treatments-xml/data/E0/2B/F0/E02BF037C773B00AFF46E025FDEE35FA.xml
2024-06-21 12:54:51 +02:00

1036 lines
136 KiB
XML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document ID-DOI="10.1098/rspb.2004.2755" ID-GBIF-Dataset="2fd3fdaa-0982-414b-a25a-f103b25df325" ID-ISSN="1471-2954" ID-PMC="PMC1691752" ID-PubMed="15306316" ID-Zenodo-Dep="3736733" checkinTime="1585762573556" checkinUser="jeremy" docAuthor="Rayfield, Emily J." docDate="2004" docId="E02BF037C773B00AFF46E025FDEE35FA" docLanguage="en" docName="Rayfield2004CranialMechanics.pdf.imd" docOrigin="Proceedings of the Royal Society of London, Series B 271 (1547)" docStyle="DocumentStyle{}" docTitle="Tyrannosaurus rex Osborn 1905" docType="treatment" docVersion="4" lastPageNumber="1458" masterDocId="1C12884FC772B00DFFC3E524FF9B3108" masterDocTitle="Cranial mechanics and feeding in Tyrannosaurus rex" masterLastPageNumber="1459" masterPageNumber="1451" pageNumber="1452" updateTime="1668143439719" updateUser="ExternalLinkService">
<mods:mods xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo>
<mods:title>Cranial mechanics and feeding in Tyrannosaurus rex</mods:title>
</mods:titleInfo>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Rayfield, Emily J.</mods:namePart>
</mods:name>
<mods:typeOfResource>text</mods:typeOfResource>
<mods:relatedItem type="host">
<mods:titleInfo>
<mods:title>Proceedings of the Royal Society of London, Series B</mods:title>
</mods:titleInfo>
<mods:part>
<mods:date>2004</mods:date>
<mods:detail type="pubDate">
<mods:number>2004-06-09</mods:number>
</mods:detail>
<mods:detail type="volume">
<mods:number>271</mods:number>
</mods:detail>
<mods:detail type="issue">
<mods:number>1547</mods:number>
</mods:detail>
<mods:extent unit="page">
<mods:start>1451</mods:start>
<mods:end>1459</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:classification>journal article</mods:classification>
<mods:identifier type="DOI">10.1098/rspb.2004.2755</mods:identifier>
<mods:identifier type="GBIF-Dataset">2fd3fdaa-0982-414b-a25a-f103b25df325</mods:identifier>
<mods:identifier type="ISSN">1471-2954</mods:identifier>
<mods:identifier type="PMC">PMC1691752</mods:identifier>
<mods:identifier type="PubMed">15306316</mods:identifier>
<mods:identifier type="Zenodo-Dep">3736733</mods:identifier>
</mods:mods>
<treatment ID-DOI="http://doi.org/10.5281/zenodo.3811836" ID-GBIF-Taxon="190207186" ID-Zenodo-Dep="3811836" LSID="urn:lsid:plazi:treatment:E02BF037C773B00AFF46E025FDEE35FA" httpUri="http://treatment.plazi.org/id/E02BF037C773B00AFF46E025FDEE35FA" lastPageId="7" lastPageNumber="1458" pageId="1" pageNumber="1452">
<subSubSection box="[133,496,1281,1304]" pageId="1" pageNumber="1452" type="nomenclature">
<paragraph blockId="1.[133,496,1281,1304]" box="[133,496,1281,1304]" pageId="1" pageNumber="1452">
<heading allCaps="true" bold="true" box="[133,496,1281,1304]" fontSize="9" level="1" pageId="1" pageNumber="1452" reason="2">
<emphasis bold="true" box="[133,496,1281,1304]" pageId="1" pageNumber="1452">
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[133,149,1281,1304]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="1" pageNumber="1452" phylum="Chordata" rank="species" species="rex">2</taxonomicName>
. MATERIAL AND METHODS
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection lastPageId="7" lastPageNumber="1458" pageId="1" pageNumber="1452" type="description">
<paragraph blockId="1.[133,770,1330,1504]" pageId="1" pageNumber="1452">
Specimens studied:
<materialsCitation ID-GBIF-Occurrence="3396415312" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&amp;specimen_id=47761 " pageId="1" pageNumber="1452" specimenCode="AMNH 5027">AMNH 5027: American Museum of Natural History, New York</materialsCitation>
;
<materialsCitation ID-GBIF-Occurrence="3396415308" collectionCode="BHM" pageId="1" pageNumber="1452" specimenCode="BHM 3033">BHM 3033: Black Hills Museum, Hill City, South Dakota</materialsCitation>
;
<materialsCitation ID-GBIF-Occurrence="3396415301" collectionCode="MOR" pageId="1" pageNumber="1452" specimenCode="MOR 555">MOR 555: Museum of the Rockies, Bozeman, Montana</materialsCitation>
;
<materialsCitation ID-GBIF-Occurrence="3396415314" collectionCode="SDSM" pageId="1" pageNumber="1452" specimenCode="SDSM 12047">SDSM 12047: South Dakota School of Mines, Rapid City, South Dakota</materialsCitation>
;
<materialsCitation ID-GBIF-Occurrence="3396415307" collectionCode="RTMP" pageId="1" pageNumber="1452" specimenCode="RTMP 81.6.1">RTMP 81.6.1: Royal Tyrell Museum of Palaeontology, Drumheller, Canada</materialsCitation>
.
