treatments-xml/data/03/FA/E2/03FAE2511E39FFCFFF77F8F1FEA9FD7D.xml
2024-06-21 12:22:17 +02:00

193 lines
33 KiB
XML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="76A17A20FE63018DDE357E9FFEA46425" ID-DOI="10.5281/zenodo.3678101" ID-GBIF-Dataset="0caf2b3f-f9ed-4f87-8bdd-5cf8288f4d02" ID-Zenodo-Dep="3678101" IM.bibliography_requiresApprovalFor="plazi" IM.metadata_requiresApprovalFor="plazi" IM.taxonomicNames_requiresApprovalFor="plazi" checkinTime="1582279042616" checkinUser="jeremy" docAuthor="Tarsitano, Samuel" docDate="1983" docId="03FAE2511E39FFCFFF77F8F1FEA9FD7D" docLanguage="en" docName="Tarsitano1983ABBYY_2.pdf.imf" docOrigin="Acta Palaeontologica Polonica 28" docStyle="DocumentStyle{}" docTitle="Theropoda" docType="treatment" docVersion="14" lastPageNumber="259" masterDocId="FFC39A291E3CFFC5FFB0FF82FFEAFFEF" masterDocTitle="Stance and gait in theropod dinosaurs" masterLastPageNumber="264" masterPageNumber="251" pageNumber="256" updateTime="1698720973335" updateUser="plazi">
<mods:mods id="DAC6D23A039EA6A185D93AC434129685" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="5CB932F3F078763F147913AA1C9DC35B">
<mods:title id="4CC70C6E6509F425D8DB64BDE0641C4E">Stance and gait in theropod dinosaurs</mods:title>
</mods:titleInfo>
<mods:name id="B29D687DD8A7828A94251932E2E70F55" type="personal">
<mods:role id="F3A0CE441391528D738D46A101D8E394">
<mods:roleTerm id="3908DFA7347C91926AA426B855E93815">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="F73466AE5A86DB88BC3A263E5BB1B97E">Tarsitano, Samuel</mods:namePart>
</mods:name>
<mods:typeOfResource id="FADD6B36E1434635773485FF53F83401">text</mods:typeOfResource>
<mods:relatedItem id="8C09D39659D5EE174BD058447C16BF2B" type="host">
<mods:titleInfo id="89FB051B1160C97365317BF878332158">
<mods:title id="DE72F37B0240AA92E22A94A4EA7DB0E3">Acta Palaeontologica Polonica</mods:title>
</mods:titleInfo>
<mods:part id="49FB109E82BBC65D1FA1E4D2BBC1E967">
<mods:date id="5629986EE13CC8BC46115E940AECA394">1983</mods:date>
<mods:detail id="2DE8C67363397C8672EB342E125A5E84" type="volume">
<mods:number id="375D9D7EC95250D265F0B131930D5188">28</mods:number>
</mods:detail>
<mods:extent id="8DE50BAF905191F9D1C42A767F210DCD" unit="page">
<mods:start id="E6385F7DA41B00A64E3F61CEAE184F6C">251</mods:start>
<mods:end id="F9CB34A71EB08DB37256D05B5EDD3DAC">264</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:classification id="51D63A2DFAD365BCCA9AE8DE2C90C294">journal article</mods:classification>
<mods:identifier id="2DBD74AC56F5239F38938974E47ED219" type="DOI">10.5281/zenodo.3678101</mods:identifier>
<mods:identifier id="4BADEAD1027BF562C69582885CD4717D" type="GBIF-Dataset">0caf2b3f-f9ed-4f87-8bdd-5cf8288f4d02</mods:identifier>
<mods:identifier id="8DABFBAE947EBB1922BF4F0104F60FAA" type="Zenodo-Dep">3678101</mods:identifier>
</mods:mods>
<treatment id="03FAE2511E39FFCFFF77F8F1FEA9FD7D" ID-DOI="http://doi.org/10.5281/zenodo.3682311" ID-GBIF-Taxon="162245247" ID-Zenodo-Dep="3682311" LSID="urn:lsid:plazi:treatment:03FAE2511E39FFCFFF77F8F1FEA9FD7D" httpUri="http://treatment.plazi.org/id/03FAE2511E39FFCFFF77F8F1FEA9FD7D" lastPageId="10" lastPageNumber="259" pageId="5" pageNumber="256">
<subSubSection id="C34900CC1E39FFC3FF77F8F1FB40FC8E" lastPageId="6" lastPageNumber="257" pageId="5" pageNumber="256" type="nomenclature">
<paragraph id="8BEC53471E39FFC3FF77F8F1FB40FC8E" blockId="5.[133,1636,1907,2542]" lastBlockId="6.[129,1625,181,1455]" lastPageId="6" lastPageNumber="257" pageId="5" pageNumber="256">
The morphology of theropod locomotion can be derived from that of pseudosuchians. The change from a facultative biped (thecodont) to an obligate
<taxonomicName id="4C5328C41E39FFC0FE87F862FE0FF7E5" box="[311,485,2016,2058]" class="Reptilia" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="256" phylum="Chordata" rank="subOrder" subOrder="Theropoda">theropod</taxonomicName>
