treatments-xml/data/03/FF/AB/03FFAB1A0743CA1C56476A59FAF7F88D.xml
2024-06-21 12:22:17 +02:00

436 lines
62 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document ID-DOI="10.1093/zoolinnean/zlac076" ID-GBIF-Dataset="43d330d7-30d3-4de4-b984-e40dc20879a9" ID-ISSN="0024-4082" ID-Zenodo-Dep="7696072" ID-ZooBank="D6915151-59FA-4CE2-A059-E3FDE194BA3D" checkinTime="1677744634579" checkinUser="plazi" docAuthor="Prates, Ivan, Doughty, Paul &amp; Rabosky, Daniel L." docDate="2023" docId="03FFAB1A0743CA1C56476A59FAF7F88D" docLanguage="en" docName="zlac076.pdf" docOrigin="Zoological Journal of the Linnean Society 197" docStyle="DocumentStyle:36B3BD6A90C22AB4F7F465C853188CC8.7:ZoolJLinnSoc.2017-.journal_article" docStyleId="36B3BD6A90C22AB4F7F465C853188CC8" docStyleName="ZoolJLinnSoc.2017-.journal_article" docStyleVersion="7" docTitle="Ctenotus pantherinus" docType="treatment" docVersion="3" lastPageNumber="782" masterDocId="FFC6D3620748CA1255216C0CFFCCFFDF" masterDocTitle="Subspecies at crossroads: the evolutionary significance of genomic and phenotypic variation in a wide-ranging Australian lizard (Ctenotus pantherinus)" masterLastPageNumber="786" masterPageNumber="768" pageNumber="779" updateTime="1677852373254" updateUser="ExternalLinkService">
<mods:mods xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo>
<mods:title>Subspecies at crossroads: the evolutionary significance of genomic and phenotypic variation in a wide-ranging Australian lizard (Ctenotus pantherinus)</mods:title>
</mods:titleInfo>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Prates, Ivan</mods:namePart>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Doughty, Paul</mods:namePart>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Rabosky, Daniel L.</mods:namePart>
</mods:name>
<mods:typeOfResource>text</mods:typeOfResource>
<mods:relatedItem type="host">
<mods:titleInfo>
<mods:title>Zoological Journal of the Linnean Society</mods:title>
</mods:titleInfo>
<mods:part>
<mods:date>2023</mods:date>
<mods:detail type="pubDate">
<mods:number>2022-10-10</mods:number>
</mods:detail>
<mods:detail type="volume">
<mods:number>197</mods:number>
</mods:detail>
<mods:extent unit="page">
<mods:start>768</mods:start>
<mods:end>786</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:classification>journal article</mods:classification>
<mods:identifier type="DOI">10.1093/zoolinnean/zlac076</mods:identifier>
<mods:identifier type="GBIF-Dataset">43d330d7-30d3-4de4-b984-e40dc20879a9</mods:identifier>
<mods:identifier type="ISSN">0024-4082</mods:identifier>
<mods:identifier type="Zenodo-Dep">7696072</mods:identifier>
<mods:identifier type="ZooBank">D6915151-59FA-4CE2-A059-E3FDE194BA3D</mods:identifier>
</mods:mods>
<treatment ID-DOI="http://doi.org/10.5281/zenodo.7696074" ID-Zenodo-Dep="7696074" LSID="urn:lsid:plazi:treatment:03FFAB1A0743CA1C56476A59FAF7F88D" httpUri="http://treatment.plazi.org/id/03FFAB1A0743CA1C56476A59FAF7F88D" lastPageId="14" lastPageNumber="782" pageId="11" pageNumber="779">
<subSubSection box="[870,1363,1621,1646]" pageId="11" pageNumber="779" type="nomenclature">
<paragraph blockId="11.[870,1363,1621,1646]" box="[870,1363,1621,1646]" pageId="11" pageNumber="779">
<heading box="[870,1363,1621,1646]" centered="true" fontSize="9" level="2" pageId="11" pageNumber="779" reason="2">
SUPPORT FOR
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[1032,1222,1622,1645]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="779" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[1032,1222,1622,1645]" italics="true" pageId="11" pageNumber="779">C. PANTHERINUS</emphasis>
</taxonomicName>
SUBSPECIES
</heading>
</paragraph>
</subSubSection>
<subSubSection lastPageId="14" lastPageNumber="782" pageId="11" pageNumber="779" type="description">
<paragraph blockId="11.[809,1424,1662,1898]" lastBlockId="12.[163,780,197,1905]" lastPageId="12" lastPageNumber="780" pageId="11" pageNumber="779">
Our morphological examinations confirmed that coloration and scalation characters broadly used in
<taxonomicName authorityName="Storr" authorityYear="1964" box="[844,952,1723,1744]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="779" phylum="Chordata" rank="genus">
<emphasis box="[844,952,1723,1744]" italics="true" pageId="11" pageNumber="779">Ctenotus</emphasis>
</taxonomicName>
taxonomy varies across the range of
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[809,992,1754,1775]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="11" pageNumber="779" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[809,992,1754,1775]" italics="true" pageId="11" pageNumber="779">C. pantherinus</emphasis>
</taxonomicName>
. Some character states were more common in certain regions, including broadly keeled digits, lower midbody scale counts, larger average adult sizes and dorsal spots with thick outlines. This variation was consistent, in part, with the presumed distributions of certain subspecies, namely
<emphasis box="[163,270,228,250]" italics="true" pageId="12" pageNumber="780">C. p. calx</emphasis>
and
<emphasis box="[330,532,228,250]" italics="true" pageId="12" pageNumber="780">
C. p.
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[390,532,228,249]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="12" pageNumber="780" phylum="Chordata" rank="species" species="pantherinus">pantherinus</taxonomicName>
</emphasis>
. Nevertheless, many individuals in a given region deviated from the most frequent phenotype and corresponding phylogenetic lineage, whereas character combinations presumed as diagnostic also occurred outside the recognized subspecies ranges. Such regional variation appears to have been overlooked or unreported in the subspecies descriptions, potentially owing to limited sampling. In the case of the continuous characters, spatial variation often appeared clinal. Moreover, despite broad geographical trends when we examined certain characters in isolation, the morphological distinctiveness of regional populations faded when multiple characters were considered jointly. Concentrating on single characters and overlooking their intrasite and intraregion variation appears to have overestimated the phenotypic coherence and distinctiveness of the subspecies of
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[566,734,749,770]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="12" pageNumber="780" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[566,734,749,770]" italics="true" pageId="12" pageNumber="780">C. pantherinus</emphasis>
</taxonomicName>
.
