197 lines
26 KiB
XML
197 lines
26 KiB
XML
<document id="527A24EEEB0ACEC075EDB08B7F6A1E3D" ID-DOI="10.1016/j.phytochem.2021.112932" ID-ISSN="1873-3700" ID-Zenodo-Dep="8258180" IM.bibliography_approvedBy="juliana" IM.illustrations_approvedBy="juliana" IM.materialsCitations_approvedBy="juliana" IM.metadata_approvedBy="felipe" IM.tables_approvedBy="juliana" IM.taxonomicNames_approvedBy="juliana" IM.treatments_approvedBy="juliana" checkinTime="1692305192677" checkinUser="felipe" docAuthor="Zhang, Haihua, Xu, Jinfeng, Chen, Haimin, Jin, Weibo & Liang, Zongsuo" docDate="2021" docId="03F987D2FFFDFFF5AD2DFC0FFAADFA32" docLanguage="en" docName="Phytochemistry.191.112932.pdf" docOrigin="Phytochemistry (112932) 191" docSource="http://dx.doi.org/10.1016/j.phytochem.2021.112932" docStyle="DocumentStyle:F36D69FC8B198FBE91029DF9C24697D3.5:Phytochemistry.2020-.journal_article" docStyleId="F36D69FC8B198FBE91029DF9C24697D3" docStyleName="Phytochemistry.2020-.journal_article" docStyleVersion="5" docTitle="Salvia miltiorrhiza Bunge" docType="treatment" docVersion="1" lastPageNumber="5" masterDocId="FFC0FFAAFFF9FFF1AD49FFADFFA1FFD1" masterDocTitle="Characterization of NAC family genes in Salvia miltiorrhiza and NAC 2 potentially involved in the biosynthesis of tanshinones" masterLastPageNumber="8" masterPageNumber="1" pageNumber="5" updateTime="1692630214032" updateUser="juliana">
|
|
<mods:mods id="C8818A9893899EF3553185D78890FB17" xmlns:mods="http://www.loc.gov/mods/v3">
|
|
<mods:titleInfo id="B5E1EF49F9CFD03CFE0ADEF0A76EC349">
|
|
<mods:title id="AA6303C23C5067AE8F4B5B3F0150CF2D">Characterization of NAC family genes in Salvia miltiorrhiza and NAC 2 potentially involved in the biosynthesis of tanshinones</mods:title>
|
|
</mods:titleInfo>
|
|
<mods:name id="F5937C56E89118D855B7667C2BED55FE" type="personal">
|
|
<mods:role id="10D49099E0B6BCF6CCDC62DFE25D583C">
|
|
<mods:roleTerm id="A2FB7220B42836668C3305A501BAF17A">Author</mods:roleTerm>
|
|
</mods:role>
|
|
<mods:namePart id="9CEC69C6250C2403E503C4272151D4D9">Zhang, Haihua</mods:namePart>
|
|
<mods:affiliation id="AAE8F2464A8EE13335F30AE4F47E2497">* **</mods:affiliation>
|
|
</mods:name>
|
|
<mods:name id="3A77763FFE5150D30143FB24869EAA87" type="personal">
|
|
<mods:role id="A12F4ED80965DA4EA312972B4BB2B451">
|
|
<mods:roleTerm id="84BB3FA1D3AFD17E1D359812F2967BCA">Author</mods:roleTerm>
|
|
</mods:role>
|
|
<mods:namePart id="80DBF36B2EA23B31CE7FA3CADFF810CC">Xu, Jinfeng</mods:namePart>
|
|
</mods:name>
|
|
<mods:name id="2C4BED35329B816A137B3CD93B5B2F55" type="personal">
|
|
<mods:role id="09D2F75E0C6233B9BEF990CD81E149E2">
|
|
<mods:roleTerm id="A6CF5ABB0691614610F93D85A4AF5542">Author</mods:roleTerm>
|
|
</mods:role>
|
|
<mods:namePart id="25100E5410D9736952C640C6D30E9052">Chen, Haimin</mods:namePart>
|
|
</mods:name>
|
|
<mods:name id="B1DA9FD3857EB0E1875488B032B1976B" type="personal">
|
|
<mods:role id="F854CBE5F36DBB10AF340718F2BB9074">
|
|
<mods:roleTerm id="71C59D2D41CB67D2F7AFBCDB587221CA">Author</mods:roleTerm>
|
|
</mods:role>
|
|
<mods:namePart id="925F6F7C97EF53BCCCDAEDA69EAC338D">Jin, Weibo</mods:namePart>
|
|
</mods:name>
|
|
<mods:name id="35846464130969F72EB28FC5C3772FF3" type="personal">
|
|
<mods:role id="58B0AD71790067FAD99D1705A97D94B3">
|
|