biped is understandable in terms of efficiency. Bipedal locomotion is more energy efficient than is a reptilian method of quad­ rupedal locomotion (
<bibRefCitation id="EFC22EB61E39FFC0FDF3F7CEFCA2F799" author="HOTTON, N." box="[579,840,2124,2166]" editor="R. D. K. Thomas &amp; E. C. Olson" journalOrPublisher="Westview Press, Colorado" pageId="5" pageNumber="256" pagination="311 - 350" part="28" refId="ref5291" refString="HOTTON, N. 1980. An alternative to dinosaur endothermy: The happy Wanderers. In: R. D. K. Thomas and E. C. Olson (eds), A Cold Look at the Warm-Blooded Dinosaurs, AAAS Selected Symposium 28, 311 - 350. Westview Press, Colorado." title="An alternative to dinosaur endothermy: The happy Wanderers" type="journal article" volumeTitle="A Cold Look at the Warm-Blooded Dinosaurs" year="1980">Hotton 1980</bibRefCitation>
). The change to obligate bipedalism necessitates an overhaul in pseudosuchian morphology. The legs had to be brought under the body in theropods in order to support the weight of the body at less energy cost to the musculature. This change in stance brings the movement at all joints in the hindlimb in the same plane of motion. The result is an increase in torque to the joints and an increase in stride length (
<bibRefCitation id="EFC22EB61E39FFC0FE40F60CFCADF657" author="HILDEBRAND, M." bookContentInfo="710 pp." box="[496,839,2446,2488]" journalOrPublisher="John Wiley and Sons, New York and London" pageId="5" pageNumber="256" refId="ref5267" refString="HILDEBRAND, M. 1974. Analysis of Vertebrate Structure. 710 pp. John Wiley and Sons, New York and London." title="Analysis of Vertebrate Structure" type="book" year="1974">Hildebrand 1974</bibRefCitation>
). In order to achieve this posture the crocodilian ankle joint must be modified. What apparently has occured is that the fibular condyle of the calcaneum has been reduced and the fibula has shifted back onto the dorsal surface of the calcaneal tuber (Tarsitano, in prep.). This condition is seen at least in the theropods, prosauropods and ornithopods. Through this modification the calcaneum ceases to move and the mesotarsal joint is established (
<figureCitation id="13684FC21E3AFFC3FAFAFE0BFA30FE5C" box="[1354,1498,393,435]" captionStart="Fig. 1" captionStartId="3.[122,180,2258,2290]" captionTargetBox="[132,1638,184,2234]" captionTargetPageId="3" captionText="Fig. 1. Various tarsal elements of archosaurs: a distal view of the right tarsus of a eusuchian crocodilian; b proximal view of the right calcaneum of the pseudosuchian Prestosuchus; c lateral view of the left calcaneum of a eusuchian crocodilian; d lateral view of the left calcaneum of a theropod dinosaur AC articular cartilage; AH anterior hollow of the astragulus; CT calcaneal tuber; DR distal roller of the astragulus; DT distal tarsal four facet of the calcaneum; F fibula; FC fibular condyle of the calcaneum; P peg of the astragalus; S socket of the calcaneum; T tongue of the calcaneum; TI tibia." figureDoi="http://doi.org/10.5281/zenodo.3678103" httpUri="https://zenodo.org/record/3678103/files/figure.png" pageId="6" pageNumber="257">fig. 1d</figureCitation>
). The change in function of the calcaneal tuber also changes its effect on the foot extensors thereby allowing the more medial placement of these muscles on the foot. With the development of the mesotarsal joint, the metatarsals would no longer need to overlap and the functionally symme­ trical “tridactyl” foot could be evolved. As the legs were brought under the body the torsion of the femur disappeared and the femoral head ex­ panded inward to form a roller. These adaptations lead to a more fore-aft swinging of the limb and a natural bipedal posture.