</paragraph>
<paragraph blockId="1.[133,771,1544,2086]" box="[133,728,1544,1567]" pageId="1" pageNumber="1452">
(
<emphasis bold="true" box="[143,157,1545,1566]" pageId="1" pageNumber="1452">a</emphasis>
)
<emphasis bold="true" box="[179,728,1544,1567]" italics="true" pageId="1" pageNumber="1452">Anatomical observations of sutural mobility</emphasis>
</paragraph>
<paragraph blockId="1.[133,771,1544,2086]" lastBlockId="1.[818,1454,747,798]" pageId="1" pageNumber="1452">
Four facial sutures commonly appear patent and slightly mobile in
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[240,301,1607,1628]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="1" pageNumber="1452" phylum="Chordata" rank="species" species="rex">
<emphasis box="[240,301,1607,1628]" italics="true" pageId="1" pageNumber="1452">T. rex</emphasis>
</taxonomicName>
skulls observed. These are the maxillajugal, postorbitaljugal, quadratojugaljugal and postorbitalsquamosal contacts. Two of these sutures are not universally mobile: the quadratojugaljugal suture is fused in some specimens (e.g.
<materialsCitation ID-GBIF-Occurrence="3396415313" box="[133,278,1729,1750]" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&amp;specimen_id=47761 " pageId="1" pageNumber="1452" specimenCode="AMNH 5027">AMNH 5027</materialsCitation>
) and movement at the postorbitalsquamosal would be restricted by attachment of the superficial and possibly medial slips of the M. adductor mandibulae externus, which originate in part along the lateral supra-temporal fenestra margin. The remaining two sutures, namely the maxillajugal and postorbitaljugal contacts, remain patent in nearly all observed specimens, and are the main focus of this analysis. Patent, yet apparently immobile, sutures exist between many other cranial bones, and future analysis will attempt to elucidate the significance of these sutures. It should be noted that although the FEMs use a particularly loosely articulated skull (
<materialsCitation ID-GBIF-Occurrence="3396415309" box="[643,766,2035,2056]" collectionCode="BHM" pageId="1" pageNumber="1452" specimenCode="BHM 3033">BHM 3033</materialsCitation>
;
<figureCitation box="[133,213,2065,2086]" captionStart="Figure 1" captionStartId="1.[133,199,524,545]" captionTargetBox="[253,1330,169,497]" captionTargetPageId="1" captionText="Figure 1. Tyrannosaurus rex skull and FEM. (a) Skull of BHM 3033, left lateral view; and (b) 2D FE-mesh of BHM 3033 depicting skull as fused without mobile sutures. Grey areas indicate surfaces constrained from moving in all translatory directions, arrows indicate direction of bite force applied to all teeth, either vertical or horizontal tearing. Abbreviations: aof, antorbital fenestra; en, external naris; j, jugal; l, lacrimal; ltf, lower temporal fenestra; m, maxilla, n, nasals; or, orbit; p, premaxilla; po, postorbital; pt, pterygoid; q, quadrate; qj, quadratojugal; sq, squamosal. Scale bar 10 cm." figureDoi="http://doi.org/10.5281/zenodo.3958229" httpUri="https://zenodo.org/record/3958229/files/figure.png" pageId="1" pageNumber="1452">figure 1</figureCitation>
) as a template, the following descriptions of cranial mobility are based on observations of numerous specimens (see above).
