298 lines
41 KiB
XML
298 lines
41 KiB
XML
<document id="878679C574966B341D09171A31755227" ID-DOI="10.1016/j.phytochem.2020.112312" ID-ISSN="1873-3700" ID-Zenodo-Dep="8294640" IM.bibliography_approvedBy="felipe" IM.illustrations_approvedBy="felipe" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.tables_approvedBy="felipe" IM.taxonomicNames_approvedBy="felipe" IM.treatments_approvedBy="felipe" checkinTime="1693257579443" checkinUser="felipe" docAuthor="Grignon-Dubois, Micheline, Montaudouin, Xavier De & Rezzonico, Bernadette" docDate="2020" docId="03E487FBFFCCFF954175FB5BFDFDFBB3" docLanguage="en" docName="Phytochemistry.174.112312.pdf" docOrigin="Phytochemistry (112312) 174" docSource="http://dx.doi.org/10.1016/j.phytochem.2020.112312" docStyle="DocumentStyle:F36D69FC8B198FBE91029DF9C24697D3.5:Phytochemistry.2020-.journal_article" docStyleId="F36D69FC8B198FBE91029DF9C24697D3" docStyleName="Phytochemistry.2020-.journal_article" docStyleVersion="5" docTitle="Spartina Schreb." docType="treatment" docVersion="3" lastPageNumber="10" masterDocId="FFDDFF83FFC4FF9C4111FFDEFFAFFFA0" masterDocTitle="Flavonoid pattern inheritance in the allopolyploid Spartina anglica - Comparison with the parental species S. maritima and S. alterniflora" masterLastPageNumber="13" masterPageNumber="1" pageNumber="9" updateTime="1693417387379" updateUser="felipe">
|
||
<mods:mods id="69139CDA53A6EBB70E3716DEDB1FA337" xmlns:mods="http://www.loc.gov/mods/v3">
|
||
<mods:titleInfo id="45583A61B09E7B9DE091538D5D4E732C">
|
||
<mods:title id="E3C0CD5E28D08FA1D2CCB74845558594">Flavonoid pattern inheritance in the allopolyploid Spartina anglica - Comparison with the parental species S. maritima and S. alterniflora</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:name id="E685D02D5783754A577B19883B6965CA" type="personal">
|
||
<mods:role id="8528ACB4F466B3C9B2FF724B8F771938">
|
||
<mods:roleTerm id="46F5450EB23A3BA1ABE9E08C6D5FFDE1">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="204BFCDE4357C4CF1CC3F554C448C8FD">Grignon-Dubois, Micheline</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="918DF57882ADB94CD2499F46D8F8D5FA" type="personal">
|
||
<mods:role id="A0D37C6C245138DBBF55F3B1E331D996">
|
||
<mods:roleTerm id="C9C9611BFCA39A83B5F9DB89466C17F2">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="495F035EE1A24F30838F5BE9EE866FD9">Montaudouin, Xavier De</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="7D1972716603305083C4CAE5192BE891" type="personal">
|
||
<mods:role id="683EE09E3216146F7CD8C2DC5D16F2F4">
|
||
<mods:roleTerm id="D32C05618A97FB16DD930F95107139A4">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="E387C506A9E6409043C321C147F7AF9E">Rezzonico, Bernadette</mods:namePart>
|
||
</mods:name>
|
||
<mods:typeOfResource id="7E1A99EFEC5A113C8830CEC78893877E">text</mods:typeOfResource>
|
||
<mods:relatedItem id="3D93C907749EC3906B4E43ECEDA1E134" type="host">
|
||
<mods:titleInfo id="4B73600FD943D714643D1D2EF61A46FA">
|
||
<mods:title id="F2E059D7A10E15CE01BF8175634085D3">Phytochemistry</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:part id="5731097BCF96BCFCC344FEEE939A08E5">
|
||
<mods:date id="52571B3E8840A1214E2EA3AA8D55A25F">2020</mods:date>
|
||
<mods:detail id="21910EA8D9B9F8A469F177DD7B5597E2" type="series">
|
||
<mods:title id="30F50AED186BD7A03BAF1058B894DB7F">112312</mods:title>
|
||
</mods:detail>
|
||
<mods:detail id="08CE53CCCA926E95D06F6913A59895C7" type="pubDate">
|
||
<mods:number id="19D5726F0CF3CD1F231E98E86C0C8891">2020-06-30</mods:number>
|
||
</mods:detail>
|
||
<mods:detail id="E7BD5AF7835D40E671E438D184E55D5F" type="volume">
|
||
<mods:number id="DBA474B15C666860E4918A4E4D8AA58C">174</mods:number>
|
||
</mods:detail>
|
||
<mods:extent id="DA557040AC17B8273C1A81BE38E02DB0" unit="page">
|
||
<mods:start id="94774415658080F48173DAD3314B48DF">1</mods:start>
|
||
<mods:end id="69117D0B875B7B7E7043467590F5E3AF">13</mods:end>
|
||
</mods:extent>
|
||
</mods:part>
|
||
</mods:relatedItem>
|
||
<mods:location id="9CFF4E1DA4347ED6A83692A9ADE98237">
|
||
<mods:url id="9C3E6F5ACACF4CFA85E8666457D5C761">http://dx.doi.org/10.1016/j.phytochem.2020.112312</mods:url>
|
||
</mods:location>
|
||
<mods:classification id="F42DE9B0F7B450B8E2B7CC57CD91C746">journal article</mods:classification>
|
||
<mods:identifier id="B82B6236A515BF1BE0F7510BA0A6317C" type="DOI">10.1016/j.phytochem.2020.112312</mods:identifier>
|
||
<mods:identifier id="0C2E54EBC286CE005841E9FFB57D5376" type="ISSN">1873-3700</mods:identifier>
|
||
<mods:identifier id="A339F4345A3598896BF8347E0EFE0E74" type="Zenodo-Dep">8294640</mods:identifier>
|
||
</mods:mods>
|
||
<treatment id="03E487FBFFCCFF954175FB5BFDFDFBB3" LSID="urn:lsid:plazi:treatment:03E487FBFFCCFF954175FB5BFDFDFBB3" httpUri="http://treatment.plazi.org/id/03E487FBFFCCFF954175FB5BFDFDFBB3" lastPageId="9" lastPageNumber="10" pageId="8" pageNumber="9">
|
||
<subSubSection id="C3576566FFCCFF944175FB5BFDC3FB39" box="[100,620,1157,1177]" pageId="8" pageNumber="9" type="nomenclature">
|
||
<paragraph id="8BF236EDFFCCFF944175FB5BFDC3FB39" blockId="8.[100,620,1157,1177]" box="[100,620,1157,1177]" pageId="8" pageNumber="9">
|
||
<heading id="D0BA8181FFCCFF944175FB5BFDC3FB39" bold="true" box="[100,620,1157,1177]" fontSize="36" level="1" pageId="8" pageNumber="9" reason="1">
