treatments-xml/data/27/69/87/276987D211393A5CFF72FC1BFCE20C17.xml
2024-06-21 12:31:55 +02:00

189 lines
35 KiB
XML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="2FCE98FEB96BB497EFA3B3B9504E050C" ID-DOI="10.11646/phytotaxa.142.1.3" ID-ISSN="1179-3163" ID-Zenodo-Dep="5099883" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.tables_requiresApprovalFor="existingObjects,plazi" IM.taxonomicNames_approvedBy="felipe" checkinTime="1626233755749" checkinUser="felipe" docAuthor="Gomes, Ana, Witkowski, Andrzej, Dąbek, Przemysław, Boski, Tomasz, Moura, Delminda, Szkornik, Katie &amp; Kurzydłowski, Krzysztof" docDate="2013" docId="276987D211393A5CFF72FC1BFCE20C17" docLanguage="en" docName="Phytotaxa.142.1.25-36.pdf" docOrigin="Phytotaxa 142 (1)" docSource="http://dx.doi.org/10.11646/phytotaxa.142.1.3" docStyle="DocumentStyle:13F189B31CB4CCCE9197361A4E100104.3:Phytotaxa.2011-2013.journal_article" docStyleId="13F189B31CB4CCCE9197361A4E100104" docStyleName="Phytotaxa.2011-2013.journal_article" docStyleVersion="3" docTitle="Syvertsenia iberica Witkowski &amp; Gomes 2013, sp. nov." docType="treatment" docVersion="4" lastPageNumber="30" masterDocId="DB50FFAA113C3A59FFE5FFBFFFF40B7A" masterDocTitle="Syvertsenia iberica (Cymatosiraceae): a new estuarine diatom genus characterized by the position of its process" masterLastPageNumber="36" masterPageNumber="25" pageNumber="30" updateTime="1699005300220" updateUser="plazi" zenodo-license-document="CLOSED">
<mods:mods id="EEEF333FF59663F78361CDD1C28A4081" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="3354EEFF8DFFF111C29F46ABAD505C2B">
<mods:title id="45FCA5FC489CC19A0359B27FC8B9D68F">Syvertsenia iberica (Cymatosiraceae): a new estuarine diatom genus characterized by the position of its process</mods:title>
</mods:titleInfo>
<mods:name id="E7EB28EF311FAF1CA242B916E797302F" type="personal">
<mods:role id="EDDCB9036861CFA8822AF1EDEC6AD043">
<mods:roleTerm id="FFFCEA3BE9DA852A78DB41813AC15985">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="0B70C9CA531DBB3C09EE00E2546AC1E7">Gomes, Ana</mods:namePart>
<mods:affiliation id="22B2C1949A4DA37EB32A7AE807322C87">Centre for Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, 8005 - 139 Faro, Portugal. aisgomes @ ualg. pt</mods:affiliation>
</mods:name>
<mods:name id="611BD86E6A1070D0196894BFAD3D7931" type="personal">
<mods:role id="E5099CC48A6F89F69825C998871AB93C">
<mods:roleTerm id="1B8D3DBF579F6C84111EFBAF24183DA5">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="678F1523C8B801165CB3FEFC229CBE9E">Witkowski, Andrzej</mods:namePart>
<mods:affiliation id="A5C02A63F1C1723166ED2C424F653102">Institute of Marine Sciences, University of Szczecin, Mickiewicza 18, 70 - 383 Szczecin, Poland.</mods:affiliation>
</mods:name>
<mods:name id="2DE105B43D9DAF5BD857BD4750013A64" type="personal">
<mods:role id="B92A8022D5C5A63925132D6B91EBD8A6">
<mods:roleTerm id="04D61BDFCED7E3CEFFD45BFE2D07BE4E">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="1F25D659BA64C01F79A8B7E0C57E1905">Dąbek, Przemysław</mods:namePart>
<mods:affiliation id="0C5B53D52F876EDE8ABE4E733E35F3FA">Institute of Marine Sciences, University of Szczecin, Mickiewicza 18, 70 - 383 Szczecin, Poland.</mods:affiliation>
</mods:name>
<mods:name id="D886BA8CB52F4FE05B8E31DD3A472C16" type="personal">
<mods:role id="3A1091973A2AA27A690A4D160157F834">
<mods:roleTerm id="A0717E1EF04F4F1289D36652579E5BCF">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="E986C79EF163D274ED84C2B43FFD76D6">Boski, Tomasz</mods:namePart>
<mods:affiliation id="FF55222F8D9476C66A8D986B6B80899F">Centre for Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, 8005 - 139 Faro, Portugal. aisgomes @ ualg. pt</mods:affiliation>
</mods:name>
<mods:name id="4F455C2A8498EE23D2463E924F1AB020" type="personal">
<mods:role id="63263297B3DF13328E1ED483758CCBED">
<mods:roleTerm id="E375BE35F55F0C507C19EC73A8ADD09D">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="F1C7A11303DC4E18DBFA9F7CFA9DAA9D">Moura, Delminda</mods:namePart>
<mods:affiliation id="19475B083AC7025E21D3537F8C854489">Centre for Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, 8005 - 139 Faro, Portugal. aisgomes @ ualg. pt</mods:affiliation>
</mods:name>
<mods:name id="0AA8F183F10E28F3ADD665732DF8C397" type="personal">
<mods:role id="F8096575FF715FBBBC9EDD0E9517EFB5">
<mods:roleTerm id="AC97485EBC399FEF5E5048E1FD09E051">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="6AF71FB657786699E641E4546D6872FD">Szkornik, Katie</mods:namePart>