</paragraph>
<paragraph blockId="1.[818,1455,839,1564]" box="[818,1172,839,862]" pageId="1" pageNumber="1452">
<heading bold="true" box="[818,1172,839,862]" fontSize="9" level="2" pageId="1" pageNumber="1452" reason="6">
(
<emphasis bold="true" box="[827,842,840,861]" pageId="1" pageNumber="1452">b</emphasis>
)
<emphasis bold="true" box="[865,1172,839,862]" italics="true" pageId="1" pageNumber="1452">Jugalpostorbital contact</emphasis>
</heading>
</paragraph>
<paragraph blockId="1.[818,1455,839,1564]" pageId="1" pageNumber="1452">
The postorbital laps a smooth groove running down half the length of the anterior surface of the ascending process of the jugal (
<figureCitation box="[880,971,932,953]" captionStart="Figure 2" captionStartId="2.[133,199,869,890]" captionTargetBox="[289,1298,170,840]" captionTargetPageId="2" captionText="Figure 2. Sutural morphology and mobility. (a) Postorbitaljugal suture in Tyrannosaurus rex; (b) maxillajugal suture in T. rex; (c) 2D FEM of T. rex skull with mobile postorbitaljugal contact; and (d) 2D FEM of T. rex skull with mobile maxillajugal contact. Double-headed arrows indicate direction of slight adjustive movement at suture. Single-headed arrows indicate location of suture in FE-mesh. Illustrations after BHM 3033. Grey areas and abbreviations as defined in figure 1; pal, palatine." figureDoi="http://doi.org/10.5281/zenodo.3958231" httpUri="https://zenodo.org/record/3958231/files/figure.png" pageId="1" pageNumber="1452">
figure 2
<emphasis box="[959,971,932,953]" italics="true" pageId="1" pageNumber="1452">a</emphasis>
</figureCitation>
). Postorbitaljugal contact surfaces are variably rugose, with
<materialsCitation ID-GBIF-Occurrence="3396415310" box="[953,1072,963,984]" collectionCode="BHM" pageId="1" pageNumber="1452" specimenCode="BHM 3033">BHM 3033</materialsCitation>
bearing smooth articulation surfaces while
<materialsCitation ID-GBIF-Occurrence="3396415302" box="[876,1010,993,1014]" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&amp;specimen_id=47761 " pageId="1" pageNumber="1452" specimenCode="AMNH 5027">ANMH 5027</materialsCitation>
and
<materialsCitation ID-GBIF-Occurrence="3396415305" box="[1060,1162,993,1014]" collectionCode="MOR" pageId="1" pageNumber="1452" specimenCode="MOR 555">MOR 555</materialsCitation>
possess more rugose surfaces along the length of the contact. Furthermore, in
<materialsCitation ID-GBIF-Occurrence="3396415304" box="[1317,1454,1024,1045]" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&amp;specimen_id=47761 " pageId="1" pageNumber="1452" specimenCode="AMNH 5027">AMNH 5027</materialsCitation>
and
<materialsCitation ID-GBIF-Occurrence="3396415303" box="[866,975,1054,1075]" collectionCode="MOR" pageId="1" pageNumber="1452" specimenCode="MOR 555">MOR 555</materialsCitation>
, the anterior surface of the lower half of the ascending process bears a pronounced roughened region that marks the ventral extent of postorbital overlap. A depressed groove running along the posterior surface of the descending process of the postorbital marks the contact with the jugal. In all specimens observed and those documented in the literature (e.g.
<bibRefCitation author="Brochu, C. A." box="[868,999,1238,1259]" journalOrPublisher="J. Vert. Paleontol." pageId="1" pageNumber="1452" pagination="1 - 138" part="22 (Suppl. 4" refId="ref6395" refString="Brochu, C. A. 2003 Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. J. Vert. Paleontol. 22 (Suppl. 4), 1 - 138." title="Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull" type="journal article" year="2003">Brochu 2003</bibRefCitation>
) this contact is patent and potentially mobile, with the exception of MOR 008, in which the left jugalpostorbital contact is fused internally, probably as a result of the advanced age of this specimen (
<bibRefCitation author="Molnar, R. E." box="[1170,1307,1330,1351]" journalOrPublisher="Palaeontol. Abt. A" pageId="1" pageNumber="1452" pagination="137 - 176" part="217" refId="ref7275" refString="Molnar, R. E. 1991 The cranial morphology of Tyrannosaurus rex. Palaeontol. Abt. A 217, 137 - 176." title="The cranial morphology of Tyrannosaurus rex" type="journal article" year="1991">Molnar 1991</bibRefCitation>
). Additionally, minor interdigitations at the anterior edge of the postorbitaljugal suture in
<materialsCitation ID-GBIF-Occurrence="3396415315" box="[967,1103,1391,1412]" collectionCode="AMNH" httpUri="http://research.amnh.org/paleontology/search.php?action=detail&amp;specimen_id=47761 " pageId="1" pageNumber="1452" specimenCode="AMNH 5027">AMNH 5027</materialsCitation>
may have limited movement along the suture in this particular skull. Overlapping flanges at the postorbitaljugal contact surface generally prevent rotation in the transverse and parasagittal axis, but sliding of the jugal anteroventrallyposterodorsally against the postorbital is permitted (
<figureCitation box="[863,956,1543,1564]" captionStart="Figure 2" captionStartId="2.[133,199,869,890]" captionTargetBox="[289,1298,170,840]" captionTargetPageId="2" captionText="Figure 2. Sutural morphology and mobility. (a) Postorbitaljugal suture in Tyrannosaurus rex; (b) maxillajugal suture in T. rex; (c) 2D FEM of T. rex skull with mobile postorbitaljugal contact; and (d) 2D FEM of T. rex skull with mobile maxillajugal contact. Double-headed arrows indicate direction of slight adjustive movement at suture. Single-headed arrows indicate location of suture in FE-mesh. Illustrations after BHM 3033. Grey areas and abbreviations as defined in figure 1; pal, palatine." figureDoi="http://doi.org/10.5281/zenodo.3958231" httpUri="https://zenodo.org/record/3958231/files/figure.png" pageId="1" pageNumber="1452">
figure 2
<emphasis box="[944,956,1543,1564]" italics="true" pageId="1" pageNumber="1452">a</emphasis>
</figureCitation>
).