<mods:roleTerm id="288C8F8CC64314C5CAD1ECAC451E2CA8">Author</mods:roleTerm>
|
|
</mods:role>
|
|
<mods:namePart id="9FC52A53AA907C79697F4217E7593644">Liang, Zongsuo</mods:namePart>
|
|
</mods:name>
|
|
<mods:typeOfResource id="7BB2DD77C6F5026825D86E891AE11072">text</mods:typeOfResource>
|
|
<mods:relatedItem id="16E19D63C58A84F1AF2BB423F210C4F2" type="host">
|
|
<mods:titleInfo id="CE15A7B131A61FC4FAC11B3A1683EC5E">
|
|
<mods:title id="F055CF4A4D9C526E35450E566598F561">Phytochemistry</mods:title>
|
|
</mods:titleInfo>
|
|
<mods:part id="DF0907250127723D60C084A86720CDC4">
|
|
<mods:date id="EF50E9FE622B57E0D186D3C375EC495F">2021</mods:date>
|
|
<mods:detail id="D207BC8547712A57F4A2B4D8041D6822" type="series">
|
|
<mods:title id="C42DCEDCCB66020ACA91A4D0FF4EC9A7">112932</mods:title>
|
|
</mods:detail>
|
|
<mods:detail id="8D9E315AA330E02D496689F8FB033214" type="pubDate">
|
|
<mods:number id="604B67F6B47C1FBE6998751D71F70141">2021-11-30</mods:number>
|
|
</mods:detail>
|
|
<mods:detail id="FE6E26CC62EB16BAF92267582138E256" type="volume">
|
|
<mods:number id="2A642997A3FB177070B740D63A1FC76E">191</mods:number>
|
|
</mods:detail>
|
|
<mods:extent id="4722E72106D162F4EF226060EA9D79DD" unit="page">
|
|
<mods:start id="3C7138F8834CE7222F210680856DA52F">1</mods:start>
|
|
<mods:end id="26700EEC122ED3BEC454427166144806">8</mods:end>
|
|
</mods:extent>
|
|
</mods:part>
|
|
</mods:relatedItem>
|
|
<mods:location id="1401ED29C65E2B962C070A3D86D1E35B">
|
|
<mods:url id="1C1B42EF5D7E77AE46F422C2A0E395D9">http://dx.doi.org/10.1016/j.phytochem.2021.112932</mods:url>
|
|
</mods:location>
|
|
<mods:classification id="5E2A9F320465ABE5A147A77899BA8E4C">journal article</mods:classification>
|
|
<mods:identifier id="15FD67B75A281DA1867B552CF205E55E" type="DOI">10.1016/j.phytochem.2021.112932</mods:identifier>
|
|
<mods:identifier id="C7E9FE6592CD265C3EE03612E5B3FC1D" type="ISSN">1873-3700</mods:identifier>
|
|
<mods:identifier id="AE122FE8F8DCAD2FFCD7F0E8EE51F205" type="Zenodo-Dep">8258180</mods:identifier>
|
|
</mods:mods>
|
|
<treatment id="03F987D2FFFDFFF5AD2DFC0FFAADFA32" LSID="urn:lsid:plazi:treatment:03F987D2FFFDFFF5AD2DFC0FFAADFA32" httpUri="http://treatment.plazi.org/id/03F987D2FFFDFFF5AD2DFC0FFAADFA32" lastPageNumber="5" pageId="4" pageNumber="5">
|
|
<subSubSection id="C34A654FFFFDFFF5AD2DFC0FFDE9FC00" pageId="4" pageNumber="5" type="nomenclature">
|
|
<paragraph id="8BEF36C4FFFDFFF5AD2DFC0FFDE9FC00" blockId="4.[100,703,930,977]" pageId="4" pageNumber="5">
|
|
<heading id="D0A781A8FFFDFFF5AD2DFC0FFDE9FC00" bold="true" fontSize="36" level="1" pageId="4" pageNumber="5" reason="1">
|
|
<emphasis id="B924EAD6FFFDFFF5AD2DFC0FFDE9FC00" bold="true" italics="true" pageId="4" pageNumber="5">
|
|
3.1. Sm-NAC responds to jasmonic acid signals and participates in regulating the secondary metabolism of
|
|
<taxonomicName id="4C504D47FFFDFFF5AC81FC13FDE9FC00" ID-CoL="6XH2C" ID-ENA="226208" authority="Bunge" authorityName="Bunge" box="[456,584,958,977]" class="Magnoliopsida" family="Lamiaceae" genus="Salvia" kingdom="Plantae" order="Lamiales" pageId="4" pageNumber="6" phylum="Tracheophyta" rank="species" species="miltiorrhiza">S. miltiorrhiza</taxonomicName>
|
|
</emphasis>
|
|
</heading>
|
|
</paragraph>
|
|
</subSubSection>
|
|
<subSubSection id="C34A654FFFFDFFF5ADCDFC5BFAADFA32" pageId="4" pageNumber="5" type="description">