</paragraph>
</subSubSection>
<subSubSection id="C34900CC1E3AFFCFFF75FCEEFEA9FD7D" lastPageId="10" lastPageNumber="261" pageId="6" pageNumber="257" type="description">
<paragraph id="8BEC53471E3AFFCDFF75FCEEFEE9FC48" blockId="6.[129,1625,181,1455]" lastBlockId="8.[112,1613,191,2537]" lastPageId="8" lastPageNumber="259" pageId="6" pageNumber="257">
To understand the positioning of the vertebral column one must first understand the musculature of the crocodilian hindlimb. For the sake of brevity I will only refer to the crocodilian muscles which play key roles in locomotion. Full descriptions can be found in
<bibRefCitation id="EFC22EB61E3AFFC3FB29FB8CFA59FBD7" author="GADOW, H." box="[1177,1459,1038,1080]" journalOrPublisher="Morphol. Jb." pageId="6" pageNumber="257" pagination="329 - 466" part="7" refId="ref5013" refString="GADOW, H. 1882. Beitrage zur Myologie der hintern Extremitat der Reptilien. - Morphol. Jb., 7, 329 - 466." title="Beitrage zur Myologie der hintern Extremitat der Reptilien" type="journal article" year="1882">Gadow (1882)</bibRefCitation>
,
<bibRefCitation id="EFC22EB61E3AFFC3FA63FB8CFF10FB81" author="ROMER, A. S." journalOrPublisher="Bull. Am. Mus. Nat. Hist" pageId="6" pageNumber="257" pagination="533 - 552" part="48" refId="ref5710" refString="ROMER, A. S. 1923 a. Crocodilian pelvic muscles and their avian and reptilian homologues. - Bull. Am. Mus. Nat. Hist., 48, 533 - 552" title="Crocodilian pelvic muscles and their avian and reptilian homologues" type="journal article" year="1923">Romer (1923)</bibRefCitation>
,
<bibRefCitation id="EFC22EB61E3AFFC3FEABFBC6FCE8FB81" author="TARSITANO, S." box="[283,770,1092,1134]" journalOrPublisher="City University of New York" pageId="6" pageNumber="264" refId="ref5947" refString="TARSITANO, S. 1981. Pelvic and hindlimb musculature in archosaurian reptiles. Ph. D. thesis, City University of New York." title="Pelvic and hindlimb musculature in archosaurian reptiles" type="book" year="1981">Tarsitano (Ph.D. thesis)</bibRefCitation>
and
<bibRefCitation id="EFC22EB61E3AFFC3FCCEFBC6FB1BFB81" author="BRINKMAN, D." box="[894,1265,1092,1134]" journalOrPublisher="Can. J. Zool." pageId="6" pageNumber="257" pagination="2187 - 2200" part="58" refId="ref4794" refString="- 1980 b. The hindlimb step cycle of Cazman sclerops and the mechanics of the crocodiiian tarsus and metatarsus. - Ibidem, 58 (12), 2187 - 2200." title="The hindlimb step cycle of Cazman sclerops and the mechanics of the crocodiiian tarsus and metatarsus" type="journal article" year="1980">Brinkman (1980b)</bibRefCitation>
. Of the protrac­ tors, the
<emphasis id="B9278F551E3AFFC3FE8CFBFBFC29FB4C" box="[316,963,1145,1187]" italics="true" pageId="6" pageNumber="257">M. puboischiofemoralis internus</emphasis>
parts 1 and 2 and the anterior- most portions of the
<emphasis id="B9278F551E3AFFC3FD93FB2DFCC0FB36" box="[547,810,1199,1241]" italics="true" pageId="6" pageNumber="257">M. iliotibialis</emphasis>
are most important. The
<emphasis id="B9278F551E3AFFC3FA81FB2DFE18FAE0" italics="true" pageId="6" pageNumber="257">M. puboischio­ femoralis internus</emphasis>
part 1 originates in all crocodilians on the first sacral vertebra and the corresponding internal surface of the ilium (
<figureCitation id="13684FC21E3AFFC3FAC7FA98FA0EFAAB" box="[1399,1508,1306,1348]" captionStart="Fig. 4" captionStartId="6.[126,185,2249,2281]" captionTargetBox="[136,994,1524,2224]" captionTargetPageId="6" captionText="Fig. 4. Reconstructed pelvic and hindlimb muscles of the theropod dinosaur Tyrannosaurus rex. AMB M. ambiens; CFB M. caudofemoralis brevis; CFL M. caudofemoralis longus; FTE M. flexor tibialis externus; GF M. gastrocnemius, fibular head; PIFI1 M. puboischiofemoralis internus part one; TFTE tendon of the M. flexor tibialis externus." figureDoi="http://doi.org/10.5281/zenodo.3678109" httpUri="https://zenodo.org/record/3678109/files/figure.png" pageId="6" pageNumber="257">fig. 4</figureCitation>
