treatments-xml/data/76/1F/87/761F87B9FFC5074B4AD0FD0BFBA2A633.xml
2024-06-21 12:40:43 +02:00

119 lines
16 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="6A9FEB067AA4B2D09DB5A9EFF4025F50" ID-CLB-Dataset="293315" ID-DOI="10.3853/j.2201-4349.75.2023.1889" ID-GBIF-Dataset="222cc405-327b-4ccf-847a-7a4b32fba0ff" ID-ISSN="2201-4349" ID-Zenodo-Dep="10413614" IM.bibliography_approvedBy="felipe" IM.illustrations_approvedBy="julia" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.taxonomicNames_approvedBy="felipe" IM.treatments_approvedBy="julia" checkinTime="1703107203764" checkinUser="felipe" docAuthor="Parker, Andrew R." docDate="2023" docId="761F87B9FFC5074B4AD0FD0BFBA2A633" docLanguage="en" docName="RecAustMus.75.4.515-517.pdf" docOrigin="Records of the Australian Museum 75 (4)" docSource="http://dx.doi.org/10.3853/j.2201-4349.75.2023.1889" docStyle="DocumentStyle:997BA24B490466A2F99594A367FA147F.4:RecAustMus.2019-.journal_article.0cover" docStyleId="997BA24B490466A2F99594A367FA147F" docStyleName="RecAustMus.2019-.journal_article.0cover" docStyleVersion="4" docTitle="Gigantocypris Muller 1895" docType="treatment" docVersion="2" lastPageNumber="516" masterDocId="8A26FFC1FFC4074A4A1EFFE6FFF9A255" masterDocTitle="A Pulsing-Mirror Eye in a Deep-Sea Ostracod" masterLastPageNumber="517" masterPageNumber="515" pageNumber="516" updateTime="1712779983800" updateUser="ExternalLinkService" zenodo-license-document="CC-BY-4.0">
<mods:mods id="A0A6E84C3DC061B6420ECEB8666F240F" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="3C75819241B159920B399F13C28B315F">
<mods:title id="3E9D2FBB13F542CA871110CA90AE7265">A Pulsing-Mirror Eye in a Deep-Sea Ostracod</mods:title>
</mods:titleInfo>
<mods:name id="C92D0DAC505E3964773E0F87216FE8F6" type="personal">
<mods:role id="7C7E1B21482F2A8A5DF69FE703FA737B">
<mods:roleTerm id="0F1DC099A543E00BE1A862235B58CDB1">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="11D59870F0E81913B06A678F8AF87FB4">Parker, Andrew R.</mods:namePart>
</mods:name>
<mods:typeOfResource id="1A4F3170715DD9D92905C248B20A9D23">text</mods:typeOfResource>
<mods:relatedItem id="BFC6F778841CEE1B14F0F2DF1470EC55" type="host">
<mods:titleInfo id="EEC0AF01765074822BA65BDFDF484BEC">
<mods:title id="19D3F892E02C2B5FED1E2F6DAE6EF344">Records of the Australian Museum</mods:title>
</mods:titleInfo>
<mods:part id="B6E82185B31421569E4CDF65D7677874">
<mods:date id="49741F927DA55EE5D7FAF4B9C5925CFB">2023</mods:date>
<mods:detail id="F3A6F513E42617DC256556F3A2A04046" type="pubDate">
<mods:number id="2985E3F9EF01F631A55C79161D99BD98">2023-12-06</mods:number>
</mods:detail>
<mods:detail id="AA70C5D39C1C19D57DDF954F620D6918" type="volume">
<mods:number id="5685977213607B59376F1D1F3815560A">75</mods:number>
</mods:detail>
<mods:detail id="CEDFC6FCF9B679A2C294C800D55F0E6A" type="issue">
<mods:number id="10AD1B8AA1327CF5FF4736A81E5CEA73">4</mods:number>
</mods:detail>
<mods:extent id="64921D8F4061C40B1B45F565F64644D6" unit="page">
<mods:start id="0CD7BFB3EDCDA203017FC43DC3A91E9B">515</mods:start>
<mods:end id="165AA7DDD832AE6B62246FD07E8C63FA">517</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="913CE08A1707AA9F8FF9321C74762998">
<mods:url id="3FC6EACA7A4C2A448D0186A76DE8E80C">http://dx.doi.org/10.3853/j.2201-4349.75.2023.1889</mods:url>
</mods:location>
<mods:classification id="7B03215CF3B75EA925A999B70803F18A">journal article</mods:classification>
<mods:identifier id="A5FC1DDB8EC2BF34E6F9FE87E47E1C11" type="CLB-Dataset">293315</mods:identifier>
<mods:identifier id="09A858F3702CAB4D117724BAC916E08B" type="DOI">10.3853/j.2201-4349.75.2023.1889</mods:identifier>
<mods:identifier id="5CE88F0200EA8C4C67C81969E71DFDB3" type="GBIF-Dataset">222cc405-327b-4ccf-847a-7a4b32fba0ff</mods:identifier>
