treatments-xml/data/03/F4/19/03F41955FFBDF74FFCD0F987FC5EFC51.xml
2024-06-21 12:22:17 +02:00

806 lines
96 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="28C9EF12F8F9394AF31F8358454E12FF" ID-DOI="10.1016/j.phytochem.2014.08.014" ID-ISSN="1873-3700" ID-Zenodo-Dep="10491218" IM.bibliography_approvedBy="felipe" IM.illustrations_approvedBy="carolina" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.tables_approvedBy="carolina" IM.taxonomicNames_approvedBy="carolina" IM.treatments_approvedBy="carolina" checkinTime="1704965072773" checkinUser="felipe" docAuthor="Rodríguez-Rodríguez, Manuel Fernando, Salas, Joaquín J., Garcés, Rafael &amp; Martínez-Force, Enrique" docDate="2014" docId="03F41955FFBDF74FFCD0F987FC5EFC51" docLanguage="en" docName="Phytochemistry.107.7-15.pdf" docOrigin="Phytochemistry 107" docSource="http://dx.doi.org/10.1016/j.phytochem.2014.08.014" docStyle="DocumentStyle:9E596C34F4E94307D29315B03ACE1007.6:Phytochemistry.2014-2019.journal_article" docStyleId="9E596C34F4E94307D29315B03ACE1007" docStyleName="Phytochemistry.2014-2019.journal_article" docStyleVersion="6" docTitle="Camelina sativa Crantz" docType="treatment" docVersion="5" lastPageNumber="12" masterDocId="FFCD612DFFBCF74AFFF5FFAFFFCAFFC7" masterDocTitle="Acyl-ACP thioesterases from Camelina sativa: Cloning, enzymatic characterization and implication in seed oil fatty acid composition" masterLastPageNumber="15" masterPageNumber="7" pageNumber="8" updateTime="1706195737941" updateUser="ExternalLinkService">
<mods:mods id="6B4A1B00C161906D16871BBF01DE9196" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="88D442C7A6665A81C5193757067F8337">
<mods:title id="F314D82ECA9C8574C280FF196A2E9057">Acyl-ACP thioesterases from Camelina sativa: Cloning, enzymatic characterization and implication in seed oil fatty acid composition</mods:title>
</mods:titleInfo>
<mods:name id="ADFF88A95735438EDCC012F2CBFB51B0" type="personal">
<mods:role id="EF94C81B23478A02A9F6C8082C06BE0C">
<mods:roleTerm id="391A327C7A1E844A36F53836A44D3866">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="4DC9F0CA25B657AE35CA6BC016859772">Rodríguez-Rodríguez, Manuel Fernando</mods:namePart>
</mods:name>
<mods:name id="52CAB0F1A4BAC7C867403D868A90C8F2" type="personal">
<mods:role id="15054B913DB3E9EE6EF0994A273BE466">
<mods:roleTerm id="E934E5CD73451AC5FD735AC7655A9A00">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="DB1738953795D67240BC63AA5B7EEBE5">Salas, Joaquín J.</mods:namePart>
</mods:name>
<mods:name id="E8E4AA031F49E928D6CB75BBC6BD0922" type="personal">
<mods:role id="D83510C6BEB5AB0B131FFDB5C363F2E9">
<mods:roleTerm id="CA074CC04E239F9A43A2429CFE754DF2">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="13B45B3CAC4FDE2EC5FE5CA0875F6315">Garcés, Rafael</mods:namePart>
</mods:name>
<mods:name id="0AD5306DD8791E2D2A94EDD64F3BDB86" type="personal">
<mods:role id="627D6B1A07C01F075679D640D1873633">
<mods:roleTerm id="7050EAA68B87691D9236040C58364D3E">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="30486AD9D92E1221B7410FFACB76838D">Martínez-Force, Enrique</mods:namePart>
</mods:name>
<mods:typeOfResource id="26408C1E255A449E3A4A8D4103945BE3">text</mods:typeOfResource>
<mods:relatedItem id="4C971A0E2F8FC7A1A4F1D37321D84C11" type="host">
<mods:titleInfo id="1772F5840CE8A8C62D76903B8B469817">
<mods:title id="347EC29EFB1778187F6A9DE5BE97E253">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="173C5E4D87123A857487731964E0E71D">
<mods:date id="92262A6D9D0854E2712EFF34AAAE8B5A">2014</mods:date>
<mods:detail id="B548727F698636B0542DEE20259DFEF6" type="pubDate">
<mods:number id="EB17867D4DEA79246DCA1DAE48A03547">2014-11-30</mods:number>
</mods:detail>
<mods:detail id="D49EAC668C867C29BE4485B5AF895ECD" type="volume">
<mods:number id="B64BB47CBB1E4854D037F38A588E60CC">107</mods:number>
</mods:detail>
<mods:extent id="5EF9CF457C92A20EDF9CC09438C980BA" unit="page">
<mods:start id="52FC3FD47CE3C75AA24D1B0E76FA9A7A">7</mods:start>
<mods:end id="AD53A7F32CF84708F3498F32FE0F41DB">15</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="993BF71E45B1BD41D62A3E70072720E1">
<mods:url id="7EC87875AC4706A6C471995BB12ABDBD">http://dx.doi.org/10.1016/j.phytochem.2014.08.014</mods:url>
</mods:location>
<mods:classification id="FD4E1717EC00A885FAAD8070BA1D9487">journal article</mods:classification>
<mods:identifier id="96ABB3841BA8C1D187A366FBF4C41A1B" type="DOI">10.1016/j.phytochem.2014.08.014</mods:identifier>
<mods:identifier id="7ECA5000AF71D5E833EA72982356CEAE" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="5AE9ED0C6A14274EF4B299297638FFF2" type="Zenodo-Dep">10491218</mods:identifier>
</mods:mods>
<treatment id="03F41955FFBDF74FFCD0F987FC5EFC51" ID-DOI="http://doi.org/10.5281/zenodo.10568842" ID-Zenodo-Dep="10568842" LSID="urn:lsid:plazi:treatment:03F41955FFBDF74FFCD0F987FC5EFC51" httpUri="http://treatment.plazi.org/id/03F41955FFBDF74FFCD0F987FC5EFC51" lastPageId="5" lastPageNumber="12" pageId="1" pageNumber="8">
<subSubSection id="C347FBC8FFBDF74BFCD0F987FA6FF9FB" box="[805,1445,1576,1596]" pageId="1" pageNumber="8" type="nomenclature">
<paragraph id="8BE2A843FFBDF74BFCD0F987FA6FF9FB" blockId="1.[805,1445,1576,1596]" box="[805,1445,1576,1596]" pageId="1" pageNumber="8">
<heading id="D0AA1F2FFFBDF74BFCD0F987FA6FF9FB" box="[805,1445,1576,1596]" fontSize="36" level="2" pageId="1" pageNumber="8" reason="3">
<emphasis id="B9297451FFBDF74BFCD0F987FA6FF9FB" box="[805,1445,1576,1596]" italics="true" pageId="1" pageNumber="8">
2.2. Genomic organization of
<taxonomicName id="4C5DD3C0FFBDF74BFBB4F987FB59F9FB" ID-CoL="Q9DM" authorityName="Crantz" baseAuthorityName="(L.)" box="[1089,1171,1576,1596]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="1" pageNumber="8" phylum="Tracheophyta" rank="species" species="sativa">C. sativa</taxonomicName>
acyl-ACP thioesterase genes
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="C347FBC8FFBDF74FFCB1F9CEFE95F938" lastPageId="5" lastPageNumber="12" pageId="1" pageNumber="8" type="description">
<paragraph id="8BE2A843FFBDF748FCB1F9CEFD65F9C3" blockId="1.[805,1475,1632,2015]" lastBlockId="2.[113,784,1353,2015]" lastPageId="2" lastPageNumber="9" pageId="1" pageNumber="8">
To analyze the genomic organization of the
<emphasis id="B9297451FFBDF74BFAF9F9CFFA87F9B3" box="[1292,1357,1632,1652]" italics="true" pageId="1" pageNumber="8">CsFatA</emphasis>
and
<emphasis id="B9297451FFBDF74BFA77F9CFFA08F9B3" box="[1410,1474,1632,1652]" italics="true" pageId="1" pageNumber="8">CsFatB</emphasis>
genes, two genomic DNA fragments at the locus were amplified using two different primer pairs. Clones of 1214 and 1427 nucleotides were obtained and sequenced for
<emphasis id="B9297451FFBDF74BFB4DF91CFB33F900" box="[1208,1273,1715,1735]" italics="true" pageId="1" pageNumber="8">CsFatA</emphasis>
and
<emphasis id="B9297451FFBDF74BFAD9F91CFAA6F900" box="[1324,1388,1715,1735]" italics="true" pageId="1" pageNumber="8">CsFatB</emphasis>
, respectively. The intron and exon organization of the three
<emphasis id="B9297451FFBDF74BFAA6F960FA5EF924" box="[1363,1428,1743,1763]" italics="true" pageId="1" pageNumber="8">CsFatA</emphasis>
and
<emphasis id="B9297451FFBDF74BFCD0F944FCAFF938" box="[805,869,1771,1791]" italics="true" pageId="1" pageNumber="8">CsFatB</emphasis>
alleles were found by comparing their cDNA and genomic DNA sequences (Supplementary data,
<tableCitation id="C6DF9DF8FFBDF74BFB5EF8A7FB3DF8DC" box="[1195,1271,1800,1819]" captionStart="Table 2" captionStartId="5.[87,131,183,197]" captionTargetPageId="5" captionText="Table 2 Kinetic parameters of the purified recombinant CsFatA and CsFatB proteins acting on different acyl-ACP substrate." httpUri="http://table.plazi.org/id/DF22F8CBFFB9F74FFFA2FF18FC28FF1B" pageId="1" pageNumber="8" tableUuid="DF22F8CBFFB9F74FFFA2FF18FC28FF1B">Table 2</tableCitation>
). The
<emphasis id="B9297451FFBDF74BFACDF8A8FA4EF8DC" box="[1336,1412,1799,1819]" italics="true" pageId="1" pageNumber="8">CsFatA1</emphasis>
allele was 1743 bp long, the
<emphasis id="B9297451FFBDF74BFBFEF88CFB92F8F0" box="[1035,1112,1827,1847]" italics="true" pageId="1" pageNumber="8">CsFatA2</emphasis>
allele was 1745 bp and the
<emphasis id="B9297451FFBDF74BFA83F88CFA08F8F0" box="[1398,1474,1827,1847]" italics="true" pageId="1" pageNumber="8">CsFatA3</emphasis>
allele was 1773 bp. All
<emphasis id="B9297451FFBDF74BFBF9F890FB87F894" box="[1036,1101,1855,1875]" italics="true" pageId="1" pageNumber="8">CsFatA</emphasis>
alleles had six introns and thus, they each contained seven exons, which were of similar length (Supplementary data,
<tableCitation id="C6DF9DF8FFBDF74BFC42F8D7FBCAF84C" box="[951,1024,1912,1931]" captionStart="Table 2" captionStartId="5.[87,131,183,197]" captionTargetPageId="5" captionText="Table 2 Kinetic parameters of the purified recombinant CsFatA and CsFatB proteins acting on different acyl-ACP substrate." httpUri="http://table.plazi.org/id/DF22F8CBFFB9F74FFFA2FF18FC28FF1B" pageId="1" pageNumber="8" tableUuid="DF22F8CBFFB9F74FFFA2FF18FC28FF1B">Table 2</tableCitation>
). Intron 3 of the
<emphasis id="B9297451FFBDF74BFB59F8D8FB33F84C" box="[1196,1273,1911,1931]" italics="true" pageId="1" pageNumber="8">CsFatA3</emphasis>
allele differed most in length as it contained an insertion of 32 nucleotides at the beginning of the sequence (169 bp in i3CsFatA1; 171 bp in i3CsFat-A2; and 200 bp in i3CsFatA3: Supplementary data,
<tableCitation id="C6DF9DF8FFBDF74BFACEF864FA4DF818" box="[1339,1415,1995,2015]" captionStart="Table 2" captionStartId="5.[87,131,183,197]" captionTargetPageId="5" captionText="Table 2 Kinetic parameters of the purified recombinant CsFatA and CsFatB proteins acting on different acyl-ACP substrate." httpUri="http://table.plazi.org/id/DF22F8CBFFB9F74FFFA2FF18FC28FF1B" pageId="1" pageNumber="8" tableUuid="DF22F8CBFFB9F74FFFA2FF18FC28FF1B">Table 2</tableCitation>
). The
<emphasis id="B9297451FFBEF748FF84FAE6FF77FA9A" box="[113,189,1353,1373]" italics="true" pageId="2" pageNumber="9">CsFatB1</emphasis>
allele was 1790 bp long, the
<emphasis id="B9297451FFBEF748FE2AFAE6FDE1FA9A" box="[479,555,1353,1373]" italics="true" pageId="2" pageNumber="9">CsFatB2</emphasis>
allele 1872 bp and the
<emphasis id="B9297451FFBEF748FF84FACAFF74FABE" box="[113,190,1381,1401]" italics="true" pageId="2" pageNumber="9">CsFatB3</emphasis>
allele 1870 bp. All have four introns and five exons with a high degree of identity and homology between them, except for introns 2 and 3 that display significant differences in both sequence and length (221 bp for i2CsFatB1; 305 bp for i2CsFatB2; 314 bp for i2CsFatB3; 139 bp for i3CsFatB1; 141 bp for i3CsFatB2; and 131 bp for i3CsFatB3: Supplementary data,
<tableCitation id="C6DF9DF8FFBEF748FDA2FA5EFD6BF9C3" box="[599,673,1521,1540]" captionStart="Table 2" captionStartId="5.[87,131,183,197]" captionTargetPageId="5" captionText="Table 2 Kinetic parameters of the purified recombinant CsFatA and CsFatB proteins acting on different acyl-ACP substrate." httpUri="http://table.plazi.org/id/DF22F8CBFFB9F74FFFA2FF18FC28FF1B" pageId="2" pageNumber="9" tableUuid="DF22F8CBFFB9F74FFFA2FF18FC28FF1B">Table 2</tableCitation>
).