|
||
<emphasis id="B939EAFFFFCCFF944175FB5BFDC3FB39" bold="true" box="[100,620,1157,1177]" italics="true" pageId="8" pageNumber="9">
|
||
3.2. Biological potential of the
|
||
<taxonomicName id="4C4D4D6EFFCCFF94406EFB5BFE65FB38" ID-CoL="8W3NT" authority="Schreb." authorityName="Schreb." box="[383,458,1157,1176]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="genus">Spartina</taxonomicName>
|
||
flavonoid content
|
||
</emphasis>
|
||
</heading>
|
||
</paragraph>
|
||
</subSubSection>
|
||
<subSubSection id="C3576566FFCCFF954194FB63FDFDFBB3" lastPageId="9" lastPageNumber="10" pageId="8" pageNumber="9" type="description">
|
||
<paragraph id="8BF236EDFFCCFF944194FB63FC03FEFA" blockId="8.[100,771,1213,1456]" lastBlockId="8.[818,1488,159,1433]" pageId="8" pageNumber="9">
|
||
Compared to other classes of flavonoid, little is available in the literature about the biological role of
|
||
<emphasis id="B939EAFFFFCCFF9440DBFB07FE78FB4C" bold="true" box="[458,471,1241,1260]" italics="true" pageId="8" pageNumber="9">C</emphasis>
|
||
-glycosidic flavonoids in plants. However, activities ascribed to
|
||
<emphasis id="B939EAFFFFCCFF9440B8FB2BFE12FAA8" bold="true" box="[425,445,1269,1288]" italics="true" pageId="8" pageNumber="9">C-</emphasis>
|
||
glycosidic flavones include their functioning as antioxidants (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF94406FFACFFD2EFA84" author="Ramarathnam, N. & Osawa, T. & Namiki, M. & Kawakishi, S." box="[382,641,1297,1316]" pageId="8" pageNumber="9" pagination="316 - 319" refId="ref16513" refString="Ramarathnam, N., Osawa, T., Namiki, M., Kawakishi, S., 1989. Chemical studies on novel rice hull antioxidants: 2. identification of isovitexin, A C-glycosylflavonoid. J. Agric. Food Chem. 37, 316 - 319." type="journal article" year="1989">Ramarathnam et al., 1989</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFDC4B1CFFCCFF944380FACFFF3BFAE0" author="Kitta, K. & Hagiwara, Y. & Shibamoto, T." pageId="8" pageNumber="9" pagination="1843 - 1845" refId="ref15439" refString="Kitta, K., Hagiwara, Y., Shibamoto, T., 1992. Antioxidative activity of an isoflavonoid, 2 " - O - glycosylisovitexin isolated from green barley leaves. J. Agric. Food Chem. 40, 1843 - 1845." type="journal article" year="1992">Kitta et al., 1992</bibRefCitation>
|
||
), efficient glucosidase and pectinase inhibitors (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF944382FAF3FF46FAFC" author="Ravise, A. & Chopin, J." pageId="8" pageNumber="9" pagination="257 - 269" refId="ref16565" refString="Ravise, A., Chopin, J., 1981. Influence de la structure de composes phenoliques sur l'inhibition du Phytophthora parasitica et d'enzymes participant aux processus parasitaires V. Flavones, O - et C - glycosides. J. Phytopathol. 100, 257 - 269." type="journal article" year="1981">Ravisé and Chopin, 1981</bibRefCitation>
|
||
), insect feeding attractants (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF94431BFA97FD00FAFB" author="Kim, M. & Koh, H. S. & Fukmai, H." box="[522,687,1352,1372]" pageId="8" pageNumber="9" pagination="441 - 452" refId="ref15346" refString="Kim, M., Koh, H. S., Fukmai, H., 1985. Isolation of C-glucosylflavones as probing stimulant of plant hoppers in rice plant. J. Chem. Ecol. 11, 441 - 452." type="journal article" year="1985">Kim et al., 1985</bibRefCitation>
|
||
), larvae feeding deterrents (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF944030FABBFD86FAD8" author="Haribal, M. & Renwick, J. A. A." box="[289,553,1381,1400]" pageId="8" pageNumber="9" pagination="1237 - 1240" refId="ref15055" refString="Haribal, M., Renwick, J. A. A., 1998. Isovitexin 6 '' - O - β-D-glucopyranoside: a feeding deterrent to Pieris nupi oleracea f rom Alliaria petiolata. Phytochemistry 47, 1237 - 1240." type="journal article" year="1998">Haribal and Renwick, 1998</bibRefCitation>
|
||
), antimicrobial agents (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF94417DFA5EFF5CFA33" author="Li, S. H. & Zhao, Q. & Cheng, Y. & Liu, F." box="[108,243,1408,1428]" pageId="8" pageNumber="9" pagination="4 - 6" refId="ref16084" refString="Li, S. H., Zhao, Q., Cheng, Y., Liu, F., 2013. Antimicrobial activities of vitexin from Alsophila spinutosa. Food Res. Dev. 34, 4 - 6." type="journal article" year="2013">Li et al., 2013</bibRefCitation>
|
||
), promoters of mycorrhizal symbioses (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF944360FA5EFF3BFA0F" author="Akiyama, K. & Matsuoka, H. & Hayashi, H." pageId="8" pageNumber="9" pagination="334 - 340" refId="ref13456" refString="Akiyama, K., Matsuoka, H., Hayashi, H., 2002. Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol. Plant Microbe Interact. 15, 334 - 340." type="journal article" year="2002">Akiyama et al., 2002</bibRefCitation>
|
||
), and UV-protective pigments (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF9440CCFA43FD7DFA0F" author="Les, D. & Sheridan, D. J." box="[477,722,1436,1456]" pageId="8" pageNumber="9" pagination="453 - 465" refId="ref16000" refString="Les, D., Sheridan, D. J., 1990. Biochemical heterophylly and flavonoid evolution in North American potamogeton (potamogenoceae). Am. J. Bot. 77, 453 - 465." type="journal article" year="1990">Les and Sheridan, 1990</bibRefCitation>
|
||
).