</paragraph>
<paragraph blockId="1.[818,1455,1605,2086]" box="[818,1185,1605,1628]" pageId="1" pageNumber="1452">
<heading bold="true" box="[818,1185,1605,1628]" fontSize="9" level="2" pageId="1" pageNumber="1452" reason="6">
(
<emphasis bold="true" box="[827,840,1606,1627]" pageId="1" pageNumber="1452">c</emphasis>
)
<emphasis bold="true" box="[863,1185,1605,1628]" italics="true" pageId="1" pageNumber="1452">The maxillajugal contact</emphasis>
</heading>
</paragraph>
<paragraph blockId="1.[818,1455,1605,2086]" pageId="1" pageNumber="1452">
The anterior portion of the jugal forks medially and laterally, ventral to its contact with the lacrimal. The medial fork laps on to the medial surface of the maxilla while the lateral fork further divides into a dorsal and ventral component, between which slots a narrow process of the maxilla (as noted by
<bibRefCitation author="Molnar, R. E." journalOrPublisher="Palaeontol. Abt. A" pageId="1" pageNumber="1452" pagination="137 - 176" part="217" refId="ref7275" refString="Molnar, R. E. 1991 The cranial morphology of Tyrannosaurus rex. Palaeontol. Abt. A 217, 137 - 176." title="The cranial morphology of Tyrannosaurus rex" type="journal article" year="1991">Molnar (1991))</bibRefCitation>
. Additionally the dorsal edge of an extended maxillary process laps the ventrolateral edge of the jugal along a posteriorly extended groove (
<figureCitation box="[1083,1177,1851,1872]" captionStart="Figure 2" captionStartId="2.[133,199,869,890]" captionTargetBox="[289,1298,170,840]" captionTargetPageId="2" captionText="Figure 2. Sutural morphology and mobility. (a) Postorbitaljugal suture in Tyrannosaurus rex; (b) maxillajugal suture in T. rex; (c) 2D FEM of T. rex skull with mobile postorbitaljugal contact; and (d) 2D FEM of T. rex skull with mobile maxillajugal contact. Double-headed arrows indicate direction of slight adjustive movement at suture. Single-headed arrows indicate location of suture in FE-mesh. Illustrations after BHM 3033. Grey areas and abbreviations as defined in figure 1; pal, palatine." figureDoi="http://doi.org/10.5281/zenodo.3958231" httpUri="https://zenodo.org/record/3958231/files/figure.png" pageId="1" pageNumber="1452">
figure 2
<emphasis box="[1166,1177,1851,1872]" italics="true" pageId="1" pageNumber="1452">b</emphasis>
</figureCitation>
). In none of the observed specimens was the maxillajugal contact fused. Dorsoventral and mediolateral movement plus rotation about the transverse and parasagittal axes is prevented by the interlocking mediolateral and dorsoventral articulations. The distinct anteroposterior orientation of all contacts suggest that slight anteroposterior sliding movement plus some limited rotation about the longitudinal axis of the jugal is permitted at this suture (
<figureCitation box="[1340,1431,2065,2086]" captionStart="Figure 2" captionStartId="2.[133,199,869,890]" captionTargetBox="[289,1298,170,840]" captionTargetPageId="2" captionText="Figure 2. Sutural morphology and mobility. (a) Postorbitaljugal suture in Tyrannosaurus rex; (b) maxillajugal suture in T. rex; (c) 2D FEM of T. rex skull with mobile postorbitaljugal contact; and (d) 2D FEM of T. rex skull with mobile maxillajugal contact. Double-headed arrows indicate direction of slight adjustive movement at suture. Single-headed arrows indicate location of suture in FE-mesh. Illustrations after BHM 3033. Grey areas and abbreviations as defined in figure 1; pal, palatine." figureDoi="http://doi.org/10.5281/zenodo.3958231" httpUri="https://zenodo.org/record/3958231/files/figure.png" pageId="1" pageNumber="1452">
figure 2
<emphasis box="[1420,1431,2065,2086]" italics="true" pageId="1" pageNumber="1452">b</emphasis>
</figureCitation>
).