). The insertion is on the anterior surface of the fourth trochanter. The second part of this muscle originates from the last five presacral vertebrae. The insertion lies on the lateral surface of the femur just distal to the femoral head (
<figureCitation id="13684FC21E3BFFC2FE04F919FDC8F92A" box="[436,546,1691,1733]" captionStart="Fig. 5" captionStartId="6.[1035,1090,2248,2280]" captionTargetBox="[1054,1604,1562,2092]" captionTargetPageId="6" captionText="Fig. 5. Reconstructed pelvic and hindlimb muscles of the theropod dinosaur, Tyrannosaurus rex. FTI2 M. flexor tibialis internus part two; FTI3 M. flexor tibialis internus part three; IF M. ilio- femoralis; PIFI2 M. puboischio- femoralis internus part two." figureDoi="http://doi.org/10.5281/zenodo.3689578" httpUri="https://zenodo.org/record/3689578/files/figure.png" pageId="7" pageNumber="258">fig. 5</figureCitation>
). Thus, the
<emphasis id="B9278F551E3BFFC2FC9EF919FA55F92A" box="[814,1471,1691,1733]" italics="true" pageId="7" pageNumber="258">M. puboischiofemoralis internus</emphasis>
is pri­ marily responsible for protracting and lifting the femur. The
<emphasis id="B9278F551E3BFFC2FA2DF952FD81F8C0" italics="true" pageId="7" pageNumber="258">M. pubo­ ischiofemoralis externus</emphasis>
parts 1 and 2 originate on the broad surface of the pubis. They converge on the upper medial surface of the femur to insert with the third part of this muscle on the back of the femur below its head (
<figureCitation id="13684FC21E3BFFC2FE89F824FE4AF83F" box="[313,416,1958,2000]" captionStart="Fig. 6" captionStartId="7.[126,185,1479,1511]" captionTargetBox="[244,1488,200,1440]" captionTargetPageId="7" captionText="Fig. 6. Ventral view of the right side of a eusuchian crocodilian pelvis and hindlimb. IL ilium; IS ischium; PIFE1,2,3 M. puboischiofemoralis externus parts one, two and three." figureDoi="http://doi.org/10.5281/zenodo.3678111" httpUri="https://zenodo.org/record/3678111/files/figure.png" pageId="7" pageNumber="258">fig. 6</figureCitation>
). The major action of this muscle is to rotate the femur out­ ward, solving the femurs “knocking on pubes” problem (
<bibRefCitation id="EFC22EB61E3BFFC2FAF7F85FF9ADF7E8" author="CI-IARIG, A. J." box="[1351,1607,2013,2055]" editor="K. A. Joysey &amp; T. S. Kemp" journalOrPublisher="Oliver and Boyd, Edinburgh" pageId="7" pageNumber="258" pagination="121 - 155" refId="ref4858" refString="CHARIG, A. J. 1972. The evolution of the archosaur pelvis and hindlimb: an explanation in functional terms. In: K. A. Joysey and T. S. Kemp (eds), Studies in Vertebrate Evolution, 121 - 155. Oliver and Boyd, Edinburgh." title="The evolution of the archosaur pelvis and hindlimb: an explanation in functional terms" type="book chapter" volumeTitle="Studies in Vertebrate Evolution" year="1972">Charig 1972</bibRefCitation>
). This rotation of the femur is concordant with the movement of the hip roller joint of theropods as proposed by
<bibRefCitation id="EFC22EB61E3BFFC2FC1EF7CAFB2AF79D" author="HOTTON, N." box="[942,1216,2120,2162]" editor="R. D. K. Thomas &amp; E. C. Olson" journalOrPublisher="Westview Press, Colorado" pageId="7" pageNumber="258" pagination="311 - 350" part="28" refId="ref5291" refString="HOTTON, N. 1980. An alternative to dinosaur endothermy: The happy Wanderers. In: R. D. K. Thomas and E. C. Olson (eds), A Cold Look at the Warm-Blooded Dinosaurs, AAAS Selected Symposium 28, 311 - 350. Westview Press, Colorado." title="An alternative to dinosaur endothermy: The happy Wanderers" type="journal article" volumeTitle="A Cold Look at the Warm-Blooded Dinosaurs" year="1980">Hotton (1980)</bibRefCitation>
. The
<emphasis id="B9278F551E3BFFC2FA84F7CAFE16F747" italics="true" pageId="7" pageNumber="258">M. puboischio­ femoralis externus</emphasis>
parts 1 and 2 also serves to protract the femur. The M.