</paragraph>
<paragraph blockId="12.[163,780,197,1905]" pageId="12" pageNumber="780">
<materialsCitation county="This" location="Western Australian Museum" municipality="Today" pageId="12" pageNumber="780" specimenCount="328">
Other patterns of morphological variation did not conform to subspecies definitions. We found some character states to be infrequent in regions where these states were once thought to predominate, whereas others occurred more extensively than previously reported. Most of the character variation we encountered was continuous (e.g. degree of spininess of the plantar scales and coloration traits;
<figureCitation box="[163,230,1025,1047]" captionStart="Figure 2" captionStartId="4.[163,243,1678,1700]" captionTargetBox="[195,1411,198,1636]" captionTargetId="figure-25@4.[192,1414,195,1639]" captionTargetPageId="4" captionText="Figure 2. Selected phenotypic characters examined in museum specimens of Ctenotus pantherinus and their variation. A, dorsal coloration (from left to right): typical ocellated pattern, vertebral stripe, longitudinal lines, hiatus of ocelli on the vertebral region and ocelli with thick dark borders. B, condition of the plantar scales: smooth, pyramidal and with a spiny projection. C, condition of the subdigital lamellae (yellow arrows): single broad keel, single fine keel and fine medial keel flanked by two smaller parallel keels. Variation among the character states shown was often near-continuous and difficult to categorize." figureDoi="http://doi.org/10.5281/zenodo.7696078" httpUri="https://zenodo.org/record/7696078/files/figure.png" pageId="12" pageNumber="780">Fig. 2</figureCitation>
), making it difficult to score these characters objectively. This difficulty might explain the pattern of conflicting voucher assignments among collectors and museum staff (
<figureCitation box="[395,461,1117,1139]" captionStart="Figure 1" captionStartId="1.[145,225,1649,1671]" captionTargetBox="[148,1429,861,1606]" captionTargetId="figure-345@1.[145,1432,858,1609]" captionTargetPageId="1" captionText="Figure 1. A, Illustrative picture of C. pantherinus in life (subspecies C. p. ocellifer), courtesy of Eric Vanderduys. B, C, distributions of currently recognized Ctenotus pantherinus subspecies. B, presumed distributions of C. pantherinus subspecies as typically presented in field guides and taxonomic compendiums (based on Ehmann &amp; Strahan, 1992; Storr et al., 1999). Subspecies are as follows: C. p. acripes (a), C. p. calx (c), C. p. ocellifer (o) and C. p. pantherinus (p). Note the disjunct distribution of C. p. acripes, whose type locality is on a Western Australian island (Barrow Island; arrow). C, sampling localities of 1464 voucher specimens split by subspecies assignment as in the original museum records (for details on how we compiled these data, see the Material and methods section). Note that subspecies ranges as commonly understood (B) often disagree with those suggested by museum records." figureDoi="http://doi.org/10.5281/zenodo.7696076" httpUri="https://zenodo.org/record/7696076/files/figure.png" pageId="12" pageNumber="780">Fig. 1</figureCitation>
) and our partial failure to recover previously reported spatial patterns (
<figureCitation box="[705,772,1148,1170]" captionStart="Figure 3" captionStartId="7.[145,224,1652,1674]" captionTargetBox="[177,1393,215,1609]" captionTargetId="figure-26@7.[174,1396,195,1612]" captionTargetPageId="7" captionText="Figure 3. Geographical distribution of the characters proposed to diagnose subspecies in Ctenotus pantherinus. The top left panel indicates the presumed ranges of the four subspecies as in Figure 1B: C. p. acripes (a), C. p. calx (c), C. p. ocellifer (o) and C. p. pantherinus (p). For the quantitative characters (remaining left panels), colours of circles indicate average trait values in a locality. Juveniles (&lt;75 mm) were not included in the snoutvent length map. For the qualitative characters (right panels), pie charts indicate the relative frequency of alternative character states in a locality. Some character states tended to be more frequent in certain regions, yet many specimens deviated from these regional trends." figureDoi="http://doi.org/10.5281/zenodo.7696082" httpUri="https://zenodo.org/record/7696082/files/figure.png" pageId="12" pageNumber="780">Fig. 3</figureCitation>
;
<tableCitation box="[163,248,1178,1200]" captionStart="Table 1" captionStartId="8.[163,226,196,217]" captionTargetPageId="8" captionText="Table 1. Summary of phenotypic character states by tentative subspecies assignment (based on presumed subspecies ranges; see main text for details) in museum specimens of Ctenotus pantherinus. Values within parentheses indicate ranges." httpUri="http://table.plazi.org/id/DF294A840740CA1A55826CC8FA56FF28" pageId="12" pageNumber="780" tableUuid="DF294A840740CA1A55826CC8FA56FF28">Table 1</tableCitation>
). Remarkably, some of the subspecies did not appear morphologically distinct at all (
<emphasis box="[632,779,1209,1231]" italics="true" pageId="12" pageNumber="780">C. p. acripes</emphasis>
and
<emphasis box="[216,372,1240,1261]" italics="true" pageId="12" pageNumber="780">C. p. ocellifer</emphasis>
). These findings might stem from broader specimen collections now available relative to when the subspecies were described. For instance, &lt;
<specimenCount box="[185,350,1332,1354]" pageId="12" pageNumber="780" type="generic">100 specimens</specimenCount>
of
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[385,554,1332,1353]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="12" pageNumber="780" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[385,554,1332,1353]" italics="true" pageId="12" pageNumber="780">C. pantherinus</emphasis>
</taxonomicName>
were housed at the
<location LSID="urn:lsid:plazi:treatment:03FFAB1A0743CA1C56476A59FAF7F88D:8E894CD70744CA1E5582695FFDCCFAB7" box="[163,512,1362,1384]" county="This" municipality="Today" name="Western Australian Museum" pageId="12" pageNumber="780">Western Australian Museum</location>
at the time
<emphasis box="[667,779,1362,1384]" italics="true" pageId="12" pageNumber="780">C. p. calx</emphasis>
was described based on nine of them. Likewise, ~
<specimenCount pageId="12" pageNumber="780" type="generic">200 specimens</specimenCount>
of
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[328,509,1424,1445]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="12" pageNumber="780" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[328,509,1424,1445]" italics="true" pageId="12" pageNumber="780">C. pantherinus</emphasis>
</taxonomicName>
were available in the same museum when
<emphasis box="[405,545,1455,1476]" italics="true" pageId="12" pageNumber="780">C. p. acripes</emphasis>
was described, with that description incorporating
<specimenCount box="[533,692,1485,1507]" pageId="12" pageNumber="780" type="generic">28 specimens</specimenCount>
from a single site (
<location LSID="urn:lsid:plazi:treatment:03FFAB1A0743CA1C56476A59FAF7F88D:8E894CD70744CA1E540369E0FE04F9DD" box="[290,456,1516,1538]" county="This" municipality="Today" name="Barrow Island" pageId="12" pageNumber="780">Barrow Island</location>
).
<collectingMunicipality box="[472,539,1516,1538]" pageId="12" pageNumber="780">Today</collectingMunicipality>
, this museum houses&gt; 1300
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[258,442,1546,1568]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="12" pageNumber="780" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[258,442,1546,1568]" italics="true" pageId="12" pageNumber="780">C. pantherinus</emphasis>
</taxonomicName>
specimens.
<collectingCounty box="[596,650,1546,1568]" pageId="12" pageNumber="780">This</collectingCounty>
increased sampling has revealed variation that contradicts the presumed coherence and distinctiveness of subspecies
</materialsCitation>
.