<mods:affiliation id="34C82C3D0C0FAE9D100E3318CAB9C562">School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire, ST 5 5 BG, United Kingdom.</mods:affiliation>
</mods:name>
<mods:name id="5CB898ED0B37DAE20A4F4FF9150BE833" type="personal">
<mods:role id="2C0E0B9161442F6BB249472EE7544512">
<mods:roleTerm id="F3950F4C53DDC0758F53F68D5F30BD97">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="174DD77DE2E7CEE687D0184012065DF2">Kurzydłowski, Krzysztof</mods:namePart>
<mods:affiliation id="835E67DF26D261A8DCEC4EE399CE99D0">Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland</mods:affiliation>
</mods:name>
<mods:typeOfResource id="801644CE40158BBAB584442390EA6E7C">text</mods:typeOfResource>
<mods:relatedItem id="0A076CFB6CF8370D63E22D5089D9716B" type="host">
<mods:titleInfo id="AA82841DA4047C7D9D3E5373ACAFC6AC">
<mods:title id="4BFDC44BC2BA897A0D258ED2299536DB">Phytotaxa</mods:title>
</mods:titleInfo>
<mods:part id="AD3B8214F95BD4330A3200099CCD20A8">
<mods:date id="E524CD8C9DF1E753B4CCB310D5EFCDFF">2013</mods:date>
<mods:detail id="E0B900D6F9DF5EA373C242D43156C966" type="pubDate">
<mods:number id="E391DAE6F69DC6209600064BD7FE2C2A">2013-11-01</mods:number>
</mods:detail>
<mods:detail id="DAB91B89C779ED63DBC1CA17C74F8258" type="volume">
<mods:number id="C0FB73E6CF73E95BCCDE9C2B7783CDB5">142</mods:number>
</mods:detail>
<mods:detail id="6ADC05070B8D6EB70D36B90754AB651C" type="issue">
<mods:number id="CFD494253B39678F534A3C72038DEA0B">1</mods:number>
</mods:detail>
<mods:extent id="4D8812B5D9A1A7224082D1D398CD522F" unit="page">
<mods:start id="7122168ABC0366AF1DBB42927E270F44">25</mods:start>
<mods:end id="89F36476D260C6CC6A0D6B0DBEA7B3A3">36</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="A807BE391933E8BB3CF8D12AD8220E39">
<mods:url id="B064BAC943EA53A1B857D176FD689CDC">http://dx.doi.org/10.11646/phytotaxa.142.1.3</mods:url>
</mods:location>
<mods:classification id="DFFD8E1C095C41A129C91A64E9E96027">journal article</mods:classification>
<mods:identifier id="6DAD4C0D447C21380682F72C04C29053" type="DOI">10.11646/phytotaxa.142.1.3</mods:identifier>
<mods:identifier id="FAC360164CF20F689F9ABE3996756ECC" type="ISSN">1179-3163</mods:identifier>
<mods:identifier id="28D5A9DE046C4F804858914841BF7454" type="Zenodo-Dep">5099883</mods:identifier>
</mods:mods>
<treatment id="276987D211393A5CFF72FC1BFCE20C17" ID-DOI="http://doi.org/10.5281/zenodo.5100199" ID-Zenodo-Dep="5100199" LSID="urn:lsid:plazi:treatment:276987D211393A5CFF72FC1BFCE20C17" httpUri="http://treatment.plazi.org/id/276987D211393A5CFF72FC1BFCE20C17" lastPageNumber="30" pageId="5" pageNumber="30">
<subSubSection id="E7DA654F11393A5CFF72FC1BFDF30E79" pageId="5" pageNumber="30" type="nomenclature">
<paragraph id="AF7F36C411393A5CFF72FC1BFCAA08C5" blockId="5.[151,862,932,959]" box="[151,862,932,959]" pageId="5" pageNumber="30">
<heading id="F43781A811393A5CFF72FC1BFCAA08C5" box="[151,862,932,959]" fontSize="11" level="2" pageId="5" pageNumber="30" reason="3">
<taxonomicName id="68C04D4711393A5CFF72FC1BFD8708C5" authority="Witkowski &amp; Gomes" authorityName="Witkowski &amp; Gomes" authorityYear="2013" box="[151,627,932,959]" class="Bacillariophyceae" family="Cymatosiraceae" genus="Syvertsenia" higherTaxonomySource="GBIF" kingdom="Chromista" order="Cymatosirales" pageId="5" pageNumber="30" phylum="Ochrophyta" rank="species" species="iberica" status="sp. nov.">
<emphasis id="9DB4EAD611393A5CFF72FC1BFE8308C4" bold="true" box="[151,375,932,958]" italics="true" pageId="5" pageNumber="30">Syvertsenia iberica</emphasis>
Witkowski &amp; Gomes
</taxonomicName>
<emphasis id="9DB4EAD611393A5CFD9FFC1AFD2708C4" box="[634,723,933,958]" italics="true" pageId="5" pageNumber="30">
<taxonomicNameLabel id="868757AD11393A5CFD9FFC1AFD2708C4" box="[634,723,933,958]" pageId="5" pageNumber="30" rank="species">sp. nov.</taxonomicNameLabel>
</emphasis>
(
<figureCitation id="37FB2A4111393A5CFD04FC1AFCA208C5" box="[737,854,933,959]" captionStart-0="FIGURES 29" captionStart-1="FIGURES 1019" captionStartId-0="5.[151,261,738,759]" captionStartId-1="6.[151,258,1774,1795]" captionTargetBox-0="[156,1436,155,716]" captionTargetBox-1="[151,1436,153,1759]" captionTargetId-0="figure-506@5.[151,1436,145,717]" captionTargetId-1="figure-259@6.