|
||
<emphasis id="B939EAFFFFCCFF9443FFFA42FC20FF12" bold="true" box="[750,911,159,1455]" italics="true" pageId="8" pageNumber="9">Cglycosidic</emphasis>
|
||
flavones function as antibiotic agents through their subsequent conversion to the more toxic quinones (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF944454FF65FC66FF4A" author="Wiseman, B. R. & Carpenter, J. E." pageId="8" pageNumber="9" pagination="1037 - 1043" refId="ref17382" refString="Wiseman, B. R., Carpenter, J. E., 1995. Growth inhibition of corn earworm (Lepidoptera Noctuidae) larvae reared on resistant corn silk diets. J. Econ. Entomol. 88, 1037 - 1043." type="journal article" year="1995">Wiseman and Carpenter, 1995</bibRefCitation>
|
||
). In oats, they have been identified as a defence against plant-parasitic nematodes (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF944522FF2DFB42FEA6" author="Soriano, I. R. & Asenstorfer, R. E. & Schmidt, O. & Riley, I. T." box="[1075,1261,243,262]" pageId="8" pageNumber="9" pagination="1207 - 1214" refId="ref16901" refString="Soriano, I. R., Asenstorfer, R. E., Schmidt, O., Riley, I. T., 2004. Inducible flavone in oats (Avena sativa) is a novel defense against plant-parasitic nematodes. Nematology 94, 1207 - 1214." type="journal article" year="2004">Soriano et al., 2004</bibRefCitation>
|
||
) and as crop protectant against weeds (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF9442D4FED1FB0BFE82" author="De Bertoldi, C. & de Leo, M. & Braca, A. & Ercoli, L." box="[965,1188,271,290]" pageId="8" pageNumber="9" pagination="169 - 176" refId="ref13867" refString="De Bertoldi, C., de Leo, M., Braca, A., Ercoli, L., 2009. Bioassay-guided isolation of allelochemicals from Avena sativa L.: allelopathic potential of flavone C - glycosides. Chemoecology 19, 169 - 176." type="journal article" year="2009">De Bertoldi et al., 2009</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFDC4B1CFFCCFF9445A0FED1FAFAFE82" author="Kong, C. & Xu, X. & Zhou, B. & Hu, F. & Zhang, C. & Zhang, M." box="[1201,1365,271,290]" pageId="8" pageNumber="9" pagination="1123 - 1128" refId="ref15487" refString="Kong, C., Xu, X., Zhou, B., Hu, F., Zhang, C., Zhang, M., 2004. Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry 65, 1123 - 1128." type="journal article" year="2004">Kong et al., 2004</bibRefCitation>
|
||
). Isoschaftoside has been shown to act as a seed germination inhibitor (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF94449BFEF5FC31FEFA" author="Hooper, A. M. & Tsanuo, M. K. & Chamberlain, K. & Tittcomb, K. & Scholes, J. & Hassanali, A. & Khan, R. & Pickett, J. A." pageId="8" pageNumber="9" refId="ref15098" refString="Hooper, A. M., Tsanuo, M. K., Chamberlain, K., Tittcomb, K., Scholes, J., Hassanali, A., Khan, R., Pickett, J. A., 2010. Isoschaftoside, a C - glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga." type="book" year="2010">Hooper et al., 2010</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="8BF236EDFFCCFF944242FEBDFA0DFDA1" blockId="8.[818,1488,159,1433]" pageId="8" pageNumber="9">
|
||
From a biosynthetic point of view, natural flavonoid glycosides are mainly synthesized by
|
||
<emphasis id="B939EAFFFFCCFF94451FFEA0FBB2FE31" bold="true" box="[1038,1053,382,401]" italics="true" pageId="8" pageNumber="9">O</emphasis>
|
||
-glycosyltransferase, but a few by
|
||
<emphasis id="B939EAFFFFCCFF944479FEA0FADAFE31" bold="true" box="[1384,1397,382,401]" italics="true" pageId="8" pageNumber="9">C</emphasis>
|
||
-glycosyltransferase (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF9442B7FE45FBE7FE0D" author="Yang, B. & Liua, H. & Yanga, J. & Gupta, V. K. & Jianga, Y." box="[934,1096,410,430]" pageId="8" pageNumber="9" pagination="116 - 124" refId="ref17667" refString="Yang, B., Liua, H., Yanga, J., Gupta, V. K., Jianga, Y., 2018. New insights on bioactivities and biosynthesis of flavonoid glycosides. Trends Food Sci. Technol. 79, 116 - 124." type="journal article" year="2018">Yang et al., 2018</bibRefCitation>
|
||
). Compared to the large accumulation of tricin-7-
|
||
<emphasis id="B939EAFFFFCCFF94426FFE68FC22FE69" bold="true" box="[894,909,438,457]" italics="true" pageId="8" pageNumber="9">O</emphasis>
|
||
-diglucuronide in
|
||
<taxonomicName id="4C4D4D6EFFCCFF944525FE68FB01FE69" box="[1076,1198,438,457]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="alterniflora">
|
||
<emphasis id="B939EAFFFFCCFF944525FE68FB01FE69" bold="true" box="[1076,1198,438,457]" italics="true" pageId="8" pageNumber="9">S. alterniflora</emphasis>
|
||
</taxonomicName>
|
||
and
|
||
<taxonomicName id="4C4D4D6EFFCCFF9445CCFE68FA9CFE69" box="[1245,1331,438,457]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="anglica">
|
||
<emphasis id="B939EAFFFFCCFF9445CCFE68FA9CFE69" bold="true" box="[1245,1331,438,457]" italics="true" pageId="8" pageNumber="9">S. anglica</emphasis>
|
||
</taxonomicName>
|
||
(respectively 49 and 20% of the total flavonoid, the quasi absence of
|
||
<emphasis id="B939EAFFFFCCFF944424FE0CFAEBFE45" bold="true" box="[1333,1348,466,485]" italics="true" pageId="8" pageNumber="9">O</emphasis>
|
||