</paragraph>
<paragraph blockId="12.[163,780,197,1905]" lastBlockId="12.[827,1444,197,740]" pageId="12" pageNumber="780">
Similar to the morphological patterns, the correspondence of genetic clades to currently recognized subspecies was weak and inconsistent. Samples from the presumed range of a subspecies were partitioned into multiple clades, particularly in the nuclear analysis. Conversely, clades that corresponded roughly to a subspecies included samples from another presumed distribution of a subspecies. Notably, the mitochondrial analysis grouped two to three subspecies together and inferred all subspecies as paraphyletic. This finding appears unexpected, because shorter coalescent times in mitochondrial markers (relative to nuclear DNA) make them well suited to the identification of shallow divergences, such as those seen within species (
<bibRefCitation author="Palumbi SR &amp; Cipriano F &amp; Hare MP" pageId="12" pageNumber="780" pagination="859 - 868" refId="ref12469" refString="Palumbi SR, Cipriano F, Hare MP. 2001. Predicting nuclear gene coalescence from mitochondrial data: the three-times rule. EVolution 55: 859 - 868." type="journal article" year="2001">
Palumbi
<emphasis box="[1374,1436,350,372]" italics="true" pageId="12" pageNumber="780">et al.</emphasis>
, 2001
</bibRefCitation>
). Instead, the results are consistent with mitochondrial haplotype sharing among populations of the same species. Nuclear estimates of ancestry coefficients and widespread mitonuclear discordance provide further support for a pattern of broad genetic admixture and introgression, as reported in other species (e.g.
<bibRefCitation author="Toews DPL &amp; Brelsford A" box="[974,1266,565,587]" pageId="12" pageNumber="780" pagination="3907 - 3930" refId="ref13937" refString="Toews DPL, Brelsford A. 2012. The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology 21: 3907 - 3930." type="journal article" year="2012">Toews &amp; Brelsford, 2012</bibRefCitation>
;
<bibRefCitation author="Pereira RJ &amp; Martinez-Solano I &amp; Buckley D" pageId="12" pageNumber="780" pagination="1551 - 1565" refId="ref12711" refString="Pereira RJ, Martinez-Solano I, Buckley D. 2016. Hybridization during altitudinal range shifts: nuclear introgression leads to extensive cyto-nuclear discordance in the fire salamander. Molecular Ecology 25: 1551 - 1565." type="journal article" year="2016">
Pereira
<emphasis box="[1377,1436,565,586]" italics="true" pageId="12" pageNumber="780">et al.</emphasis>
, 2016
</bibRefCitation>
). Therefore, although the genetic data support the presence of multiple incipient lineages within
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[827,1007,657,678]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="12" pageNumber="780" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[827,1007,657,678]" italics="true" pageId="12" pageNumber="780">C. pantherinus</emphasis>
</taxonomicName>
, these lineages do not appear to be evolving independently, providing no support for their designation as species-level taxa.
</paragraph>
<paragraph blockId="12.[828,1441,801,855]" pageId="12" pageNumber="780">CHALLENGES TO THE TAXONOMIC CATEGORIZATION OF EARLY DIVERGING LINEAGES</paragraph>
<paragraph blockId="12.[827,1443,872,1906]" pageId="12" pageNumber="780">
Genetic admixture and introgression between major genetic groups in
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[1047,1227,902,924]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="12" pageNumber="780" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[1047,1227,902,924]" italics="true" pageId="12" pageNumber="780">C. pantherinus</emphasis>
</taxonomicName>
arguably provide evidence of incomplete evolutionary separation, consistent with certain conceptualizations of subspecies (
<bibRefCitation author="Frost DR &amp; Hillis DM" box="[979,1232,994,1016]" pageId="12" pageNumber="780" pagination="86 - 104" refId="ref11582" refString="Frost DR, Hillis DM. 1990. Species in concept and practice: herpetological applications. Herpetologica 46: 86 - 104." type="journal article" year="1990">Frost &amp; Hillis, 1990</bibRefCitation>
;
<bibRefCitation author="Hillis DM" box="[1251,1396,994,1016]" pageId="12" pageNumber="780" pagination="52 - 56" refId="ref11733" refString="Hillis DM. 2020. The detection and naming of geographic variation within species. Herpetological ReVieae 51: 52 - 56." type="journal article" year="2020">Hillis, 2020</bibRefCitation>
;
<bibRefCitation author="de Queiroz K" pageId="12" pageNumber="780" pagination="459 - 461" refId="ref13054" refString="de Queiroz K. 2020. An updated concept of subspecies resolves a dispute about the taxonomy of incompletely separated lineages. Herpetological ReVieae 51: 459 - 461." type="journal article" year="2020">de Queiroz, 2020</bibRefCitation>
,
<bibRefCitation author="de Queiroz K" box="[992,1047,1025,1046]" pageId="12" pageNumber="780" pagination="773 - 776" refId="ref13084" refString="de Queiroz K. 2021. Response to criticisms of an updated subspecies concept. Herpetological ReVieae 52: 773 - 776." type="journal article" year="2021">2021</bibRefCitation>
). Genetic exchange across incipient lineages might explain why many sampled localities were polymorphic and a pattern of widespread character state sharing across regions. In the presence of gene flow, populations can develop misaligned phenotypic and neutral genetic transitions in space (
<bibRefCitation author="Lipshutz SE &amp; Meier JI &amp; Derryberry GE &amp; Miller MJ &amp; Seehausen O &amp; Derryberry EP" box="[836,1086,1209,1231]" pageId="12" pageNumber="780" pagination="188 - 201" refId="ref12083" refString="Lipshutz SE, Meier JI, Derryberry GE, Miller MJ, Seehausen O, Derryberry EP. 2019. Differential introgression of a female competitive trait in a hybrid zone between sex-role reversed species. EVolution 73: 188 - 201." type="journal article" year="2019">
Lipshutz
<emphasis box="[952,1013,1209,1231]" italics="true" pageId="12" pageNumber="780">et al.</emphasis>
, 2019
</bibRefCitation>
). Therefore, individuals with conflicting phenotypic and genetic patterns, as seen in
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[827,997,1270,1292]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="12" pageNumber="780" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[827,997,1270,1292]" italics="true" pageId="12" pageNumber="780">C. pantherinus</emphasis>
</taxonomicName>
, might be typical of the early stages of lineage divergence (
<bibRefCitation author="Zamudio KR &amp; Bell RC &amp; Mason NA" box="[1053,1284,1301,1323]" pageId="12" pageNumber="780" pagination="8041 - 8048" refId="ref14135" refString="Zamudio KR, Bell RC, Mason NA. 2016. Phenotypes in phylogeography: species' traits, environmental variation, and vertebrate diversification. Proceedings of the National Academy of Sciences of the United States of America 113: 8041 - 8048." type="journal article" year="2016">
Zamudio
<emphasis box="[1160,1216,1301,1323]" italics="true" pageId="12" pageNumber="780">et al.</emphasis>
, 2016
</bibRefCitation>
).
</paragraph>
<paragraph blockId="12.[827,1443,872,1906]" lastBlockId="13.[145,762,197,1384]" lastPageId="13" lastPageNumber="781" pageId="12" pageNumber="780">
Facing such instances of regional variation, some authors have proposed the recognition of a subspecies when an arbitrary proportion (e.g. 75%) of the individuals in a region exhibit a given trait (
<bibRefCitation author="Amadon D" pageId="12" pageNumber="780" pagination="250 - 258" refId="ref10708" refString="Amadon D. 1949. The seventy-five per cent rule for subspecies. The Condor 51: 250 - 258." type="journal article" year="1949">Amadon, 1949</bibRefCitation>
;
<bibRefCitation author="Patten MA &amp; Unitt P" box="[896,1139,1454,1476]" pageId="12" pageNumber="780" pagination="26 - 35" refId="ref12499" refString="Patten MA, Unitt P. 2002. Diagnosability versus mean differences of sage sparrow subspecies. The Auk 119: 26 - 35." type="journal article" year="2002">Patten &amp; Unitt, 2002</bibRefCitation>
). This proposal illustrates that, if we decide to categorize incipient lineages in taxonomy, they can be described at best in terms of the most frequent phenotypes and clade memberships. Under such a scheme, an unknown, variable and potentially large proportion of individuals will be misclassified or classified ambiguously. We might expect the spatial limits of subspecies ranges to be unclear, not only because of phenotypic or genetic clines but, perhaps primarily, owing to fallible morphological and genetic diagnoses. As suggested by empirical analyses of mammals (e.g.