<emphasis id="B9278F551E3BFFC2FF75F736FE8CF731" box="[197,358,2228,2270]" italics="true" pageId="7" pageNumber="258">ambiens</emphasis>
(
<figureCitation id="13684FC21E3BFFC2FE36F736FE04F731" box="[390,494,2228,2270]" captionStart="Fig. 4" captionStartId="6.[126,185,2249,2281]" captionTargetBox="[136,994,1524,2224]" captionTargetPageId="6" captionText="Fig. 4. Reconstructed pelvic and hindlimb muscles of the theropod dinosaur Tyrannosaurus rex. AMB M. ambiens; CFB M. caudofemoralis brevis; CFL M. caudofemoralis longus; FTE M. flexor tibialis externus; GF M. gastrocnemius, fibular head; PIFI1 M. puboischiofemoralis internus part one; TFTE tendon of the M. flexor tibialis externus." figureDoi="http://doi.org/10.5281/zenodo.3678109" httpUri="https://zenodo.org/record/3678109/files/figure.png" pageId="7" pageNumber="258">fig. 4</figureCitation>
) originates at the junction of the ilium and pubis. Only part 1 of this muscle is significant for the present discussion. It crosses laterally over the knee joint between the layers of the extensor tendon formed by the
<emphasis id="B9278F551E3BFFC2FE09F6D7FCFAF690" box="[441,784,2389,2431]" italics="true" pageId="7" pageNumber="258">M. femorotibialis</emphasis>
ventrally and the
<emphasis id="B9278F551E3BFFC2FB2BF6D7FA42F690" box="[1179,1448,2389,2431]" italics="true" pageId="7" pageNumber="258">M. iliotibialis</emphasis>
dorsally (
<bibRefCitation id="EFC22EB61E3BFFC2FF3EF609FD8EF65A" author="TARSITANO, S." box="[142,612,2443,2485]" journalOrPublisher="City University of New York" pageId="7" pageNumber="264" refId="ref5947" refString="TARSITANO, S. 1981. Pelvic and hindlimb musculature in archosaurian reptiles. Ph. D. thesis, City University of New York." title="Pelvic and hindlimb musculature in archosaurian reptiles" type="book" year="1981">Tarsitano, Ph.D. thesis</bibRefCitation>
), to run down the shank in the fascia of the
<emphasis id="B9278F551E3BFFC2F999F609FE76F604" italics="true" pageId="7" pageNumber="258">M. gastrocnemius</emphasis>
to insert on the calcaneal tuber and fifth metatarsus (
<figureCitation id="13684FC21E3BFFC2FA6DF643F9ACF604" box="[1501,1606,2497,2539]" captionStart="Fig. 3" captionStartId="4.[914,969,1089,1121]" captionTargetBox="[788,1548,226,1070]" captionTargetPageId="4" captionText="Fig. 3. Lateral view of the left shank and pes of a eusuchian crocodilian. AMB M. ambiens; C calcaneum; FTE M. flexor tibialis externus; G M. gas­ trocnemius, fibular head; PA M. pero­ neus anterior; PP peroneus posterior; TCF tendon of the M. caudofemoralis attaching to the fibula; TCFM tendon of the M. caudofemoralis, forming the main origin for the fibular head of the M. gastrocnemius; TE tendon of the M. caudofemoralis to the extensor tendon of the knee; TFTE tendon of the M. flexor tibialis externus to the fifth metatarsus." figureDoi="http://doi.org/10.5281/zenodo.3678105" httpUri="https://zenodo.org/record/3678105/files/figure.png" pageId="7" pageNumber="258">fig. 3</figureCitation>
). The
<emphasis id="B9278F551E34FFCDFF63FF3DFE57FF06" box="[211,445,191,233]" italics="true" pageId="8" pageNumber="259">M. ambiens</emphasis>
protracts the femur and stabilizes the outward rotation of the femur; it is also a shank flexor and pedal extensor. Finally, the
<emphasis id="B9278F551E34FFCDFFC5FEA8FE95FEBB" box="[117,383,298,340]" italics="true" pageId="8" pageNumber="259">M. iliotibialis</emphasis>
originates on the dorsal rim of the ilium and inserts onto the proximal anterior surface of the tibia, forming part of the extensor tendon of the knee. This muscle can act to lift and sligthly protract the thigh. The retractors of the femur are mainly the
<emphasis id="B9278F551E34FFCDFBC7FE48FF5CFDC6" italics="true" pageId="8" pageNumber="259">M. caudofemoralis lon­ gus</emphasis>
and
<emphasis id="B9278F551E34FFCDFE81FE7DFE42FDC6" box="[305,424,511,553]" italics="true" pageId="8" pageNumber="259">brevis</emphasis>
(M.
<emphasis id="B9278F551E34FFCDFDACFE7DFC70FDC6" box="[540,922,511,553]" italics="true" pageId="8" pageNumber="259">coccygeofemoralis).</emphasis>
The
<emphasis id="B9278F551E34FFCDFBACFE7DFB70FDC6" box="[1052,1178,511,553]" italics="true" pageId="8" pageNumber="259">longus</emphasis>
originates from the third to the thirteenth caudal vertebrae (
<bibRefCitation id="EFC22EB61E34FFCDFC71FDB7FB5DFDB0" author="ROMER, A. S." box="[961,1207,565,607]" journalOrPublisher="Bull. Am. Mus. Nat. Hist" pageId="8" pageNumber="259" pagination="605 - 617" part="48" refId="ref5747" refString="- 1923 b. The pelvic musculature of saurischian dinosaurs. - Ibidem, 48, 605 - 617." title="The pelvic musculature of saurischian dinosaurs" type="journal article" year="1923">Romer 1923</bibRefCitation>
). It inserts into the fourth trochanter and sends a long tendon to the M.