|
|
<paragraph id="8BEF36C4FFFDFFF5ADCDFC5BFD88F90F" blockId="4.[100,771,1014,1758]" pageId="4" pageNumber="5">
|
|
The
|
|
<collectionCode id="ED41AE01FFFDFFF5ADF8FC5BFF7DFBD8" box="[177,220,1014,1033]" country="Japan" httpUri="http://biocol.org/urn:lsid:biocol.org:col:13686" lsid="urn:lsid:biocol.org:col:13686" name="Nagano Environmental Conservation Research Institute" pageId="4" pageNumber="5" type="Herbarium">NAC</collectionCode>
|
|
gene family regulates multiple aspects of plant growth, development, plant hormone signaling, and secondary metabolism. NACs respond to hormone signals and regulate their biosynthesis. For example,
|
|
<collectionCode id="ED41AE01FFFDFFF5AD88FBE7FF4EFB8C" box="[193,239,1098,1117]" country="Japan" httpUri="http://biocol.org/urn:lsid:biocol.org:col:13686" lsid="urn:lsid:biocol.org:col:13686" name="Nagano Environmental Conservation Research Institute" pageId="4" pageNumber="5" type="Herbarium">NAC</collectionCode>
|
|
042 (JUB1) directly represses the hormone biosynthetic genes
|
|
<emphasis id="B924EAD6FFFDFFF5ADEBFBCBFF4CFBA8" bold="true" box="[162,237,1126,1145]" italics="true" pageId="4" pageNumber="5">GA3ox1</emphasis>
|
|
and
|
|
<emphasis id="B924EAD6FFFDFFF5AC6BFBCBFED7FBA8" bold="true" box="[290,374,1126,1145]" italics="true" pageId="4" pageNumber="5">DWARF4</emphasis>
|
|
(
|
|
<emphasis id="B924EAD6FFFDFFF5ACC1FBCBFE61FBA8" bold="true" box="[392,448,1126,1145]" italics="true" pageId="4" pageNumber="5">DWF4</emphasis>
|
|
), leading to typical GA/BR deficiency phenotypes in
|
|
<taxonomicName id="4C504D47FFFDFFF5AC7FFB2FFD42FB44" authority="(Shahnejat-Bushehri et al., 2016)" baseAuthorityName="Shahnejat-Bushehri" baseAuthorityYear="2016" box="[310,739,1153,1173]" class="Magnoliopsida" family="Brassicaceae" genus="Arabidopsis" kingdom="Plantae" order="Brassicales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="thaliana">
|
|
<emphasis id="B924EAD6FFFDFFF5AC7FFB2FFE3AFB45" bold="true" box="[310,411,1153,1173]" italics="true" pageId="4" pageNumber="5">A. thaliana</emphasis>
|
|
(
|
|
<bibRefCitation id="EFC14B35FFFDFFF5ACE5FB2FFD78FB44" author="Shahnejat-Bushehri, S. & Tarkowska, D. & Sakuraba, Y. & Balazadeh, S." box="[428,729,1154,1173]" pageId="4" pageNumber="5" pagination="16013" refId="ref9970" refString="Shahnejat-Bushehri, S., Tarkowska, D., Sakuraba, Y., Balazadeh, S., 2016. Arabidopsis NAC transcription factor JUB 1 regulates GA / BR metabolism and signalling. Nat. Plant. 2, 16013. https: // doi. org / 10.1038 / nplants. 2016.13." type="journal article" year="2016">Shahnejat-Bushehri et al., 2016</bibRefCitation>
|
|
)
|
|
</taxonomicName>
|
|
. In Foxtail millet (Setaria italica L.), SiNAC1 positively regulates leaf senescence and is involved in a positive feedback loop via ABA biosynthesis (
|
|
<bibRefCitation id="EFC14B35FFFDFFF5ADAFFB7BFEDCFB38" author="Ren, T. & Wang, J. & Zhao, M. & Gong, X. & Wang, S. & Wang, G. & Zhou, C." box="[230,381,1237,1257]" pageId="4" pageNumber="5" pagination="53 - 68" refId="ref9677" refString="Ren, T., Wang, J., Zhao, M., Gong, X., Wang, S., Wang, G., Zhou, C., 2018. Involvement of NAC transcription factor SiNAC 1 in a positive feedback loop via ABA biosynthesis and leaf senescence in foxtail millet. Planta 247 (1), 53 - 68. https: // doi. org / 10.1007 / s 00425 - 017 - 2770 - 0." type="journal article" year="2018">Ren et al., 2018</bibRefCitation>