<bibRefCitation author="Patton JL &amp; Conroy CJ" pageId="12" pageNumber="780" pagination="1010 - 1026" refId="ref12524" refString="Patton JL, Conroy CJ. 2017. The conundrum of subspecies: morphological diversity among desert populations of the California vole (Microtus californicus, Cricetidae). Journal of Mammalogy 98: 1010 - 1026." type="journal article" year="2017">Patton &amp; Conroy, 2017</bibRefCitation>
), birds (e.g.
<bibRefCitation author="Patten MA &amp; Unitt P" box="[1036,1292,1822,1844]" pageId="12" pageNumber="780" pagination="26 - 35" refId="ref12499" refString="Patten MA, Unitt P. 2002. Diagnosability versus mean differences of sage sparrow subspecies. The Auk 119: 26 - 35." type="journal article" year="2002">Patten &amp; Unitt, 2002</bibRefCitation>
), butterflies (reviewed by
<bibRefCitation author="Braby MF &amp; Eastwood R &amp; Murray N" box="[993,1213,1853,1875]" pageId="12" pageNumber="780" pagination="699 - 716" refId="ref10819" refString="Braby MF, Eastwood R, Murray N. 2012. The subspecies concept in butterflies: has its application in taxonomy and conservation biology outlived its usefulness? Biological Journal of the Linnean Society 106: 699 - 716." type="journal article" year="2012">
Braby
<emphasis box="[1076,1138,1853,1875]" italics="true" pageId="12" pageNumber="780">et al.</emphasis>
, 2012
</bibRefCitation>
) and our analyses of
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[858,1039,1884,1905]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="12" pageNumber="780" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[858,1039,1884,1905]" italics="true" pageId="12" pageNumber="780">C. pantherinus</emphasis>
</taxonomicName>
, the evolutionary processes that characterize early lineage divergence might preclude the unequivocal assignment of many individuals to taxa. It seems likely that researchers will continue to disagree on whether this limitation undermines or justifies the utility of subspecies in taxonomic practice (
<bibRefCitation author="Patton JL &amp; Conroy CJ" box="[153,409,351,372]" pageId="13" pageNumber="781" pagination="1010 - 1026" refId="ref12524" refString="Patton JL, Conroy CJ. 2017. The conundrum of subspecies: morphological diversity among desert populations of the California vole (Microtus californicus, Cricetidae). Journal of Mammalogy 98: 1010 - 1026." type="journal article" year="2017">Patton &amp; Conroy, 2017</bibRefCitation>
).
</paragraph>
<paragraph blockId="13.[145,762,197,1384]" pageId="13" pageNumber="781">
A recent debate on subspecies has revolved around redefining this category to indicate incompletely separated population lineages (
<bibRefCitation author="Hillis DM" box="[561,712,442,464]" pageId="13" pageNumber="781" pagination="52 - 56" refId="ref11733" refString="Hillis DM. 2020. The detection and naming of geographic variation within species. Herpetological ReVieae 51: 52 - 56." type="journal article" year="2020">Hillis, 2020</bibRefCitation>
;
<bibRefCitation author="de Queiroz K" pageId="13" pageNumber="781" pagination="459 - 461" refId="ref13054" refString="de Queiroz K. 2020. An updated concept of subspecies resolves a dispute about the taxonomy of incompletely separated lineages. Herpetological ReVieae 51: 459 - 461." type="journal article" year="2020">de Queiroz, 2020</bibRefCitation>
,
<bibRefCitation author="de Queiroz K" box="[336,394,473,494]" pageId="13" pageNumber="781" pagination="773 - 776" refId="ref13084" refString="de Queiroz K. 2021. Response to criticisms of an updated subspecies concept. Herpetological ReVieae 52: 773 - 776." type="journal article" year="2021">2021</bibRefCitation>
). The case of
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[575,761,473,494]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="13" pageNumber="781" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[575,761,473,494]" italics="true" pageId="13" pageNumber="781">C. pantherinus</emphasis>
</taxonomicName>
suggests that, despite the conceptual appeal of this redefined subspecies concept, it might be unclear how to use it to guide taxonomic practice. It can be challenging to determine whether a pair of population lineages is separated completely or incompletely. For instance, closely related populations frequently show varying degrees of genetic divergence and admixture (
<bibRefCitation author="Singhal S &amp; Moritz C" box="[153,423,718,740]" pageId="13" pageNumber="781" pagination="20132246" refId="ref13598" refString="Singhal S, Moritz C. 2013. Reproductive isolation between phylogeographic lineages scales with divergence. Proceedings of the Royal Society B: Biological Sciences 280: 20132246." type="journal article" year="2013">Singhal &amp; Moritz, 2013</bibRefCitation>
;
<bibRefCitation author="Dufresnes C &amp; Brelsford A &amp; Crnobrnja-Isailovic J &amp; Tzankov N &amp; Lymberakis P &amp; Perrin N" box="[437,688,718,740]" pageId="13" pageNumber="781" pagination="155" refId="ref11425" refString="Dufresnes C, Brelsford A, Crnobrnja-Isailovic J, Tzankov N, Lymberakis P, Perrin N. 2015. Timeframe of speciation inferred from secondary contact zones in the European tree frog radiation (Hyla arborea group). BMC EVolutionary Biology 15: 155." type="journal article" year="2015">
Dufresnes
<emphasis box="[562,619,718,740]" italics="true" pageId="13" pageNumber="781">et al.</emphasis>
, 2015
</bibRefCitation>
). This pattern raises the question of what degree of genetic divergence or reduction in gene flow might warrant the recognition of species or subspecies (
<bibRefCitation author="Padial JM &amp; De la Riva I" pageId="13" pageNumber="781" pagination="731 - 751" refId="ref12431" refString="Padial JM, De la Riva I. 2020. A paradigm shift in our view of species drives current trends in biological classification. Biological ReVieaes of the Cambridge Philosophical Society 96: 731 - 751." type="journal article" year="2020">Padial &amp; De la Riva, 2020</bibRefCitation>
). To circumvent this issue, we might consider as conspecific those population lineages showing any level of incomplete separation. We might then propose subspecies to indicate identifiable genetic and morphological subgroups. However, many divergent lineages experience rampant genetic introgression; arguably, the most direct indication of incomplete lineage separation. Often, these lineages belong to distant (e.g. genus-level) clades and differ starkly in morphology, ecology and behaviour (e.g. hybridizing ducks or canids) (
<bibRefCitation author="Johnsgard PA" box="[367,569,1148,1170]" pageId="13" pageNumber="781" pagination="25 - 33" refId="ref11904" refString="Johnsgard PA. 1960. Hybridization in the Anatidae and its taxonomic implications. The Condor 62: 25 - 33." type="journal article" year="1960">Johnsgard, 1960</bibRefCitation>
;
<bibRefCitation author="Monzon J &amp; Kays R &amp; Dykhuizen DE" pageId="13" pageNumber="781" pagination="182 - 197" refId="ref12226" refString="Monzon J, Kays R, Dykhuizen DE. 2014. Assessment of coyote - wolf - dog admixture using ancestry-informative diagnostic SNPs. Molecular Ecology 23: 182 - 197." type="journal article" year="2014">
Monzón
<emphasis box="[692,754,1148,1169]" italics="true" pageId="13" pageNumber="781">et al.</emphasis>
, 2014
</bibRefCitation>
). Despite their apparent incomplete separation, such lineages would hardly be considered conspecific. These examples illustrate some of the challenges in translating conceptual definitions of taxonomic categories into empirical taxon delimitation. Such challenges apply to both subspecies and species (
<bibRefCitation author="de Queiroz K" pageId="13" pageNumber="781" pagination="879 - 886" refId="ref13034" refString="de Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology 56: 879 - 886." type="journal article" year="2007">de Queiroz, 2007</bibRefCitation>
).