</paragraph>
<caption ID-DOI="http://doi.org/10.5281/zenodo.3958231" ID-Zenodo-Dep="3958231" httpUri="https://zenodo.org/record/3958231/files/figure.png" pageId="2" pageNumber="1453" startId="2.[133,199,869,890]" targetBox="[289,1298,170,840]" targetPageId="2">
<paragraph blockId="2.[133,1430,869,1001]" pageId="2" pageNumber="1453">
Figure 2. Sutural morphology and mobility. (
<emphasis box="[605,617,869,890]" italics="true" pageId="2" pageNumber="1453">a</emphasis>
) Postorbitaljugal suture in
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[914,1094,869,890]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="2" pageNumber="1453" phylum="Chordata" rank="species" species="rex">
<emphasis box="[914,1094,869,890]" italics="true" pageId="2" pageNumber="1453">Tyrannosaurus rex</emphasis>
</taxonomicName>
; (
<emphasis box="[1118,1129,869,890]" italics="true" pageId="2" pageNumber="1453">b</emphasis>
) maxillajugal suture in
<taxonomicName authorityName="Osborn" authorityYear="1905" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="2" pageNumber="1453" phylum="Chordata" rank="species" species="rex">
<emphasis italics="true" pageId="2" pageNumber="1453">T. rex</emphasis>
</taxonomicName>
; (
<emphasis box="[186,195,897,918]" italics="true" pageId="2" pageNumber="1453">c</emphasis>
) 2D FEM of
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[345,404,897,918]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="2" pageNumber="1453" phylum="Chordata" rank="species" species="rex">
<emphasis box="[345,404,897,918]" italics="true" pageId="2" pageNumber="1453">T. rex</emphasis>
</taxonomicName>
skull with mobile postorbitaljugal contact; and (
<emphasis box="[923,935,897,918]" italics="true" pageId="2" pageNumber="1453">d</emphasis>
) 2D FEM of
<emphasis box="[1087,1146,897,918]" italics="true" pageId="2" pageNumber="1453">T. rex</emphasis>
skull with mobile maxillajugal contact. Double-headed arrows indicate direction of slight adjustive movement at suture. Single-headed arrows indicate location of suture in FE-mesh. Illustrations after
<materialsCitation ID-GBIF-Occurrence="3396415311" box="[657,780,952,973]" collectionCode="BHM" pageId="2" pageNumber="1453" specimenCode="BHM 3033">BHM 3033</materialsCitation>
. Grey areas and abbreviations as defined in figure 1; pal, palatine.