|
|
); In
|
|
<taxonomicName id="4C504D47FFFDFFF5ACE2FB78FDBDFB39" authority=", OsNAC" authorityName="OsNAC" box="[427,540,1237,1256]" class="Liliopsida" family="Poaceae" genus="Oryza" kingdom="Plantae" order="Poales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="sativa">
|
|
<emphasis id="B924EAD6FFFDFFF5ACE2FB78FDBDFB39" bold="true" box="[427,540,1237,1256]" italics="true" pageId="4" pageNumber="5">Oryza sativa</emphasis>
|
|
</taxonomicName>
|
|
, OsNAC2 affects the expressions levels of auxin- and cytokinin-responsive genes to regulate root development (
|
|
<bibRefCitation id="EFC14B35FFFDFFF5AC52FAA3FE18FAF1" author="Mao, C. & He, J. & Liu, L. & Deng, Q. & Yao, X. & Liu, C. & Qiao, Y. & Li, P. & Ming, F." box="[283,441,1293,1313]" pageId="4" pageNumber="5" pagination="429 - 442" refId="ref8953" refString="Mao, C., He, J., Liu, L., Deng, Q., Yao, X., Liu, C., Qiao, Y., Li, P., Ming, F., 2020. OsNAC 2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotechnol. J. 18 (2), 429 - 442. https: // doi. org / 10.1111 / pbi. 13209." type="journal article" year="2020">Mao et al., 2020</bibRefCitation>
|
|
). The
|
|
<taxonomicName id="4C504D47FFFDFFF5ACB0FAA0FDFFFAF1" authority="NAC" authorityName="NAC" box="[505,606,1293,1312]" class="Magnoliopsida" family="Brassicaceae" genus="Arabidopsis" kingdom="Plantae" order="Brassicales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="thaliana">
|
|
<emphasis id="B924EAD6FFFDFFF5ACB0FAA0FDFFFAF1" bold="true" box="[505,606,1293,1312]" italics="true" pageId="4" pageNumber="5">A. thaliana</emphasis>
|
|
</taxonomicName>
|
|
NAC family proteins ANAC019 and ANAC055, as the transcription activators, regulate JA-induced expression of defense genes (
|
|
<bibRefCitation id="EFC14B35FFFDFFF5ACA9FAE8FDC6FA89" author="Bu, Q. & Jiang, H. & Li, C. B. & Zhai, Q. & Zhang, J. & Wu, X. & Sun, J. & Xie, Q. & Li, C." box="[480,615,1349,1368]" pageId="4" pageNumber="5" pagination="756 - 767" refId="ref6889" refString="Bu, Q., Jiang, H., Li, C. B., Zhai, Q., Zhang, J., Wu, X., Sun, J., Xie, Q., Li, C., 2008. Role of the Arabidopsis thaliana NAC transcription factors ANAC 019 and ANAC 055 in regulating jasmonic acid-signaled defense responses. Cell Res. 18 (7), 756 - 767. https: // doi. org / 10.1038 / cr. 2008.53." type="journal article" year="2008">Bu et al., 2008</bibRefCitation>
|
|
). In this study, a transcriptome data analysis revealed that 8 Sm
|
|
<emphasis id="B924EAD6FFFDFFF5AF52FACCFDECFAA5" bold="true" box="[539,589,1377,1396]" italics="true" pageId="4" pageNumber="5">
|
|
-
|
|
<collectionCode id="ED41AE01FFFDFFF5AF68FACCFDECFAA5" box="[545,589,1377,1396]" country="Japan" httpUri="http://biocol.org/urn:lsid:biocol.org:col:13686" lsid="urn:lsid:biocol.org:col:13686" name="Nagano Environmental Conservation Research Institute" pageId="4" pageNumber="5" type="Herbarium">NAC</collectionCode>
|
|
</emphasis>
|
|
s were significantly upregulated in response to MeJA signal. One of them, Sm
|
|
<emphasis id="B924EAD6FFFDFFF5AFDBFAD0FD71FA41" bold="true" box="[658,720,1405,1424]" italics="true" pageId="4" pageNumber="5">
|
|
-
|
|