</paragraph>
<paragraph blockId="13.[169,736,1445,1499]" pageId="13" pageNumber="781">TRADITIONAL SUBSPECIES ARE DIFFICULT TO TEST AND FALSIFY</paragraph>
<paragraph blockId="13.[145,762,1516,1875]" lastBlockId="13.[809,1426,197,1875]" pageId="13" pageNumber="781">
This study also highlights another peculiarity of subspecies: a historical asymmetry, whereby subspecies proposed in the past are hard to test and falsify (
<bibRefCitation author="Burbrink FT &amp; Crother BI &amp; Murray CM &amp; Smith BT &amp; Ruane S &amp; Myers EA &amp; Pyron RA" box="[239,494,1608,1630]" pageId="13" pageNumber="781" pagination="9069" refId="ref10912" refString="Burbrink FT, Crother BI, Murray CM, Smith BT, Ruane S, Myers EA, Pyron RA. 2022. Empirical and philosophical problems with the subspecies rank. Ecology and EVolution 12: e 9069." type="journal article" year="2022">
Burbrink
<emphasis box="[360,421,1608,1629]" italics="true" pageId="13" pageNumber="781">et al.</emphasis>
, 2022
</bibRefCitation>
), contrasting with an apparent hesitation from the taxonomists of today to propose new subspecies. In reptiles, for instance, subspecies descriptions peaked around the 1960s but declined sharply thereafter despite, or maybe because of, a rapid increase in specimen collection towards the end of the 20
<superScript attach="left" box="[344,359,1791,1803]" fontSize="5" pageId="13" pageNumber="781">th</superScript>
century (
<bibRefCitation author="Uetz P &amp; Stylianou A" box="[472,746,1792,1814]" pageId="13" pageNumber="781" pagination="257 - 264" refId="ref13991" refString="Uetz P, Stylianou A. 2018. The original descriptions of reptiles and their subspecies. Zootaxa 4375: 257 - 264." type="journal article" year="2018">Uetz &amp; Stylianou, 2018</bibRefCitation>
). Subspecies proposed decades ago can be difficult to falsify and discard owing to typically vague morphological definitions and deference to the opinions of previous workers about population distinctiveness. Given that subspecies are nested in a developmentally and ecologically constrained species, the phenotypic differences invoked to define subspecies are necessarily subtle. Furthermore, as in
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[1250,1419,350,372]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="13" pageNumber="781" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[1250,1419,350,372]" italics="true" pageId="13" pageNumber="781">C. pantherinus</emphasis>
</taxonomicName>
, subspecies were often described focusing on one or a few characters from relatively little material, thereby sampling gaps might have exacerbated the perception of distinctiveness (
<bibRefCitation author="Braby MF &amp; Eastwood R &amp; Murray N" box="[1044,1265,473,495]" pageId="13" pageNumber="781" pagination="699 - 716" refId="ref10819" refString="Braby MF, Eastwood R, Murray N. 2012. The subspecies concept in butterflies: has its application in taxonomy and conservation biology outlived its usefulness? Biological Journal of the Linnean Society 106: 699 - 716." type="journal article" year="2012">
Braby
<emphasis box="[1128,1190,473,495]" italics="true" pageId="13" pageNumber="781">et al.</emphasis>
, 2012
</bibRefCitation>
). Given that trait variation can be seen even when incompletely characterized, and owing to broad acceptance of partly speculative geographical ranges (e.g.
<figureCitation box="[1274,1343,565,587]" captionStart="Figure 1" captionStartId="1.[145,225,1649,1671]" captionTargetBox="[148,1429,861,1606]" captionTargetId="figure-345@1.[145,1432,858,1609]" captionTargetPageId="1" captionText="Figure 1. A, Illustrative picture of C. pantherinus in life (subspecies C. p. ocellifer), courtesy of Eric Vanderduys. B, C, distributions of currently recognized Ctenotus pantherinus subspecies. B, presumed distributions of C. pantherinus subspecies as typically presented in field guides and taxonomic compendiums (based on Ehmann &amp; Strahan, 1992; Storr et al., 1999). Subspecies are as follows: C. p. acripes (a), C. p. calx (c), C. p. ocellifer (o) and C. p. pantherinus (p). Note the disjunct distribution of C. p. acripes, whose type locality is on a Western Australian island (Barrow Island; arrow). C, sampling localities of 1464 voucher specimens split by subspecies assignment as in the original museum records (for details on how we compiled these data, see the Material and methods section). Note that subspecies ranges as commonly understood (B) often disagree with those suggested by museum records." figureDoi="http://doi.org/10.5281/zenodo.7696076" httpUri="https://zenodo.org/record/7696076/files/figure.png" pageId="13" pageNumber="781">Fig. 1</figureCitation>
), even vaguely defined subspecies continue to be recognized in taxonomic treatments and field guides. In contrast, present-day taxonomists appear unlikely to propose subspecies based on evidentiary standards typical in the 1960s1980s. As a case in point, a recent study on Australian frill-necked lizards (
<taxonomicName authority="Gray, 1825" authorityName="Gray" authorityYear="1825" class="Reptilia" family="Agamidae" genus="Chlamydosaurus" kingdom="Animalia" order="Squamata" pageId="13" pageNumber="781" phylum="Chordata" rank="species" species="kingii">
<emphasis italics="true" pageId="13" pageNumber="781">Chlamydosaurus kingii</emphasis>
Gray, 1825
</taxonomicName>
) described clinal variation in frill colour over the distribution of this species (
<bibRefCitation author="Pepper M &amp; Hamilton DG &amp; Merkling T &amp; Svedin N &amp; Cser B &amp; Catullo RA &amp; Pryke SR &amp; Keogh JS" pageId="13" pageNumber="781" pagination="217 - 227" refId="ref12652" refString="Pepper M, Hamilton DG, Merkling T, Svedin N, Cser B, Catullo RA, Pryke SR, Keogh JS. 2017. Phylogeographic structure across one of the largest intact tropical savannahs: Molecular and morphological analysis of Australia's iconic frilled lizard Chlamydosaurus kingii. Molecular Phylogenetics and EVolution 106: 217 - 227." type="journal article" year="2017">
Pepper
<emphasis box="[809,867,841,863]" italics="true" pageId="13" pageNumber="781">et al.</emphasis>
, 2017
</bibRefCitation>
). However, no subspecific taxa have been proposed to accommodate this variation, despite the presence of concomitant (albeit shallow) genetic differentiation. In contrast, recent evidence of limited or inconsistent distinctiveness in phenotype and genotype does not appear to bear on the rejection of many historically proposed subspecies (
<bibRefCitation author="Zink RM" box="[1259,1379,1025,1047]" pageId="13" pageNumber="781" pagination="561 - 564" refId="ref14179" refString="Zink RM. 2004. Theroleofsubspeciesinobscuringavianbiological diversity and misleading conservation policy. Proceedings of the Royal Society B: Biological Sciences 271: 561 - 564." type="journal article" year="2004">Zink, 2004</bibRefCitation>
).