</paragraph>
</caption>
<paragraph blockId="2.[133,770,1116,2086]" box="[133,493,1116,1139]" pageId="2" pageNumber="1453">
<heading bold="true" box="[133,493,1116,1139]" fontSize="9" level="2" pageId="2" pageNumber="1453" reason="6">
(
<emphasis bold="true" box="[143,158,1117,1138]" pageId="2" pageNumber="1453">d</emphasis>
)
<emphasis bold="true" box="[183,493,1116,1139]" italics="true" pageId="2" pageNumber="1453">Finite element modelling</emphasis>
</heading>
</paragraph>
<paragraph blockId="2.[133,770,1116,2086]" pageId="2" pageNumber="1453">
A two-dimensional (2D) FEM of a
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[509,566,1148,1169]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="2" pageNumber="1453" phylum="Chordata" rank="species" species="rex">
<emphasis box="[509,566,1148,1169]" italics="true" pageId="2" pageNumber="1453">T. rex</emphasis>
</taxonomicName>
skull was created. A lateral-aspect photograph of
<materialsCitation ID-GBIF-Occurrence="3396415306" box="[415,529,1179,1200]" collectionCode="BHM" pageId="2" pageNumber="1453" specimenCode="BHM 3033">BHM 3033</materialsCitation>
(Hell Creek Formation, South Dakota;
<figureCitation box="[309,409,1210,1231]" captionStart="Figure 1" captionStartId="1.[133,199,524,545]" captionTargetBox="[253,1330,169,497]" captionTargetPageId="1" captionText="Figure 1. Tyrannosaurus rex skull and FEM. (a) Skull of BHM 3033, left lateral view; and (b) 2D FE-mesh of BHM 3033 depicting skull as fused without mobile sutures. Grey areas indicate surfaces constrained from moving in all translatory directions, arrows indicate direction of bite force applied to all teeth, either vertical or horizontal tearing. Abbreviations: aof, antorbital fenestra; en, external naris; j, jugal; l, lacrimal; ltf, lower temporal fenestra; m, maxilla, n, nasals; or, orbit; p, premaxilla; po, postorbital; pt, pterygoid; q, quadrate; qj, quadratojugal; sq, squamosal. Scale bar 10 cm." figureDoi="http://doi.org/10.5281/zenodo.3958229" httpUri="https://zenodo.org/record/3958229/files/figure.png" pageId="2" pageNumber="1453">
figure 1
<emphasis box="[397,409,1210,1231]" italics="true" pageId="2" pageNumber="1453">a</emphasis>
</figureCitation>
) was digitized in SCION IMAGE (www.scioncorp.com). Outline
<emphasis box="[456,467,1240,1261]" italics="true" pageId="2" pageNumber="1453">x</emphasis>
,
<emphasis box="[474,485,1240,1261]" italics="true" pageId="2" pageNumber="1453">y</emphasis>
coordinates were imported into the Geostar geometry creator component of the COSMOSM FEA package (v. 2.0 for Unix; SRAC Corp. CA, USA and Cenit Ltd, UK). A series of 5 cm thick surfaces was created then meshed to produce an interconnected grid of three-noded triangular FEs representing the lateral aspect of the cranium (
<figureCitation box="[139,229,1423,1444]" captionStart="Figure 1" captionStartId="1.[133,199,524,545]" captionTargetBox="[253,1330,169,497]" captionTargetPageId="1" captionText="Figure 1. Tyrannosaurus rex skull and FEM. (a) Skull of BHM 3033, left lateral view; and (b) 2D FE-mesh of BHM 3033 depicting skull as fused without mobile sutures. Grey areas indicate surfaces constrained from moving in all translatory directions, arrows indicate direction of bite force applied to all teeth, either vertical or horizontal tearing. Abbreviations: aof, antorbital fenestra; en, external naris; j, jugal; l, lacrimal; ltf, lower temporal fenestra; m, maxilla, n, nasals; or, orbit; p, premaxilla; po, postorbital; pt, pterygoid; q, quadrate; qj, quadratojugal; sq, squamosal. Scale bar 10 cm." figureDoi="http://doi.org/10.5281/zenodo.3958229" httpUri="https://zenodo.org/record/3958229/files/figure.png" pageId="2" pageNumber="1453">
figure 1
<emphasis box="[218,229,1423,1444]" italics="true" pageId="2" pageNumber="1453">b</emphasis>
</figureCitation>
). Each element was attributed the mechanical properties of bovine Haversian bone after
<bibRefCitation author="Rayfield, E. J. &amp; Norman, D. B. &amp; Horner, C. C. &amp; Horner, J. R. &amp; May Smith, P. &amp; Thomason, J. J. &amp; Upchurch, P." box="[495,712,1454,1475]" journalOrPublisher="Nature" pageId="2" pageNumber="1453" pagination="1033 - 1037" part="409" refId="ref7522" refString="Rayfield, E. J., Norman, D. B., Horner, C. C., Horner, J. R., May Smith, P., Thomason, J. J. &amp; Upchurch, P. 2001 Cranial design and function in a large theropod dinosaur. Nature 409, 1033 - 1037." title="Cranial design and function in a large theropod dinosaur" type="journal article" year="2001">
Rayfield
<emphasis box="[585,634,1454,1475]" italics="true" pageId="2" pageNumber="1453">et al.</emphasis>
(2001)
</bibRefCitation>
.