-glycosidic flavonoids in
|
||
<taxonomicName id="4C4D4D6EFFCCFF94428DFE30FBAAFDA1" baseAuthorityName="Grignon-Dubois and Rezzonico" baseAuthorityYear="2019" box="[924,1029,494,513]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="maritima">
|
||
<emphasis id="B939EAFFFFCCFF94428DFE30FBAAFDA1" bold="true" box="[924,1029,494,513]" italics="true" pageId="8" pageNumber="9">S. maritima</emphasis>
|
||
</taxonomicName>
|
||
is noticeable (1.7% of the total flavonoid).
|
||
</paragraph>
|
||
<paragraph id="8BF236EDFFCCFF944242FDD4FA60FCCC" blockId="8.[818,1488,159,1433]" pageId="8" pageNumber="9">
|
||
The occurrence of tricin and tricin derivatives in plants has been reviewed (see as example
|
||
<bibRefCitation id="EFDC4B1CFFCCFF944532FDF8FB0CFD99" author="Li, M. & Pu, Y. & Yoo, C. G. & Ragauskas, A. J." box="[1059,1187,550,569]" pageId="8" pageNumber="9" pagination="1439 - 1454" refId="ref16039" refString="Li, M., Pu, Y., Yoo, C. G., Ragauskas, A. J., 2016. The occurrence of tricin and its derivatives in plants. Green Chem. 18, 1439 - 1454." type="journal article" year="2016">Li et al., 2016</bibRefCitation>
|
||
). They are widely distributed in herbaceous and cereals plants, in which they exist as free tricin, tricinglycosides, tricin-lignans, and tricin-lignan-glycosides. Tricin and its derivatives were reported to function as efficient and strong antioxidants, anti-weeds, anti-herbicide and insect deterrents (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF944469FD4BFCCDFD64" author="Li, M. & Pu, Y. & Yoo, C. G. & Ragauskas, A. J." pageId="8" pageNumber="9" pagination="1439 - 1454" refId="ref16039" refString="Li, M., Pu, Y., Yoo, C. G., Ragauskas, A. J., 2016. The occurrence of tricin and its derivatives in plants. Green Chem. 18, 1439 - 1454." type="journal article" year="2016">Li et al., 2016</bibRefCitation>
|
||
). Tricin has also been found to possess antibacterial, antifungal, insecticidal activity, and to be an effective protectant against biotic and abiotic stress (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF9442AFFD37FBE7FD5C" author="Li, M. & Pu, Y. & Yoo, C. G. & Ragauskas, A. J." box="[958,1096,745,764]" pageId="8" pageNumber="9" pagination="1439 - 1454" refId="ref16039" refString="Li, M., Pu, Y., Yoo, C. G., Ragauskas, A. J., 2016. The occurrence of tricin and its derivatives in plants. Green Chem. 18, 1439 - 1454." type="journal article" year="2016">Li et al., 2016</bibRefCitation>
|
||
). Strong phytotoxic activities have been reported for flavonolignans derived from tricin (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF9445E7FCDBFA2BFCB8" author="Liu, Q. & Wu, C. & Peng, A. & Gao, K. & Chen, J. & Li, Y. & Fu, H." box="[1270,1412,773,792]" pageId="8" pageNumber="9" pagination="1320 - 1327" refId="ref16127" refString="Liu, Q., Wu, C., Peng, A., Gao, K., Chen, J., Li, Y., Fu, H., 2017. Flavonolignans from Elymus natans L. And phytotoxic activities. J. Agric. Food Chem. 65, 1320 - 1327." type="journal article" year="2017">Liu et al., 2017</bibRefCitation>
|
||
). Tricin 7-
|
||
<emphasis id="B939EAFFFFCCFF944255FCFFFCFCFC94" bold="true" box="[836,851,801,820]" italics="true" pageId="8" pageNumber="9">O</emphasis>
|
||
-glucuronopyranosyl-(2''→1‴)-
|
||
<emphasis id="B939EAFFFFCCFF944565FCFFFB2CFC94" bold="true" box="[1140,1155,801,820]" italics="true" pageId="8" pageNumber="9">O</emphasis>
|
||
glucuronopyranoside (compound
|
||
<emphasis id="B939EAFFFFCCFF944223FCE2FC91FCEF" bold="true" box="[818,830,828,847]" pageId="8" pageNumber="9">9</emphasis>
|
||
) has been reported to play a role in the antifeedant activity of Indian Barnyard millet extracts against brown planthopper (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF944438FC86FA6EFCCC" author="Kim, C. S. & Alamgir, K. M. & Matsumoto, S. & Tebayashi, S. & Koh, H. S." box="[1321,1473,856,876]" pageId="8" pageNumber="9" pagination="755 - 760" refId="ref15282" refString="Kim, C. S., Alamgir, K. M., Matsumoto, S., Tebayashi, S., Koh, H. S., 2008. Antifeedants of Indian barnyard millet, Echinochloa frumentacea link, against Brown planthopper, Nilaparvata lugens (stal). Z. Naturforsch. C 63, 755 - 760." type="journal article" year="2008">Kim et al., 2008</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="8BF236EDFFCCFF944242FCAAFBBEFB52" blockId="8.[818,1488,159,1433]" pageId="8" pageNumber="9">
|
||
The reaction steps leading to tricin biosynthesis has been reconstructed as naringenin→apigenin→luteolin → chrysoeriol → selgin → tricin, and a unique flavonoid B-ring hydroxylase (CYP75B4) indispensable for tricin formation has been identified in rice (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF944477FC16FCCDFC57" author="Lam, P. Y. & Liu, H. & Lo, C." pageId="8" pageNumber="9" pagination="1527 - 1536" refId="ref15747" refString="Lam, P. Y., Liu, H., Lo, C., 2015. Completion of tricin biosynthesis pathway in rice: cytochrome P 450 75 B 4 is a novel chrysoeriol 5 ' - hydroxylase. Plant Physiol. 168, 1527 - 1536." type="journal article" year="2015">Lam et al., 2015</bibRefCitation>
|
||