</paragraph>
<paragraph blockId="13.[809,1426,197,1875]" lastBlockId="14.[163,780,197,1507]" lastPageId="14" lastPageNumber="782" pageId="13" pageNumber="781">
Contrasting with the view that subspecies must correspond to lineages, some researchers advocate for using subspecies to denote groups of phenotypically similar populations regardless of evolutionary relationships (
<bibRefCitation author="Patton JL &amp; Conroy CJ" box="[971,1222,1178,1200]" pageId="13" pageNumber="781" pagination="1010 - 1026" refId="ref12524" refString="Patton JL, Conroy CJ. 2017. The conundrum of subspecies: morphological diversity among desert populations of the California vole (Microtus californicus, Cricetidae). Journal of Mammalogy 98: 1010 - 1026." type="journal article" year="2017">Patton &amp; Conroy, 2017</bibRefCitation>
). This perspective is at odds with principles of scientific thought that trace back to Darwin, whereby taxa at all levels of biological classification should reflect phylogenetic relationships (
<bibRefCitation author="Darwin C" box="[818,981,1301,1323]" pageId="13" pageNumber="781" refId="ref11311" refString="Darwin C. 1859. On the origin of species by means of natural selection, or the preserVation of faVoured races in the struggle for life. London: J. Murray." type="book" year="1859">Darwin, 1859</bibRefCitation>
;
<bibRefCitation author="de Queiroz K &amp; Gauthier J" box="[997,1347,1301,1323]" pageId="13" pageNumber="781" pagination="449 - 480" refId="ref13107" refString="de Queiroz K, Gauthier J. 1992. Phylogenetic taxonomy. Annual ReVieae of Ecology and Systematics 23: 449 - 480." type="journal article" year="1992">de Queiroz &amp; Gauthier, 1992</bibRefCitation>
). This criterion also applies to the species category, because broadly applied concepts define species as phylogenetic lineages or predict that they will become lineages through sustained reproductive isolation (
<bibRefCitation author="Hennig W" pageId="13" pageNumber="781" refId="ref11718" refString="Hennig W. 1966. Phylogenetic systematics. Urbana: University of Illinois Press." type="book" year="1966">Hennig, 1966</bibRefCitation>
;
<bibRefCitation author="Dobzhansky T" box="[880,1091,1454,1476]" pageId="13" pageNumber="781" refId="ref11345" refString="Dobzhansky T. 1971. Genetics of the eVolutionary process. New York: Columbia University Press." type="book" year="1971">Dobzhansky, 1971</bibRefCitation>
;
<bibRefCitation author="Cracraft J" box="[1106,1276,1454,1476]" pageId="13" pageNumber="781" pagination="329 - 346" refId="ref11231" refString="Cracraft J. 1987. Species concepts and the ontology of evolution. Biology and Philosophy 2: 329 - 346." type="journal article" year="1987">Cracraft, 1987</bibRefCitation>
;
<bibRefCitation author="de Queiroz K" pageId="13" pageNumber="781" refId="ref12986" refString="de Queiroz K. 1998. The general lineage concept of species, species criteria, and the process of speciation. In: Howard DJ, Berlocher RH, eds. Endless forms: species and speciation. New York, Oxford: Oxford University Press." type="book" year="1998">de Queiroz, 1998</bibRefCitation>
;
<bibRefCitation author="Harrison RG &amp; Larson EL" box="[880,1175,1485,1507]" pageId="13" pageNumber="781" pagination="795 - 809" refId="ref11661" refString="Harrison RG, Larson EL. 2014. Hybridization, introgression, and the nature of species boundaries. Journal of Heredity 105: 795 - 809." type="journal article" year="2014">Harrison &amp; Larson, 2014</bibRefCitation>
). In this regard, it is worth noting that the nature of species as lineages is unaffected by the inference of paraphyly in gene genealogies (e.g. from incomplete lineage sorting or introgression;
<bibRefCitation author="Padial JM &amp; De la Riva I" box="[973,1270,1608,1630]" pageId="13" pageNumber="781" pagination="731 - 751" refId="ref12431" refString="Padial JM, De la Riva I. 2020. A paradigm shift in our view of species drives current trends in biological classification. Biological ReVieaes of the Cambridge Philosophical Society 96: 731 - 751." type="journal article" year="2020">Padial &amp; De la Riva, 2020</bibRefCitation>
). In contrast, a strictly morphological subspecies concept disregards the otherwise universal criterion of phylogeny, and thus potential incongruences between phylogeny and phenotype (
<bibRefCitation author="Burbrink FT &amp; Lawson R &amp; Slowinski JB" box="[943,1181,1730,1752]" pageId="13" pageNumber="781" pagination="2107 - 2118" refId="ref10952" refString="Burbrink FT, Lawson R, Slowinski JB. 2000. Mitochondrial DNA phylogeography of the polytypic north American rat snake (Elaphe obsoleta): a critique of the subspecies concept. EVolution 54: 2107 - 2118." type="journal article" year="2000">
Burbrink
<emphasis box="[1056,1113,1730,1752]" italics="true" pageId="13" pageNumber="781">et al.</emphasis>
, 2000
</bibRefCitation>
). Under this concept, subspecies might evoke similarly named categories, such as subgenus or subfamily, but is the only one not required to denote a clade. As such, subspecies can be a misleading term because it is considered a taxonomic category but lacks the defining property of all other taxonomic categories.