</paragraph>
<caption id="DF22F8CBFFBEF748FF84FB3DFBEAFAD5" ID-DOI="http://doi.org/10.5281/zenodo.10491220" ID-Zenodo-Dep="10491220" httpUri="https://zenodo.org/record/10491220/files/figure.png" pageId="2" pageNumber="9" startId="2.[113,139,1170,1184]" targetBox="[198,1409,182,1140]" targetPageId="2" targetType="figure">
<paragraph id="8BE2A843FFBEF748FF84FB3DFBEAFAD5" blockId="2.[113,1501,1168,1299]" pageId="2" pageNumber="9">
<emphasis id="B9297451FFBEF748FF84FB3DFF62FB67" bold="true" box="[113,168,1170,1184]" pageId="2" pageNumber="9">Fig. 1.</emphasis>
Alignment of the deduced amino acid sequences of acyl-ACP thioesterase A enzymes from
<taxonomicName id="4C5DD3C0FFBEF748FC33FB3FFBC6FB67" box="[966,1036,1168,1184]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="2" pageNumber="9" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFBEF748FC33FB3FFBC6FB67" box="[966,1036,1168,1184]" italics="true" pageId="2" pageNumber="9">C. sativa</emphasis>
</taxonomicName>
(
<emphasis id="B9297451FFBEF748FBE9FB3FFBE7FB67" box="[1052,1069,1168,1184]" italics="true" pageId="2" pageNumber="9">Cs</emphasis>
FatA1, AFQ60947.1;
<emphasis id="B9297451FFBEF748FB2FFB3FFB21FB67" box="[1242,1259,1168,1184]" italics="true" pageId="2" pageNumber="9">Cs</emphasis>
FatA2, AFQ60948.1;
<emphasis id="B9297451FFBEF748FA6CFB3FFA60FB67" box="[1433,1450,1168,1184]" italics="true" pageId="2" pageNumber="9">Cs</emphasis>
FatA3, AFQ60946.1),
<taxonomicName id="4C5DD3C0FFBEF748FF16FB07FE4BFB70" box="[227,385,1192,1207]" class="Magnoliopsida" family="Brassicaceae" genus="Arabidopsis" kingdom="Plantae" order="Brassicales" pageId="2" pageNumber="9" phylum="Tracheophyta" rank="species" species="thaliana">
<emphasis id="B9297451FFBEF748FF16FB07FE4BFB70" box="[227,385,1192,1207]" italics="true" pageId="2" pageNumber="9">Arabidopsis thaliana</emphasis>
</taxonomicName>
(
<emphasis id="B9297451FFBEF748FE78FB07FE54FB70" box="[397,414,1192,1207]" italics="true" pageId="2" pageNumber="9">At</emphasis>
FatA1, NP_189147.1;
<emphasis id="B9297451FFBEF748FDB9FB07FD97FB70" box="[588,605,1192,1207]" italics="true" pageId="2" pageNumber="9">At</emphasis>
FatA2, NP_193041.1) and
<taxonomicName id="4C5DD3C0FFBEF748FCDAFB07FCB3FB70" box="[815,889,1192,1207]" class="Liliopsida" family="Poaceae" genus="Zea" kingdom="Plantae" order="Poales" pageId="2" pageNumber="9" phylum="Tracheophyta" rank="species" species="mays">
<emphasis id="B9297451FFBEF748FCDAFB07FCB3FB70" box="[815,889,1192,1207]" italics="true" pageId="2" pageNumber="9">Zea mays</emphasis>
</taxonomicName>
(
<emphasis id="B9297451FFBEF748FC71FB07FC56FB70" box="[900,924,1192,1207]" italics="true" pageId="2" pageNumber="9">Zm</emphasis>
FatA, DAA40472.1). Identical amino acids are shaded in black, whereas conserved residues are shaded in grey. The amino acids considered to constitute the signal peptide are boxed. The three conserved residues that constitute the catalytic triad are indicated with an star (Asn-273; His-275; Gln-311), and the residues involved in specific substrate recognition and related with the thioesterase activity are indicated by the arrowheads (Gly-135; Ala-137; Arg-143; Lys-144; Thr-182; Arg-184; Arg-212; Arg-213; Lys-216). The conservative changes in the amino acid sequence between the three
<emphasis id="B9297451FFBEF748FF54FAACFF78FAD4" box="[161,178,1283,1299]" italics="true" pageId="2" pageNumber="9">Cs</emphasis>
FatA alleles are marked by closed circles and the semi-conservative changes between them by open circles.
</paragraph>
</caption>
<paragraph id="8BE2A843FFBEF748FF64F9A2FC1BF9B3" blockId="2.[113,784,1353,2015]" lastBlockId="2.[831,1501,1353,1652]" pageId="2" pageNumber="9">
The genetic map of
<taxonomicName id="4C5DD3C0FFBEF748FEABF9A3FE7AF9E7" box="[350,432,1548,1568]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="2" pageNumber="9" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFBEF748FEABF9A3FE7AF9E7" box="[350,432,1548,1568]" italics="true" pageId="2" pageNumber="9">C. sativa</emphasis>
</taxonomicName>
, comprised of 157 amplified fragment length polymorphisms (AFLPs) and 3 single sequence repeat markers were published in 2006 (
<bibRefCitation id="EFCCD5B2FFBEF748FE35F9EAFD5CF99F" author="Gehringer, A. &amp; Friedt, W. &amp; Luhs, W. &amp; Snowdon, R. J." box="[448,662,1605,1624]" pageId="2" pageNumber="9" pagination="1555 - 1563" refId="ref8564" refString="Gehringer, A., Friedt, W., Luhs, W., Snowdon, R. J., 2006. Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome 49, 1555 - 1563." type="journal article" year="2006">Gehringer et al., 2006</bibRefCitation>
). This study showed that
<taxonomicName id="4C5DD3C0FFBEF748FF09F9CFFE9AF9B3" box="[252,336,1632,1652]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="2" pageNumber="9" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFBEF748FF09F9CFFE9AF9B3" box="[252,336,1632,1652]" italics="true" pageId="2" pageNumber="9">C. sativa</emphasis>
</taxonomicName>
has 20 chromosomes, a figure found only among known alloploids or plant species. A triplication of the
<taxonomicName id="4C5DD3C0FFBEF748FD08F9D3FECAF96B" authority="genome" authorityName="Genome" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="2" pageNumber="9" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFBEF748FD08F9D3FF60F96B" italics="true" pageId="2" pageNumber="9">C. sativa</emphasis>
genome
</taxonomicName>
might have resulted from two allopolyploidy events, first resulting in tetraploidy (4n) and then hexaploidy (6n), or it could also be derived from the combination of an autotetraploid (4n) and diploid (2n) species in an autopolyploidized (6n) genome (
<bibRefCitation id="EFCCD5B2FFBEF748FF8FF8A7FE97F8DC" author="Hutcheon, C. &amp; Ditt, R. F. &amp; Beilstein, M. &amp; Comai, L. &amp; Schroeder, J. &amp; Goldstein, E. &amp; Shewmaker, C. K. &amp; Nguyen, T. &amp; Rocher, J. D. &amp; Kiser, J." box="[122,349,1800,1820]" pageId="2" pageNumber="9" pagination="233" refId="ref8862" refString="Hutcheon, C., Ditt, R. F., Beilstein, M., Comai, L., Schroeder, J., Goldstein, E., Shewmaker, C. K., Nguyen, T., Rocher, J. D., Kiser, J., 2010. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes. BMC Plant Biol. 10, 233." type="journal article" year="2010">Hutcheon et al., 2010</bibRefCitation>
). The alignment of our intron sequences with the recently available sequences from the
<taxonomicName id="4C5DD3C0FFBEF748FD95F88CFF7DF894" authority="Genome Project" authorityName="Genome Project" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="2" pageNumber="9" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFBEF748FD95F88CFD78F8F0" box="[608,690,1827,1847]" italics="true" pageId="2" pageNumber="9">C. sativa</emphasis>
Genome Project
</taxonomicName>
(http://www.camelinadb.ca/), which is included in The Prairie Gold Project, allowed the different alleles of the thioesterase genes to be located in the
<taxonomicName id="4C5DD3C0FFBEF748FE8BF8D8FE1DF84C" box="[382,471,1911,1931]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="2" pageNumber="9" phylum="Tracheophyta" rank="genus">
<emphasis id="B9297451FFBEF748FE8BF8D8FE1DF84C" box="[382,471,1911,1931]" italics="true" pageId="2" pageNumber="9">Camelina</emphasis>
</taxonomicName>
genome:
<emphasis id="B9297451FFBEF748FDCBF8D8FD40F84C" box="[574,650,1911,1931]" italics="true" pageId="2" pageNumber="9">CsFatA1</emphasis>
,
<emphasis id="B9297451FFBEF748FD63F8D8FD29F84C" box="[662,739,1911,1931]" italics="true" pageId="2" pageNumber="9">CsFatA2</emphasis>
and
<emphasis id="B9297451FFBEF748FF84F83CFF74F860" box="[113,190,1939,1959]" italics="true" pageId="2" pageNumber="9">CsFatA3</emphasis>
on chromosomes 15, 19 and 1, respectively; and
<emphasis id="B9297451FFBEF748FD4BF83CFCC0F860" box="[702,778,1939,1959]" italics="true" pageId="2" pageNumber="9">CsFatB1</emphasis>
,
<emphasis id="B9297451FFBEF748FF84F800FF74F804" box="[113,190,1967,1987]" italics="true" pageId="2" pageNumber="9">CsFatB2</emphasis>
and
<emphasis id="B9297451FFBEF748FF01F800FE8AF804" box="[244,320,1967,1987]" italics="true" pageId="2" pageNumber="9">CsFatB3</emphasis>
on chromosomes 14, 17 and 3, respectively. Analyzing the intron sequences suggests the existence of two groups of sequences for each thioesterase. Thus, s
<emphasis id="B9297451FFBEF748FAC0FAE6FA4BFA9A" box="[1333,1409,1353,1373]" italics="true" pageId="2" pageNumber="9">CsFatA1</emphasis>
and
<emphasis id="B9297451FFBEF748FA46FAE6FCA1FABE" italics="true" pageId="2" pageNumber="9">CsFatA2</emphasis>
presented strong identity with obvious differences from
<emphasis id="B9297451FFBEF748FA46FACAFCA1FA52" italics="true" pageId="2" pageNumber="9">CsFatA3</emphasis>
. Similarly the
<emphasis id="B9297451FFBEF748FBD6FA2EFBA5FA52" box="[1059,1135,1409,1429]" italics="true" pageId="2" pageNumber="9">CsFatB3</emphasis>
sequences showed much more variability with respect to the other two alleles, corresponding to the complementation group of chromosomes previously reported (
<bibRefCitation id="EFCCD5B2FFBEF748FCB2FA7AFBE1FA2F" author="Gehringer, A. &amp; Friedt, W. &amp; Luhs, W. &amp; Snowdon, R. J." box="[839,1067,1493,1513]" pageId="2" pageNumber="9" pagination="1555 - 1563" refId="ref8564" refString="Gehringer, A., Friedt, W., Luhs, W., Snowdon, R. J., 2006. Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome 49, 1555 - 1563." type="journal article" year="2006">Gehringer et al., 2006</bibRefCitation>
). These results are more consistent with the
<taxonomicName id="4C5DD3C0FFBEF748FC93FA5FFC75F9C3" box="[870,959,1520,1540]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="2" pageNumber="9" phylum="Tracheophyta" rank="genus">
<emphasis id="B9297451FFBEF748FC93FA5FFC75F9C3" box="[870,959,1520,1540]" italics="true" pageId="2" pageNumber="9">Camelina</emphasis>
</taxonomicName>
genome being autopolyploid due to the combination of an autotetraploid and a diploid species. The diploid parent could have contributed to the
<taxonomicName id="4C5DD3C0FFBEF748FB75F987FAE4F9FA" authority="genome" authorityName="Genome" box="[1152,1326,1576,1597]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="2" pageNumber="9" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFBEF748FB75F987FB1EF9FB" box="[1152,1236,1576,1596]" italics="true" pageId="2" pageNumber="9">C. sativa</emphasis>
genome
</taxonomicName>
with two possible combinations, 7 + 7 + 6 or 6 + 6 + 8 giving the total of 20 chromosomes.