<collectionCode id="ED41AE01FFFDFFF5AFD1FAD0FD64FA41" box="[664,709,1405,1424]" country="Japan" httpUri="http://biocol.org/urn:lsid:biocol.org:col:13686" lsid="urn:lsid:biocol.org:col:13686" name="Nagano Environmental Conservation Research Institute" pageId="4" pageNumber="5" type="Herbarium">NAC</collectionCode>
|
|
2
|
|
</emphasis>
|
|
, was selected for further studies on gene function. Sm
|
|
<emphasis id="B924EAD6FFFDFFF5AF78FA34FDCFFA7D" bold="true" box="[561,622,1433,1452]" italics="true" pageId="4" pageNumber="5">
|
|
-
|
|
<collectionCode id="ED41AE01FFFDFFF5AF7EFA34FDC5FA7D" box="[567,612,1433,1452]" country="Japan" httpUri="http://biocol.org/urn:lsid:biocol.org:col:13686" lsid="urn:lsid:biocol.org:col:13686" name="Nagano Environmental Conservation Research Institute" pageId="4" pageNumber="5" type="Herbarium">NAC</collectionCode>
|
|
2
|
|
</emphasis>
|
|
-overexpression lines inhibited tanshinone biosynthesis, whereas RNAi transgenic hairy-root lines promoted significantly tanshinone biosynthesis. NACs regulate the secondary metabolism of other plants. For example, MdNAC52 regulates anthocyanin and proanthocyanidin biosynthesis (
|
|
<bibRefCitation id="EFC14B35FFFDFFF5AD25F989FEBAF9E6" author="Sun, Q. & Jiang, S. & Zhang, T. & Xu, H. & Fang, H. & Zhang, J. & Su, M. & Wang, Y. & Zhang, Z. & Wang, N. & Chen, X." box="[108,283,1572,1592]" pageId="4" pageNumber="5" pagination="110286" refId="ref10510" refString="Sun, Q., Jiang, S., Zhang, T., Xu, H., Fang, H., Zhang, J., Su, M., Wang, Y., Zhang, Z., Wang, N., Chen, X., 2019 b. Apple NAC transcription factor MdNAC 52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB 9 and MdMYB 11. Plant Sci.: Int. J. Exp. Plant Biol. 289, 110286. https: // doi. org / 10.1016 / j. plantsci. 2019.110286." type="journal article" year="2019">Sun et al., 2019b</bibRefCitation>
|
|
). The OsSWNs and ZmSWNs NACs, regulate the ectopic depositions of cellulose, xylan, and lignin (
|
|
<bibRefCitation id="EFC14B35FFFDFFF5AF0FF9EDFD55F982" author="Zhong, R. & Lee, C. & McCarthy, R. L. & Reeves, C. K. & Jones, E. G. & Ye, Z. H." box="[582,756,1600,1619]" pageId="4" pageNumber="5" pagination="1856 - 1871" refId="ref11324" refString="Zhong, R., Lee, C., McCarthy, R. L., Reeves, C. K., Jones, E. G., Ye, Z. H., 2011. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors. Plant Cell Physiol. 52 (10), 1856 - 1871. https: // doi. org / 10.1093 / pcp / pcr 123." type="journal article" year="2011">Zhong et al., 2011</bibRefCitation>
|
|
). The ANAC078 protein is involved in flavonoid biosynthesis, and its expression leads to anthocyanin accumulation (
|
|
<bibRefCitation id="EFC14B35FFFDFFF5AF6EF9D5FD55F95A" author="Morishita, T. & Kojima, Y. & Maruta, T. & Nishizawa-Yokoi, A. & Yabuta, Y. & Shigeoka, S." box="[551,756,1656,1675]" pageId="4" pageNumber="5" pagination="2210 - 2222" refId="ref9040" refString="Morishita, T., Kojima, Y., Maruta, T., Nishizawa-Yokoi, A., Yabuta, Y., Shigeoka, S., 2009. Arabidopsis NAC transcription factor, ANAC 078, regulates flavonoid biosynthesis under high-light. Plant Cell Physiol. 50 (12), 2210 - 2222. https: // doi. org / 10.1093 / pcp / pcp 159." type="journal article" year="2009">Morishita et al., 2009</bibRefCitation>
|
|
). BoNAC019 negatively regulates anthocyanin biosynthesis in