<emphasis id="B9278F551E34FFCDFB08FDE9FA3EFD7A" box="[1208,1492,619,661]" italics="true" pageId="8" pageNumber="259">gastrocnemius</emphasis>
(
<figureCitation id="13684FC21E34FFCDFA45FDE9FF66FD24" captionStart="Fig. 3" captionStartId="4.[914,969,1089,1121]" captionTargetBox="[788,1548,226,1070]" captionTargetPageId="4" captionText="Fig. 3. Lateral view of the left shank and pes of a eusuchian crocodilian. AMB M. ambiens; C calcaneum; FTE M. flexor tibialis externus; G M. gas­ trocnemius, fibular head; PA M. pero­ neus anterior; PP peroneus posterior; TCF tendon of the M. caudofemoralis attaching to the fibula; TCFM tendon of the M. caudofemoralis, forming the main origin for the fibular head of the M. gastrocnemius; TE tendon of the M. caudofemoralis to the extensor tendon of the knee; TFTE tendon of the M. flexor tibialis externus to the fifth metatarsus." figureDoi="http://doi.org/10.5281/zenodo.3678105" httpUri="https://zenodo.org/record/3678105/files/figure.png" pageId="8" pageNumber="259">figs. 3</figureCitation>
,
<figureCitation id="13684FC21E34FFCDFF1CFD23FF2CFD24" box="[172,198,673,715]" captionStart="Fig. 4" captionStartId="6.[126,185,2249,2281]" captionTargetBox="[136,994,1524,2224]" captionTargetPageId="6" captionText="Fig. 4. Reconstructed pelvic and hindlimb muscles of the theropod dinosaur Tyrannosaurus rex. AMB M. ambiens; CFB M. caudofemoralis brevis; CFL M. caudofemoralis longus; FTE M. flexor tibialis externus; GF M. gastrocnemius, fibular head; PIFI1 M. puboischiofemoralis internus part one; TFTE tendon of the M. flexor tibialis externus." figureDoi="http://doi.org/10.5281/zenodo.3678109" httpUri="https://zenodo.org/record/3678109/files/figure.png" pageId="8" pageNumber="259">4</figureCitation>
). The
<emphasis id="B9278F551E34FFCDFEE9FD23FE25FD24" box="[345,463,673,715]" italics="true" pageId="8" pageNumber="259">brevis</emphasis>
originates from the internal surface of the postaceta­ bular ilium and the last sacral vertebra. It also inserts into the fourth trochanter. The
<emphasis id="B9278F551E34FFCDFE7FFC8EFCF9FCD9" box="[463,787,780,822]" italics="true" pageId="8" pageNumber="259">M. iliofemoralis</emphasis>
may also aid in the retraction of the femur due to its insertion of the postero-lateral surface of the femur (
<figureCitation id="13684FC21E34FFCDFF32FCFFFF04FC48" box="[130,238,893,935]" captionStart="Fig. 5" captionStartId="6.[1035,1090,2248,2280]" captionTargetBox="[1054,1604,1562,2092]" captionTargetPageId="6" captionText="Fig. 5. Reconstructed pelvic and hindlimb muscles of the theropod dinosaur, Tyrannosaurus rex. FTI2 M. flexor tibialis internus part two; FTI3 M. flexor tibialis internus part three; IF M. ilio- femoralis; PIFI2 M. puboischio- femoralis internus part two." figureDoi="http://doi.org/10.5281/zenodo.3689578" httpUri="https://zenodo.org/record/3689578/files/figure.png" pageId="8" pageNumber="259">fig. 5</figureCitation>
).
</paragraph>
<caption id="DF2C03CF1E3AFFC3FFCEF74BFD54F60B" ID-DOI="http://doi.org/10.5281/zenodo.3678109" ID-Zenodo-Dep="3678109" httpUri="https://zenodo.org/record/3678109/files/figure.png" pageId="6" pageNumber="257" startId="6.[126,185,2249,2281]" targetBox="[136,994,1524,2224]" targetPageId="6">
<paragraph id="8BEC53471E3AFFC3FFCEF74BFD54F60B" blockId="6.[126,994,1524,2532]" pageId="6" pageNumber="257">
Fig. 4. Reconstructed pelvic and hindlimb muscles of the theropod dinosaur
<emphasis id="B9278F551E3AFFC3FD63F76FFF55F6DF" italics="true" pageId="6" pageNumber="257">
<taxonomicName id="4C5328C41E3AFFC3FD63F76FFF50F6DF" authorityName="Osborn" authorityYear="1905" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="6" pageNumber="257" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
.
</emphasis>
AMB
<emphasis id="B9278F551E3AFFC3FEF4F692FDF3F6DF" box="[324,537,2320,2352]" italics="true" pageId="6" pageNumber="257">M. ambiens;</emphasis>
CFB
<emphasis id="B9278F551E3AFFC3FD21F692FF1FF6B9" italics="true" pageId="6" pageNumber="257">M. caudofemoralis brevis;</emphasis>
CFL
<emphasis id="B9278F551E3AFFC3FE32F6B4FC80F6B9" box="[386,874,2358,2390]" italics="true" pageId="6" pageNumber="257">M. caudofemoralis longus;</emphasis>
FTE M.