</paragraph>
<paragraph id="8BE2A843FFBEF748FCCAF937FC70F900" blockId="2.[831,1500,1688,1735]" pageId="2" pageNumber="9">
<emphasis id="B9297451FFBEF748FCCAF937FC70F900" italics="true" pageId="2" pageNumber="9">
2.3. Fatty acid analysis of
<taxonomicName id="4C5DD3C0FFBEF748FBC7F937FB0EF96B" box="[1074,1220,1688,1708]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="2" pageNumber="9" phylum="Proteobacteria" rank="species" species="coli">Escherichia coli</taxonomicName>
expressing
<taxonomicName id="4C5DD3C0FFBEF748FAC7F937FA48F96B" box="[1330,1410,1688,1708]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="2" pageNumber="9" phylum="Tracheophyta" rank="species" species="sativa">C. sativa</taxonomicName>
acyl-ACP
<heading id="D0AA1F2FFFBEF748FCCAF91CFC70F900" box="[831,954,1715,1735]" fontSize="8" level="3" pageId="2" pageNumber="9" reason="8">thioesterases</heading>
</emphasis>
</paragraph>
<paragraph id="8BE2A843FFBEF749FCABF942FDF8F9C3" blockId="2.[831,1501,1771,2015]" lastBlockId="3.[87,758,1410,2015]" lastPageId="3" lastPageNumber="10" pageId="2" pageNumber="9">
<materialsCitation id="3B35A21EFFBEF749FCABF942FDE4F9C3" collectionCode="L" lastPageId="3" lastPageNumber="10" pageId="2" pageNumber="9" specimenCount="1">
Mature
<emphasis id="B9297451FFBEF748FC58F944FC08F938" box="[941,962,1771,1791]" italics="true" pageId="2" pageNumber="9">Cs</emphasis>
FatA and
<emphasis id="B9297451FFBEF748FBEAF944FBFEF938" box="[1055,1076,1771,1791]" italics="true" pageId="2" pageNumber="9">Cs</emphasis>
FatB proteins were overexpressed in
<taxonomicName id="4C5DD3C0FFBEF748FA50F944FA16F938" box="[1445,1500,1771,1791]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="2" pageNumber="9" phylum="Proteobacteria" rank="species" species="coli">
<emphasis id="B9297451FFBEF748FA50F944FA16F938" box="[1445,1500,1771,1791]" italics="true" pageId="2" pageNumber="9">E. coli</emphasis>
</taxonomicName>
after removing the hydrophobic domain of
<emphasis id="B9297451FFBEF748FB0DF8A8FAC7F8DC" box="[1272,1293,1799,1819]" italics="true" pageId="2" pageNumber="9">Cs</emphasis>
FatB. The hydrophobic domain of these enzymes is often removed for expression in bacteria to increase their concentration in the soluble phase (
<bibRefCitation id="EFCCD5B2FFBEF748FCB2F8F3FC34F8A8" author="Jones, A. &amp; Davies, H. M. &amp; Voelker, T. A." box="[839,1022,1884,1903]" pageId="2" pageNumber="9" pagination="359 - 371" refId="ref9065" refString="Jones, A., Davies, H. M., Voelker, T. A., 1995. Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell. 7, 359 - 371." type="journal article" year="1995">Jones et al., 1995</bibRefCitation>
;
<bibRefCitation id="EFCCD5B2FFBEF748FBFEF8F3FAC7F8A8" author="Facciotti, M. T. &amp; Yuan, L." box="[1035,1293,1884,1903]" pageId="2" pageNumber="9" pagination="167 - 172" refId="ref8459" refString="Facciotti, M. T., Yuan, L., 1998. Molecular dissection of the plant acyl - acyl carrier protein thioesterases. Fett Lipid 100, 167 - 172." type="journal article" year="1998">Facciotti and Yuan, 1998</bibRefCitation>
). Only one allele of each acyl-ACP thioesterase
<typeStatus id="54E616E1FFBEF748FBBAF8D7FBB7F84C" box="[1103,1149,1912,1931]" pageId="2" pageNumber="9">type</typeStatus>
,
<emphasis id="B9297451FFBEF748FB73F8D8FB0DF84C" box="[1158,1223,1911,1931]" italics="true" pageId="2" pageNumber="9">CsFatA</emphasis>
and
<emphasis id="B9297451FFBEF748FB03F8D8FAFCF84C" box="[1270,1334,1911,1931]" italics="true" pageId="2" pageNumber="9">CsFatB</emphasis>
, was cloned into the pQE-80
<collectionCode id="ED4C3086FFBEF748FC5BF83BFC76F860" box="[942,956,1940,1959]" country="Netherlands" lsid="urn:lsid:biocol.org:col:15678" name="Nationaal Herbarium Nederland, Leiden University branch" pageId="2" pageNumber="9" type="Herbarium">L</collectionCode>
vector because the
<emphasis id="B9297451FFBEF748FB70F83CFB50F860" box="[1157,1178,1939,1959]" italics="true" pageId="2" pageNumber="9">Cs</emphasis>
FatA alleles only have three differences in their amino acid sequence, one conservative (Asp-167- Arg) and two semi-conservative changes (Ser-128-Gly; Asp-294- His), and the different CsFatB alleles have four purely conservative changes (Leu-134-Ile; Val-305-Phe; Lys-343-Arg; Ser-370-Ala). The amino acid residues involved in substrate recognition and those related to the hydrolase activity of
<emphasis id="B9297451FFBFF749FDF7FA7BFDDDFA2F" box="[514,535,1492,1512]" italics="true" pageId="3" pageNumber="10">Cs</emphasis>
FatA and
<emphasis id="B9297451FFBFF749FD8CFA7BFD44FA2F" box="[633,654,1492,1512]" italics="true" pageId="3" pageNumber="10">Cs</emphasis>
FatB were identical in the different alleles (
<figureCitation id="1366B4C6FFBFF749FE50FA5EFE2FF9C3" box="[421,485,1521,1540]" captionStart="Fig" captionStartId="2.[113,139,1170,1184]" captionTargetBox="[198,1409,182,1140]" captionTargetId="figure-473@2.[197,1410,181,1141]" captionTargetPageId="2" captionText="Fig. 1. Alignment of the deduced amino acid sequences of acyl-ACP thioesterase A enzymes from C. sativa (CsFatA1, AFQ60947.1; CsFatA2, AFQ60948.1; CsFatA3, AFQ60946.1), Arabidopsis thaliana (AtFatA1, NP_189147.1; AtFatA2, NP_193041.1) and Zea mays (ZmFatA, DAA40472.1). Identical amino acids are shaded in black, whereas conserved residues are shaded in grey. The amino acids considered to constitute the signal peptide are boxed. The three conserved residues that constitute the catalytic triad are indicated with an star (Asn-273; His-275; Gln-311), and the residues involved in specific substrate recognition and related with the thioesterase activity are indicated by the arrowheads (Gly-135; Ala-137; Arg-143; Lys-144; Thr-182; Arg-184; Arg-212; Arg-213; Lys-216). The conservative changes in the amino acid sequence between the three CsFatA alleles are marked by closed circles and the semi-conservative changes between them by open circles." figureDoi="http://doi.org/10.5281/zenodo.10491220" httpUri="https://zenodo.org/record/10491220/files/figure.png" pageId="3" pageNumber="10">Figs. 1</figureCitation>
and
<figureCitation id="1366B4C6FFBFF749FDECFA5EFDECF9C3" box="[537,550,1521,1540]" captionStart="Fig" captionStartId="3.[87,113,1226,1240]" captionTargetBox="[171,1382,182,1195]" captionTargetId="figure-447@3.[170,1383,181,1196]" captionTargetPageId="3" captionText="Fig. 2. Alignment of the deduced amino acid sequences of the acyl-ACP thioesterase B enzymes from C. sativa (CsFatB1, AFQ60949.1; CsFatB2, AFQ60950.1; CsFatB3, AFQ60951.1), Arabidopsis thaliana (AtFatB, CAA85388.1) and Zea mays (ZmFatB, AFW85914.1). Identical amino acids are shaded in black, whereas conserved residues are shaded in grey. The amino acids considered to constitute the signal peptide are boxed and the hydrophobic region in FatB is underlined. The three conserved residues that constitute the catalytic triad are indicated by an star (Asn-319; His-321; Cys-383), and the residues involved in the specific substrate recognition and related with the thioesterase activity are indicated by the arrowheads (Asp-186; Gly-189; Met-233; Arg-235; Lys-267; Glu-270). The conservative changes in the amino acid sequence between the three CsFatB alleles are indicated by open circles." figureDoi="http://doi.org/10.5281/zenodo.10491222" httpUri="https://zenodo.org/record/10491222/files/figure.png" pageId="3" pageNumber="10">2</figureCitation>
)
</materialsCitation>
.
</paragraph>
<caption id="DF22F8CBFFBFF749FFA2FB65FD9FFA8D" ID-DOI="http://doi.org/10.5281/zenodo.10491222" ID-Zenodo-Dep="10491222" httpUri="https://zenodo.org/record/10491222/files/figure.png" pageId="3" pageNumber="10" startId="3.[87,113,1226,1240]" targetBox="[171,1382,182,1195]" targetPageId="3" targetType="figure">
<paragraph id="8BE2A843FFBFF749FFA2FB65FD9FFA8D" blockId="3.[87,1475,1224,1354]" pageId="3" pageNumber="10">
<emphasis id="B9297451FFBFF749FFA2FB65FF46FB1F" bold="true" box="[87,140,1226,1240]" pageId="3" pageNumber="10">Fig. 2.</emphasis>
Alignment of the deduced amino acid sequences of the acyl-ACP thioesterase B enzymes from
<taxonomicName id="4C5DD3C0FFBFF749FC4DFB67FC36FB1F" box="[952,1020,1224,1240]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="3" pageNumber="10" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFBFF749FC4DFB67FC36FB1F" box="[952,1020,1224,1240]" italics="true" pageId="3" pageNumber="10">C. sativa</emphasis>
</taxonomicName>
(
<emphasis id="B9297451FFBFF749FBFEFB67FBD6FB1F" box="[1035,1052,1224,1240]" italics="true" pageId="3" pageNumber="10">Cs</emphasis>
FatB1, AFQ60949.1;
<emphasis id="B9297451FFBFF749FB30FB67FB1CFB1F" box="[1221,1238,1224,1240]" italics="true" pageId="3" pageNumber="10">Cs</emphasis>
FatB2, AFQ60950.1;
<emphasis id="B9297451FFBFF749FA75FB67FA5BFB1F" box="[1408,1425,1224,1240]" italics="true" pageId="3" pageNumber="10">Cs</emphasis>
FatB3, AFQ60951.1),
<taxonomicName id="4C5DD3C0FFBFF749FF3FFB4FFEA2FB28" box="[202,360,1248,1263]" class="Magnoliopsida" family="Brassicaceae" genus="Arabidopsis" kingdom="Plantae" order="Brassicales" pageId="3" pageNumber="10" phylum="Tracheophyta" rank="species" species="thaliana">
<emphasis id="B9297451FFBFF749FF3FFB4FFEA2FB28" box="[202,360,1248,1263]" italics="true" pageId="3" pageNumber="10">Arabidopsis thaliana</emphasis>
</taxonomicName>
(
<emphasis id="B9297451FFBFF749FE83FB4FFE4DFB28" box="[374,391,1248,1263]" italics="true" pageId="3" pageNumber="10">At</emphasis>
FatB, CAA85388.1) and
<taxonomicName id="4C5DD3C0FFBFF749FDBDFB4FFD58FB28" box="[584,658,1248,1263]" class="Liliopsida" family="Poaceae" genus="Zea" kingdom="Plantae" order="Poales" pageId="3" pageNumber="10" phylum="Tracheophyta" rank="species" species="mays">
<emphasis id="B9297451FFBFF749FDBDFB4FFD58FB28" box="[584,658,1248,1263]" italics="true" pageId="3" pageNumber="10">Zea mays</emphasis>
</taxonomicName>
(
<emphasis id="B9297451FFBFF749FD6AFB4FFD7DFB28" box="[671,695,1248,1263]" italics="true" pageId="3" pageNumber="10">Zm</emphasis>
FatB, AFW85914.1). Identical amino acids are shaded in black, whereas conserved residues are shaded in grey. The amino acids considered to constitute the signal peptide are boxed and the hydrophobic region in FatB is underlined. The three conserved residues that constitute the catalytic triad are indicated by an star (Asn-319; His-321; Cys-383), and the residues involved in the specific substrate recognition and related with the thioesterase activity are indicated by the arrowheads (Asp-186; Gly-189; Met-233; Arg-235; Lys-267; Glu-270). The conservative changes in the amino acid sequence between the three CsFatB alleles are indicated by open circles.
</paragraph>
</caption>
<paragraph id="8BE2A843FFBFF749FF83F9A1FC38F8DC" blockId="3.[87,758,1410,2015]" lastBlockId="3.[805,1474,1408,1820]" pageId="3" pageNumber="10">
In plants, the substrate specificity of thioesterases determines the oil composition because these enzymes are involved in the export of acyl-ACP from the plastid to cytosol. In
<taxonomicName id="4C5DD3C0FFBFF749FDC9F9EBFDB9F99F" box="[572,627,1604,1624]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="3" pageNumber="10" phylum="Proteobacteria" rank="species" species="coli">
<emphasis id="B9297451FFBFF749FDC9F9EBFDB9F99F" box="[572,627,1604,1624]" italics="true" pageId="3" pageNumber="10">E. coli</emphasis>
</taxonomicName>
, thioesterases cleave acyl-ACPs producing the free fatty acids necessary for regulatory signals, export or degradation (
<bibRefCitation id="EFCCD5B2FFBFF749FE13F9D2FD22F957" author="Lennen, R. M. &amp; Pfleger, B. F." box="[486,744,1661,1680]" pageId="3" pageNumber="10" pagination="659 - 667" refId="ref9323" refString="Lennen, R. M., Pfleger, B. F., 2012. Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol. 30, 659 - 667." type="journal article" year="2012">Lennen and Pfleger, 2012</bibRefCitation>
). The fatty acid composition of
<taxonomicName id="4C5DD3C0FFBFF749FE7DF937FE0BF96B" box="[392,449,1688,1708]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="3" pageNumber="10" phylum="Proteobacteria" rank="species" species="coli">
<emphasis id="B9297451FFBFF749FE7DF937FE0BF96B" box="[392,449,1688,1708]" italics="true" pageId="3" pageNumber="10">E. coli</emphasis>
</taxonomicName>
expressing
<taxonomicName id="4C5DD3C0FFBFF749FDCEF937FD5EF96B" box="[571,660,1688,1708]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="3" pageNumber="10" phylum="Tracheophyta" rank="genus">
<emphasis id="B9297451FFBFF749FDCEF937FD5EF96B" box="[571,660,1688,1708]" italics="true" pageId="3" pageNumber="10">Camelina</emphasis>
</taxonomicName>
acyl-ACP thioesterase genes were analyzed and compared with control cells transformed with the empty pQE-80L vector (
<tableCitation id="C6DF9DF8FFBFF749FDD6F97FFDA6F923" box="[547,620,1744,1764]" captionStart="Table 1" captionStartId="4.[114,158,183,197]" captionTargetPageId="4" captionText="Table 1 Fatty acid composition of E. coli cells containing recombinant plasmid. The date are the averages of 3 independent samples." httpUri="http://table.plazi.org/id/DF22F8CBFFB8F74EFF87FF18FB86FF1B" pageId="3" pageNumber="10" tableUuid="DF22F8CBFFB8F74EFF87FF18FB86FF1B">Table 1</tableCitation>
). The expression of
<emphasis id="B9297451FFBFF749FF54F944FF7CF938" box="[161,182,1771,1791]" italics="true" pageId="3" pageNumber="10">Cs</emphasis>
FatA and
<emphasis id="B9297451FFBFF749FEE3F944FEE1F938" box="[278,299,1771,1791]" italics="true" pageId="3" pageNumber="10">Cs</emphasis>
FatB produced a 45% and 68% decrease in the total fatty acid content of
<taxonomicName id="4C5DD3C0FFBFF749FEACF8A8FE5AF8DC" box="[345,400,1799,1819]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="3" pageNumber="10" phylum="Proteobacteria" rank="species" species="coli">
<emphasis id="B9297451FFBFF749FEACF8A8FE5AF8DC" box="[345,400,1799,1819]" italics="true" pageId="3" pageNumber="10">E. coli</emphasis>
</taxonomicName>
, respectively. These results showed that
<taxonomicName id="4C5DD3C0FFBFF749FF78F88CFF2EF8F0" box="[141,228,1827,1847]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="3" pageNumber="10" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFBFF749FF78F88CFF2EF8F0" box="[141,228,1827,1847]" italics="true" pageId="3" pageNumber="10">C. sativa</emphasis>
</taxonomicName>
thioesterases alter
<taxonomicName id="4C5DD3C0FFBFF749FE49F88CFE30F8F0" box="[444,506,1827,1847]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="3" pageNumber="10" phylum="Proteobacteria" rank="species" species="coli">
<emphasis id="B9297451FFBFF749FE49F88CFE30F8F0" box="[444,506,1827,1847]" italics="true" pageId="3" pageNumber="10">E. coli</emphasis>
</taxonomicName>
fatty acid metabolism, diverting the acyl chains away from the fatty acid and lipid biosynthetic pathways. These free fatty acids would later be secreted or degraded in the β- oxidation pathway (
<bibRefCitation id="EFCCD5B2FFBFF749FE10F8D7FD22F84C" author="Lennen, R. M. &amp; Pfleger, B. F." box="[485,744,1912,1931]" pageId="3" pageNumber="10" pagination="659 - 667" refId="ref9323" refString="Lennen, R. M., Pfleger, B. F., 2012. Engineering Escherichia coli to synthesize free fatty acids. Trends Biotechnol. 30, 659 - 667." type="journal article" year="2012">Lennen and Pfleger, 2012</bibRefCitation>
). The main change in the
<taxonomicName id="4C5DD3C0FFBFF749FEB9F83CFE4EF860" box="[332,388,1939,1959]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="3" pageNumber="10" phylum="Proteobacteria" rank="species" species="coli">
<emphasis id="B9297451FFBFF749FEB9F83CFE4EF860" box="[332,388,1939,1959]" italics="true" pageId="3" pageNumber="10">E. coli</emphasis>
</taxonomicName>
fatty acid composition when
<emphasis id="B9297451FFBFF749FD47F83CFD0DF860" box="[690,711,1939,1959]" italics="true" pageId="3" pageNumber="10">Cs</emphasis>
FatA was expressed was the reduction in unsaturated fatty acids, mainly cis-vaccenic acid (18:1ω7). This reduction was compensated for by an increase of palmitoleic acid (16:1ω7). However, the expression of
<emphasis id="B9297451FFBFF749FCB5FA33FC9FFA77" box="[832,853,1436,1456]" italics="true" pageId="3" pageNumber="10">Cs</emphasis>
FatB caused the opposite effect, a decrease in saturated fatty acids and in particular, that of palmitic acid (16:0) that is compensated for with an increase in stearic acid (18.0). The effect of the expression of acyl-ACP thioesterases on
<taxonomicName id="4C5DD3C0FFBFF749FB42FA5FFB24F9C3" box="[1207,1262,1520,1540]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="3" pageNumber="10" phylum="Proteobacteria" rank="species" species="coli">
<emphasis id="B9297451FFBFF749FB42FA5FFB24F9C3" box="[1207,1262,1520,1540]" italics="true" pageId="3" pageNumber="10">E. coli</emphasis>
</taxonomicName>
depends on the phenotype of the recipient strain. Thus, regular
<taxonomicName id="4C5DD3C0FFBFF749FB1CF9A3FAE8F9E7" box="[1257,1314,1548,1568]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="3" pageNumber="10" phylum="Proteobacteria" rank="species" species="coli">
<emphasis id="B9297451FFBFF749FB1CF9A3FAE8F9E7" box="[1257,1314,1548,1568]" italics="true" pageId="3" pageNumber="10">E. coli</emphasis>
</taxonomicName>
strains like the Bluescript one used in this work experiment a diminution of the fatty acid content, and a lower proportion of the fatty acids hydrolyzed by the enzyme (
<bibRefCitation id="EFCCD5B2FFBFF749FBFAF9CEFAD1F9B3" author="Voelker, T. A. &amp; Davies, H. M." box="[1039,1307,1633,1652]" pageId="3" pageNumber="10" pagination="7320 - 7327" refId="ref10317" refString="Voelker, T. A., Davies, H. M., 1994. Alteration of the specificity and regulation of fattyacid synthesis of Escherichia coli by expression of a plant medium-chain acyl - acyl carrier protein thioesterase. J. Bacteriol. 176, 7320 - 7327." type="journal article" year="1994">Voelker and Davies, 1994</bibRefCitation>
;
<bibRefCitation id="EFCCD5B2FFBFF749FAD2F9CEFC5EF957" author="Sanchez-Garcia, A. &amp; Moreno-Perez, A. &amp; Muro-Pastor, A. &amp; Salas, J. J. &amp; Garces, R. &amp; Martinez-Force, E." pageId="3" pageNumber="10" pagination="860 - 869" refId="ref10104" refString="Sanchez-Garcia, A., Moreno-Perez, A., Muro-Pastor, A., Salas, J. J., Garces, R., Martinez-Force, E., 2010. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. Phytochemistry 71, 860 - 869." type="journal article" year="2010">Sánchez-García et al., 2010</bibRefCitation>
). This is caused because the hydrolyzed fatty acids are degraded and recycled via β- oxidation. On the contrary, when thioesterases are expressed in strains deficient on fatty acid activation or degradation, as it is the case of FadD88, the fatty acids hydrolyzed (16:0 or 18:1) are accumulated or excreted in the culture medium (
<bibRefCitation id="EFCCD5B2FFBFF749FCD8F8A7FC2EF8DC" author="Huynh, T. T. &amp; Pirtle, R. M. &amp; Chapman, K. D." box="[813,996,1800,1820]" pageId="3" pageNumber="10" pagination="1 - 9" refId="ref8942" refString="Huynh, T. T., Pirtle, R. M., Chapman, K. D., 2002. Expression of a Gossypium hirsutum cDNA encoding a FatB palmitoyl-acyl carrier protein thioesterase in Escherichia coli. Plant Physiol. Biochem. 40, 1 - 9." type="journal article" year="2002">Huynh et al., 2002</bibRefCitation>
).