|
|
<taxonomicName id="4C504D47FFFDFFF5AFD2F93EFE8BF912" authority="(Wang et al., 2018 a)" baseAuthorityName="Wang" baseAuthorityYear="2018" class="Magnoliopsida" family="Brassicaceae" genus="Arabidopsis" kingdom="Plantae" order="Brassicales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="genus">
|
|
<emphasis id="B924EAD6FFFDFFF5AFD2F93EFCA3F977" bold="true" box="[667,770,1683,1702]" italics="true" pageId="4" pageNumber="5">Arabidopsis</emphasis>
|
|
(
|
|
<bibRefCitation id="EFC14B35FFFDFFF5AD25F91DFE81F912" author="Wang, J. & Lian, W. & Cao, Y. & Wang, X. & Wang, G. & Qi, C. & Liu, L. & Qin, S. & Yuan, X. & Li, X. & Ren, S. & Guo, Y. - D." box="[108,288,1712,1731]" pageId="4" pageNumber="5" refId="ref10619" refString="Wang, J., Lian, W., Cao, Y., Wang, X., Wang, G., Qi, C., Liu, L., Qin, S., Yuan, X., Li, X., Ren, S., Guo, Y. - D., 2018 a. Overexpression of BoNAC 019, a NAC transcription factor from Brassica oleracea, negatively regulates the dehydration response and anthocyanin biosynthesis in Arabidopsis. Sci. Rep. 8 (1) https: // doi. org / 10.1038 / s 41598 - 018 - 31690 - 1, 13349 - 13349." type="journal volume" year="2018">Wang et al., 2018a</bibRefCitation>
|
|
)
|
|
</taxonomicName>
|
|
. Thus,
|
|
<collectionCode id="ED41AE01FFFDFFF5AC26F91DFE3BF912" box="[367,410,1712,1731]" country="Japan" httpUri="http://biocol.org/urn:lsid:biocol.org:col:13686" lsid="urn:lsid:biocol.org:col:13686" name="Nagano Environmental Conservation Research Institute" pageId="4" pageNumber="5" type="Herbarium">NAC</collectionCode>
|
|
genes play very important regulatory roles in plant secondary metabolic biosynthesis.
|
|
</paragraph>
|
|
<paragraph id="8BEF36C4FFFDFFF5AD2DF8B2FF6CF89F" blockId="4.[100,742,1823,1870]" pageId="4" pageNumber="5">
|
|
<heading id="D0A781A8FFFDFFF5AD2DF8B2FF6CF89F" bold="true" fontSize="36" level="1" pageId="4" pageNumber="5" reason="1">
|
|
<emphasis id="B924EAD6FFFDFFF5AD2DF8B2FF6CF89F" bold="true" italics="true" pageId="4" pageNumber="5">3.2. Possible Sm-NAC2-associated regulatory mechanism of tanshinone biosynthesis</emphasis>
|
|
</heading>
|
|
</paragraph>
|
|
<paragraph id="8BEF36C4FFFDFFF5ADCDF8DEFAADFA32" blockId="4.[100,770,1906,1982]" lastBlockId="4.[818,1488,930,1508]" pageId="4" pageNumber="5">
|
|
<taxonomicName id="4C504D47FFFDFFF5ADCDF8DEFEA2F854" box="[132,259,1906,1926]" class="Magnoliopsida" family="Lamiaceae" genus="Salvia" kingdom="Plantae" order="Lamiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="miltiorrhiza">
|
|
<emphasis id="B924EAD6FFFDFFF5ADCDF8DEFEA2F854" bold="true" box="[132,259,1906,1926]" italics="true" pageId="4" pageNumber="5">S. miltiorrhiza</emphasis>
|
|
</taxonomicName>
|
|
is an important bulk medicinal material. Tanshinones and salvianolic acids, as the main secondary metabolites, are the main active ingredients in
|
|
<taxonomicName id="4C504D47FFFDFFF5AC71F806FE1DF86C" box="[312,444,1962,1982]" class="Magnoliopsida" family="Lamiaceae" genus="Salvia" kingdom="Plantae" order="Lamiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="miltiorrhiza">
|
|
<emphasis id="B924EAD6FFFDFFF5AC71F806FE1DF86C" bold="true" box="[312,444,1962,1982]" italics="true" pageId="4" pageNumber="5">S. miltiorrhiza</emphasis>
|
|
</taxonomicName>
|
|