</paragraph>
<paragraph blockId="2.[133,770,1116,2086]" pageId="2" pageNumber="1453">
The model represents a 2D section of the left aspect of the skull: the palate and braincase were not included. 2D models are used as a first approximation in orthopaedic biomechanical modelling, and using simple FEMs offers the potential to generate mechano-functional hypotheses (
<bibRefCitation author="Carter, D. R. &amp; Mikic, B. &amp; Padian, K." box="[503,690,1607,1628]" journalOrPublisher="Zool. J. Linn. Soc." pageId="2" pageNumber="1453" pagination="163 - 178" part="123" refId="ref6541" refString="Carter, D. R., Mikic, B. &amp; Padian, K. 1998 Epigenetic mechanical factors in the evolution of long bone epiphyses. Zool. J. Linn. Soc. 123, 163 - 178." title="Epigenetic mechanical factors in the evolution of long bone epiphyses" type="journal article" year="1998">
Carter
<emphasis box="[578,628,1607,1628]" italics="true" pageId="2" pageNumber="1453">et al.</emphasis>
1998
</bibRefCitation>
), which may be further tested by digitally modifying future models. The 2D models presented here were constrained from moving about the lower temporal fenestra (
<figureCitation box="[423,513,1699,1720]" captionStart="Figure 1" captionStartId="1.[133,199,524,545]" captionTargetBox="[253,1330,169,497]" captionTargetPageId="1" captionText="Figure 1. Tyrannosaurus rex skull and FEM. (a) Skull of BHM 3033, left lateral view; and (b) 2D FE-mesh of BHM 3033 depicting skull as fused without mobile sutures. Grey areas indicate surfaces constrained from moving in all translatory directions, arrows indicate direction of bite force applied to all teeth, either vertical or horizontal tearing. Abbreviations: aof, antorbital fenestra; en, external naris; j, jugal; l, lacrimal; ltf, lower temporal fenestra; m, maxilla, n, nasals; or, orbit; p, premaxilla; po, postorbital; pt, pterygoid; q, quadrate; qj, quadratojugal; sq, squamosal. Scale bar 10 cm." figureDoi="http://doi.org/10.5281/zenodo.3958229" httpUri="https://zenodo.org/record/3958229/files/figure.png" pageId="2" pageNumber="1453">
figure 1
<emphasis box="[502,513,1699,1720]" italics="true" pageId="2" pageNumber="1453">b</emphasis>
</figureCitation>
) to focus upon the stress response of the rostrum, which as a more planar structure than the posterior skull is more appropriate for 2D modelling. Stress patterns posterior to the constraining surfaces, including the effect of condylar and muscular forces in the posterior skull, were not analysed and this region of the skull should therefore be ignored in relevant figures.
</paragraph>
<paragraph blockId="2.[133,770,1116,2086]" lastBlockId="2.[818,1454,1118,1200]" pageId="2" pageNumber="1453">
Four structurally different FEMs were constructed by manipulating the base model: an initial fused solid model with no mobile regions (
<figureCitation box="[297,388,1973,1994]" captionStart="Figure 1" captionStartId="1.[133,199,524,545]" captionTargetBox="[253,1330,169,497]" captionTargetPageId="1" captionText="Figure 1. Tyrannosaurus rex skull and FEM. (a) Skull of BHM 3033, left lateral view; and (b) 2D FE-mesh of BHM 3033 depicting skull as fused without mobile sutures. Grey areas indicate surfaces constrained from moving in all translatory directions, arrows indicate direction of bite force applied to all teeth, either vertical or horizontal tearing. Abbreviations: aof, antorbital fenestra; en, external naris; j, jugal; l, lacrimal; ltf, lower temporal fenestra; m, maxilla, n, nasals; or, orbit; p, premaxilla; po, postorbital; pt, pterygoid; q, quadrate; qj, quadratojugal; sq, squamosal. Scale bar 10 cm." figureDoi="http://doi.org/10.5281/zenodo.3958229" httpUri="https://zenodo.org/record/3958229/files/figure.png" pageId="2" pageNumber="1453">
figure 1
<emphasis box="[377,388,1973,1994]" italics="true" pageId="2" pageNumber="1453">b</emphasis>
</figureCitation>
) and three modified mobile models showing differing degrees of intracranial mobility; a mobile postorbitaljugal suture (