</paragraph>
<paragraph blockId="14.[163,780,197,1507]" pageId="14" pageNumber="782">
Additionally, by overlooking the evolutionary coherence of populations, morphological subspecies definitions are unfalsifiable. As illustrated by
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[163,344,350,372]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[163,344,350,372]" italics="true" pageId="14" pageNumber="782">C. pantherinus</emphasis>
</taxonomicName>
, such definitions require only that individuals from distinct locations tend to differ in a given trait, even if trait variation within and across locations hampers subspecies diagnosability (
<bibRefCitation author="Patten MA &amp; Unitt P" pageId="14" pageNumber="782" pagination="26 - 35" refId="ref12499" refString="Patten MA, Unitt P. 2002. Diagnosability versus mean differences of sage sparrow subspecies. The Auk 119: 26 - 35." type="journal article" year="2002">Patten &amp; Unitt, 2002</bibRefCitation>
;
<bibRefCitation author="Braby MF &amp; Eastwood R &amp; Murray N" box="[357,584,473,495]" pageId="14" pageNumber="782" pagination="699 - 716" refId="ref10819" refString="Braby MF, Eastwood R, Murray N. 2012. The subspecies concept in butterflies: has its application in taxonomy and conservation biology outlived its usefulness? Biological Journal of the Linnean Society 106: 699 - 716." type="journal article" year="2012">
Braby
<emphasis box="[442,506,473,495]" italics="true" pageId="14" pageNumber="782">et al.</emphasis>
, 2012
</bibRefCitation>
). Thus, limited internal coherence does not appear to challenge morphologically defined subspecies, contrasting with taxonomic groupings based on evolutionary relationships. Nevertheless, some authors have argued that even morphologically diagnosable subspecies are not biologically meaningful unless their defining characters reflect evolutionary separation (
<bibRefCitation author="Mayr E" box="[648,773,688,710]" pageId="14" pageNumber="782" refId="ref12164" refString="Mayr E. 1963. Animal species and eVolution. Cambridge: Harvard University Press." type="book" year="1963">Mayr, 1963</bibRefCitation>
;
<bibRefCitation author="Reydon TAC &amp; Kunz W" box="[163,433,718,740]" pageId="14" pageNumber="782" pagination="246 - 260" refId="ref13262" refString="Reydon TAC, Kunz W. 2021. Classification below the species level: when are infraspecific groups biologically meaningful? Biological Journal of the Linnean Society 134: 246 - 260." type="journal article" year="2021">Reydon &amp; Kunz, 2021</bibRefCitation>
). Otherwise, the characters used to identify subspecies are essentially arbitrary, and infinite partitions could be proposed within any species (
<bibRefCitation author="Mayr E" box="[265,398,810,832]" pageId="14" pageNumber="782" refId="ref12164" refString="Mayr E. 1963. Animal species and eVolution. Cambridge: Harvard University Press." type="book" year="1963">Mayr, 1963</bibRefCitation>
;
<bibRefCitation author="Wilson EO &amp; Brown WL" box="[413,684,810,832]" pageId="14" pageNumber="782" pagination="97 - 111" refId="ref14085" refString="Wilson EO, Brown WL. 1953. The subspecies concept and its taxonomic application. Systematic Zoology 2: 97 - 111." type="journal article" year="1953">Wilson &amp; Brown, 1953</bibRefCitation>
). Given the long-lasting contentions on how to designate subspecies, it might be clearer to simply annotate phenotypic variation patterns across species ranges as relevant (e.g.
<bibRefCitation author="Owen DF" box="[355,506,933,955]" pageId="14" pageNumber="782" pagination="183 - 189" refId="ref12388" refString="Owen DF. 1963 a. Screech owl polymorphism. Wilson Bulletin 75: 183 - 189." type="journal article" year="1963">Owen, 1963a</bibRefCitation>
, b). This approach does not artificially impose discrete taxonomic structures on clinal or other continuous patterns of variation (
<bibRefCitation author="Wilson EO &amp; Brown WL" box="[171,426,1025,1047]" pageId="14" pageNumber="782" pagination="97 - 111" refId="ref14085" refString="Wilson EO, Brown WL. 1953. The subspecies concept and its taxonomic application. Systematic Zoology 2: 97 - 111." type="journal article" year="1953">Wilson &amp; Brown, 1953</bibRefCitation>
;
<bibRefCitation author="Mayr E" box="[439,565,1025,1047]" pageId="14" pageNumber="782" refId="ref12164" refString="Mayr E. 1963. Animal species and eVolution. Cambridge: Harvard University Press." type="book" year="1963">Mayr, 1963</bibRefCitation>
;
<bibRefCitation author="Owen DF" box="[578,725,1025,1047]" pageId="14" pageNumber="782" pagination="8 - 14" refId="ref12406" refString="Owen DF. 1963 b. Variation in North American screech owls and the subspecies concept. Systematic Zoology 12: 8 - 14." type="journal article" year="1963">Owen, 1963b</bibRefCitation>
).
</paragraph>
<paragraph blockId="14.[163,780,197,1507]" pageId="14" pageNumber="782">
Finally, some authors advocate using geographical range as a diagnostic character of subspecies (
<bibRefCitation author="Patton JL &amp; Conroy CJ" pageId="14" pageNumber="782" pagination="1010 - 1026" refId="ref12524" refString="Patton JL, Conroy CJ. 2017. The conundrum of subspecies: morphological diversity among desert populations of the California vole (Microtus californicus, Cricetidae). Journal of Mammalogy 98: 1010 - 1026." type="journal article" year="2017">Patton &amp; Conroy, 2017</bibRefCitation>
). Although this often allows fieldworkers to assign taxonomic labels to specimens more easily, this solution is inherently circular and leads, in a similar manner, to taxonomic entities that cannot be falsified. Moreover, as illustrated by
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[597,773,1240,1261]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[597,773,1240,1261]" italics="true" pageId="14" pageNumber="782">C. pantherinus</emphasis>
</taxonomicName>
, reliance on geographical location for subspecies assignment can result in groupings of individuals that lack morphological and genetic coherence. Other studies have found that subspecies defined primarily based on geographical ranges are not phylogenetically divergent from those in neighbouring regions, as is the case of insular populations of primates in eastern Africa (
<bibRefCitation author="Penna A &amp; Bearder SK &amp; Karlsson J &amp; Perkin A &amp; Pozzi L" box="[247,449,1485,1507]" pageId="14" pageNumber="782" refId="ref12606" refString="Penna A, Bearder SK, Karlsson J, Perkin A, Pozzi L. 2022. Phylogeography and evolutionary lineage diversity in the small-eared greater galago, Otolemur garnettii (Primates;" type="book" year="2022">
Penna
<emphasis box="[326,382,1485,1507]" italics="true" pageId="14" pageNumber="782">et al.</emphasis>
, 2022
</bibRefCitation>
).
</paragraph>
<paragraph blockId="14.[168,773,1567,1622]" pageId="14" pageNumber="782">
IMPLICATIONS FOR THE INFRASPECIFIC TAXONOMY OF
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[376,566,1598,1622]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[376,566,1598,1622]" italics="true" pageId="14" pageNumber="782">C. PANTHERINUS</emphasis>
</taxonomicName>
</paragraph>
<paragraph blockId="14.[163,779,1638,1875]" lastBlockId="14.[827,1444,197,1875]" pageId="14" pageNumber="782">
Patterns of genetic and morphological variation appear to contradict the presence of independently evolving lineages and thus unrecognized species diversity within
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[163,331,1730,1752]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[163,331,1730,1752]" italics="true" pageId="14" pageNumber="782">C. pantherinus</emphasis>
</taxonomicName>
. Additionally, our results provide weak to no support for the currently recognized subspecies and their presumed distributions. The data at hand challenge the distinction of
<emphasis box="[470,603,1823,1844]" italics="true" pageId="14" pageNumber="782">C. p. acripes</emphasis>
(Barrow Island and north-eastern
<collectingCountry box="[379,489,1853,1875]" name="Australia" pageId="14" pageNumber="782">Australia</collectingCountry>
) from
<emphasis box="[566,716,1853,1875]" italics="true" pageId="14" pageNumber="782">C. p. ocellifer</emphasis>
(arid zone) owing to extensive paraphyly and morphological overlap. Nuclear (but not mitochondrial) markers and a couple of morphological characters appear consistent only in part with
<emphasis box="[1035,1237,289,311]" italics="true" pageId="14" pageNumber="782">
C. p.
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[1095,1237,289,310]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="species" species="pantherinus">pantherinus</taxonomicName>
</emphasis>
(south-west) and
<emphasis box="[827,936,320,341]" italics="true" pageId="14" pageNumber="782">C. p. calx</emphasis>
(north). However, intrasite polymorphism is prevalent, and morphological characters proposed as diagnostic broadly occur outside the purported range of a subspecies. In the face of these patterns, we struggled to assign individuals to subspecies based on morphological characters alone. Moreover, we failed to match the genetic lineages and spatial character transitions we have identified with subspecies ranges as currently understood.