<mods:identifier id="8D348AAA3BA1706CDD377C954AEA03B4" type="ISSN">2201-4349</mods:identifier>
<mods:identifier id="95C0D7330F2691CDB5A837D3E2270BC6" type="Zenodo-Dep">10413614</mods:identifier>
</mods:mods>
<treatment id="761F87B9FFC5074B4AD0FD0BFBA2A633" ID-DOI="http://doi.org/10.5281/zenodo.10957332" ID-Zenodo-Dep="10957332" LSID="urn:lsid:plazi:treatment:761F87B9FFC5074B4AD0FD0BFBA2A633" httpUri="http://treatment.plazi.org/id/761F87B9FFC5074B4AD0FD0BFBA2A633" lastPageNumber="516" pageId="1" pageNumber="516">
<subSubSection id="B6AC6524FFC5074B4AD0FD0BFD6FA159" box="[206,662,749,780]" pageId="1" pageNumber="516" type="nomenclature">
<paragraph id="FE0936AFFFC5074B4AD0FD0BFD6FA159" blockId="1.[206,662,749,780]" box="[206,662,749,780]" pageId="1" pageNumber="516">
<heading id="A54181C3FFC5074B4AD0FD0BFD6FA159" bold="true" box="[206,662,749,780]" centered="true" fontSize="12" level="2" pageId="1" pageNumber="516" reason="2">
<emphasis id="CCC2EABDFFC5074B4AD0FD0BFD6FA159" bold="true" box="[206,662,749,780]" pageId="1" pageNumber="516">
Living
<taxonomicName id="39B64D2CFFC5074B4B24FD0BFDFFA159" ID-CoL="84NSL" authorityName="Muller" authorityYear="1895" box="[314,518,749,780]" class="Ostracoda" family="Cypridinidae" genus="Gigantocypris" kingdom="Animalia" order="Myodocopida" pageId="1" pageNumber="516" phylum="Arthropoda" rank="genus">
<emphasis id="CCC2EABDFFC5074B4B24FD0BFDFFA159" bold="true" box="[314,518,749,780]" italics="true" pageId="1" pageNumber="516">Gigantocypris</emphasis>
</taxonomicName>
observed
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="B6AC6524FFC5074B4A67FCC6FBA2A633" pageId="1" pageNumber="516" type="description">
<paragraph id="FE0936AFFFC5074B4A67FCC6FF16A650" blockId="1.[120,749,800,1968]" pageId="1" pageNumber="516">
Studies of the eye of
<taxonomicName id="39B64D2CFFC5074B4B48FCC6FE16A162" authorityName="Muller" authorityYear="1895" box="[342,495,800,823]" class="Ostracoda" family="Cypridinidae" genus="Gigantocypris" kingdom="Animalia" order="Myodocopida" pageId="1" pageNumber="516" phylum="Arthropoda" rank="genus">
<emphasis id="CCC2EABDFFC5074B4B48FCC6FE16A162" box="[342,495,800,823]" italics="true" pageId="1" pageNumber="516">Gigantocypris</emphasis>
</taxonomicName>
to date have considered only preserved specimens, and their optical apparatus. However, an examination of a whole, preserved animal led to the discovery of four large muscles behind each eye, attached to the near-lateral edges of the reflector, i.e., behind the parabolic part (
<figureCitation id="668D2A2AFFC5074B4B25FC55FE8EA19E" box="[315,375,947,971]" captionStart="Figure 1" captionStartId="1.[121,191,545,567]" captionTargetBox="[121,755,151,533]" captionTargetId="figure-754@1.[121,749,151,533]" captionText="Figure 1. Gigantocypris dracontovalis Cannon, 1940, whole animal, lateral view; muscles (yellow) behind parabolic mirrors of left eye evident (dorsal left-centre)." figureDoi="http://doi.org/10.5281/zenodo.10957330" httpUri="https://zenodo.org/record/10957330/files/figure.png" pageId="1" pageNumber="516">Fig. 1</figureCitation>
). These muscles provided evidence that the mirrors move, prompting an examination of living specimens.
</paragraph>
<paragraph id="FE0936AFFFC5074B4A89FBEDFD14A7D7" blockId="1.[120,749,800,1968]" pageId="1" pageNumber="516">
In 1999, living specimens of
<taxonomicName id="39B64D2CFFC5074B4BF9FBEDFD54A677" box="[487,685,1035,1058]" class="Ostracoda" family="Cypridinidae" genus="Gigantocypris" kingdom="Animalia" order="Myodocopida" pageId="1" pageNumber="516" phylum="Arthropoda" rank="species" species="undetermined">
<emphasis id="CCC2EABDFFC5074B4BF9FBEDFD7AA677" box="[487,643,1035,1058]" italics="true" pageId="1" pageNumber="516">Gigantocypris</emphasis>
sp.