and play important roles in the treatment of cardiovascular and cerebrovascular diseases. Sm-
|
|
<emphasis id="B924EAD6FFFDFFF5A8D0FC0FFA6EFC64" bold="true" box="[1433,1487,930,949]" italics="true" pageId="4" pageNumber="5">
|
|
<collectionCode id="ED41AE01FFFDFFF5A8D0FC0FFA66FC64" box="[1433,1479,930,949]" country="Japan" httpUri="http://biocol.org/urn:lsid:biocol.org:col:13686" lsid="urn:lsid:biocol.org:col:13686" name="Nagano Environmental Conservation Research Institute" pageId="4" pageNumber="5" type="Herbarium">NAC</collectionCode>
|
|
1
|
|
</emphasis>
|
|
plays a crucial role in UV-B irradiation-induced SalA biosynthesis (
|
|
<bibRefCitation id="EFC14B35FFFDFFF5A8E2FC13FC07FC3C" author="Zhu, B. & Huo, D. - A. & Hong, X. - X. & Guo, J. & Peng, T. & Liu, J. & Huang, X. - L. & Yan, H. - Q. & Weng, Q. - B. & Zhang, X. - C. & Du, X. - Y." pageId="4" pageNumber="5" pagination="54 - 61" refId="ref11505" refString="Zhu, B., Huo, D. - A., Hong, X. - X., Guo, J., Peng, T., Liu, J., Huang, X. - L., Yan, H. - Q., Weng, Q. - B., Zhang, X. - C., Du, X. - Y., 2019 a. The Salvia miltiorrhiza NAC transcription factor SmNAC 1 enhances zinc content in transgenic Arabidopsis. Gene 688, 54 - 61. https: // doi. org / 10.1016 / j. gene. 2018.11.076." type="journal article" year="2019">Zhu et al., 2019a</bibRefCitation>
|
|
). A total of 84
|
|
<collectionCode id="ED41AE01FFFDFFF5A97CFC77FBC1FC3C" box="[1077,1120,986,1005]" country="Japan" httpUri="http://biocol.org/urn:lsid:biocol.org:col:13686" lsid="urn:lsid:biocol.org:col:13686" name="Nagano Environmental Conservation Research Institute" pageId="4" pageNumber="5" type="Herbarium">NAC</collectionCode>
|
|
transcription factors were identified in the
|
|
<taxonomicName id="4C504D47FFFDFFF5AE12FC5BFC7EFBD8" box="[859,991,1014,1033]" class="Magnoliopsida" family="Lamiaceae" genus="Salvia" kingdom="Plantae" order="Lamiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="miltiorrhiza">
|
|
<emphasis id="B924EAD6FFFDFFF5AE12FC5BFC7EFBD8" bold="true" box="[859,991,1014,1033]" italics="true" pageId="4" pageNumber="5">S. miltiorrhiza</emphasis>
|
|
</taxonomicName>
|
|
genome, but the functions of these NACs in the regulation of secondary metabolites has not been widely studied in
|
|
<taxonomicName id="4C504D47FFFDFFF5AE7BFB83FC13FB90" box="[818,946,1070,1089]" class="Magnoliopsida" family="Lamiaceae" genus="Salvia" kingdom="Plantae" order="Lamiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="miltiorrhiza">
|
|
<emphasis id="B924EAD6FFFDFFF5AE7BFB83FC13FB90" bold="true" box="[818,946,1070,1089]" italics="true" pageId="4" pageNumber="5">S. miltiorrhiza</emphasis>
|
|
</taxonomicName>
|
|
. Here, we found that Sm
|
|
<emphasis id="B924EAD6FFFDFFF5A9E8FB83FB7FFB90" bold="true" box="[1185,1246,1070,1089]" italics="true" pageId="4" pageNumber="5">
|
|
-
|
|
<collectionCode id="ED41AE01FFFDFFF5A9EEFB83FB75FB90" box="[1191,1236,1070,1089]" country="Japan" httpUri="http://biocol.org/urn:lsid:biocol.org:col:13686" lsid="urn:lsid:biocol.org:col:13686" name="Nagano Environmental Conservation Research Institute" pageId="4" pageNumber="5" type="Herbarium">NAC</collectionCode>
|
|
2
|
|
</emphasis>
|
|
is a novel negative regulator of tanshinone biosynthesis in
|
|