</paragraph>
<paragraph blockId="14.[827,1444,197,1875]" pageId="14" pageNumber="782">
Arguably, the four traditional subspecies capture certain aspects of phenotypic or genetic variation across the range of
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[1067,1246,657,678]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[1067,1246,657,678]" italics="true" pageId="14" pageNumber="782">C. pantherinus</emphasis>
</taxonomicName>
. Nonetheless, it seems unlikely that a modern taxonomist with access to the data presented here would converge on the proposed subspecies definitions. Even if particular coloration and scalation traits show some degree of geographical structure, no partition of characters is diagnostic of regional populations, owing to local polymorphisms and shared character states across regions. Moreover, genetic data do not support a partition of monophyletic units corresponding to phenotypes. Taken together, these results suggest that it is appropriate to synonymize
<taxonomicName class="Reptilia" family="Scincidae" genus="Lygosoma" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="species" species="ocelliferum">
<emphasis italics="true" pageId="14" pageNumber="782">Lygosoma ocelliferum</emphasis>
</taxonomicName>
(=
<taxonomicName authorityName="Storr" authorityYear="1969" box="[986,1324,1025,1046]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="subSpecies" species="pantherinus" subSpecies="ocellifer">
<emphasis box="[986,1324,1025,1046]" italics="true" pageId="14" pageNumber="782">Ctenotus pantherinus ocellifer</emphasis>
</taxonomicName>
),
<taxonomicName authorityName="Storr" authorityYear="1970" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="subSpecies" species="pantherinus" subSpecies="calx">
<emphasis italics="true" pageId="14" pageNumber="782">Ctenotus pantherinus calx</emphasis>
</taxonomicName>
and
<taxonomicName authorityName="Storr" authorityYear="1975" box="[1091,1442,1056,1077]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="subSpecies" species="pantherinus" subSpecies="acripes">
<emphasis box="[1091,1442,1056,1077]" italics="true" pageId="14" pageNumber="782">Ctenotus pantherinus acripes</emphasis>
</taxonomicName>
with
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[884,1127,1086,1108]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[884,1127,1086,1108]" italics="true" pageId="14" pageNumber="782">Ctenotus pantherinus</emphasis>
</taxonomicName>
, and we do so formally here. Should future evidence support the recognition of new or redefined taxa (including species), the northern and south-western names are available. However, it seems unlikely that the name
<emphasis box="[1187,1331,1209,1231]" italics="true" pageId="14" pageNumber="782">C. p. acripes</emphasis>
might be found to correspond to a distinctive unit. At this time, recognizing
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[967,1138,1270,1292]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[967,1138,1270,1292]" italics="true" pageId="14" pageNumber="782">C. pantherinus</emphasis>
</taxonomicName>
as a wide-ranging species devoid of subspecific taxa appears best to convey the evolutionary history of the species and often spatially idiosyncratic patterns of phenotypic variation. We believe this fundamentally conservative arrangement is preferable to recognizing subspecies whose unclear boundaries, distributions and morphological diagnoses have baffled many biologists working in the field and in natural history collections (
<figureCitation box="[1170,1233,1516,1538]" captionStart="Figure 1" captionStartId="1.[145,225,1649,1671]" captionTargetBox="[148,1429,861,1606]" captionTargetId="figure-345@1.[145,1432,858,1609]" captionTargetPageId="1" captionText="Figure 1. A, Illustrative picture of C. pantherinus in life (subspecies C. p. ocellifer), courtesy of Eric Vanderduys. B, C, distributions of currently recognized Ctenotus pantherinus subspecies. B, presumed distributions of C. pantherinus subspecies as typically presented in field guides and taxonomic compendiums (based on Ehmann &amp; Strahan, 1992; Storr et al., 1999). Subspecies are as follows: C. p. acripes (a), C. p. calx (c), C. p. ocellifer (o) and C. p. pantherinus (p). Note the disjunct distribution of C. p. acripes, whose type locality is on a Western Australian island (Barrow Island; arrow). C, sampling localities of 1464 voucher specimens split by subspecies assignment as in the original museum records (for details on how we compiled these data, see the Material and methods section). Note that subspecies ranges as commonly understood (B) often disagree with those suggested by museum records." figureDoi="http://doi.org/10.5281/zenodo.7696076" httpUri="https://zenodo.org/record/7696076/files/figure.png" pageId="14" pageNumber="782">Fig. 1</figureCitation>
).
</paragraph>
<paragraph blockId="14.[827,1444,197,1875]" pageId="14" pageNumber="782">
Patterns of partly decoupled morphological and genetic transitions across the range of widespread species, as seen in
<taxonomicName baseAuthorityName="Peters" baseAuthorityYear="1866" box="[1109,1317,1607,1629]" class="Reptilia" family="Scincidae" genus="Ctenotus" kingdom="Animalia" order="Squamata" pageId="14" pageNumber="782" phylum="Chordata" rank="species" species="pantherinus">
<emphasis box="[1109,1317,1607,1629]" italics="true" pageId="14" pageNumber="782">C. pantherinus</emphasis>
</taxonomicName>
, provide opportunities to investigate the factors behind lineage and trait divergence (
<bibRefCitation author="Lipshutz SE &amp; Meier JI &amp; Derryberry GE &amp; Miller MJ &amp; Seehausen O &amp; Derryberry EP" box="[1071,1301,1669,1691]" pageId="14" pageNumber="782" pagination="188 - 201" refId="ref12083" refString="Lipshutz SE, Meier JI, Derryberry GE, Miller MJ, Seehausen O, Derryberry EP. 2019. Differential introgression of a female competitive trait in a hybrid zone between sex-role reversed species. EVolution 73: 188 - 201." type="journal article" year="2019">
Lipshutz
<emphasis box="[1179,1234,1669,1691]" italics="true" pageId="14" pageNumber="782">et al.</emphasis>
, 2019
</bibRefCitation>
). To identify the incipient lineages involved properly, presentday researchers will need to reassess many taxa that were proposed using small datasets and under fundamentally different views about the nature of species and other taxonomic categories (
<bibRefCitation author="Zink RM" box="[1311,1436,1822,1844]" pageId="14" pageNumber="782" pagination="561 - 564" refId="ref14179" refString="Zink RM. 2004. Theroleofsubspeciesinobscuringavianbiological diversity and misleading conservation policy. Proceedings of the Royal Society B: Biological Sciences 271: 561 - 564." type="journal article" year="2004">Zink, 2004</bibRefCitation>
;
<bibRefCitation author="Padial JM &amp; De la Riva I" box="[827,1120,1853,1875]" pageId="14" pageNumber="782" pagination="731 - 751" refId="ref12431" refString="Padial JM, De la Riva I. 2020. A paradigm shift in our view of species drives current trends in biological classification. Biological ReVieaes of the Cambridge Philosophical Society 96: 731 - 751." type="journal article" year="2020">Padial &amp; De la Riva, 2020</bibRefCitation>
;
<bibRefCitation author="de Queiroz K" box="[1133,1324,1853,1875]" pageId="14" pageNumber="782" pagination="459 - 461" refId="ref13054" refString="de Queiroz K. 2020. An updated concept of subspecies resolves a dispute about the taxonomy of incompletely separated lineages. Herpetological ReVieae 51: 459 - 461." type="journal article" year="2020">de Queiroz, 2020</bibRefCitation>
).
</paragraph>
</subSubSection>
</treatment>
</document>