). This enzyme showed 5′-hydroxylase activity that was restricted to chrysoeriol, and CYP75B4 knockout mutant were found tricin deficient, with unusual accumulation of chrysoeriol (
|
||
<bibRefCitation id="EFDC4B1CFFCCFF94440AFBC2FA6EFB8F" author="Lam, P. Y. & Liu, H. & Lo, C." box="[1307,1473,1052,1071]" pageId="8" pageNumber="9" pagination="1527 - 1536" refId="ref15747" refString="Lam, P. Y., Liu, H., Lo, C., 2015. Completion of tricin biosynthesis pathway in rice: cytochrome P 450 75 B 4 is a novel chrysoeriol 5 ' - hydroxylase. Plant Physiol. 168, 1527 - 1536." type="journal article" year="2015">Lam et al., 2015</bibRefCitation>
|
||
). Comparison of these data with our results suggests that the flavonoid 5′- hydroxylase, if present in
|
||
<taxonomicName id="4C4D4D6EFFCCFF94453AFB8DFB6DFBC6" box="[1067,1218,1107,1126]" pageId="8" pageNumber="9">
|
||
<emphasis id="B939EAFFFFCCFF94453AFB8DFBD9FBC6" bold="true" box="[1067,1142,1107,1126]" italics="true" pageId="8" pageNumber="9">Spartina</emphasis>
|
||
species
|
||
</taxonomicName>
|
||
, should be efficient in
|
||
<taxonomicName id="4C4D4D6EFFCCFF94448EFB8DFC2AFB22" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="alterniflora">
|
||
<emphasis id="B939EAFFFFCCFF94448EFB8DFC2AFB22" bold="true" italics="true" pageId="8" pageNumber="9">S. alterniflora</emphasis>
|
||
</taxonomicName>
|
||
(tricin derivatives 49%; chrysoeriol derivatives 18%), but poorly expressed in
|
||
<taxonomicName id="4C4D4D6EFFCCFF9442E2FB55FBF2FB3E" baseAuthorityName="Grignon-Dubois and Rezzonico" baseAuthorityYear="2019" box="[1011,1117,1163,1182]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="maritima">
|
||
<emphasis id="B939EAFFFFCCFF9442E2FB55FBF2FB3E" bold="true" box="[1011,1117,1163,1182]" italics="true" pageId="8" pageNumber="9">S. maritima</emphasis>
|
||
</taxonomicName>
|
||
(tricin derivatives 2%; chrysoeriol derivatives 33%). From this point of view,
|
||
<taxonomicName id="4C4D4D6EFFCCFF9445BCFB79FAACFB1A" box="[1197,1283,1191,1210]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="anglica">
|
||
<emphasis id="B939EAFFFFCCFF9445BCFB79FAACFB1A" bold="true" box="[1197,1283,1191,1210]" italics="true" pageId="8" pageNumber="9">S. anglica</emphasis>
|
||
</taxonomicName>
|
||
appears intermediate between the parental species (tricin derivatives 21%; chrysoeriol derivatives 32%) (
|
||
<tableCitation id="C6CF0356FFCCFF9442ADFB01FBACFB52" box="[956,1027,1247,1266]" captionStart="Table 1" captionStartId="4.[100,150,161,177]" captionTargetPageId="4" captionText="Table 1 Peak number, HPLC retention time (Rt), molecular weight, phenolic concentration (mg.g−1 dw, mean values ± SD) of flavonoid compounds from S. maritima, S. alterniflora and S. anglica (samples G)." pageId="8" pageNumber="9">Table 1</tableCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="8BF236EDFFCCFF954242FB25FCADFF13" blockId="8.[818,1488,159,1433]" lastBlockId="9.[100,771,159,1043]" lastPageId="9" lastPageNumber="10" pageId="8" pageNumber="9">
|
||
All the phenolics detected in
|
||
<taxonomicName id="4C4D4D6EFFCCFF944577FB25FB13FAAD" box="[1126,1212,1274,1294]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="anglica">
|
||
<emphasis id="B939EAFFFFCCFF944577FB25FB13FAAD" bold="true" box="[1126,1212,1274,1294]" italics="true" pageId="8" pageNumber="9">S. anglica</emphasis>
|
||
</taxonomicName>
|
||
were found to be of parental origin, none were missing and no substitute compound was present. Of the 15 phenolics quantified, ten were inherited from
|
||
<emphasis id="B939EAFFFFCCFF94445BFAEDFA60FAE5" bold="true" box="[1354,1487,1330,1350]" italics="true" pageId="8" pageNumber="9">
|
||
<taxonomicName id="4C4D4D6EFFCCFF94445BFAEDFA64FAE5" box="[1354,1483,1330,1350]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="alterniflora">S. alterniflora</taxonomicName>
|
||
,
|
||
</emphasis>
|
||
three from
|
||
<emphasis id="B939EAFFFFCCFF94428FFA91FBA2FAC2" bold="true" box="[926,1037,1359,1378]" italics="true" pageId="8" pageNumber="9">
|
||
<taxonomicName id="4C4D4D6EFFCCFF94428FFA91FBA7FAC2" baseAuthorityName="Grignon-Dubois and Rezzonico" baseAuthorityYear="2019" box="[926,1032,1359,1378]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="8" pageNumber="9" phylum="Tracheophyta" rank="species" species="maritima">S. maritima</taxonomicName>
|
||
,
|
||
</emphasis>
|
||
and two from the two parents. The absence of substitute compounds suggests low changes of the phenolic biosynthetic pathways during the hybridization. Structural relationship between the 20 flavonoids identified in this work is presented in
|
||
<figureCitation id="13762A68FFCDFF9543D6FF41FD53FF12" box="[711,764,159,178]" captionStart="Fig" captionStartId="8.[278,308,1965,1982]" captionTargetBox="[195,1394,1493,1933]" captionTargetId="figure-954@8.[187,1400,1485,1943]" captionTargetPageId="8" captionText="Fig. 6. Structural relationship between flavonoids 1–20 identified in the three Spartina species (MW: molecular weight)." figureDoi="http://doi.org/10.5281/zenodo.8294652" httpUri="https://zenodo.org/record/8294652/files/figure.png" pageId="9" pageNumber="10">Fig. 6</figureCitation>
|
||
.