</paragraph>
<paragraph id="8BE2A843FFBFF749FCD0F890FC6AF8A8" blockId="3.[805,1474,1855,1903]" pageId="3" pageNumber="10">
<emphasis id="B9297451FFBFF749FCD0F890FC6AF8A8" italics="true" pageId="3" pageNumber="10">
2.4. Substrate specificity and kinetic parameters of
<taxonomicName id="4C5DD3C0FFBFF749FAF8F890FAACF894" box="[1293,1382,1855,1875]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="3" pageNumber="10" phylum="Tracheophyta" rank="genus">Camelina</taxonomicName>
acyl-ACP
<heading id="D0AA1F2FFFBFF749FCD0F8F4FC6AF8A8" box="[805,928,1883,1903]" fontSize="8" level="3" pageId="3" pageNumber="10" reason="8">thioesterases</heading>
</emphasis>
</paragraph>
<paragraph id="8BE2A843FFBFF74EFCB1F83BFE53FC98" blockId="3.[805,1475,1939,2015]" lastBlockId="4.[113,783,509,1284]" lastPageId="4" lastPageNumber="11" pageId="3" pageNumber="10">
The kinetic parameters of recombinant
<emphasis id="B9297451FFBFF749FB26F83CFB22F860" box="[1235,1256,1939,1959]" italics="true" pageId="3" pageNumber="10">Cs</emphasis>
FatA and
<emphasis id="B9297451FFBFF749FABDF83CFA97F860" box="[1352,1373,1939,1959]" italics="true" pageId="3" pageNumber="10">Cs</emphasis>
FatB were investigated after purification by metal ion affinity chromatography (IMAC). This method allowed us to obtain highly purified enzymes in a single step (see
<figureCitation id="1366B4C6FFB8F74EFE62FE52FE06FDD7" box="[407,460,509,528]" captionStart="Fig" captionStartId="4.[113,139,1953,1967]" captionTargetBox="[387,1219,1321,1924]" captionTargetId="figure-536@4.[386,1220,1320,1924]" captionTargetPageId="4" captionText="Fig. 3. Coomassie blue stained SDSPAGE showing recombinant C. sativa acyl-ACP thioesterase A (panel A) and acyl-ACP thioesterase B (panel B). Lane 1, soluble fraction, 15 µg protein; lane 2, soluble fraction not retained on the NiNTA Agarose column (Qiagen), 15 µg protein; lane 3, NiNTA Agarose wash, 1.5 µg protein; lane 4, purified acyl- ACP thioesterase 1.5 µg protein." figureDoi="http://doi.org/10.5281/zenodo.10491226" httpUri="https://zenodo.org/record/10491226/files/figure.png" pageId="4" pageNumber="11">Fig. 3</figureCitation>
). The substrate specificity of the
<emphasis id="B9297451FFB8F74EFF84FDB7FF4CFDEB" box="[113,134,536,556]" italics="true" pageId="4" pageNumber="11">Cs</emphasis>
FatA and
<emphasis id="B9297451FFB8F74EFF04FDB7FECCFDEB" box="[241,262,536,556]" italics="true" pageId="4" pageNumber="11">Cs</emphasis>
FatB enzymes was determined by assaying their activity on different acyl-ACP substrates at a constant concentration (
<figureCitation id="1366B4C6FFB8F74EFF5CFDFEFF2BFDA3" box="[169,225,593,612]" captionStart="Fig" captionStartId="4.[831,857,1054,1068]" captionTargetBox="[844,1487,527,1024]" captionTargetId="figure-604@4.[843,1488,526,1025]" captionTargetPageId="4" captionText="Fig. 4. Substrate specificity of C. sativa acyl-ACP thioesterases expressed in E. coli. The activity was measured with the purified His-tagged CsFatA (black columns) and His-tagged CsFatB (white columns) enzymes, testing different acyl-ACP substrates. The data represent the mean (±SD) from three independent assays." figureDoi="http://doi.org/10.5281/zenodo.10491224" httpUri="https://zenodo.org/record/10491224/files/figure.png" pageId="4" pageNumber="11">Fig. 4</figureCitation>
). The
<emphasis id="B9297451FFB8F74EFED7FDFFFEFDFDA3" box="[290,311,592,612]" italics="true" pageId="4" pageNumber="11">Cs</emphasis>
FatA enzyme displayed a high level of activity on unsaturated fatty acid derivatives, mainly with 18:1-ACP, and it was 14-fold less active towards 18:0-ACP.
<emphasis id="B9297451FFB8F74EFDC4FD28FD8CFD5C" box="[561,582,647,667]" italics="true" pageId="4" pageNumber="11">Cs</emphasis>
FatB had preference for 16:0-ACP with lower activities towards 18:0-ACP and 18:1- ACP. These results are similar to those reported previously for thioesterases from other plants, such
<taxonomicName id="4C5DD3C0FFB8F74EFE2CFD74FEDCFCCC" authority="(Hawkins and Kridl, 1998)" baseAuthorityName="Hawkins and Kridl" baseAuthorityYear="1998" class="Magnoliopsida" family="Clusiaceae" genus="Garcinia" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="mangostana">
<emphasis id="B9297451FFB8F74EFE2CFD74FD6DFD28" box="[473,679,731,751]" italics="true" pageId="4" pageNumber="11">Garcinia mangostana</emphasis>
(
<bibRefCitation id="EFCCD5B2FFB8F74EFD42FD73FEC4FCCC" author="Hawkins, D. J. &amp; Kridl, J. C." pageId="4" pageNumber="11" pagination="743 - 752" refId="ref8713" refString="Hawkins, D. J., Kridl, J. C., 1998. Characterization of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. Plant J. 13, 743 - 752." type="journal article" year="1998">Hawkins and Kridl, 1998</bibRefCitation>
)
</taxonomicName>
,
<taxonomicName id="4C5DD3C0FFB8F74EFED7FD58FD1BFCCC" authority="(Knutzon et al., 1992)" baseAuthorityName="Knutzon" baseAuthorityYear="1992" box="[290,721,759,780]" class="Magnoliopsida" family="Asteraceae" genus="Carthamus" kingdom="Plantae" order="Asterales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="tinctorius">
<emphasis id="B9297451FFB8F74EFED7FD58FE27FCCC" box="[290,493,759,779]" italics="true" pageId="4" pageNumber="11">Carthamus tinctorius</emphasis>
(
<bibRefCitation id="EFCCD5B2FFB8F74EFE09FD56FD03FCCC" author="Knutzon, D. S. &amp; Bleibaum, J. L. &amp; Nelsen, J. &amp; Kridl, J. C. &amp; Thompson, G. A." box="[508,713,760,780]" pageId="4" pageNumber="11" pagination="1751 - 1758" refId="ref9157" refString="Knutzon, D. S., Bleibaum, J. L., Nelsen, J., Kridl, J. C., Thompson, G. A., 1992. Isolation and characterization of two safflower oleoyl - acyl carrier protein thioesterase cDNA clones. Plant Physiol. 100, 1751 - 1758." type="journal article" year="1992">Knutzon et al., 1992</bibRefCitation>
)
</taxonomicName>
,
<taxonomicName id="4C5DD3C0FFB8F74EFD29FD58FE03FCE0" authority="(Pathak et al., 2004)" baseAuthorityName="Pathak" baseAuthorityYear="2004" class="Magnoliopsida" family="Brassicaceae" genus="Brassica" kingdom="Plantae" order="Brassicales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="campestri">
<emphasis id="B9297451FFB8F74EFD29FD58FF30FCE0" italics="true" pageId="4" pageNumber="11">Brassica campestri</emphasis>
(
<bibRefCitation id="EFCCD5B2FFB8F74EFEFDFCBBFE0BFCE0" author="Pathak, M. K. &amp; Bhattacharjee, A. &amp; Ghosh, D. &amp; Ghosh, S." box="[264,449,788,807]" pageId="4" pageNumber="11" pagination="191 - 198" refId="ref9771" refString="Pathak, M. K., Bhattacharjee, A., Ghosh, D., Ghosh, S., 2004. Acyl - acyl carrier protein (ACP) - thioesterase from developing seeds of Brassica campestris cv. B- 54 (Agrani). Plant Sci. 166, 191 - 198." type="journal article" year="2004">Pathak et al., 2004</bibRefCitation>
)
</taxonomicName>
,
<taxonomicName id="4C5DD3C0FFB8F74EFE21FCBCFF66FC84" authority="(Salas and Ohlrogge, 2002)" baseAuthorityName="Salas and Ohlrogge" baseAuthorityYear="2002" class="Magnoliopsida" family="Brassicaceae" genus="Arabidopsis" kingdom="Plantae" order="Brassicales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="thaliana">
<emphasis id="B9297451FFB8F74EFE21FCBCFDF6FCE0" box="[468,572,787,807]" italics="true" pageId="4" pageNumber="11">A. thaliana</emphasis>
(
<bibRefCitation id="EFCCD5B2FFB8F74EFDBFFCBBFF69FC84" author="Salas, J. J. &amp; Ohlrogge, J. B." pageId="4" pageNumber="11" pagination="25 - 34" refId="ref10064" refString="Salas, J. J., Ohlrogge, J. B., 2002. Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch. Biochem. Biophys. 403, 25 - 34." type="journal article" year="2002">Salas and Ohlrogge, 2002</bibRefCitation>
)
</taxonomicName>
,
<taxonomicName id="4C5DD3C0FFB8F74EFF48FC80FD9AFC84" authority="(Serrano-Vega et al., 2005)" baseAuthorityName="Serrano-Vega" baseAuthorityYear="2005" box="[189,592,815,835]" class="Magnoliopsida" family="Asteraceae" genus="Helianthus" kingdom="Plantae" order="Asterales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="annuus">
<emphasis id="B9297451FFB8F74EFF48FC80FEEEFC84" box="[189,292,815,835]" italics="true" pageId="4" pageNumber="11">H. annuus</emphasis>
(
<bibRefCitation id="EFCCD5B2FFB8F74EFECCFC9FFD8DFC84" author="Serrano-Vega, M. J. &amp; Garces, R. &amp; Martinez-Forces, E." box="[313,583,816,835]" pageId="4" pageNumber="11" pagination="868 - 880" refId="ref10169" refString="Serrano-Vega, M. J., Garces, R., Martinez-Forces, E., 2005. Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.). Planta 221, 868 - 880." type="journal article" year="2005">Serrano-Vega et al., 2005</bibRefCitation>
)
</taxonomicName>
and
<taxonomicName id="4C5DD3C0FFB8F74EFD7BFC80FE5EFC98" authority="(Sanchez-Garcia et al., 2010)" baseAuthorityName="Sanchez-Garcia" baseAuthorityYear="2010" class="Magnoliopsida" family="Euphorbiaceae" genus="Ricinus" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="communis">
<emphasis id="B9297451FFB8F74EFD7BFC80FCC5FC84" box="[654,783,815,835]" italics="true" pageId="4" pageNumber="11">R. communis</emphasis>
(
<bibRefCitation id="EFCCD5B2FFB8F74EFF8FFCE3FE41FC98" author="Sanchez-Garcia, A. &amp; Moreno-Perez, A. &amp; Muro-Pastor, A. &amp; Salas, J. J. &amp; Garces, R. &amp; Martinez-Force, E." box="[122,395,844,863]" pageId="4" pageNumber="11" pagination="860 - 869" refId="ref10104" refString="Sanchez-Garcia, A., Moreno-Perez, A., Muro-Pastor, A., Salas, J. J., Garces, R., Martinez-Force, E., 2010. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. Phytochemistry 71, 860 - 869." type="journal article" year="2010">Sánchez-García et al., 2010</bibRefCitation>
)
</taxonomicName>
.