<taxonomicName id="4C504D47FFFDFFF5A9C8FBE7FAA3FB8C" box="[1153,1282,1098,1117]" class="Magnoliopsida" family="Lamiaceae" genus="Salvia" kingdom="Plantae" order="Lamiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="miltiorrhiza">
|
|
<emphasis id="B924EAD6FFFDFFF5A9C8FBE7FAA3FB8C" bold="true" box="[1153,1282,1098,1117]" italics="true" pageId="4" pageNumber="5">S. miltiorrhiza</emphasis>
|
|
</taxonomicName>
|
|
. As transcription factors, NACs regulate tanshinone biosynthesis either by regulating other transcription factors or by regulating structural genes. NACs act upstream of MYB. In apple, MdNAC52 binds to the MdMYB9 and MdMYB11 promoters increase anthocyanin and proanthocyanidin biosynthesis (
|
|
<bibRefCitation id="EFC14B35FFFDFFF5AEFAFB7BFBF5FB39" author="Sun, Q. & Jiang, S. & Zhang, T. & Xu, H. & Fang, H. & Zhang, J. & Su, M. & Wang, Y. & Zhang, Z. & Wang, N. & Chen, X." box="[947,1108,1237,1257]" pageId="4" pageNumber="5" pagination="110286" refId="ref10510" refString="Sun, Q., Jiang, S., Zhang, T., Xu, H., Fang, H., Zhang, J., Su, M., Wang, Y., Zhang, Z., Wang, N., Chen, X., 2019 b. Apple NAC transcription factor MdNAC 52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB 9 and MdMYB 11. Plant Sci.: Int. J. Exp. Plant Biol. 289, 110286. https: // doi. org / 10.1016 / j. plantsci. 2019.110286." type="journal article" year="2019">Sun et al., 2019b</bibRefCitation>
|
|
). The OsSWN and ZmSWN NACs in rice and maize, respectively, bind the OsMYB46 and ZmMYB46 promoters, respectively, and activate target genes to regulate the ectopic deposition of cellulose, xylan, and lignin (
|
|
<bibRefCitation id="EFC14B35FFFDFFF5A913FA84FAABFAED" author="Zhong, R. & Lee, C. & McCarthy, R. L. & Reeves, C. K. & Jones, E. G. & Ye, Z. H." box="[1114,1290,1321,1341]" pageId="4" pageNumber="5" pagination="1856 - 1871" refId="ref11324" refString="Zhong, R., Lee, C., McCarthy, R. L., Reeves, C. K., Jones, E. G., Ye, Z. H., 2011. Transcriptional activation of secondary wall biosynthesis by rice and maize NAC and MYB transcription factors. Plant Cell Physiol. 52 (10), 1856 - 1871. https: // doi. org / 10.1093 / pcp / pcr 123." type="journal article" year="2011">Zhong et al., 2011</bibRefCitation>
|
|
).
|
|
<collectionCode id="ED41AE01FFFDFFF5A856FA84FAEDFAED" box="[1311,1356,1321,1340]" country="Japan" httpUri="http://biocol.org/urn:lsid:biocol.org:col:13686" lsid="urn:lsid:biocol.org:col:13686" name="Nagano Environmental Conservation Research Institute" pageId="4" pageNumber="5" type="Herbarium">NAC</collectionCode>
|
|
2 binds to the CATGTG and CATGTC motifs present in the promoters of theMYB2, Sm-MYB98, MYB11, MYB9, and MYB9b transcription factors, which participate in tanshinone biosynthesis. In this study, we functionally determined that
|
|
<collectionCode id="ED41AE01FFFDFFF5AE87FA34FC5AFA7D" box="[974,1019,1433,1452]" country="Japan" httpUri="http://biocol.org/urn:lsid:biocol.org:col:13686" lsid="urn:lsid:biocol.org:col:13686" name="Nagano Environmental Conservation Research Institute" pageId="4" pageNumber="5" type="Herbarium">NAC</collectionCode>
|
|
2 was a negative regulatory transcription factor of tanshinones. Whether Sm-NAC2-binding sites exist on Sm-MYB promoters require further experimental investigation.
|
|
</paragraph>
|
|
</subSubSection>
|
|
</treatment>
|
|
</document> |