|
||
</paragraph>
|
||
<caption id="DF326665FFCCFF944007F873FAB1F81E" ID-DOI="http://doi.org/10.5281/zenodo.8294652" ID-Zenodo-Dep="8294652" box="[278,1310,1965,1983]" httpUri="https://zenodo.org/record/8294652/files/figure.png" pageId="8" pageNumber="9" startId="8.[278,308,1965,1982]" targetBox="[195,1394,1493,1933]" targetPageId="8" targetType="figure">
|
||
<paragraph id="8BF236EDFFCCFF944007F873FAB1F81E" blockId="8.[278,1310,1965,1983]" box="[278,1310,1965,1983]" pageId="8" pageNumber="9">
|
||
<emphasis id="B939EAFFFFCCFF944007F873FEFFF81E" bold="true" box="[278,336,1965,1982]" pageId="8" pageNumber="9">Fig. 6.</emphasis>
|
||
Structural relationship between flavonoids
|
||
<emphasis id="B939EAFFFFCCFF9443D6F873FD5DF81E" bold="true" box="[711,754,1965,1982]" pageId="8" pageNumber="9">1–20</emphasis>
|
||
identified in the three
|
||
<taxonomicName id="4C4D4D6EFFCCFF9442AAF873FBEFF81E" box="[955,1088,1965,1982]" pageId="8" pageNumber="9">
|
||
<emphasis id="B939EAFFFFCCFF9442AAF873FC51F81E" bold="true" box="[955,1022,1965,1982]" italics="true" pageId="8" pageNumber="9">Spartina</emphasis>
|
||
species
|
||
</taxonomicName>
|
||
(MW: molecular weight).
|
||
</paragraph>
|
||
</caption>
|
||
<paragraph id="8BF236EDFFCDFF954194FF65FE61FD64" blockId="9.[100,771,159,1043]" pageId="9" pageNumber="10">
|
||
In contrast to the lack of phytochemical study, the
|
||
<taxonomicName id="4C4D4D6EFFCDFF954369FF65FD6CFF6E" box="[632,707,187,206]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="genus">
|
||
<emphasis id="B939EAFFFFCDFF954369FF65FD6CFF6E" bold="true" box="[632,707,187,206]" italics="true" pageId="9" pageNumber="10">Spartina</emphasis>
|
||
</taxonomicName>
|
||
genus has been fairly well investigated at the genetic level.
|
||
<taxonomicName id="4C4D4D6EFFCDFF954374FF09FD12FF4A" box="[613,701,215,234]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="anglica">
|
||
<emphasis id="B939EAFFFFCDFF954374FF09FD12FF4A" bold="true" box="[613,701,215,234]" italics="true" pageId="9" pageNumber="10">S. anglica</emphasis>
|
||
</taxonomicName>
|
||
results from hybridization of the genomes of
|
||
<taxonomicName id="4C4D4D6EFFCDFF9540C9FF2DFDFAFEA5" box="[472,597,242,262]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="alterniflora">
|
||
<emphasis id="B939EAFFFFCDFF9540C9FF2DFDFAFEA5" bold="true" box="[472,597,242,262]" italics="true" pageId="9" pageNumber="10">S. alterniflora</emphasis>
|
||
</taxonomicName>
|
||
(maternal donor) and
|
||
<taxonomicName id="4C4D4D6EFFCDFF954180FED1FF52FE82" baseAuthorityName="Grignon-Dubois and Rezzonico" baseAuthorityYear="2019" box="[145,253,271,290]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="maritima">
|
||
<emphasis id="B939EAFFFFCDFF954180FED1FF52FE82" bold="true" box="[145,253,271,290]" italics="true" pageId="9" pageNumber="10">S. maritima</emphasis>
|
||
</taxonomicName>
|
||
(paternal donor) (
|
||
<bibRefCitation id="EFDC4B1CFFCDFF9540A6FED1FDC6FE82" author="Ferris, C. & King, R. A. & Gray, A. J." box="[439,617,271,290]" pageId="9" pageNumber="10" refId="ref14829" refString="Ferris, C., King, R. A., Gray, A. J., 1997. Molecular evidence for the maternal parentage in the hybrid origin of Spartina anglica C. E. Hubbard. Mol. Ecol. 6 185 - 18." type="book" year="1997">Ferris et al., 1997</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="EFDC4B1CFFCDFF954368FED1FF3BFE9E" author="Baumel, A. & Ainouche, M. L. & Misset, M. T. & Gourret, J. P. & Bayer, R. J." pageId="9" pageNumber="10" pagination="87 - 97" refId="ref13796" refString="Baumel, A., Ainouche, M. L., Misset, M. T., Gourret, J. P., Bayer, R. J., 2003. Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in South-West France: Spartina neyrautii re-examined. Plant Systemat. Evol. 237, 87 - 97." type="journal article" year="2003">Baumel et al., 2003</bibRefCitation>
|
||
). Hybridization is often associated with changes in biochemistry. Qualitatively, hybrids may express all of the specialized chemicals of the parental taxa, may fail to express certain parental chemicals, or may express chemicals that are absent in each parent (
|
||
<bibRefCitation id="EFDC4B1CFFCDFF95435DFEA0FD67FE31" author="Orians, C. M." box="[588,712,382,401]" pageId="9" pageNumber="10" pagination="1749 - 1756" refId="ref16419" refString="Orians, C. M., 2000. The effects of hybridization in plants on secondary chemistry: implications for the ecology and evolution of plant - herbivore interactions. Am. J. Bot. 87, 1749 - 1756." type="journal article" year="2000">Orians, 2000</bibRefCitation>
|
||
). The presence of all the parental phenolics in
|
||