</paragraph>
<caption id="DF22F8CBFFB8F74EFF87FF18FB86FF1B" ID-Table-UUID="DF22F8CBFFB8F74EFF87FF18FB86FF1B" httpUri="http://table.plazi.org/id/DF22F8CBFFB8F74EFF87FF18FB86FF1B" pageId="4" pageNumber="11" startId="4.[114,158,183,197]" targetBox="[136,1478,240,338]" targetIsTable="true" targetPageId="4" targetType="table">
<paragraph id="8BE2A843FFB8F74EFF87FF18FB86FF1B" blockId="4.[113,1100,183,220]" pageId="4" pageNumber="11">
<emphasis id="B9297451FFB8F74EFF87FF18FF64FF02" bold="true" box="[114,174,183,197]" pageId="4" pageNumber="11">Table 1</emphasis>
Fatty acid composition of
<taxonomicName id="4C5DD3C0FFB8F74EFEB4FF62FEA7FF1B" box="[321,365,205,220]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="4" pageNumber="11" phylum="Proteobacteria" rank="species" species="coli">
<emphasis id="B9297451FFB8F74EFEB4FF62FEA7FF1B" box="[321,365,205,220]" italics="true" pageId="4" pageNumber="11">E. coli</emphasis>
</taxonomicName>
cells containing recombinant plasmid. The date are the averages of 3 independent samples.
</paragraph>
</caption>
<paragraph id="8BE2A843FFB8F74EFED7FF5BFA6FFE96" pageId="4" pageNumber="11">
<table id="F95D5AE3FFB808B5FF7DFF5FFA0CFE95" box="[136,1478,240,338]" gridcols="11" gridrows="4" pageId="4" pageNumber="11">
<tr id="356DAA01FFB808B5FF7DFF5FFA0CFEC4" box="[136,1478,240,259]" gridrow="0" pageId="4" pageNumber="11" rowspan-0="1">
<th id="76BCC37DFFB808B5FED7FF5FFEBAFEC4" box="[290,368,240,259]" gridcol="1" gridrow="0" pageId="4" pageNumber="11">16:0</th>
<th id="76BCC37DFFB808B5FE60FF5FFE28FEC4" box="[405,482,240,259]" gridcol="2" gridrow="0" pageId="4" pageNumber="11">16:1ω7</th>
<th id="76BCC37DFFB808B5FDFCFF5FFD9CFEC4" box="[521,598,240,259]" gridcol="3" gridrow="0" pageId="4" pageNumber="11">17:0Δ a</th>
<th id="76BCC37DFFB808B5FD89FF5FFD75FEC4" box="[636,703,240,259]" gridcol="4" gridrow="0" pageId="4" pageNumber="11">18:0</th>
<th id="76BCC37DFFB808B5FD10FF5FFCF8FEC4" box="[741,818,240,259]" gridcol="5" gridrow="0" pageId="4" pageNumber="11">18:1ω7</th>
<th id="76BCC37DFFB808B5FCADFF5FFC51FEC4" box="[856,923,240,259]" gridcol="6" gridrow="0" pageId="4" pageNumber="11">19:0Δ b</th>
<th id="76BCC37DFFB808B5FC34FF5FFBE9FEC4" box="[961,1059,240,259]" gridcol="7" gridrow="0" pageId="4" pageNumber="11">UFA c</th>
<th id="76BCC37DFFB808B5FBBCFF5FFB61FEC4" box="[1097,1195,240,259]" gridcol="8" gridrow="0" pageId="4" pageNumber="11">STA d</th>
<th id="76BCC37DFFB808B5FB25FF5FFAE2FEC4" box="[1232,1320,240,259]" gridcol="9" gridrow="0" pageId="4" pageNumber="11">UFA/STA</th>
<th id="76BCC37DFFB808B5FAB8FF5FFA0CFEC4" box="[1357,1478,240,259]" gridcol="10" gridrow="0" pageId="4" pageNumber="11">µg FAs/mg cell</th>
</tr>
<tr id="356DAA01FFB808B5FF7DFEBAFA0CFEE3" box="[136,1478,277,292]" gridrow="1" pageId="4" pageNumber="11">
<th id="76BCC37DFFB808B5FF7DFEBAFF36FEE3" box="[136,252,277,292]" gridcol="0" gridrow="1" pageId="4" pageNumber="11">pQE80</th>
<td id="76BCC37DFFB808B5FED7FEBAFEBAFEE3" box="[290,368,277,292]" gridcol="1" gridrow="1" pageId="4" pageNumber="11">52.6 ± 0.6</td>
<td id="76BCC37DFFB808B5FE60FEBAFE28FEE3" box="[405,482,277,292]" gridcol="2" gridrow="1" pageId="4" pageNumber="11">9.9 ± 0.5</td>
<td id="76BCC37DFFB808B5FDFCFEBAFD9CFEE3" box="[521,598,277,292]" gridcol="3" gridrow="1" pageId="4" pageNumber="11">21.3 ± 0.4</td>
<td id="76BCC37DFFB808B5FD89FEBAFD75FEE3" box="[636,703,277,292]" gridcol="4" gridrow="1" pageId="4" pageNumber="11">1.8 ± 0.4</td>
<td id="76BCC37DFFB808B5FD10FEBAFCF8FEE3" box="[741,818,277,292]" gridcol="5" gridrow="1" pageId="4" pageNumber="11">11.2 ± 0.2</td>
<td id="76BCC37DFFB808B5FCADFEBAFC51FEE3" box="[856,923,277,292]" gridcol="6" gridrow="1" pageId="4" pageNumber="11">3.2 ± 0.1</td>
<td id="76BCC37DFFB808B5FC34FEBAFBE9FEE3" box="[961,1059,277,292]" gridcol="7" gridrow="1" pageId="4" pageNumber="11">45.58 ± 0.97</td>
<td id="76BCC37DFFB808B5FBBCFEBAFB61FEE3" box="[1097,1195,277,292]" gridcol="8" gridrow="1" pageId="4" pageNumber="11">54.42 ± 0.97</td>
<td id="76BCC37DFFB808B5FB25FEBAFAE2FEE3" box="[1232,1320,277,292]" gridcol="9" gridrow="1" pageId="4" pageNumber="11">0.84 ± 0.15</td>
<td id="76BCC37DFFB808B5FAB8FEBAFA0CFEE3" box="[1357,1478,277,292]" gridcol="10" gridrow="1" pageId="4" pageNumber="11">6.24 ± 0.90</td>
</tr>
<tr id="356DAA01FFB808B5FF7DFE83FA0CFEFC" box="[136,1478,300,315]" gridrow="2" pageId="4" pageNumber="11">
<th id="76BCC37DFFB808B5FF7DFE83FF36FEFC" box="[136,252,300,315]" gridcol="0" gridrow="2" pageId="4" pageNumber="11">pQE80_CsFatA</th>
<td id="76BCC37DFFB808B5FED7FE83FEBAFEFC" box="[290,368,300,315]" gridcol="1" gridrow="2" pageId="4" pageNumber="11">55.9 ± 1.3</td>
<td id="76BCC37DFFB808B5FE60FE83FE28FEFC" box="[405,482,300,315]" gridcol="2" gridrow="2" pageId="4" pageNumber="11">21.7 ± 0.7</td>
<td id="76BCC37DFFB808B5FDFCFE83FD9CFEFC" box="[521,598,300,315]" gridcol="3" gridrow="2" pageId="4" pageNumber="11">13.1 ± 1.3</td>
<td id="76BCC37DFFB808B5FD89FE83FD75FEFC" box="[636,703,300,315]" gridcol="4" gridrow="2" pageId="4" pageNumber="11">3.7 ± 0.5</td>
<td id="76BCC37DFFB808B5FD10FE83FCF8FEFC" box="[741,818,300,315]" gridcol="5" gridrow="2" pageId="4" pageNumber="11">5.2 ± 0.1</td>
<td id="76BCC37DFFB808B5FCADFE83FC51FEFC" box="[856,923,300,315]" gridcol="6" gridrow="2" pageId="4" pageNumber="11">0.5 ± 0.1</td>
<td id="76BCC37DFFB808B5FC34FE83FBE9FEFC" box="[961,1059,300,315]" gridcol="7" gridrow="2" pageId="4" pageNumber="11">40.36 ± 0.73</td>
<td id="76BCC37DFFB808B5FBBCFE83FB61FEFC" box="[1097,1195,300,315]" gridcol="8" gridrow="2" pageId="4" pageNumber="11">59.64 ± 0.73</td>
<td id="76BCC37DFFB808B5FB25FE83FAE2FEFC" box="[1232,1320,300,315]" gridcol="9" gridrow="2" pageId="4" pageNumber="11">0.68 ± 0.01</td>
<td id="76BCC37DFFB808B5FAB8FE83FA0CFEFC" box="[1357,1478,300,315]" gridcol="10" gridrow="2" pageId="4" pageNumber="11">3.49 ± 0.06</td>
</tr>
<tr id="356DAA01FFB808B5FF7DFEECFA0CFE95" box="[136,1478,323,338]" gridrow="3" pageId="4" pageNumber="11">
<th id="76BCC37DFFB808B5FF7DFEECFF36FE95" box="[136,252,323,338]" gridcol="0" gridrow="3" pageId="4" pageNumber="11">pQE80_CsFatB</th>
<td id="76BCC37DFFB808B5FED7FEECFEBAFE95" box="[290,368,323,338]" gridcol="1" gridrow="3" pageId="4" pageNumber="11">43.1 ± 1.8</td>
<td id="76BCC37DFFB808B5FE60FEECFE28FE95" box="[405,482,323,338]" gridcol="2" gridrow="3" pageId="4" pageNumber="11">29.3 ± 0.7</td>
<td id="76BCC37DFFB808B5FDFCFEECFD9CFE95" box="[521,598,323,338]" gridcol="3" gridrow="3" pageId="4" pageNumber="11">7.1 ± 0.9</td>
<td id="76BCC37DFFB808B5FD89FEECFD75FE95" box="[636,703,323,338]" gridcol="4" gridrow="3" pageId="4" pageNumber="11">7.0 ± 1.0</td>
<td id="76BCC37DFFB808B5FD10FEECFCF8FE95" box="[741,818,323,338]" gridcol="5" gridrow="3" pageId="4" pageNumber="11">12.5 ± 0.7</td>
<td id="76BCC37DFFB808B5FCADFEECFC51FE95" box="[856,923,323,338]" gridcol="6" gridrow="3" pageId="4" pageNumber="11">1.1 ± 0.1</td>
<td id="76BCC37DFFB808B5FC34FEECFBE9FE95" box="[961,1059,323,338]" gridcol="7" gridrow="3" pageId="4" pageNumber="11">49.89 ± 0.74</td>
<td id="76BCC37DFFB808B5FBBCFEECFB61FE95" box="[1097,1195,323,338]" gridcol="8" gridrow="3" pageId="4" pageNumber="11">50.11 ± 0.94</td>
<td id="76BCC37DFFB808B5FB25FEECFAE2FE95" box="[1232,1320,323,338]" gridcol="9" gridrow="3" pageId="4" pageNumber="11">1.00 ± 0.0</td>
<td id="76BCC37DFFB808B5FAB8FEECFA0CFE95" box="[1357,1478,323,338]" gridcol="10" gridrow="3" pageId="4" pageNumber="11">2.01 ± 0.38</td>
</tr>
</table>
</paragraph>
<paragraph id="8BE2A843FFB8F74EFF74FEC9FE6FFE7A" blockId="4.[128,767,358,445]" pageId="4" pageNumber="11">
<tableNote id="76BBA9CDFFB8F74EFF74FEC9FE6FFE7A" pageId="4" pageNumber="11" targetBox="[136,1478,240,338]" targetPageId="4">
<superScript id="7C28050BFFB8F74EFF74FEC9FF42FEA8" attach="left" box="[129,136,358,367]" fontSize="4" pageId="4" pageNumber="11">a</superScript>
cis-9,10-Methylen-hexadecanoic acid, cyclopropane derivative from 16:1.
<superScript id="7C28050BFFB8F74EFF75FED2FF4DFE40" attach="left" box="[128,135,381,391]" fontSize="4" pageId="4" pageNumber="11">b</superScript>
cis-11,12-Methylen-octadecanoic acid, cyclopropane derivative from 18:1.
<superScript id="7C28050BFFB8F74EFF74FE3BFF4DFE5A" attach="left" box="[129,135,404,413]" fontSize="4" pageId="4" pageNumber="11">c</superScript>
Unsaturated fatty acids and derivatives; 16:1ω7 + 17:0Δ + 18:1ω11 + 19:0Δ.
<superScript id="7C28050BFFB8F74EFF75FE04FF42FE72" attach="left" box="[128,136,427,437]" fontSize="4" pageId="4" pageNumber="11">d</superScript>
Saturated fatty acids; 16:0 + 18:0.