[151,1436,153,1759]" captionTargetPageId-0="5" captionTargetPageId-1="6" captionText-0="FIGURES 29. Syvertsenia iberica. LM images. Figs 39: Specimens from the holotype slide. Figs 6, 7: Holotype specimen photographed in various techniques, note the presence of the tubular process on a mantle (arrow) Figs 8, 9: Same specimen photographed in various techniques. Figs 46 and 8: Phase contrast. Figs 7 and 9: Differential Interference Contrast. All scale bars = 10 µm." captionText-1="FIGURES 1019. Syvertsenia iberica. SEM images from the holotype sample (GS1) from Guadiana Estuary, Spain. Fig. 10: General view of the interior of the process valve. Note the tubular process (white arrow) and the presence of two linearly opposed ocelluli. Fig. 11: Close up to the valve internal view. Fig. 12: Close up of the middle part of the valve. Note the areolae occlusions, tubular process (black arrowhead) and mantle expansion with an areolae (white arrow). Fig. 13: Close up of the tubular process and areolae in the mantle expansion. Fig 14: Close up to the marginal spines. Fig. 15: Close up to the valve face areolae, which present an approximated linear and equidistant distribution. Figs 16, 17: Close up to the ocellulus, external (black arrowhead, Fig. 16) and internal (white arrow, Fig. 16) showing the presence of porelli (note the presence of spines in an external view). Figs 18, 19: Close up to the opposite apex ocellulus external view, note the presence of spines within ocellulus (black arrowhead, Fig. 18). Fig. 10: Scale bar = 10 µm. Fig. 11: Scale bar = 5 µm. Figs 12, 15 and 19: Scale bar = 500 nm. Fig. 13: Scale bar = 250 nm. Fig. 14: Scale bar = 200 nm. Fig. 16: Scale bar = 2 µm. Figs 17, 18: Scale bar = 1 µm." figureDoi-0="http://doi.org/10.5281/zenodo.5099887" figureDoi-1="http://doi.org/10.5281/zenodo.5099889" httpUri-0="https://zenodo.org/record/5099887/files/figure.png" httpUri-1="https://zenodo.org/record/5099889/files/figure.png" pageId="5" pageNumber="30">Figs 219</figureCitation>
)
</heading>
</paragraph>
<paragraph id="AF7F36C411393A5CFF72FC73FDF30E79" blockId="5.[151,1436,972,1283]" pageId="5" pageNumber="30">
Valves linear with protracted to capitate apices, 21.428.6 (25.2 ± 2.9) µm long, 3.14.5 (3.7 ± 0.6) µm wide. Valves slightly arched about transapical axis. The mantle is shallow, except next to the process where a convex expansion of the valve mantle with an areolae situated above the process is observed. The whole valve surface is covered with areolae, except a small part of the valve in the middle which is close to the tubular process. The number of areolae in
<quantity id="68389B2111393A5CFF22FBF3FEF90F19" box="[199,269,1100,1123]" metricMagnitude="-2" metricUnit="m" metricValue="1.0" pageId="5" pageNumber="30" unit="mm" value="10.0">10 µm</quantity>
varies between 17 and 20. Close to the process, there is a small oval area devoid of areolae (
<figureCitation id="37FB2A4111393A5CFB11FBF3FA9A0F19" box="[1268,1390,1100,1123]" captionStart="FIGURES 29" captionStartId="5.[151,261,738,759]" captionTargetBox="[156,1436,155,716]" captionTargetId="figure-506@5.[151,1436,145,717]" captionTargetPageId="5" captionText="FIGURES 29. Syvertsenia iberica. LM images. Figs 39: Specimens from the holotype slide. Figs 6, 7: Holotype specimen photographed in various techniques, note the presence of the tubular process on a mantle (arrow) Figs 8, 9: Same specimen photographed in various techniques. Figs 46 and 8: Phase contrast. Figs 7 and 9: Differential Interference Contrast. All scale bars = 10 µm." figureDoi="http://doi.org/10.5281/zenodo.5099887" httpUri="https://zenodo.org/record/5099887/files/figure.png" pageId="5" pageNumber="30">Figs 4, 68</figureCitation>
and
<figureCitation id="37FB2A4111393A5CFF22FBD3FF170FF9" box="[199,227,1132,1155]" captionStart="FIGURES 1019" captionStartId="6.[151,258,1774,1795]" captionTargetBox="[151,1436,153,1759]" captionTargetId="figure-259@6.[151,1436,153,1759]" captionTargetPageId="6" captionText="FIGURES 1019. Syvertsenia iberica. SEM images from the holotype sample (GS1) from Guadiana Estuary, Spain. Fig. 10: General view of the interior of the process valve. Note the tubular process (white arrow) and the presence of two linearly opposed ocelluli. Fig. 11: Close up to the valve internal view. Fig. 12: Close up of the middle part of the valve. Note the areolae occlusions, tubular process (black arrowhead) and mantle expansion with an areolae (white arrow). Fig. 13: Close up of the tubular process and areolae in the mantle expansion. Fig 14: Close up to the marginal spines. Fig. 15: Close up to the valve face areolae, which present an approximated linear and equidistant distribution. Figs 16, 17: Close up to the ocellulus, external (black arrowhead, Fig. 16) and internal (white arrow, Fig. 16) showing the presence of porelli (note the presence of spines in an external view). Figs 18, 19: Close up to the opposite apex ocellulus external view, note the presence of spines within ocellulus (black arrowhead, Fig. 18). Fig. 10: Scale bar = 10 µm. Fig. 11: Scale bar = 5 µm. Figs 12, 15 and 19: Scale bar = 500 nm. Fig. 13: Scale bar = 250 nm. Fig. 14: Scale bar = 200 nm. Fig. 16: Scale bar = 2 µm. Figs 17, 18: Scale bar = 1 µm." figureDoi="http://doi.org/10.5281/zenodo.5099889" httpUri="https://zenodo.org/record/5099889/files/figure.png" pageId="5" pageNumber="30">11</figureCitation>