<taxonomicName id="4C4D4D6EFFCDFF9540F1FE44FD99FE0D" box="[480,566,410,429]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="anglica">
|
||
<emphasis id="B939EAFFFFCDFF9540F1FE44FD99FE0D" bold="true" box="[480,566,410,429]" italics="true" pageId="9" pageNumber="10">S. anglica</emphasis>
|
||
</taxonomicName>
|
||
is consistent with the parental genome additivity reported for this species (
|
||
<bibRefCitation id="EFDC4B1CFFCDFF954369FE68FF3BFE45" author="Baumel, A. & Ainouche, M. L. & Levasseur, J. E." pageId="9" pageNumber="10" pagination="1689 - 1701" refId="ref13681" refString="Baumel, A., Ainouche, M. L., Levasseur, J. E., 2001. Molecular investigations in populations of Spartina anglica C. E. Hubbard (Poaceae) invading coastal Brittany (France). Mol. Ecol. 10, 1689 - 1701." type="journal article" year="2001">Baumel et al., 2001</bibRefCitation>
|
||
,
|
||
<bibRefCitation id="EFDC4B1CFFCDFF9541B3FE0CFF7DFE45" author="Baumel, A. & Ainouche, M. L. & Bayer, R. J. & Ainouche, A. K. & Misset, M. T." box="[162,210,466,485]" pageId="9" pageNumber="10" pagination="303 - 314" refId="ref13734" refString="Baumel, A., Ainouche, M. L., Bayer, R. J., Ainouche, A. K., Misset, M. T., 2002. Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Mol. Phylogenet. Evol. 22, 303 - 314." type="journal article" year="2002">2002</bibRefCitation>
|
||
). The gene expression variation between
|
||
<taxonomicName id="4C4D4D6EFFCDFF954372FE0CFD1DFE45" box="[611,690,466,485]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="anlica">
|
||
<emphasis id="B939EAFFFFCDFF954372FE0CFD1DFE45" bold="true" box="[611,690,466,485]" italics="true" pageId="9" pageNumber="10">S. anlica</emphasis>
|
||
</taxonomicName>
|
||
and the two parental species has been recently reported (
|
||
<bibRefCitation id="EFDC4B1CFFCDFF95432CFE30FF61FDBD" author="Ferreira de Carvalho, J. & Boutte, J. & Bourdaud, P. & Chelaifa, H. & Ainouche, K. & Salmon, A. & Ainouche, M." pageId="9" pageNumber="10" pagination="1061 - 1079" refId="ref14763" refString="Ferreira de Carvalho, J., Boutte, J., Bourdaud, P., Chelaifa, H., Ainouche, K., Salmon, A., Ainouche, M., 2017. Gene expression variation in natural populations of hexaploid and allododecaploid Spartina species (Poaceae). Plant Systemat. Evol. 303, 1061 - 1079." type="journal article" year="2017">Ferreira de Carvalho et al., 2017</bibRefCitation>
|
||
). Interestingly, a significant maternal dominance was found in
|
||
<taxonomicName id="4C4D4D6EFFCDFF95416CFDF8FF7BFD98" box="[125,212,549,569]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="anglica">
|
||
<emphasis id="B939EAFFFFCDFF95416CFDF8FF7BFD98" bold="true" box="[125,212,549,569]" italics="true" pageId="9" pageNumber="10">S. anglica</emphasis>
|
||
</taxonomicName>
|
||
for the cinnamoyl-CoA reductase, which catalyzes the first specific step in the phenylpropanoids metabolic pathway. Its level of expression in
|
||
<taxonomicName id="4C4D4D6EFFCDFF9541F8FD83FEEEFDD0" box="[233,321,605,624]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="anglica">
|
||
<emphasis id="B939EAFFFFCDFF9541F8FD83FEEEFDD0" bold="true" box="[233,321,605,624]" italics="true" pageId="9" pageNumber="10">S. anglica</emphasis>
|
||
</taxonomicName>
|
||
was found to be about the same as in
|
||
<taxonomicName id="4C4D4D6EFFCDFF9543ABFD83FF30FD2C" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="alterniflora">
|
||
<emphasis id="B939EAFFFFCDFF9543ABFD83FF30FD2C" bold="true" italics="true" pageId="9" pageNumber="10">S. alterniflora</emphasis>
|
||
</taxonomicName>
|
||
, and twice as high as in
|
||
<taxonomicName id="4C4D4D6EFFCDFF95409DFDA7FF31FD08" authority="(Ferreira de Carvalho et al., 2017)" baseAuthorityName="Ferreira de Carvalho" baseAuthorityYear="2017" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="maritima">
|
||
<emphasis id="B939EAFFFFCDFF95409DFDA7FE5AFD2C" bold="true" box="[396,501,633,652]" italics="true" pageId="9" pageNumber="10">S. maritima</emphasis>
|
||
(
|
||
<bibRefCitation id="EFDC4B1CFFCDFF954312FDA7FF3BFD08" author="Ferreira de Carvalho, J. & Boutte, J. & Bourdaud, P. & Chelaifa, H. & Ainouche, K. & Salmon, A. & Ainouche, M." pageId="9" pageNumber="10" pagination="1061 - 1079" refId="ref14763" refString="Ferreira de Carvalho, J., Boutte, J., Bourdaud, P., Chelaifa, H., Ainouche, K., Salmon, A., Ainouche, M., 2017. Gene expression variation in natural populations of hexaploid and allododecaploid Spartina species (Poaceae). Plant Systemat. Evol. 303, 1061 - 1079." type="journal article" year="2017">Ferreira de Carvalho et al., 2017</bibRefCitation>
|
||
)
|
||
</taxonomicName>
|
||
. These data are in good agreement with the trend observed here with the respective phenolic contents.