</tableNote>
</paragraph>
<paragraph id="8BE2A843FFB8F74EFF64FCC7FC76FB39" blockId="4.[113,783,509,1284]" lastBlockId="4.[831,1500,1202,1278]" pageId="4" pageNumber="11">
Kinetic parameters were also calculated for both enzymes acting on different substrates, displaying similar
<emphasis id="B9297451FFB8F74EFDBEFC2DFDACFC5E" box="[587,614,898,921]" italics="true" pageId="4" pageNumber="11">
<subScript id="17D9AA06FFB8F74EFDBEFC2DFDACFC5E" attach="left" box="[587,614,898,921]" fontSize="5" pageId="4" pageNumber="11">Km</subScript>
</emphasis>
values for all of them, all in the micromolar order. These values were slightly higher than those reported previously for acyl-ACP thioesterases from
<taxonomicName id="4C5DD3C0FFB8F74EFF43FC79FDA7FC2D" authority="(Serrano-Vega et al., 2005)" baseAuthorityName="Serrano-Vega" baseAuthorityYear="2005" box="[182,621,982,1003]" class="Magnoliopsida" family="Asteraceae" genus="Helianthus" kingdom="Plantae" order="Asterales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="annuus">
<emphasis id="B9297451FFB8F74EFF43FC79FEEEFC2D" box="[182,292,982,1002]" italics="true" pageId="4" pageNumber="11">H. annuus</emphasis>
(
<bibRefCitation id="EFCCD5B2FFB8F74EFEB4FC78FDAFFC2D" author="Serrano-Vega, M. J. &amp; Garces, R. &amp; Martinez-Forces, E." box="[321,613,983,1003]" pageId="4" pageNumber="11" pagination="868 - 880" refId="ref10169" refString="Serrano-Vega, M. J., Garces, R., Martinez-Forces, E., 2005. Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.). Planta 221, 868 - 880." type="journal article" year="2005">Serrano-Vega et al., 2005</bibRefCitation>
)
</taxonomicName>
,
<taxonomicName id="4C5DD3C0FFB8F74EFD73FC79FE63FBC1" authority="(Sanchez-Garcia et al., 2010)" baseAuthorityName="Sanchez-Garcia" baseAuthorityYear="2010" class="Magnoliopsida" family="Euphorbiaceae" genus="Ricinus" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="communis">
<emphasis id="B9297451FFB8F74EFD73FC79FCC5FC2D" box="[646,783,982,1002]" italics="true" pageId="4" pageNumber="11">R. communis</emphasis>
(
<bibRefCitation id="EFCCD5B2FFB8F74EFF8FFC5CFE6BFBC1" author="Sanchez-Garcia, A. &amp; Moreno-Perez, A. &amp; Muro-Pastor, A. &amp; Salas, J. J. &amp; Garces, R. &amp; Martinez-Force, E." box="[122,417,1011,1030]" pageId="4" pageNumber="11" pagination="860 - 869" refId="ref10104" refString="Sanchez-Garcia, A., Moreno-Perez, A., Muro-Pastor, A., Salas, J. J., Garces, R., Martinez-Force, E., 2010. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. Phytochemistry 71, 860 - 869." type="journal article" year="2010">Sánchez-García et al., 2010</bibRefCitation>
)
</taxonomicName>
or
<taxonomicName id="4C5DD3C0FFB8F74EFE2EFC5DFF3AFBE5" authority="(Moreno-Perez et al., 2011)" baseAuthorityName="Moreno-Perez" baseAuthorityYear="2011" class="Magnoliopsida" family="Proteaceae" genus="Macadamia" kingdom="Plantae" order="Proteales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="tetraphylla">
<emphasis id="B9297451FFB8F74EFE2EFC5DFDA1FBC1" box="[475,619,1010,1030]" italics="true" pageId="4" pageNumber="11">M. tetraphylla</emphasis>
(
<bibRefCitation id="EFCCD5B2FFB8F74EFD74FC5CFF2DFBE5" author="Moreno-Perez, A. J. &amp; Sanchez-Garcia, A. &amp; Salas, J. J. &amp; Garces, R. &amp; Martinez-Force, E." pageId="4" pageNumber="11" pagination="82 - 87" refId="ref9566" refString="Moreno-Perez, A. J., Sanchez-Garcia, A., Salas, J. J., Garces, R., Martinez-Force, E., 2011. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition. Plant Physiol. Biochem. 49, 82 - 87." type="journal article" year="2011">Moreno-Pérez et al., 2011</bibRefCitation>
)
</taxonomicName>
. The
<emphasis id="B9297451FFB8F74EFEDEFBA1FEF2FBE5" box="[299,312,1038,1058]" italics="true" pageId="4" pageNumber="11">V</emphasis>
<subScript id="17D9AA06FFB8F74EFECCFBB7FE93FBE3" attach="left" box="[313,345,1048,1060]" fontSize="5" pageId="4" pageNumber="11">max</subScript>
of
<emphasis id="B9297451FFB8F74EFE8AFBA1FE5EFBE5" box="[383,404,1038,1058]" italics="true" pageId="4" pageNumber="11">Cs</emphasis>
FatA for 18:1-ACP was 85.3 nkat/mg prot, one order of magnitude higher the
<emphasis id="B9297451FFB8F74EFDE0FB85FDE8FBF9" box="[533,546,1066,1086]" italics="true" pageId="4" pageNumber="11">V</emphasis>
<subScript id="17D9AA06FFB8F74EFDD7FB9BFD88FB87" attach="left" box="[546,578,1076,1088]" fontSize="5" pageId="4" pageNumber="11">max</subScript>
found for the other substrates assayed. The
<emphasis id="B9297451FFB8F74EFE94FBE9FEA4FB9D" box="[353,366,1094,1114]" italics="true" pageId="4" pageNumber="11">K</emphasis>
<subScript id="17D9AA06FFB8F74EFE9BFBFFFE4EFB9B" attach="left" box="[366,388,1104,1116]" fontSize="5" pageId="4" pageNumber="11">cat</subScript>
and catalytic efficiency (
<emphasis id="B9297451FFB8F74EFD89FBE9FD43FB9D" box="[636,649,1094,1114]" italics="true" pageId="4" pageNumber="11">K</emphasis>
<subScript id="17D9AA06FFB8F74EFD7CFBFFFD55FB9B" attach="left" box="[649,671,1104,1116]" fontSize="5" pageId="4" pageNumber="11">cat</subScript>
/
<emphasis id="B9297451FFB8F74EFD52FBE9FD08FB9B" box="[679,706,1094,1116]" italics="true" pageId="4" pageNumber="11">
<subScript id="17D9AA06FFB8F74EFD52FBE9FD08FB9B" attach="left" box="[679,706,1094,1116]" fontSize="5" pageId="4" pageNumber="11">Km</subScript>
</emphasis>
) values were also highest for this substrate (
<tableCitation id="C6DF9DF8FFB8F74EFE0CFBCCFD8DFBB1" box="[505,583,1123,1142]" captionStart="Table 2" captionStartId="5.[87,131,183,197]" captionTargetPageId="5" captionText="Table 2 Kinetic parameters of the purified recombinant CsFatA and CsFatB proteins acting on different acyl-ACP substrate." httpUri="http://table.plazi.org/id/DF22F8CBFFB9F74FFFA2FF18FC28FF1B" pageId="4" pageNumber="11" tableUuid="DF22F8CBFFB9F74FFFA2FF18FC28FF1B">Table 2</tableCitation>
), which is in good agreement with the kinetic parameters described for most FatAs investigated to date. Similarly,
<emphasis id="B9297451FFB8F74EFE45FB36FE0FFB6A" box="[432,453,1177,1197]" italics="true" pageId="4" pageNumber="11">Cs</emphasis>
FatB displays a typical profile of FatB enzymes, showing greater catalytic efficiency towards 16:0- ACP, which displayed a
<emphasis id="B9297451FFB8F74EFEAAFB7EFEA6FB22" box="[351,364,1233,1253]" italics="true" pageId="4" pageNumber="11">V</emphasis>
<subScript id="17D9AA06FFB8F74EFE99FB73FE46FB2F" attach="left" box="[364,396,1244,1256]" fontSize="5" pageId="4" pageNumber="11">max</subScript>
value that was 5-fold higher than that for 18:1-ACP. These
<emphasis id="B9297451FFB8F74EFEB2FB42FE9EFAC6" box="[327,340,1261,1281]" italics="true" pageId="4" pageNumber="11">V</emphasis>
<subScript id="17D9AA06FFB8F74EFEA1FB57FEBEFAC3" attach="left" box="[340,372,1272,1284]" fontSize="5" pageId="4" pageNumber="11">max</subScript>
and
<emphasis id="B9297451FFB8F74EFE59FB42FE73FAC6" box="[428,441,1261,1281]" italics="true" pageId="4" pageNumber="11">K</emphasis>
<subScript id="17D9AA06FFB8F74EFE4FFB57FE1AFAC3" attach="left" box="[442,464,1272,1284]" fontSize="5" pageId="4" pageNumber="11">cat</subScript>
values were lower than those described by
<bibRefCitation id="EFCCD5B2FFB8F74EFC31FB1CFB17FB01" author="Sanchez-Garcia, A. &amp; Moreno-Perez, A. &amp; Muro-Pastor, A. &amp; Salas, J. J. &amp; Garces, R. &amp; Martinez-Force, E." box="[964,1245,1203,1223]" pageId="4" pageNumber="11" pagination="860 - 869" refId="ref10104" refString="Sanchez-Garcia, A., Moreno-Perez, A., Muro-Pastor, A., Salas, J. J., Garces, R., Martinez-Force, E., 2010. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. Phytochemistry 71, 860 - 869." type="journal article" year="2010">Sánchez-García et al. (2010)</bibRefCitation>
for
<taxonomicName id="4C5DD3C0FFB8F74EFAF0FB1DFAB5FB01" box="[1285,1407,1202,1222]" class="Magnoliopsida" family="Euphorbiaceae" genus="Ricinus" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="communis">
<emphasis id="B9297451FFB8F74EFAF0FB1DFAB5FB01" box="[1285,1407,1202,1222]" italics="true" pageId="4" pageNumber="11">R. communis</emphasis>
</taxonomicName>
, yet they were higher than those reported for
<taxonomicName id="4C5DD3C0FFB8F74EFB43FB61FC72FB39" authority="(Moreno-Perez et al., 2011)" baseAuthorityName="Moreno-Perez" baseAuthorityYear="2011" class="Magnoliopsida" family="Proteaceae" genus="Macadamia" kingdom="Plantae" order="Proteales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="tetraphylla">
<emphasis id="B9297451FFB8F74EFB43FB61FAF5FB25" box="[1206,1343,1230,1250]" italics="true" pageId="4" pageNumber="11">M. tetraphylla</emphasis>
(
<bibRefCitation id="EFCCD5B2FFB8F74EFABBFB60FC65FB39" author="Moreno-Perez, A. J. &amp; Sanchez-Garcia, A. &amp; Salas, J. J. &amp; Garces, R. &amp; Martinez-Force, E." pageId="4" pageNumber="11" pagination="82 - 87" refId="ref9566" refString="Moreno-Perez, A. J., Sanchez-Garcia, A., Salas, J. J., Garces, R., Martinez-Force, E., 2011. Acyl-ACP thioesterases from macadamia (Macadamia tetraphylla) nuts: cloning, characterization and their impact on oil composition. Plant Physiol. Biochem. 49, 82 - 87." type="journal article" year="2011">Moreno-Pérez et al., 2011</bibRefCitation>
)
</taxonomicName>
.
</paragraph>
<caption id="DF22F8CBFFB8F74EFCCAFBB1FAA8FBB5" ID-DOI="http://doi.org/10.5281/zenodo.10491224" ID-Zenodo-Dep="10491224" httpUri="https://zenodo.org/record/10491224/files/figure.png" pageId="4" pageNumber="11" startId="4.[831,857,1054,1068]" targetBox="[844,1487,527,1024]" targetPageId="4" targetType="figure">
<paragraph id="8BE2A843FFB8F74EFCCAFBB1FAA8FBB5" blockId="4.[831,1502,1053,1138]" pageId="4" pageNumber="11">
<emphasis id="B9297451FFB8F74EFCCAFBB1FCBBFBEA" bold="true" box="[831,881,1054,1069]" pageId="4" pageNumber="11">Fig. 4.</emphasis>
Substrate specificity of
<taxonomicName id="4C5DD3C0FFB8F74EFBCCFBB2FBB1FBEA" box="[1081,1147,1053,1069]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFB8F74EFBCCFBB2FBB1FBEA" box="[1081,1147,1053,1069]" italics="true" pageId="4" pageNumber="11">C. sativa</emphasis>
</taxonomicName>
acyl-ACP thioesterases expressed in
<emphasis id="B9297451FFB8F74EFA5FFBB1FA14FBEA" box="[1450,1502,1054,1069]" italics="true" pageId="4" pageNumber="11">
<taxonomicName id="4C5DD3C0FFB8F74EFA5FFBB1FA13FBEA" box="[1450,1497,1054,1069]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="4" pageNumber="11" phylum="Proteobacteria" rank="species" species="coli">E. coli</taxonomicName>
.
</emphasis>
The activity was measured with the purified His-tagged
<emphasis id="B9297451FFB8F74EFAF5FB9BFADBFB83" box="[1280,1297,1076,1092]" italics="true" pageId="4" pageNumber="11">Cs</emphasis>
FatA (black columns) and His-tagged
<emphasis id="B9297451FFB8F74EFC69FBE4FC67FB9C" box="[924,941,1099,1115]" italics="true" pageId="4" pageNumber="11">Cs</emphasis>
FatB (white columns) enzymes, testing different acyl-ACP substrates. The data represent the mean (±SD) from three independent assays.
</paragraph>
</caption>
<caption id="DF22F8CBFFB8F74EFF84F80EFEBCF81A" ID-DOI="http://doi.org/10.5281/zenodo.10491226" ID-Zenodo-Dep="10491226" httpUri="https://zenodo.org/record/10491226/files/figure.png" pageId="4" pageNumber="11" startId="4.[113,139,1953,1967]" targetBox="[387,1219,1321,1924]" targetPageId="4" targetType="figure">
<paragraph id="8BE2A843FFB8F74EFF84F80EFEBCF81A" blockId="4.[113,1501,1952,2014]" pageId="4" pageNumber="11">
<emphasis id="B9297451FFB8F74EFF84F80EFF69F868" bold="true" box="[113,163,1953,1967]" pageId="4" pageNumber="11">Fig. 3.</emphasis>
Coomassie blue stained SDSPAGE showing recombinant
<taxonomicName id="4C5DD3C0FFB8F74EFD74F80FFD09F877" box="[641,707,1952,1968]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="4" pageNumber="11" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFB8F74EFD74F80FFD09F877" box="[641,707,1952,1968]" italics="true" pageId="4" pageNumber="11">C. sativa</emphasis>
</taxonomicName>
acyl-ACP thioesterase A (panel A) and acyl-ACP thioesterase B (panel B). Lane 1, soluble fraction, 15 µg protein; lane 2, soluble fraction not retained on the NiNTA Agarose column (Qiagen), 15 µg protein; lane 3, NiNTA Agarose wash, 1.5 µg protein; lane 4, purified acylACP thioesterase 1.5 µg protein.
