ref12294" refString="Tian, L., DellaPenna, D., Dixon, R. A., 2007. The pds 2 mutation is a lesion in the Arabidopsis homogentisate solanesyltransferase gene involved in plastoquinone biosynthesis. Planta 226, 1067 - 1073." type="journal article" year="2007">Tian et al., 2007</bibRefCitation>
). The five remaining CsPTs (
<emphasis id="16B5EA9BFFB2BD19FCBE441A35C07F99" bold="true" box="[826,912,383,402]" italics="true" pageId="1" pageNumber="163">CsPT1, 3</emphasis>
,
<emphasis id="16B5EA9BFFB2BD19FC24441A35FC7F99" bold="true" box="[928,940,383,402]" italics="true" pageId="1" pageNumber="163">4</emphasis>
,
<emphasis id="16B5EA9BFFB2BD19FC39441A35997F99" bold="true" box="[957,969,383,402]" italics="true" pageId="1" pageNumber="163">7</emphasis>
, and
<emphasis id="16B5EA9BFFB2BD19FB83441A32437F99" bold="true" box="[1031,1043,383,402]" italics="true" pageId="1" pageNumber="163">8</emphasis>
) formed a third and distantly related group (Group VI) that includes two prenyltransferases from
<taxonomicName id="E3C14D0AFFB2BD19FABD44FF339F7FA6" box="[1337,1487,410,429]" class="Magnoliopsida" family="Cannabaceae" genus="Humulus" kingdom="Plantae" order="Rosales" pageId="1" pageNumber="163" phylum="Tracheophyta" rank="species" species="lupulus">
<emphasis id="16B5EA9BFFB2BD19FABD44FF339F7FA6" bold="true" box="[1337,1487,410,429]" italics="true" pageId="1" pageNumber="163">Humulus lupulus</emphasis>
</taxonomicName>
(hops), which are involved in the aromatic prenylation reactions required for terpenophenolic biosynthesis (
<bibRefCitation id="40504B78FFB2BD19FB3144B7330C7FEE" author="Nagel, J. &amp; Culley, L. K. &amp; Lu, Y. &amp; Liu, E. &amp; Matthews, P. D. &amp; Stevens, J. F. &amp; Page, J. E." box="[1205,1372,466,485]" pageId="1" pageNumber="163" pagination="186 - 200" refId="ref11056" refString="Nagel, J., Culley, L. K., Lu, Y., Liu, E., Matthews, P. D., Stevens, J. F., Page, J. E., 2008. EST analysis of hop glandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis of xanthohumol. Plant Cell 20, 186 - 200." type="journal article" year="2008">Nagel et al., 2008</bibRefCitation>
;
<bibRefCitation id="40504B78FFB2BD19FAEC44B735F27C0A" author="Tsurumaru, Y. &amp; Sasaki, K. &amp; Miyawaki, T. &amp; Uto, Y. &amp; Momma, T. &amp; Umemoto, N. &amp; Yazaki, K." pageId="1" pageNumber="163" pagination="393 - 398" refId="ref12338" refString="Tsurumaru, Y., Sasaki, K., Miyawaki, T., Uto, Y., Momma, T., Umemoto, N., Yazaki, K., 2012. HlPT- 1, a membrane-bound prenyltransferase responsible for the biosynthesis of bitter acids in hops. Biochem. Biophys. Res. Commun. 417, 393 - 398." type="journal article" year="2012">Tsurumaru et al., 2012</bibRefCitation>
;
<bibRefCitation id="40504B78FFB2BD19FC34448B326B7C0A" author="Li, H. &amp; Ban, Z. &amp; Qin, H. &amp; Ma, L. &amp; King, A. J. &amp; Wang, G." box="[944,1083,494,513]" pageId="1" pageNumber="163" pagination="650 - 659" refId="ref10551" refString="Li, H., Ban, Z., Qin, H., Ma, L., King, A. J., Wang, G., 2015. A heteromeric membrane-bound prenyltransferase complex from hop catalyzes three sequential aromatic prenylations in the bitter acid pathway. Plant Physiol. 167, 650 - 659." type="journal article" year="2015">Li et al., 2015</bibRefCitation>
). Surprisingly, this analysis revealed that none of the CsPTs were closely related to any of the flavonoid or coumarin prenyltransferases (Groups I and IV, respectively) that have been previously identified in various plant species (
<bibRefCitation id="40504B78FFB2BD19FB67472733DE7C5E" author="Sasaki, K. &amp; Mito, K. &amp; Ohara, K. &amp; Yamamoto, H. &amp; Yazaki, K." box="[1251,1422,578,597]" pageId="1" pageNumber="163" pagination="1075 - 1084" refId="ref11558" refString="Sasaki, K., Mito, K., Ohara, K., Yamamoto, H., Yazaki, K., 2008. Cloning and characterization of naringenin 8 - prenyltransferase, a flavonoid-specific prenyltransferase of Sophora flavescens. Plant Physiol. 146, 1075 - 1084." type="journal article" year="2008">Sasaki et al., 2008</bibRefCitation>
,
<bibRefCitation id="40504B78FFB2BD19FA1D472733997C5E" author="Sasaki, K. &amp; Tsurumaru, Y. &amp; Yamamoto, H. &amp; Yazaki, K." box="[1433,1481,578,597]" pageId="1" pageNumber="163" pagination="24125 - 24134" refId="ref11610" refString="Sasaki, K., Tsurumaru, Y., Yamamoto, H., Yazaki, K., 2011. Molecular characterization of a membrane-bound prenyltransferase specific for isoflavone from Sophora flavescens. J. Biol. Chem. 286, 24125 - 24134." type="journal article" year="2011">2011</bibRefCitation>