). The single tubular process is positioned on the extension of the valve mantle (
<figureCitation id="37FB2A4111393A5CFBDEFBD3FB680FF9" box="[1083,1180,1132,1155]" captionStart="FIGURES 29" captionStartId="5.[151,261,738,759]" captionTargetBox="[156,1436,155,716]" captionTargetId="figure-506@5.[151,1436,145,717]" captionTargetPageId="5" captionText="FIGURES 29. Syvertsenia iberica. LM images. Figs 39: Specimens from the holotype slide. Figs 6, 7: Holotype specimen photographed in various techniques, note the presence of the tubular process on a mantle (arrow) Figs 8, 9: Same specimen photographed in various techniques. Figs 46 and 8: Phase contrast. Figs 7 and 9: Differential Interference Contrast. All scale bars = 10 µm." figureDoi="http://doi.org/10.5281/zenodo.5099887" httpUri="https://zenodo.org/record/5099887/files/figure.png" pageId="5" pageNumber="30">Figs 3, 4</figureCitation>
,
<figureCitation id="37FB2A4111393A5CFB4DFBD3FAF80FF9" box="[1192,1292,1132,1155]" captionStart="FIGURES 29" captionStartId="5.[151,261,738,759]" captionTargetBox="[156,1436,155,716]" captionTargetId="figure-506@5.[151,1436,145,717]" captionTargetPageId="5" captionText="FIGURES 29. Syvertsenia iberica. LM images. Figs 39: Specimens from the holotype slide. Figs 6, 7: Holotype specimen photographed in various techniques, note the presence of the tubular process on a mantle (arrow) Figs 8, 9: Same specimen photographed in various techniques. Figs 46 and 8: Phase contrast. Figs 7 and 9: Differential Interference Contrast. All scale bars = 10 µm." figureDoi="http://doi.org/10.5281/zenodo.5099887" httpUri="https://zenodo.org/record/5099887/files/figure.png" pageId="5" pageNumber="30">Figs. 68</figureCitation>
and
<figureCitation id="37FB2A4111393A5CFAA5FBD3FA640FF9" box="[1344,1424,1132,1155]" captionStart="FIGURES 1019" captionStartId="6.[151,258,1774,1795]" captionTargetBox="[151,1436,153,1759]" captionTargetId="figure-259@6.[151,1436,153,1759]" captionTargetPageId="6" captionText="FIGURES 1019. Syvertsenia iberica. SEM images from the holotype sample (GS1) from Guadiana Estuary, Spain. Fig. 10: General view of the interior of the process valve. Note the tubular process (white arrow) and the presence of two linearly opposed ocelluli. Fig. 11: Close up to the valve internal view. Fig. 12: Close up of the middle part of the valve. Note the areolae occlusions, tubular process (black arrowhead) and mantle expansion with an areolae (white arrow). Fig. 13: Close up of the tubular process and areolae in the mantle expansion. Fig 14: Close up to the marginal spines. Fig. 15: Close up to the valve face areolae, which present an approximated linear and equidistant distribution. Figs 16, 17: Close up to the ocellulus, external (black arrowhead, Fig. 16) and internal (white arrow, Fig. 16) showing the presence of porelli (note the presence of spines in an external view). Figs 18, 19: Close up to the opposite apex ocellulus external view, note the presence of spines within ocellulus (black arrowhead, Fig. 18). Fig. 10: Scale bar = 10 µm. Fig. 11: Scale bar = 5 µm. Figs 12, 15 and 19: Scale bar = 500 nm. Fig. 13: Scale bar = 250 nm. Fig. 14: Scale bar = 200 nm. Fig. 16: Scale bar = 2 µm. Figs 17, 18: Scale bar = 1 µm." figureDoi="http://doi.org/10.5281/zenodo.5099889" httpUri="https://zenodo.org/record/5099889/files/figure.png" pageId="5" pageNumber="30">Fig. 10</figureCitation>
). The valve linkage consists of one row of marginal, short, Y-shaped linking spines at each side of the valve (