</paragraph>
</caption>
<caption id="DF22F8CBFFB9F74FFFA2FF18FC28FF1B" ID-Table-UUID="DF22F8CBFFB9F74FFFA2FF18FC28FF1B" httpUri="http://table.plazi.org/id/DF22F8CBFFB9F74FFFA2FF18FC28FF1B" pageId="5" pageNumber="12" startId="5.[87,131,183,197]" targetBox="[110,1451,239,462]" targetIsTable="true" targetPageId="5" targetType="table">
<paragraph id="8BE2A843FFB9F74FFFA2FF18FF59FF02" blockId="5.[87,994,183,220]" box="[87,147,183,197]" pageId="5" pageNumber="12">
<emphasis id="B9297451FFB9F74FFFA2FF18FF59FF02" bold="true" box="[87,147,183,197]" pageId="5" pageNumber="12">Table 2</emphasis>
</paragraph>
<paragraph id="8BE2A843FFB9F74FFFA2FF61FC28FF1B" blockId="5.[87,994,183,220]" box="[87,994,204,220]" pageId="5" pageNumber="12">
Kinetic parameters of the purified recombinant
<emphasis id="B9297451FFB9F74FFE21FF63FE2FFF1B" box="[468,485,204,220]" italics="true" pageId="5" pageNumber="12">Cs</emphasis>
FatA and
<emphasis id="B9297451FFB9F74FFDC4FF63FD88FF1B" box="[561,578,204,220]" italics="true" pageId="5" pageNumber="12">Cs</emphasis>
FatB proteins acting on different acyl-ACP substrate.
</paragraph>
</caption>
<paragraph id="8BE2A843FFB9F74FFECEFF5BFAE4FE09" pageId="5" pageNumber="12">
<table id="F95D5AE3FFB908B5FF9BFF40FA61FE09" box="[110,1451,239,462]" gridcols="6" gridrows="9" pageId="5" pageNumber="12">
<tr id="356DAA01FFB908B5FF9BFF40FA61FEC3" box="[110,1451,239,260]" gridrow="0" pageId="5" pageNumber="12" rowspan-0="1">
<th id="76BCC37DFFB908B5FECEFF40FE4DFEC3" box="[315,391,239,260]" gridcol="1" gridrow="0" pageId="5" pageNumber="12">Substrate</th>
<th id="76BCC37DFFB908B5FDEAFF40FDA9FEC3" box="[543,611,239,260]" gridcol="2" gridrow="0" pageId="5" pageNumber="12">
<emphasis id="B9297451FFB9F74FFDEAFF5CFDFFFEC3" box="[543,565,243,260]" italics="true" pageId="5" pageNumber="12">Km</emphasis>
(µM)
</th>
<th id="76BCC37DFFB908B5FD09FF40FC54FEC3" box="[764,926,239,260]" gridcol="3" gridrow="0" pageId="5" pageNumber="12">
<emphasis id="B9297451FFB9F74FFD09FF5CFCCDFEC5" box="[764,775,243,258]" italics="true" pageId="5" pageNumber="12">V</emphasis>
max (nkat/mg prot)
</th>
<th id="76BCC37DFFB908B5FBC3FF40FBB7FEC3" box="[1078,1149,239,260]" gridcol="4" gridrow="0" pageId="5" pageNumber="12">
<emphasis id="B9297451FFB9F74FFBC3FF5CFB8BFEC5" box="[1078,1089,243,258]" italics="true" pageId="5" pageNumber="12">K</emphasis>
(s
<emphasis id="B9297451FFB9F74FFB93FF40FBBAFF3D" box="[1126,1136,239,250]" italics="true" pageId="5" pageNumber="12"></emphasis>
1) cat
</th>
<th id="76BCC37DFFB908B5FAE3FF40FA61FEC3" box="[1302,1451,239,260]" gridcol="5" gridrow="0" pageId="5" pageNumber="12">
<emphasis id="B9297451FFB9F74FFAE3FF5CFAEBFEC5" box="[1302,1313,243,258]" italics="true" pageId="5" pageNumber="12">K</emphasis>
/
<emphasis id="B9297451FFB9F74FFACDFF5CFA91FEC5" box="[1336,1371,243,258]" italics="true" pageId="5" pageNumber="12">K(</emphasis>
s
<emphasis id="B9297451FFB9F74FFA97FF40FAA6FF3D" box="[1378,1388,239,250]" italics="true" pageId="5" pageNumber="12"></emphasis>
1 µM
<emphasis id="B9297451FFB9F74FFA61FF40FA54FF3D" box="[1428,1438,239,250]" italics="true" pageId="5" pageNumber="12"></emphasis>
1) cat
<emphasis id="B9297451FFB9F74FFAB6FF56FA84FEC3" box="[1347,1358,249,260]" italics="true" pageId="5" pageNumber="12">m</emphasis>
</th>
</tr>
<tr id="356DAA01FFB908B5FF9BFEBBFA61FEE3" box="[110,1451,276,292]" gridrow="1" pageId="5" pageNumber="12">
<th id="76BCC37DFFB908B5FF9BFEBBFF69FEE3" box="[110,163,276,292]" gridcol="0" gridrow="1" pageId="5" pageNumber="12">
<emphasis id="B9297451FFB9F74FFF9BFEBBFFB5FEE3" box="[110,127,276,292]" italics="true" pageId="5" pageNumber="12">Cs</emphasis>
FatA
</th>
<td id="76BCC37DFFB908B5FECEFEBBFE4DFEE3" box="[315,391,276,292]" gridcol="1" gridrow="1" pageId="5" pageNumber="12">16:0-ACP</td>
<td id="76BCC37DFFB908B5FDEAFEBBFDA9FEE3" box="[543,611,276,292]" gridcol="2" gridrow="1" pageId="5" pageNumber="12">1.5</td>
<td id="76BCC37DFFB908B5FD09FEBBFC54FEE3" box="[764,926,276,292]" gridcol="3" gridrow="1" pageId="5" pageNumber="12">3.8</td>
<td id="76BCC37DFFB908B5FBC3FEBBFBB7FEE3" box="[1078,1149,276,292]" gridcol="4" gridrow="1" pageId="5" pageNumber="12">0.3</td>
<td id="76BCC37DFFB908B5FAE3FEBBFA61FEE3" box="[1302,1451,276,292]" gridcol="5" gridrow="1" pageId="5" pageNumber="12">0.2</td>
</tr>
<tr id="356DAA01FFB908B5FF9BFE83FA61FEFD" box="[110,1451,300,314]" gridrow="2" pageId="5" pageNumber="12" rowspan-0="1">
<td id="76BCC37DFFB908B5FECEFE83FE4DFEFD" box="[315,391,300,314]" gridcol="1" gridrow="2" pageId="5" pageNumber="12">16:1-ACP</td>
<td id="76BCC37DFFB908B5FDEAFE83FDA9FEFD" box="[543,611,300,314]" gridcol="2" gridrow="2" pageId="5" pageNumber="12">0.5</td>
<td id="76BCC37DFFB908B5FD09FE83FC54FEFD" box="[764,926,300,314]" gridcol="3" gridrow="2" pageId="5" pageNumber="12">1.6</td>
<td id="76BCC37DFFB908B5FBC3FE83FBB7FEFD" box="[1078,1149,300,314]" gridcol="4" gridrow="2" pageId="5" pageNumber="12">0.1</td>
<td id="76BCC37DFFB908B5FAE3FE83FA61FEFD" box="[1302,1451,300,314]" gridcol="5" gridrow="2" pageId="5" pageNumber="12">0.3</td>
</tr>
<tr id="356DAA01FFB908B5FF9BFEECFA61FE96" box="[110,1451,323,337]" gridrow="3" pageId="5" pageNumber="12" rowspan-0="1">
<td id="76BCC37DFFB908B5FECEFEECFE4DFE96" box="[315,391,323,337]" gridcol="1" gridrow="3" pageId="5" pageNumber="12">18:0-ACP</td>
<td id="76BCC37DFFB908B5FDEAFEECFDA9FE96" box="[543,611,323,337]" gridcol="2" gridrow="3" pageId="5" pageNumber="12">0.5</td>
<td id="76BCC37DFFB908B5FD09FEECFC54FE96" box="[764,926,323,337]" gridcol="3" gridrow="3" pageId="5" pageNumber="12">4.8</td>
<td id="76BCC37DFFB908B5FBC3FEECFBB7FE96" box="[1078,1149,323,337]" gridcol="4" gridrow="3" pageId="5" pageNumber="12">0.4</td>
<td id="76BCC37DFFB908B5FAE3FEECFA61FE96" box="[1302,1451,323,337]" gridcol="5" gridrow="3" pageId="5" pageNumber="12">0.75</td>
</tr>
<tr id="356DAA01FFB908B5FF9BFEF5FA61FEAF" box="[110,1451,346,360]" gridrow="4" pageId="5" pageNumber="12" rowspan-0="1">
<td id="76BCC37DFFB908B5FECEFEF5FE4DFEAF" box="[315,391,346,360]" gridcol="1" gridrow="4" pageId="5" pageNumber="12">18:1-ACP</td>
<td id="76BCC37DFFB908B5FDEAFEF5FDA9FEAF" box="[543,611,346,360]" gridcol="2" gridrow="4" pageId="5" pageNumber="12">3.9</td>
<td id="76BCC37DFFB908B5FD09FEF5FC54FEAF" box="[764,926,346,360]" gridcol="3" gridrow="4" pageId="5" pageNumber="12">85.3</td>
<td id="76BCC37DFFB908B5FBC3FEF5FBB7FEAF" box="[1078,1149,346,360]" gridcol="4" gridrow="4" pageId="5" pageNumber="12">7.0</td>
<td id="76BCC37DFFB908B5FAE3FEF5FA61FEAF" box="[1302,1451,346,360]" gridcol="5" gridrow="4" pageId="5" pageNumber="12">1.8</td>
</tr>
<tr id="356DAA01FFB908B5FF9BFED6FA61FE4E" box="[110,1451,377,393]" gridrow="5" pageId="5" pageNumber="12">
<th id="76BCC37DFFB908B5FF9BFED6FF69FE4E" box="[110,163,377,393]" gridcol="0" gridrow="5" pageId="5" pageNumber="12">
<emphasis id="B9297451FFB9F74FFF9BFED6FFB5FE4E" box="[110,127,377,393]" italics="true" pageId="5" pageNumber="12">Cs</emphasis>
FatB
</th>
<td id="76BCC37DFFB908B5FECEFED6FE4DFE4E" box="[315,391,377,393]" gridcol="1" gridrow="5" pageId="5" pageNumber="12">16:0-ACP</td>
<td id="76BCC37DFFB908B5FDEAFED6FDA9FE4E" box="[543,611,377,393]" gridcol="2" gridrow="5" pageId="5" pageNumber="12">6.6</td>
<td id="76BCC37DFFB908B5FD09FED6FC54FE4E" box="[764,926,377,393]" gridcol="3" gridrow="5" pageId="5" pageNumber="12">68.1</td>
<td id="76BCC37DFFB908B5FBC3FED6FBB7FE4E" box="[1078,1149,377,393]" gridcol="4" gridrow="5" pageId="5" pageNumber="12">4.4</td>
<td id="76BCC37DFFB908B5FAE3FED6FA61FE4E" box="[1302,1451,377,393]" gridcol="5" gridrow="5" pageId="5" pageNumber="12">0.6</td>
</tr>
<tr id="356DAA01FFB908B5FF9BFE3DFA61FE67" box="[110,1451,402,416]" gridrow="6" pageId="5" pageNumber="12" rowspan-0="1">
<td id="76BCC37DFFB908B5FECEFE3DFE4DFE67" box="[315,391,402,416]" gridcol="1" gridrow="6" pageId="5" pageNumber="12">16:1-ACP</td>
<td id="76BCC37DFFB908B5FDEAFE3DFDA9FE67" box="[543,611,402,416]" gridcol="2" gridrow="6" pageId="5" pageNumber="12">2.2</td>
<td id="76BCC37DFFB908B5FD09FE3DFC54FE67" box="[764,926,402,416]" gridcol="3" gridrow="6" pageId="5" pageNumber="12">0.8</td>
<td id="76BCC37DFFB908B5FBC3FE3DFBB7FE67" box="[1078,1149,402,416]" gridcol="4" gridrow="6" pageId="5" pageNumber="12">0.06</td>
<td id="76BCC37DFFB908B5FAE3FE3DFA61FE67" box="[1302,1451,402,416]" gridcol="5" gridrow="6" pageId="5" pageNumber="12">0.03</td>
</tr>
<tr id="356DAA01FFB908B5FF9BFE07FA61FE70" box="[110,1451,424,439]" gridrow="7" pageId="5" pageNumber="12" rowspan-0="1">
<td id="76BCC37DFFB908B5FECEFE07FE4DFE70" box="[315,391,424,439]" gridcol="1" gridrow="7" pageId="5" pageNumber="12">18:0-ACP</td>
<td id="76BCC37DFFB908B5FDEAFE07FDA9FE70" box="[543,611,424,439]" gridcol="2" gridrow="7" pageId="5" pageNumber="12">3.9</td>
<td id="76BCC37DFFB908B5FD09FE07FC54FE70" box="[764,926,424,439]" gridcol="3" gridrow="7" pageId="5" pageNumber="12">7.2</td>
<td id="76BCC37DFFB908B5FBC3FE07FBB7FE70" box="[1078,1149,424,439]" gridcol="4" gridrow="7" pageId="5" pageNumber="12">0.6</td>
<td id="76BCC37DFFB908B5FAE3FE07FA61FE70" box="[1302,1451,424,439]" gridcol="5" gridrow="7" pageId="5" pageNumber="12">0.2</td>
</tr>
<tr id="356DAA01FFB908B5FF9BFE6FFA61FE09" box="[110,1451,448,462]" gridrow="8" pageId="5" pageNumber="12" rowspan-0="1">
<td id="76BCC37DFFB908B5FECEFE6FFE4DFE09" box="[315,391,448,462]" gridcol="1" gridrow="8" pageId="5" pageNumber="12">18:1-ACP</td>
<td id="76BCC37DFFB908B5FDEAFE6FFDA9FE09" box="[543,611,448,462]" gridcol="2" gridrow="8" pageId="5" pageNumber="12">3.1</td>
<td id="76BCC37DFFB908B5FD09FE6FFC54FE09" box="[764,926,448,462]" gridcol="3" gridrow="8" pageId="5" pageNumber="12">12.8</td>
<td id="76BCC37DFFB908B5FBC3FE6FFBB7FE09" box="[1078,1149,448,462]" gridcol="4" gridrow="8" pageId="5" pageNumber="12">1.0</td>
<td id="76BCC37DFFB908B5FAE3FE6FFA61FE09" box="[1302,1451,448,462]" gridcol="5" gridrow="8" pageId="5" pageNumber="12">0.3</td>
</tr>
</table>
</paragraph>
<paragraph id="8BE2A843FFB9F74FFFA2FE49FCCEFE33" blockId="5.[87,772,486,500]" box="[87,772,486,500]" pageId="5" pageNumber="12">
<tableNote id="76BBA9CDFFB9F74FFFA2FE49FCCEFE33" box="[87,772,486,500]" pageId="5" pageNumber="12" targetBox="[110,1451,239,462]" targetPageId="5">Data represent the mean of 3 independent determinations; SD &lt;10% of mean value.</tableNote>
</paragraph>
<caption id="DF22F8CBFFB9F74FFFA2FBE8FD58FB43" ID-DOI="http://doi.org/10.5281/zenodo.10491230" ID-Zenodo-Dep="10491230" httpUri="https://zenodo.org/record/10491230/files/figure.png" pageId="5" pageNumber="12" startId="5.[87,113,1095,1109]" targetBox="[101,744,564,1065]" targetPageId="5" targetType="figure">
<paragraph id="8BE2A843FFB9F74FFFA2FBE8FD58FB43" blockId="5.[87,759,1094,1156]" pageId="5" pageNumber="12">
<emphasis id="B9297451FFB9F74FFFA2FBE8FF43FB91" bold="true" box="[87,137,1095,1110]" pageId="5" pageNumber="12">Fig. 5.</emphasis>
Expression of the
<emphasis id="B9297451FFB9F74FFED7FBE9FE9CFB91" box="[290,342,1094,1110]" italics="true" pageId="5" pageNumber="12">CsFatA</emphasis>
(black columns) and
<emphasis id="B9297451FFB9F74FFDF1FBE9FDFDFB91" box="[516,567,1094,1110]" italics="true" pageId="5" pageNumber="12">CsFatB</emphasis>
(white columns) genes in vegetative tissues and developing seeds from
<taxonomicName id="4C5DD3C0FFB9F74FFE11FBF2FDECFBAA" box="[484,550,1117,1133]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="5" pageNumber="12" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFB9F74FFE11FBF2FDECFBAA" box="[484,550,1117,1133]" italics="true" pageId="5" pageNumber="12">C. sativa</emphasis>
</taxonomicName>
determined by QRT-PCR. The data represent the mean values ± SD of three independent assays.