</taxonomicName>
were collected by a mid-water trawl off the
<collectingCountry id="86A1763FFFC5074B4802FBCEFD61A615" box="[540,664,1064,1088]" name="Cape Verde" pageId="1" pageNumber="516">Cape Verde</collectingCountry>
Islands during RRS
<emphasis id="CCC2EABDFFC5074B4B1FFBA0FE94A608" box="[257,365,1094,1117]" italics="true" pageId="1" pageNumber="516">Discovery</emphasis>
Cruise 243. Video recordings were made of several specimens free-swimming in a kreisel tank, including close-ups showing detail of their large eyes. In these recordings, from anterior and dorsal views, the parabolic mirrors of the eyes were observed to flex and pulse. In a resting specimen (
<figureCitation id="668D2A2AFFC5074B4B75FB3EFE55A6A5" box="[363,428,1240,1264]" captionStart="Figure 2" captionStartId="1.[794,862,545,567]" captionTargetBox="[781,1421,151,533]" captionTargetId="figure-691@1.[794,1421,151,532]" captionTargetPageId="1" captionText="Figure 2. Frame from a magnified video recording of a resting Gigantocypris sp. showing paired eyes only, anterior view. The mirrors appear silver; the layer of black, absorbing pigment beneath is not visible. A white-yellow light is back-reflected." figureDoi="http://doi.org/10.5281/zenodo.10413616" httpUri="https://zenodo.org/record/10413616/files/figure.png" pageId="1" pageNumber="516">Fig. 2</figureCitation>
), the eyes could be magnified and observed in detail: the parabolic parts of the mirrors were measured to flex back to a maximum position as shown in
<figureCitation id="668D2A2AFFC5074B4A67FAD6FF31A71D" box="[121,200,1328,1352]" captionStart="Figure 3" captionStartId="2.[166,234,1379,1401]" captionTargetBox="[200,1421,149,1323]" captionTargetId="figure-82@2.[166,1466,122,1331]" captionTargetPageId="2" captionText="Figure 3. Ray tracing of light imaged on the Gigantocypris sp. retina: (AB) when the luminous object is distant, the oscillations of the parabolic reflector cause the object to go in and out of focus at the retina, as the reflector is relaxed and then “flattened”; (CD) when the luminous object is nearby, the oscillations of the parabolic reflector cause little change to the image focused on the retina." figureDoi="http://doi.org/10.5281/zenodo.10413618" httpUri="https://zenodo.org/record/10413618/files/figure.png" pageId="1" pageNumber="516">Fig. 3B</figureCitation>
and pulse regularly at a rate of 0.5 cycles per second (n = 28 cycles). The spherical part of the mirrors, in the dorso-ventral (“vertical”) plane, was not observed to move.
</paragraph>
<paragraph id="FE0936AFFFC5074B4A89FA6EFD5FA5C6" blockId="1.[120,749,800,1968]" pageId="1" pageNumber="516">
Ray tracing calculations revealed that when the luminous object is far, the oscillations of the parabolic reflector cause the object to go in and out of focus at the retina, as the reflector is relaxed then “flattened” (
<figureCitation id="668D2A2AFFC5074B4BE3FA06FD88A7AD" box="[509,625,1504,1528]" captionStart="Figure 3" captionStartId="2.[166,234,1379,1401]" captionTargetBox="[200,1421,149,1323]" captionTargetId="figure-82@2.[166,1466,122,1331]" captionTargetPageId="2" captionText="Figure 3. Ray tracing of light imaged on the Gigantocypris sp. retina: (AB) when the luminous object is distant, the oscillations of the parabolic reflector cause the object to go in and out of focus at the retina, as the reflector is relaxed and then “flattened”; (CD) when the luminous object is nearby, the oscillations of the parabolic reflector cause little change to the image focused on the retina." figureDoi="http://doi.org/10.5281/zenodo.10413618" httpUri="https://zenodo.org/record/10413618/files/figure.png" pageId="1" pageNumber="516">Fig. 3A, B</figureCitation>
). However, when the luminous object is nearby, the oscillations of the parabolic reflector cause little change to the image focused on the retina (
<figureCitation id="668D2A2AFFC5074B4B1AF9DEFE8BA405" box="[260,370,1592,1616]" captionStart="Figure 3" captionStartId="2.[166,234,1379,1401]" captionTargetBox="[200,1421,149,1323]" captionTargetId="figure-82@2.[166,1466,122,1331]" captionTargetPageId="2" captionText="Figure 3. Ray tracing of light imaged on the Gigantocypris sp. retina: (AB) when the luminous object is distant, the oscillations of the parabolic reflector cause the object to go in and out of focus at the retina, as the reflector is relaxed and then “flattened”; (CD) when the luminous object is nearby, the oscillations of the parabolic reflector cause little change to the image focused on the retina." figureDoi="http://doi.org/10.5281/zenodo.10413618" httpUri="https://zenodo.org/record/10413618/files/figure.png" pageId="1" pageNumber="516">Fig. 3C, D</figureCitation>
). This principle was confirmed using a model flexible, parabolic mirror and a laser. Therefore, during a pulse cycle of the retina, a light source nearby will remain detected by the ostracod (appearing always “on”), whereas a light source far away will appear to turn on and off twice per second. The latter light will appear to flicker; a flickering light is more conspicuous than a steady light (Haamedi &amp; Djamgoz, 1996) and hence a distant predator will appear particularly perceptible. In conclusion,
<taxonomicName id="39B64D2CFFC5074B4A67F8A6FEC1A502" box="[121,312,1856,1879]" class="Ostracoda" family="Cypridinidae" genus="Gigantocypris" kingdom="Animalia" order="Myodocopida" pageId="1" pageNumber="516" phylum="Arthropoda" rank="species" species="undetermined">
<emphasis id="CCC2EABDFFC5074B4A67F8A6FEEBA502" box="[121,274,1856,1879]" italics="true" pageId="1" pageNumber="516">Gigantocypris</emphasis>
sp.