<figureCitation id="37FB2A4111393A5CFAA5FB33FA640FD9" box="[1344,1424,1164,1187]" captionStart="FIGURES 1019" captionStartId="6.[151,258,1774,1795]" captionTargetBox="[151,1436,153,1759]" captionTargetId="figure-259@6.[151,1436,153,1759]" captionTargetPageId="6" captionText="FIGURES 1019. Syvertsenia iberica. SEM images from the holotype sample (GS1) from Guadiana Estuary, Spain. Fig. 10: General view of the interior of the process valve. Note the tubular process (white arrow) and the presence of two linearly opposed ocelluli. Fig. 11: Close up to the valve internal view. Fig. 12: Close up of the middle part of the valve. Note the areolae occlusions, tubular process (black arrowhead) and mantle expansion with an areolae (white arrow). Fig. 13: Close up of the tubular process and areolae in the mantle expansion. Fig 14: Close up to the marginal spines. Fig. 15: Close up to the valve face areolae, which present an approximated linear and equidistant distribution. Figs 16, 17: Close up to the ocellulus, external (black arrowhead, Fig. 16) and internal (white arrow, Fig. 16) showing the presence of porelli (note the presence of spines in an external view). Figs 18, 19: Close up to the opposite apex ocellulus external view, note the presence of spines within ocellulus (black arrowhead, Fig. 18). Fig. 10: Scale bar = 10 µm. Fig. 11: Scale bar = 5 µm. Figs 12, 15 and 19: Scale bar = 500 nm. Fig. 13: Scale bar = 250 nm. Fig. 14: Scale bar = 200 nm. Fig. 16: Scale bar = 2 µm. Figs 17, 18: Scale bar = 1 µm." figureDoi="http://doi.org/10.5281/zenodo.5099889" httpUri="https://zenodo.org/record/5099889/files/figure.png" pageId="5" pageNumber="30">Fig. 14</figureCitation>
). The row of linking spines terminates close to the ocelluli (
<figureCitation id="37FB2A4111393A5CFCB7FB13FBF70FB9" box="[850,1027,1196,1219]" captionStart="FIGURES 1019" captionStartId="6.[151,258,1774,1795]" captionTargetBox="[151,1436,153,1759]" captionTargetId="figure-259@6.[151,1436,153,1759]" captionTargetPageId="6" captionText="FIGURES 1019. Syvertsenia iberica. SEM images from the holotype sample (GS1) from Guadiana Estuary, Spain. Fig. 10: General view of the interior of the process valve. Note the tubular process (white arrow) and the presence of two linearly opposed ocelluli. Fig. 11: Close up to the valve internal view. Fig. 12: Close up of the middle part of the valve. Note the areolae occlusions, tubular process (black arrowhead) and mantle expansion with an areolae (white arrow). Fig. 13: Close up of the tubular process and areolae in the mantle expansion. Fig 14: Close up to the marginal spines. Fig. 15: Close up to the valve face areolae, which present an approximated linear and equidistant distribution. Figs 16, 17: Close up to the ocellulus, external (black arrowhead, Fig. 16) and internal (white arrow, Fig. 16) showing the presence of porelli (note the presence of spines in an external view). Figs 18, 19: Close up to the opposite apex ocellulus external view, note the presence of spines within ocellulus (black arrowhead, Fig. 18). Fig. 10: Scale bar = 10 µm. Fig. 11: Scale bar = 5 µm. Figs 12, 15 and 19: Scale bar = 500 nm. Fig. 13: Scale bar = 250 nm. Fig. 14: Scale bar = 200 nm. Fig. 16: Scale bar = 2 µm. Figs 17, 18: Scale bar = 1 µm." figureDoi="http://doi.org/10.5281/zenodo.5099889" httpUri="https://zenodo.org/record/5099889/files/figure.png" pageId="5" pageNumber="30">Figs. 17 and 19</figureCitation>
). There are two ocelluli (with ca. 20 porelli each and small spines inside—
<figureCitation id="37FB2A4111393A5CFD8EFB73FD120F99" box="[619,742,1228,1251]" captionStart="FIGURES 1019" captionStartId="6.[151,258,1774,1795]" captionTargetBox="[151,1436,153,1759]" captionTargetId="figure-259@6.[151,1436,153,1759]" captionTargetPageId="6" captionText="FIGURES 1019. Syvertsenia iberica. SEM images from the holotype sample (GS1) from Guadiana Estuary, Spain. Fig. 10: General view of the interior of the process valve. Note the tubular process (white arrow) and the presence of two linearly opposed ocelluli. Fig. 11: Close up to the valve internal view. Fig. 12: Close up of the middle part of the valve. Note the areolae occlusions, tubular process (black arrowhead) and mantle expansion with an areolae (white arrow). Fig. 13: Close up of the tubular process and areolae in the mantle expansion. Fig 14: Close up to the marginal spines. Fig. 15: Close up to the valve face areolae, which present an approximated linear and equidistant distribution. Figs 16, 17: Close up to the ocellulus, external (black arrowhead, Fig. 16) and internal (white arrow, Fig. 16) showing the presence of porelli (note the presence of spines in an external view). Figs 18, 19: Close up to the opposite apex ocellulus external view, note the presence of spines within ocellulus (black arrowhead, Fig. 18). Fig. 10: Scale bar = 10 µm. Fig. 11: Scale bar = 5 µm. Figs 12, 15 and 19: Scale bar = 500 nm. Fig. 13: Scale bar = 250 nm. Fig. 14: Scale bar = 200 nm. Fig. 16: Scale bar = 2 µm. Figs 17, 18: Scale bar = 1 µm." figureDoi="http://doi.org/10.5281/zenodo.5099889" httpUri="https://zenodo.org/record/5099889/files/figure.png" pageId="5" pageNumber="30">Figs 1619</figureCitation>