<emphasis id="B9278F551E3AFFC3FF07F6DBFDA5F696" box="[183,591,2393,2425]" italics="true" pageId="6" pageNumber="257">flexor tibialis externus;</emphasis>
GF
<emphasis id="B9278F551E3AFFC3FD10F6DBFC3EF696" box="[672,980,2393,2425]" italics="true" pageId="6" pageNumber="257">M. gastrocnemius,</emphasis>
fibular head; PIFI1
<emphasis id="B9278F551E3AFFC3FD9CF6FEFEE7F62F" italics="true" pageId="6" pageNumber="257">M. puboischiofemoralis internus</emphasis>
part one; TFTE tendon of the M. flexor tibialis externus.
</paragraph>
</caption>
<caption id="DF2C03CF1E3AFFC3FBBBF74AF9D8F60B" ID-DOI="http://doi.org/10.5281/zenodo.3689578" ID-Zenodo-Dep="3689578" httpUri="https://zenodo.org/record/3689578/files/figure.png" pageId="6" pageNumber="257" targetBox="[1054,1604,1562,2092]" targetPageId="6">
<paragraph id="8BEC53471E3AFFC3FBBBF74AF9D8F60B" blockId="6.[1033,1623,2246,2532]" pageId="6" pageNumber="257">
Fig. 5. Reconstructed pelvic and hindlimb muscles of the theropod dinosaur,
<emphasis id="B9278F551E3AFFC3FB6DF68DF9BFF6C0" box="[1245,1621,2319,2351]" italics="true" pageId="6" pageNumber="257">
<taxonomicName id="4C5328C41E3AFFC3FB6DF68DF9BAF6C0" authorityName="Osborn" authorityYear="1905" box="[1245,1616,2319,2351]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="6" pageNumber="257" phylum="Chordata" rank="species" species="rex">Tyrannosaurus rex</taxonomicName>
.
</emphasis>
FTI2
<emphasis id="B9278F551E3AFFC3FBC3F6B6FBA5F696" italics="true" pageId="6" pageNumber="257">M. flexor tibialis internus part</emphasis>
two; FTI3
<emphasis id="B9278F551E3AFFC3FA98F6DBFB7FF673" italics="true" pageId="6" pageNumber="257">M. flexor tibialis internus</emphasis>
part three; IF
<emphasis id="B9278F551E3AFFC3FA7DF6FEFB5FF650" italics="true" pageId="6" pageNumber="257">M. ilio- femoralis;</emphasis>
PIFI2
<emphasis id="B9278F551E3AFFC3FAFDF61DFA99F60B" italics="true" pageId="6" pageNumber="257">M. puboischio- femoralis internus</emphasis>
part two.
</paragraph>
</caption>
<caption id="DF2C03CF1E3BFFC2FFCEFA45FC71F9C1" ID-DOI="http://doi.org/10.5281/zenodo.3678111" ID-Zenodo-Dep="3678111" httpUri="https://zenodo.org/record/3678111/files/figure.png" pageId="7" pageNumber="258" startId="7.[126,185,1479,1511]" targetBox="[244,1488,200,1440]" targetPageId="7">
<paragraph id="8BEC53471E3BFFC2FFCEFA45FC71F9C1" blockId="7.[126,1626,1479,1582]" pageId="7" pageNumber="258">
Fig. 6. Ventral view of the right side of a eusuchian crocodilian pelvis and hindlimb. IL ilium; IS ischium; PIFE1,2,3
<emphasis id="B9278F551E3BFFC2FD0FFA68FB12F9E5" box="[703,1272,1514,1546]" italics="true" pageId="7" pageNumber="258">M. puboischiofemoralis externus</emphasis>
parts one, two and three.
</paragraph>
</caption>
<paragraph id="8BEC53471E34FFCFFF08FC2FFEA9FD7D" blockId="8.[112,1613,191,2537]" lastBlockId="10.[125,1619,198,658]" lastPageId="10" lastPageNumber="261" pageId="8" pageNumber="259">
The positioning of the vertebral column can now be understood in functional terms. If the vertebral column is oriented at about 50 degrees above the horizontal, the
<emphasis id="B9278F551E34FFCDFD36FB9AFAF8FBAD" box="[646,1298,1048,1090]" italics="true" pageId="8" pageNumber="259">M. puboischiofemoralis internus</emphasis>
will bring the femur upwards and not forward. The result is a high, inefficient “march­ ing-in-place” gait. In order to stand with the vertebral column at such an angle the
<emphasis id="B9278F551E34FFCDFECEFB38FD01FB0B" box="[382,747,1210,1252]" italics="true" pageId="8" pageNumber="259">M. caudofemoralis</emphasis>
would have to be almost fully contracted. Thus at such a high angle, the vertebral column makes bipedal locomo­ tion impossible. If the vertebral column is held horizontally there are also problems in locomotion. The
<emphasis id="B9278F551E34FFCDFCF6FAD9FA30FA6A" box="[838,1498,1371,1413]" italics="true" pageId="8" pageNumber="259">M. puboischiofemoralis internus</emphasis>
may bring the femur only partially forward but can hardly lift the femur. The postures giving theropods a horizontal vertebral column and having the femur protracted to the level of the vertebral column are biomechanically and physiologically impossible since the femur would be dislocated from the hip (tearing the
<emphasis id="B9278F551E34FFCDFDAAF9E7FC6CF960" box="[538,902,1637,1679]" italics="true" pageId="8" pageNumber="259">ligamentum teres)</emphasis>