|
||
</paragraph>
|
||
<paragraph id="8BF236EDFFCDFF954194FD13FDFDFBB3" blockId="9.[100,771,159,1043]" pageId="9" pageNumber="10">
|
||
Exotic plants may become invasive when they produce chemical defences that are not found in native plants. It has been shown that successful exotic plant species had a higher diversity of metabolites compared with congeneric native species (
|
||
<bibRefCitation id="EFDC4B1CFFCDFF9540EAFCFFFD07FC94" author="Macel, M. & de Vos, R. C. H. & Jansen, J. J. & Van der Putten, W. H. & Van Dam, N. M." box="[507,680,801,820]" pageId="9" pageNumber="10" pagination="2777 - 2786" refId="ref16274" refString="Macel, M., de Vos, R. C. H., Jansen, J. J., Van der Putten, W. H., Van Dam, N. M., 2014. Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners. Ecol. Evol. 4, 2777 - 2786." type="journal article" year="2014">Macel et al., 2014</bibRefCitation>
|
||
). Our results show that the introduced
|
||
<taxonomicName id="4C4D4D6EFFCDFF954080FCE3FDA1FCEF" box="[401,526,828,848]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="alterniflora">
|
||
<emphasis id="B939EAFFFFCDFF954080FCE3FDA1FCEF" bold="true" box="[401,526,828,848]" italics="true" pageId="9" pageNumber="10">S. alterniflora</emphasis>
|
||
</taxonomicName>
|
||
has a higher diversity of phenolic than the European native
|
||
<emphasis id="B939EAFFFFCDFF9540ABFC86FD85FCCB" bold="true" box="[442,554,856,875]" italics="true" pageId="9" pageNumber="10">
|
||
<taxonomicName id="4C4D4D6EFFCDFF9540ABFC86FD8AFCCB" box="[442,549,856,875]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="maritima">S. maritima</taxonomicName>
|
||
,
|
||
</emphasis>
|
||
and that the phenolic pattern of
|
||
<taxonomicName id="4C4D4D6EFFCDFF9541D4FCAAFEB5FC27" box="[197,282,884,903]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="anglica">
|
||
<emphasis id="B939EAFFFFCDFF9541D4FCAAFEB5FC27" bold="true" box="[197,282,884,903]" italics="true" pageId="9" pageNumber="10">S. anglica</emphasis>
|
||
</taxonomicName>
|
||
is mostly inherited from
|
||
<taxonomicName id="4C4D4D6EFFCDFF954312FCAAFDD3FC27" box="[515,636,884,903]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="alterniflora">
|
||
<emphasis id="B939EAFFFFCDFF954312FCAAFDD3FC27" bold="true" box="[515,636,884,903]" italics="true" pageId="9" pageNumber="10">S. alterniflora</emphasis>
|
||
</taxonomicName>
|
||
. This suggests that the phenolic chemistry of
|
||
<taxonomicName id="4C4D4D6EFFCDFF954093FC4EFE78FC03" box="[386,471,912,931]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="anglica">
|
||
<emphasis id="B939EAFFFFCDFF954093FC4EFE78FC03" bold="true" box="[386,471,912,931]" italics="true" pageId="9" pageNumber="10">S. anglica</emphasis>
|
||
</taxonomicName>
|
||
might play a role in its invasive character. Noteworthy,
|
||
<taxonomicName id="4C4D4D6EFFCDFF954055FC72FE36FC1F" box="[324,409,940,959]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="anglica">
|
||
<emphasis id="B939EAFFFFCDFF954055FC72FE36FC1F" bold="true" box="[324,409,940,959]" italics="true" pageId="9" pageNumber="10">S. anglica</emphasis>
|
||
</taxonomicName>
|
||
and
|
||
<taxonomicName id="4C4D4D6EFFCDFF9540D9FC72FD9FFC1F" box="[456,560,940,959]" class="Liliopsida" family="Poaceae" genus="Spartina" higherTaxonomySource="GBIF" kingdom="Plantae" order="Poales" pageId="9" pageNumber="10" phylum="Tracheophyta" rank="species" species="maritima">
|
||
<emphasis id="B939EAFFFFCDFF9540D9FC72FD9FFC1F" bold="true" box="[456,560,940,959]" italics="true" pageId="9" pageNumber="10">S. maritima</emphasis>
|
||
</taxonomicName>
|
||
having been collected at the same time from two adjacent meadows only separated by a few meters, no environmental effect may be invoked to explain the difference in the phenolic content observed in this study.
|
||
</paragraph>
|
||
</subSubSection>
|
||
</treatment>
|
||
</document> |