) set on the apices. The ocelluli are slightly displaced from the valve centre (
<figureCitation id="37FB2A4111393A5CFEB2FB53FE0F0E79" box="[343,507,1260,1283]" captionStart="FIGURES 1019" captionStartId="6.[151,258,1774,1795]" captionTargetBox="[151,1436,153,1759]" captionTargetId="figure-259@6.[151,1436,153,1759]" captionTargetPageId="6" captionText="FIGURES 1019. Syvertsenia iberica. SEM images from the holotype sample (GS1) from Guadiana Estuary, Spain. Fig. 10: General view of the interior of the process valve. Note the tubular process (white arrow) and the presence of two linearly opposed ocelluli. Fig. 11: Close up to the valve internal view. Fig. 12: Close up of the middle part of the valve. Note the areolae occlusions, tubular process (black arrowhead) and mantle expansion with an areolae (white arrow). Fig. 13: Close up of the tubular process and areolae in the mantle expansion. Fig 14: Close up to the marginal spines. Fig. 15: Close up to the valve face areolae, which present an approximated linear and equidistant distribution. Figs 16, 17: Close up to the ocellulus, external (black arrowhead, Fig. 16) and internal (white arrow, Fig. 16) showing the presence of porelli (note the presence of spines in an external view). Figs 18, 19: Close up to the opposite apex ocellulus external view, note the presence of spines within ocellulus (black arrowhead, Fig. 18). Fig. 10: Scale bar = 10 µm. Fig. 11: Scale bar = 5 µm. Figs 12, 15 and 19: Scale bar = 500 nm. Fig. 13: Scale bar = 250 nm. Fig. 14: Scale bar = 200 nm. Fig. 16: Scale bar = 2 µm. Figs 17, 18: Scale bar = 1 µm." figureDoi="http://doi.org/10.5281/zenodo.5099889" httpUri="https://zenodo.org/record/5099889/files/figure.png" pageId="5" pageNumber="30">Figs 10, 1619</figureCitation>
).
</paragraph>
</subSubSection>
<subSubSection id="E7DA654F11393A5CFF72FAE6FD490E90" pageId="5" pageNumber="30" type="materials_examined">
<paragraph id="AF7F36C411393A5CFF72FAE6FD490E90" blockId="5.[151,1436,1369,1901]" pageId="5" pageNumber="30">
<emphasis id="9DB4EAD611393A5CFF72FAE6FF160E09" bold="true" box="[151,226,1369,1395]" pageId="5" pageNumber="30">Type:</emphasis>
<materialsCitation id="1FA83C9911393A5CFF06FAE6FD490E90" collectionCode="SZCZ, ALGU" country="Spain" county="May" latitude="37.194725" location="Ayamonte" longLatPrecision="19" longitude="-7.4061112" municipality="Ana Isabel Gomes" pageId="5" pageNumber="30" specimenCount="1" typeStatus="holotype">
<collectingCountry id="D7D7765411393A5CFEE4FAE6FEA80E09" box="[257,348,1369,1395]" name="Spain" pageId="5" pageNumber="30">SPAIN</collectingCountry>
.
<location id="AA1F601F11393A5CFE8FFAE6FE1A0E09" LSID="urn:lsid:plazi:treatment:276987D211393A5CFF72FC1BFCE20C17:AA1F601F11393A5CFE8FFAE6FE1A0E09" box="[362,494,1369,1395]" country="Spain" county="May" latitude="37.194725" longLatPrecision="19" longitude="-7.4061112" municipality="Ana Isabel Gomes" name="Ayamonte" pageId="5" pageNumber="30">Ayamonte</location>
:
<location id="AA1F601F11393A5CFE1EFAE6FD2A0E09" LSID="urn:lsid:plazi:treatment:276987D211393A5CFF72FC1BFCE20C17:AA1F601F11393A5CFE1EFAE6FD2A0E09" box="[507,734,1369,1395]" country="Spain" county="May" latitude="37.194725" longLatPrecision="19" longitude="-7.4061112" municipality="Ana Isabel Gomes" name="Guadiana Estuary" pageId="5" pageNumber="30">Guadiana Estuary</location>
, sandy flat near the river mouth (
<figureCitation id="37FB2A4111393A5CFB6FFAE6FB180E09" box="[1162,1260,1369,1395]" captionStart="FIGURE 1" captionStartId="2.[151,244,1495,1516]" captionTargetBox="[164,1428,286,1460]" captionTargetId="figure-242@2.[151,1436,274,1466]" captionTargetPageId="2" captionText="FIGURE 1. Study area: (A) Location in Iberia Peninsula, (B) Location in the lower area of the Guadiana Estuary and (C) Schematic representation of the sampling transect (elevation relative to the mean sea-level). Illustrations of Sarcocornia perennis (Miller) A. J. Scott (1977: 367) &amp; Halimione portulacoides (L.) Aellen (1938: 126) by Tracey (2010) and Spartina maritima (Curtis) Fernald (1916: 180) by Saxby (2010)." figureDoi="http://doi.org/10.5281/zenodo.5099885" httpUri="https://zenodo.org/record/5099885/files/figure.png" pageId="5" pageNumber="30">Fig. 1B</figureCitation>
), station GS1 (
<geoCoordinate id="CAF4500311393A5CFF45FA3CFEC70EE7" box="[160,307,1411,1437]" degrees="37" direction="north" minutes="11" orientation="latitude" pageId="5" pageNumber="30" precision="15" seconds="41" value="37.194725">37º1141N</geoCoordinate>