and the protractor muscles would have to contract more (by as much as three times) than is physiologically possible. When crocodilians run bipedally, the presacral region is lifted in order that the
<emphasis id="B9278F551E34FFCDFE50F886FB8EF8C1" box="[480,1124,1796,1838]" italics="true" pageId="8" pageNumber="259">M. puboischiofemoralis internus</emphasis>
can lift as well as pro­ tract the thigh. A horizontal vertebral column limits the protraction and retraction of the femur. This would allow theropods to walk but inhibit their ability to run. This may be explainable in terms of length tension curves of muscle contraction (
<bibRefCitation id="EFC22EB61E34FFCDFCB3F85BFBFCF7EC" author="RAMSEY, R. W." box="[771,1046,2009,2051]" editor="G. H. Bourne" journalOrPublisher="Academic Press, New York" pageId="8" pageNumber="259" pagination="303 - 358" refId="ref5666" refString="RAMSEY, R. W. 1960. Some aspects of the biophysics of muscle. In: G. H. Bourne (ed), The Structure and Function of Muscle, 303 - 358. Academic Press, New York." title="Some aspects of the biophysics of muscle" type="book chapter" volumeTitle="The Structure and Function of Muscle" year="1960">Ramsey 1960</bibRefCitation>
;
<bibRefCitation id="EFC22EB61E34FFCDFB8CF85BF9AEF7EC" author="ABBOTT, B. C. &amp; WILKIE, D. R." box="[1084,1604,2009,2051]" journalOrPublisher="J. Physiol." pageId="8" pageNumber="259" pagination="214" part="120" refId="ref4664" refString="ABBOTT, B. C. and WILKIE, D. R. 1953. The relation between Velocity of shortening and the tension length curve of skeletal muscle. - J. Physiol., 120, 214." title="The relation between Velocity of shortening and the tension length curve of skeletal muscle" type="journal article" year="1953">Abbott and Wilkie 1953</bibRefCitation>
;
<bibRefCitation id="EFC22EB61E34FFCDFFC8F78DFDCBF7D6" author="GANS, C. &amp; BOCK, W." box="[120,545,2063,2105]" journalOrPublisher="Ergeb. Anat. Entwicklungsges." pageId="8" pageNumber="259" pagination="115 - 142" part="38" refId="ref5040" refString="GANS, C. and BOCK, W. 1965. The functional significance of muscle architecture: A theoretical analysis. - Ergeb. Anat. Entwicklungsges., 38, 115 - 142." title="The functional significance of muscle architecture: A theoretical analysis" type="journal article" year="1965">Gans and Bock 1965</bibRefCitation>
). The lifting of the presacral region acts to stretch the protractor muscles loaded by the weight of the hindlimb. According to
<bibRefCitation id="EFC22EB61E34FFCDFFC8F7F9FE78F74A" author="WILSON, J. A." box="[120,402,2171,2213]" journalOrPublisher="Macmillan Publishing Co., Inc., New York" pageId="8" pageNumber="259" refId="ref6075" refString="WILSON, J. A. 1979. Principles of Animal Physiology. Macmillan Publishing Co., Inc., New York." title="Principles of Animal Physiology" type="book" year="1979">Wilson (1979)</bibRefCitation>
, this would permit a faster shortening velocity of these muscles and would allow them to produce more work. If the vertebral column of theropods were held horizontally then both protractors and retractors would be either short (reducing the excursion of their inser­ tion points) or their contraction would produce less tension (due to the slackness of the muscles). For these reasons, extension of the vertebral column is essential to reptilian bipedal locomotion. The same is true for the retractor function of the caudofemoralis. Extension of the tail renders the same benefits to the retractor musculature. The first few caudal ver- tebrae of theropods never have elongated ossified postzygopophyses for this reason. Thus the vertebral column in theropods should have been held at an angle of about 20 degrees above the horizontal (
<figureCitation id="13684FC21E36FFCFFAA0FE1EFA9BFE54" box="[1296,1393,411,451]" captionStart="Fig. 7" captionStartId="9.[422,481,1498,1530]" captionTargetBox="[154,2576,436,1465]" captionTargetPageId="9" captionText="Fig. 7. Diagrammatic representation of the theropod dinosaur, Tyrannosaurus rex, during a walking gait." figureDoi="http://doi.org/10.5281/zenodo.3678113" httpUri="https://zenodo.org/record/3678113/files/figure.png" pageId="10" pageNumber="261">fig. 7</figureCitation>
). Attempts at giving theropods ratite avian postures can do so only by neglecting the large differences in osteology and musculature, as well as method of balance and locomotion that clearly exists between theropod dinosaurs and birds.
</paragraph>
</subSubSection>
</treatment>
</document>