</taxonomicName>
can distinguish its prey within a field of bioluminescent light sources, while probably requiring less information processing than for rigid lens
<typeStatus id="210D880DFFC5074B4825F89DFD90A5C6" box="[571,617,1915,1939]" pageId="1" pageNumber="516">type</typeStatus>
eyes.
</paragraph>
<paragraph id="FE0936AFFFC5074B4A89F87EFBA2A633" blockId="1.[120,749,800,1968]" lastBlockId="1.[793,1422,750,1126]" pageId="1" pageNumber="516">
Such a “pulsing mirror eye” functions in a radically different way to any other eye. Since this eye
<typeStatus id="210D880DFFC5074B4F07FD08FABEA153" box="[1305,1351,750,774]" pageId="1" pageNumber="516">type</typeStatus>
is not evident from preserved specimens, other species with parabolic reflecting eyes, such as the deep-sea amphipod
<taxonomicName id="39B64D2CFFC5074B4904FCA0FC3DA10B" authorityName="Woltereck" authorityYear="1905" box="[794,964,838,862]" class="Malacostraca" family="Lanceolidae" genus="Scypholanceola" kingdom="Animalia" order="Amphipoda" pageId="1" pageNumber="516" phylum="Arthropoda" rank="genus">
<emphasis id="CCC2EABDFFC5074B4904FCA0FC3DA10B" box="[794,964,838,862]" italics="true" pageId="1" pageNumber="516">Scypholanceola</emphasis>
</taxonomicName>
(from a similar environment), should be re-assessed while alive. On another note, the transparent window in the carapace of
<taxonomicName id="39B64D2CFFC5074B4E7AFC66FA74A1CD" baseAuthorityName="Brady" baseAuthorityYear="1897" box="[1124,1421,896,920]" class="Ostracoda" family="Cypridinidae" genus="Macrocypridina" kingdom="Animalia" order="Myodocopida" pageId="1" pageNumber="516" phylum="Arthropoda" rank="species" species="castanea">
<emphasis id="CCC2EABDFFC5074B4E7AFC66FA74A1CD" box="[1124,1421,896,920]" italics="true" pageId="1" pageNumber="516">Macrocypridina castanea</emphasis>
</taxonomicName>
(Parker
<emphasis id="CCC2EABDFFC5074B4971FC78FC5CA1E3" box="[879,933,926,950]" italics="true" pageId="1" pageNumber="516">et al.</emphasis>
, 2019; 2021), was found to have applications in commerce. In a similar manner, examination of the submicron structure of the
<taxonomicName id="39B64D2CFFC5074B4E33FC3FFB3AA1A5" authorityName="Muller" authorityYear="1895" box="[1069,1219,985,1008]" class="Ostracoda" family="Cypridinidae" genus="Gigantocypris" kingdom="Animalia" order="Myodocopida" pageId="1" pageNumber="516" phylum="Arthropoda" rank="genus">
<emphasis id="CCC2EABDFFC5074B4E33FC3FFB3AA1A5" box="[1069,1219,985,1008]" italics="true" pageId="1" pageNumber="516">Gigantocypris</emphasis>
</taxonomicName>
mirror, particularly how it withstands continuous flexing to maintain a flawless mirror, may be relevant to the mirror of the Hubble telescope—a comparable imaging system whose mirror does develop flaws over time.
</paragraph>
</subSubSection>
</treatment>
</document>