,
<geoCoordinate id="CAF4500311393A5CFEA5FA3CFE3D0EE7" box="[320,457,1411,1437]" degrees="7" direction="west" minutes="24" orientation="longitude" pageId="5" pageNumber="30" precision="15" seconds="22" value="-7.4061112">7º2422W</geoCoordinate>
,
<figureCitation id="37FB2A4111393A5CFE30FA3CFDDC0EE7" box="[469,552,1411,1437]" captionStart="FIGURE 1" captionStartId="2.[151,244,1495,1516]" captionTargetBox="[164,1428,286,1460]" captionTargetId="figure-242@2.[151,1436,274,1466]" captionTargetPageId="2" captionText="FIGURE 1. Study area: (A) Location in Iberia Peninsula, (B) Location in the lower area of the Guadiana Estuary and (C) Schematic representation of the sampling transect (elevation relative to the mean sea-level). Illustrations of Sarcocornia perennis (Miller) A. J. Scott (1977: 367) &amp; Halimione portulacoides (L.) Aellen (1938: 126) by Tracey (2010) and Spartina maritima (Curtis) Fernald (1916: 180) by Saxby (2010)." figureDoi="http://doi.org/10.5281/zenodo.5099885" httpUri="https://zenodo.org/record/5099885/files/figure.png" pageId="5" pageNumber="30">Fig 1C</figureCitation>
).
<location id="AA1F601F11393A5CFDDBFA3CFD620EE7" LSID="urn:lsid:plazi:treatment:276987D211393A5CFF72FC1BFCE20C17:AA1F601F11393A5CFDDBFA3CFD620EE7" box="[574,662,1411,1437]" country="Spain" county="May" latitude="37.194725" longLatPrecision="19" longitude="-7.4061112" municipality="Ana Isabel Gomes" name="Sample" pageId="5" pageNumber="30">Sample</location>
collected from surface sediment by
<collectingMunicipality id="4F1BACBE11393A5CFBA4FA3CFAEE0EE7" box="[1089,1306,1411,1437]" pageId="5" pageNumber="30">Ana Isabel Gomes</collectingMunicipality>
on the 26
<superScript id="58B59B8C11393A5CFA6AFAC0FA6F0EF7" attach="none" box="[1423,1435,1407,1421]" fontSize="6" pageId="5" pageNumber="30">th</superScript>
of
<collectingCounty id="461E4E4811393A5CFF5DFA15FF1B0EBE" box="[184,239,1450,1476]" pageId="5" pageNumber="30">May</collectingCounty>
, 2010.
<typeStatus id="707B886611393A5CFEA3FA15FE400EBE" box="[326,436,1450,1476]" pageId="5" pageNumber="30" type="holotype">Holotype</typeStatus>
<collectionCode id="C9D1AE0111393A5CFE59FA15FDF00EBE" box="[444,516,1450,1476]" country="Poland" httpUri="http://grbio.org/cool/3kak-ye4c" name="University of Szczecin" pageId="5" pageNumber="30" type="Herbarium">SZCZ</collectionCode>
slide 18916, illustrated in
<figureCitation id="37FB2A4111393A5CFCA1FA15FBF40EBE" box="[836,1024,1450,1476]" captionStart="FIGURES 29" captionStartId="5.[151,261,738,759]" captionTargetBox="[156,1436,155,716]" captionTargetId="figure-506@5.[151,1436,145,717]" captionTargetPageId="5" captionText="FIGURES 29. Syvertsenia iberica. LM images. Figs 39: Specimens from the holotype slide. Figs 6, 7: Holotype specimen photographed in various techniques, note the presence of the tubular process on a mantle (arrow) Figs 8, 9: Same specimen photographed in various techniques. Figs 46 and 8: Phase contrast. Figs 7 and 9: Differential Interference Contrast. All scale bars = 10 µm." figureDoi="http://doi.org/10.5281/zenodo.5099887" httpUri="https://zenodo.org/record/5099887/files/figure.png" pageId="5" pageNumber="30">Figures 6 and 7</figureCitation>
; isotype slide no. 13298/
<collectionCode id="C9D1AE0111393A5CFACCFA15FA890EBE" box="[1321,1405,1450,1476]" country="Portugal" httpUri="http://grbio.org/cool/6xxn-75hg" name="Universidade do Algarve" pageId="5" pageNumber="30" type="Herbarium">ALGU</collectionCode>
in the
<collectionCode id="C9D1AE0111393A5CFF27FA6FFEE70E90" box="[194,275,1488,1514]" country="Portugal" httpUri="http://grbio.org/cool/6xxn-75hg" name="Universidade do Algarve" pageId="5" pageNumber="30" type="Herbarium">ALGU</collectionCode>
Plant and Algae Collection (
<figureCitation id="37FB2A4111393A5CFD82FA6FFD5B0E90" box="[615,687,1488,1514]" captionStart="FIGURES 29" captionStartId="5.[151,261,738,759]" captionTargetBox="[156,1436,155,716]" captionTargetId="figure-506@5.[151,1436,145,717]" captionTargetPageId="5" captionText="FIGURES 29. Syvertsenia iberica. LM images. Figs 39: Specimens from the holotype slide. Figs 6, 7: Holotype specimen photographed in various techniques, note the presence of the tubular process on a mantle (arrow) Figs 8, 9: Same specimen photographed in various techniques. Figs 46 and 8: Phase contrast. Figs 7 and 9: Differential Interference Contrast. All scale bars = 10 µm." figureDoi="http://doi.org/10.5281/zenodo.5099887" httpUri="https://zenodo.org/record/5099887/files/figure.png" pageId="5" pageNumber="30">Fig. 2</figureCitation>
).