</paragraph>
</caption>
<paragraph id="8BE2A843FFB9F74FFFA2FB12FD4EFB16" blockId="5.[87,644,1213,1233]" box="[87,644,1213,1233]" pageId="5" pageNumber="12">
<heading id="D0AA1F2FFFB9F74FFFA2FB12FD4EFB16" box="[87,644,1213,1233]" fontSize="36" level="2" pageId="5" pageNumber="12" reason="3">
<emphasis id="B9297451FFB9F74FFFA2FB12FD4EFB16" box="[87,644,1213,1233]" italics="true" pageId="5" pageNumber="12">
2.5. Expression profiles of
<taxonomicName id="4C5DD3C0FFB9F74FFEA6FB12FE6FFB16" ID-CoL="Q9DM" box="[339,421,1213,1233]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="5" pageNumber="12" phylum="Tracheophyta" rank="species" species="sativa">C. sativa</taxonomicName>
acyl-ACP thioesterases
</emphasis>
</heading>
</paragraph>
<paragraph id="8BE2A843FFB9F74FFF83FB59FD5CF9E7" blockId="5.[87,757,1270,1791]" pageId="5" pageNumber="12">
The expression of the acyl-ACP thioesterase genes in developing seeds and vegetative tissues of
<taxonomicName id="4C5DD3C0FFB9F74FFE6FFABFFE27FAE3" box="[410,493,1296,1316]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="5" pageNumber="12" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFB9F74FFE6FFABFFE27FAE3" box="[410,493,1296,1316]" italics="true" pageId="5" pageNumber="12">C. sativa</emphasis>
</taxonomicName>
was studied by quantitative real time PCR (QRT-PCR). The profile of transcript accumulation was temporally regulated during the development of the embryo (
<figureCitation id="1366B4C6FFB9F74FFF43FACAFF24FABF" box="[182,238,1381,1400]" captionStart="Fig" captionStartId="5.[87,113,1095,1109]" captionTargetBox="[101,744,564,1065]" captionTargetId="figure-817@5.[100,745,563,1066]" captionTargetPageId="5" captionText="Fig. 5. Expression of the CsFatA (black columns) and CsFatB (white columns) genes in vegetative tissues and developing seeds from C. sativa determined by QRT-PCR. The data represent the mean values ± SD of three independent assays." figureDoi="http://doi.org/10.5281/zenodo.10491230" httpUri="https://zenodo.org/record/10491230/files/figure.png" pageId="5" pageNumber="12">Fig. 5</figureCitation>
), with the strongest expression of the
<emphasis id="B9297451FFB9F74FFD73FACBFD0DFABF" box="[646,711,1380,1400]" italics="true" pageId="5" pageNumber="12">CsFatA</emphasis>
and
<emphasis id="B9297451FFB9F74FFFA2FA2FFF5DFA53" box="[87,151,1408,1428]" italics="true" pageId="5" pageNumber="12">CsFatB</emphasis>
genes occurring in developing seeds at 12, 18 and 24 days after flowering (DAF), the phase of oil accumulation (
<bibRefCitation id="EFCCD5B2FFB9F74FFD61FA32FF43FA0B" author="He, X. &amp; Chen, G. Q. &amp; Lin, J. T. &amp; McKeon, T. A." pageId="5" pageNumber="12" pagination="865 - 871" refId="ref8759" refString="He, X., Chen, G. Q., Lin, J. T., McKeon, T. A., 2004. Regulation of diacylglycerolacyltransferase in developing seeds of castor. Lipids 39, 865 - 871." type="journal article" year="2004">He et al., 2004</bibRefCitation>
). In seed tissue,
<emphasis id="B9297451FFB9F74FFEC3FA17FEBDFA0B" box="[310,375,1464,1484]" italics="true" pageId="5" pageNumber="12">CsFatA</emphasis>
was always expressed more strongly than
<emphasis id="B9297451FFB9F74FFF78FA7BFF07FA2F" box="[141,205,1492,1512]" italics="true" pageId="5" pageNumber="12">CsFatB</emphasis>
, which fits well with the composition of
<taxonomicName id="4C5DD3C0FFB9F74FFD8FFA7BFD19FA2F" box="[634,723,1492,1512]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="5" pageNumber="12" phylum="Tracheophyta" rank="genus">
<emphasis id="B9297451FFB9F74FFD8FFA7BFD19FA2F" box="[634,723,1492,1512]" italics="true" pageId="5" pageNumber="12">Camelina</emphasis>
</taxonomicName>
oil in which linoleic and linolenic acids predominate, fatty acids derived from oleic acid that is mainly exported via FatA.
</paragraph>
<paragraph id="8BE2A843FFB9F74FFF83F987FE95F938" blockId="5.[87,757,1270,1791]" pageId="5" pageNumber="12">
The expression of these genes is significantly weaker in vegetative tissue, with the exception of
<emphasis id="B9297451FFB9F74FFE4EF9ECFE31F990" box="[443,507,1603,1623]" italics="true" pageId="5" pageNumber="12">CsFatB</emphasis>
in leaves that could be involved in the production of saturated fatty acids used for surface lipid biosynthesis. Indeed, stronger expression of
<emphasis id="B9297451FFB9F74FFDA6F9D4FD59F948" box="[595,659,1659,1679]" italics="true" pageId="5" pageNumber="12">CsFatB</emphasis>
in leaves was also reported in
<taxonomicName id="4C5DD3C0FFB9F74FFECEF938FD3BF96C" authority="(Sanchez-Garcia et al., 2010)" baseAuthorityName="Sanchez-Garcia" baseAuthorityYear="2010" box="[315,753,1687,1707]" class="Magnoliopsida" family="Euphorbiaceae" genus="Ricinus" kingdom="Plantae" order="Malpighiales" pageId="5" pageNumber="12" phylum="Tracheophyta" rank="species" species="communis">
<emphasis id="B9297451FFB9F74FFECEF938FE70F96C" box="[315,442,1687,1707]" italics="true" pageId="5" pageNumber="12">R. communis</emphasis>
(
<bibRefCitation id="EFCCD5B2FFB9F74FFE39F937FD2DF96C" author="Sanchez-Garcia, A. &amp; Moreno-Perez, A. &amp; Muro-Pastor, A. &amp; Salas, J. J. &amp; Garces, R. &amp; Martinez-Force, E." box="[460,743,1688,1707]" pageId="5" pageNumber="12" pagination="860 - 869" refId="ref10104" refString="Sanchez-Garcia, A., Moreno-Perez, A., Muro-Pastor, A., Salas, J. J., Garces, R., Martinez-Force, E., 2010. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation. Phytochemistry 71, 860 - 869." type="journal article" year="2010">Sánchez-García et al., 2010</bibRefCitation>
)
</taxonomicName>
. Nevertheless, the expression patterns observed in this analysis suggests that
<taxonomicName id="4C5DD3C0FFB9F74FFF1EF960FE8AF924" box="[235,320,1743,1763]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="5" pageNumber="12" phylum="Tracheophyta" rank="species" species="sativa">
<emphasis id="B9297451FFB9F74FFF1EF960FE8AF924" box="[235,320,1743,1763]" italics="true" pageId="5" pageNumber="12">C. sativa</emphasis>
</taxonomicName>
acyl-ACP thioesterases are important for oil deposition in the seed.
</paragraph>
</subSubSection>
<subSubSection id="C347FBC8FFB9F74FFFA2F8EFFC5EFC51" pageId="5" pageNumber="12" type="discussion">
<paragraph id="8BE2A843FFB9F74FFFA2F8EFFF3AF894" blockId="5.[87,240,1856,1875]" box="[87,240,1856,1875]" pageId="5" pageNumber="12">
<heading id="D0AA1F2FFFB9F74FFFA2F8EFFF3AF894" bold="true" box="[87,240,1856,1875]" fontSize="36" level="1" pageId="5" pageNumber="12" reason="1">
<emphasis id="B9297451FFB9F74FFFA2F8EFFF3AF894" bold="true" box="[87,240,1856,1875]" pageId="5" pageNumber="12">3. Conclusions</emphasis>
</heading>
</paragraph>
<paragraph id="8BE2A843FFB9F74FFF83F8D7FC5EFC51" blockId="5.[87,758,1911,2015]" lastBlockId="5.[805,1475,564,918]" pageId="5" pageNumber="12">
The cloning and sequencing of
<emphasis id="B9297451FFB9F74FFE40F8D8FE3CF84C" box="[437,502,1911,1931]" italics="true" pageId="5" pageNumber="12">CsFatA</emphasis>
and
<emphasis id="B9297451FFB9F74FFDDFF8D8FDA0F84C" box="[554,618,1911,1931]" italics="true" pageId="5" pageNumber="12">CsFatB</emphasis>
thioesterases from developing
<taxonomicName id="4C5DD3C0FFB9F74FFEF2F83CFEAAF860" box="[263,352,1939,1959]" class="Magnoliopsida" family="Brassicaceae" genus="Camelina" kingdom="Plantae" order="Brassicales" pageId="5" pageNumber="12" phylum="Tracheophyta" rank="genus">
<emphasis id="B9297451FFB9F74FFEF2F83CFEAAF860" box="[263,352,1939,1959]" italics="true" pageId="5" pageNumber="12">Camelina</emphasis>
</taxonomicName>
seeds shows that they are encoded by a single copy gene, three different alleles existing of each gene. In both cases, the differences found in the coding region between these alleles are not important, accumulating mostly single nucleotide polymorphisms (SNP), insertions and deletions in the introns. Indeed, the highly conserved papain-like catalytic triad, asparagine, histidine and glutamine, are maintained in
<emphasis id="B9297451FFB9F74FFAFCFD28FAD4FD5C" box="[1289,1310,647,667]" italics="true" pageId="5" pageNumber="12">Cs</emphasis>
FatA and
<emphasis id="B9297451FFB9F74FFA89FD28FA5BFD5C" box="[1404,1425,647,667]" italics="true" pageId="5" pageNumber="12">Cs</emphasis>
FatB. The heterologous expression of these enzymes in
<taxonomicName id="4C5DD3C0FFB9F74FFAE0FD0CFA86FD70" box="[1301,1356,675,695]" class="Gammaproteobacteria" family="Enterobacteriaceae" genus="Escherichia" kingdom="Bacteria" order="Enterobacteriales" pageId="5" pageNumber="12" phylum="Proteobacteria" rank="species" species="coli">
<emphasis id="B9297451FFB9F74FFAE0FD0CFA86FD70" box="[1301,1356,675,695]" italics="true" pageId="5" pageNumber="12">E. coli</emphasis>
</taxonomicName>
produced a contrasting effect on bacterial fatty acid composition,
<emphasis id="B9297451FFB9F74FFAB1FD10FA93FD14" box="[1348,1369,703,723]" italics="true" pageId="5" pageNumber="12">Cs</emphasis>
FatA causing a decrease in the unsaturated fatty acids, mainly 18:1ω7, and
<emphasis id="B9297451FFB9F74FFCD0FD58FCF0FCCC" box="[805,826,759,779]" italics="true" pageId="5" pageNumber="12">Cs</emphasis>
FatB augmenting these fatty acids. The substrate specificity of these enzymes is similar to that reported previously in other plants,
<emphasis id="B9297451FFB9F74FFC80FC80FC40FC84" box="[885,906,815,835]" italics="true" pageId="5" pageNumber="12">Cs</emphasis>
FatA showing a strong preference for 18:1-ACP and
<emphasis id="B9297451FFB9F74FFCD0FCE5FCF0FC99" box="[805,826,842,862]" italics="true" pageId="5" pageNumber="12">Cs</emphasis>
FatB for 16:0-ACP. The kinetic parameters of both enzymes differ only slightly from those described in
<taxonomicName id="4C5DD3C0FFB9F74FFB6AFCC9FACAFCBD" box="[1183,1280,870,890]" class="Magnoliopsida" family="Asteraceae" genus="Helianthus" kingdom="Plantae" order="Asterales" pageId="5" pageNumber="12" phylum="Tracheophyta" rank="species" species="annuus">
<emphasis id="B9297451FFB9F74FFB6AFCC9FACAFCBD" box="[1183,1280,870,890]" italics="true" pageId="5" pageNumber="12">H. annuus</emphasis>
</taxonomicName>
,
<taxonomicName id="4C5DD3C0FFB9F74FFAF9FCC9FA4DFCBD" box="[1292,1415,870,890]" class="Magnoliopsida" family="Euphorbiaceae" genus="Ricinus" kingdom="Plantae" order="Malpighiales" pageId="5" pageNumber="12" phylum="Tracheophyta" rank="species" species="communis">
<emphasis id="B9297451FFB9F74FFAF9FCC9FA4DFCBD" box="[1292,1415,870,890]" italics="true" pageId="5" pageNumber="12">R. communis</emphasis>
</taxonomicName>
or
<emphasis id="B9297451FFB9F74FFA5FFCC9FC5EFC51" italics="true" pageId="5" pageNumber="12">
<taxonomicName id="4C5DD3C0FFB9F74FFA5FFCC9FC5AFC51" class="Magnoliopsida" family="Proteaceae" genus="Macadamia" kingdom="Plantae" order="Proteales" pageId="5" pageNumber="12" phylum="Tracheophyta" rank="species" species="tetraphylla">M. tetraphylla</taxonomicName>
.
</emphasis>
</paragraph>
</subSubSection>
</treatment>
</document>