;
<bibRefCitation id="40504B78FFB2BD19FCB6473B35BC7C7A" author="Akashi, T. &amp; Sasaki, K. &amp; Aoki, T. &amp; Ayabe, S. &amp; Yazaki, K." box="[818,1004,606,625]" pageId="1" pageNumber="163" pagination="683 - 693" refId="ref9255" refString="Akashi, T., Sasaki, K., Aoki, T., Ayabe, S., Yazaki, K., 2009. Molecular cloning and characterization of a cDNA for pterocarpan 4 - dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin. Plant Physiol. 149, 683 - 693." type="journal article" year="2009">Akashi et al., 2009</bibRefCitation>
;
<bibRefCitation id="40504B78FFB2BD19FC7F473B32F37C7A" author="Shen, G. &amp; Huhman, D. &amp; Lei, Z. &amp; Snyder, J. &amp; Sumner, L. W. &amp; Dixon, R. A." box="[1019,1187,606,625]" pageId="1" pageNumber="163" pagination="70 - 80" refId="ref12240" refString="Shen, G., Huhman, D., Lei, Z., Snyder, J., Sumner, L. W., Dixon, R. A., 2012. Characterization of an isoflavonoid-specific prenyltransferase from Lupinus albus. Plant Physiol. 159, 70 - 80." type="journal article" year="2012">Shen et al., 2012</bibRefCitation>
;
<bibRefCitation id="40504B78FFB2BD19FB36473B33327C7A" author="Wang, R. &amp; Chen, R. &amp; Li, J. &amp; Liu, X. &amp; Xie, K. &amp; Chen, D. &amp; Yin, Y. &amp; Tao, X. &amp; Xie, D. &amp; Zou, J. &amp; Yang, L. &amp; Dai, J." box="[1202,1378,606,625]" pageId="1" pageNumber="163" pagination="35815 - 35825" refId="ref12743" refString="Wang, R., Chen, R., Li, J., Liu, X., Xie, K., Chen, D., Yin, Y., Tao, X., Xie, D., Zou, J., Yang, L., Dai, J., 2014. Molecular characterization and phylogenetic analysis of two novel regio-specific flavonoid prenyltransferases from Morus alba and Cudrania tricuspidata. J. Biol. Chem. 289, 35815 - 35825." type="journal article" year="2014">Wang et al., 2014</bibRefCitation>
;
<bibRefCitation id="40504B78FFB2BD19FAF5473B35CD7C86" author="Munakata, R. &amp; Olry, A. &amp; Karamat, F. &amp; Courdavault, V. &amp; Sugiyama, A. &amp; Date, Y. &amp; Krieger, C. &amp; Silie, P. &amp; Foureau, E. &amp; Papon, N. &amp; Grosjean, J. &amp; Yazaki, K. &amp; Bourgaud, F. &amp; Hehn, A." pageId="1" pageNumber="163" pagination="332 - 344" refId="ref10829" refString="Munakata, R., Olry, A., Karamat, F., Courdavault, V., Sugiyama, A., Date, Y., Krieger, C., Silie, P., Foureau, E., Papon, N., Grosjean, J., Yazaki, K., Bourgaud, F., Hehn, A., 2016. Molecular evolution of parsnip (Pastinaca sativa) membrane-bound prenyltransferases for linear and / or angular furanocoumarin biosynthesis. New Phytol. 211, 332 - 344." type="journal article" year="2016">Munakata et al., 2016</bibRefCitation>
;
<bibRefCitation id="40504B78FFB2BD19FC2C471F322C7C86" author="Yoneyama, K. &amp; Akashi, T. &amp; Aoki, T." box="[936,1148,634,653]" pageId="1" pageNumber="163" pagination="2497 - 2509" refId="ref13172" refString="Yoneyama, K., Akashi, T., Aoki, T., 2016. Molecular characterization of soybean pterocarpan 2 - dimethylallyltransferase in glyceollin biosynthesis: local gene and wholegenome duplications of prenyltransferase genes led to the structural diversity of soybean prenylated isoflavonoids. Plant Cell Physiol. 57, 2497 - 2509." type="journal article" year="2016">Yoneyama et al., 2016</bibRefCitation>
;
<bibRefCitation id="40504B78FFB2BD19FB0C471F33787C86" author="Yang, T. &amp; Fang, L. &amp; Sanders, S. &amp; Jayanthi, S. &amp; Rajan, G. &amp; Podicheti, R. &amp; Thallapuranam, S. K. &amp; Mockaitis, K. &amp; Medina-Bolivar, F." box="[1160,1320,634,653]" pageId="1" pageNumber="163" pagination="28 - 46" refId="ref13099" refString="Yang, T., Fang, L., Sanders, S., Jayanthi, S., Rajan, G., Podicheti, R., Thallapuranam, S. K., Mockaitis, K., Medina-Bolivar, F., 2018. Stilbenoid prenyltransferases define key steps in the diversification of peanut phytoalexins. J. Biol. Chem. 293, 28 - 46." type="journal article" year="2018">Yang et al., 2018</bibRefCitation>
). Interestingly,
<emphasis id="16B5EA9BFFB2BD19FA3A471F350F7CA2" bold="true" italics="true" pageId="1" pageNumber="163">in silico</emphasis>
analysis of each CsPT predicted that they are all targeted to plastids (
<tableCitation id="69430332FFB2BD19FC0C47D4358A7CCF" box="[904,986,689,708]" captionStart="Table 2" captionStartId="3.[818,868,854,871]" captionTargetPageId="3" captionText="Table 2 NMR assignments for cannflavin A and cannflavin B." pageId="1" pageNumber="163">Table S2</tableCitation>
). We return to this point below.
</paragraph>
</subSubSection>
</treatment>
</document>