</materialsCitation>
</paragraph>
</subSubSection>
<subSubSection id="E7DA654F11393A5CFF23FA48FC890D4D" pageId="5" pageNumber="30" type="etymology">
<paragraph id="AF7F36C411393A5CFF23FA48FC890D4D" blockId="5.[151,1436,1369,1901]" pageId="5" pageNumber="30">
<emphasis id="9DB4EAD611393A5CFF23FA48FEA30D6B" bold="true" box="[198,343,1527,1553]" pageId="5" pageNumber="30">Etymology:</emphasis>
⎯The specific epithet was chosen considering that Guadiana Estuary makes the border between the two countries that constitute the Iberian Peninsula.
</paragraph>
</subSubSection>
<subSubSection id="E7DA654F11393A5CFF23F9FBFCE20C17" pageId="5" pageNumber="30" type="distribution">
<paragraph id="AF7F36C411393A5CFF23F9FBFCE20C17" blockId="5.[151,1436,1369,1901]" pageId="5" pageNumber="30">
<emphasis id="9DB4EAD611393A5CFF23F9FBFDF90D24" bold="true" box="[198,525,1604,1630]" pageId="5" pageNumber="30">Distribution and ecology:</emphasis>
⎯Thus far, known only from the
<typeStatus id="707B886611393A5CFC5DF9FBFC1F0D24" box="[952,1003,1604,1630]" pageId="5" pageNumber="30">type</typeStatus>
habitat area i.e. Guadiana Estuary, stations GS1, GS2 and GS18 (
<figureCitation id="37FB2A4111393A5CFDE5F9D4FDA90DFF" box="[512,605,1643,1669]" captionStart="FIGURE 1" captionStartId="2.[151,244,1495,1516]" captionTargetBox="[164,1428,286,1460]" captionTargetId="figure-242@2.[151,1436,274,1466]" captionTargetPageId="2" captionText="FIGURE 1. Study area: (A) Location in Iberia Peninsula, (B) Location in the lower area of the Guadiana Estuary and (C) Schematic representation of the sampling transect (elevation relative to the mean sea-level). Illustrations of Sarcocornia perennis (Miller) A. J. Scott (1977: 367) &amp; Halimione portulacoides (L.) Aellen (1938: 126) by Tracey (2010) and Spartina maritima (Curtis) Fernald (1916: 180) by Saxby (2010)." figureDoi="http://doi.org/10.5281/zenodo.5099885" httpUri="https://zenodo.org/record/5099885/files/figure.png" pageId="5" pageNumber="30">Fig. 1C</figureCitation>
). In the referred stations, the salinity of the sediment interstitial water ranges between 19.93 (GS1) and
<quantity id="68389B2111393A5CFDFBF92DFD810DD6" box="[542,629,1682,1708]" metricMagnitude="-2" metricUnit="kg" metricValue="3.074" pageId="5" pageNumber="30" unit="g" value="30.74">30.74 g</quantity>
/Kg (GS18) while pH values varies from 7.27 (GS18) to 7.58 (GS2). The substrate grain-size preference varies between medium silt (GS18) and fine sand (GS2). In terms of organic carbon percentage it ranges from 0.36 % (GS2) to 3.40 (GS18).
<tableCitation id="E242037F11393A5CFBCBF960FB7F0D83" box="[1070,1163,1759,1785]" captionStart="TABLE 3" captionStartId="7.[151,233,154,175]" captionText="TABLE 3. Physicochemical parameters measured in each sampling station (* values measured in a single campaign, p sampling stations where Syvertsenia iberica has been observed)." pageId="5" pageNumber="30">Table 3</tableCitation>
presents in detail the physicochemical parameters measured at each sampling station. The river water column adjacent to the sampling stations presents a mean salinity of 26.43 ±
<quantity id="68389B2111393A5CFCECF893FCAB0C3C" box="[777,863,1836,1862]" metricMagnitude="-2" metricUnit="kg" metricValue="1.113" pageId="5" pageNumber="30" unit="g" value="11.13">11.13 g</quantity>
/Kg, a pH of 8.20 ± 0.27, dissolved oxygen of 98 ± 19.48 % and a mean temperature of 17.88 ± 5.13º C.
</paragraph>
</subSubSection>
</treatment>
</document>