<figureCitation box="[347,439,2034,2055]" captionStart="Figure 2" captionStartId="2.[133,199,869,890]" captionTargetBox="[289,1298,170,840]" captionTargetPageId="2" captionText="Figure 2. Sutural morphology and mobility. (a) Postorbitaljugal suture in Tyrannosaurus rex; (b) maxillajugal suture in T. rex; (c) 2D FEM of T. rex skull with mobile postorbitaljugal contact; and (d) 2D FEM of T. rex skull with mobile maxillajugal contact. Double-headed arrows indicate direction of slight adjustive movement at suture. Single-headed arrows indicate location of suture in FE-mesh. Illustrations after BHM 3033. Grey areas and abbreviations as defined in figure 1; pal, palatine." figureDoi="http://doi.org/10.5281/zenodo.3958231" httpUri="https://zenodo.org/record/3958231/files/figure.png" pageId="2" pageNumber="1453">
figure 2
<emphasis box="[430,439,2034,2055]" italics="true" pageId="2" pageNumber="1453">c</emphasis>
</figureCitation>
), a mobile maxillajugal suture (
<figureCitation box="[139,231,2065,2086]" captionStart="Figure 2" captionStartId="2.[133,199,869,890]" captionTargetBox="[289,1298,170,840]" captionTargetPageId="2" captionText="Figure 2. Sutural morphology and mobility. (a) Postorbitaljugal suture in Tyrannosaurus rex; (b) maxillajugal suture in T. rex; (c) 2D FEM of T. rex skull with mobile postorbitaljugal contact; and (d) 2D FEM of T. rex skull with mobile maxillajugal contact. Double-headed arrows indicate direction of slight adjustive movement at suture. Single-headed arrows indicate location of suture in FE-mesh. Illustrations after BHM 3033. Grey areas and abbreviations as defined in figure 1; pal, palatine." figureDoi="http://doi.org/10.5281/zenodo.3958231" httpUri="https://zenodo.org/record/3958231/files/figure.png" pageId="2" pageNumber="1453">
figure 2
<emphasis box="[220,231,2065,2086]" italics="true" pageId="2" pageNumber="1453">d</emphasis>
</figureCitation>
), and a model with both a mobile maxillajugal and postorbitaljugal suture (not shown). The mobile FEMs (
<figureCitation captionStart="Figure 2" captionStartId="2.[133,199,869,890]" captionTargetBox="[289,1298,170,840]" captionTargetPageId="2" captionText="Figure 2. Sutural morphology and mobility. (a) Postorbitaljugal suture in Tyrannosaurus rex; (b) maxillajugal suture in T. rex; (c) 2D FEM of T. rex skull with mobile postorbitaljugal contact; and (d) 2D FEM of T. rex skull with mobile maxillajugal contact. Double-headed arrows indicate direction of slight adjustive movement at suture. Single-headed arrows indicate location of suture in FE-mesh. Illustrations after BHM 3033. Grey areas and abbreviations as defined in figure 1; pal, palatine." figureDoi="http://doi.org/10.5281/zenodo.3958231" httpUri="https://zenodo.org/record/3958231/files/figure.png" pageId="2" pageNumber="1453">
figure 2
<emphasis box="[830,839,1148,1169]" italics="true" pageId="2" pageNumber="1453">c</emphasis>
,
<emphasis box="[846,857,1148,1169]" italics="true" pageId="2" pageNumber="1453">d</emphasis>
</figureCitation>
) were created by introducing breaks in the FE-mesh at the location of the appropriate suture in the actual skull.
</paragraph>
<paragraph blockId="2.[818,1455,1238,2086]" box="[818,1334,1238,1261]" pageId="2" pageNumber="1453">
(
<emphasis bold="true" box="[827,840,1239,1260]" pageId="2" pageNumber="1453">e</emphasis>
)
<emphasis bold="true" box="[863,1334,1238,1261]" italics="true" pageId="2" pageNumber="1453">Bite force magnitude and distribution</emphasis>
</paragraph>
<paragraph blockId="2.[818,1455,1238,2086]" pageId="2" pageNumber="1453">
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[840,1024,1271,1292]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="2" pageNumber="1453" phylum="Chordata" rank="species" species="rex">
<emphasis box="[840,1024,1271,1292]" italics="true" pageId="2" pageNumber="1453">Tyrannosaurus rex</emphasis>
</taxonomicName>
may have been capable of generating 13 400 N bite force at a single posterior tooth (
<bibRefCitation author="Erickson, G. M. &amp; Olson, K. H." journalOrPublisher="J. Vert. Paleontol." pageId="2" pageNumber="1453" pagination="175 - 178" part="16" refId="ref6621" refString="Erickson, G. M. &amp; Olson, K. H. 1996 Bite marks attributable to Tyrannosaurus rex: a preliminary description and implications. J. Vert. Paleontol. 16, 175 - 178." title="Bite marks attributable to Tyrannosaurus rex: a preliminary description and implications" type="journal article" year="1996">
Erickson
<emphasis box="[1405,1455,1301,1322]" italics="true" pageId="2" pageNumber="1453">et al.</emphasis>
1996
</bibRefCitation>
). Using moment arm calculations to extrapolate this value rostrally along the tooth row, a total of 78 060 N was divided between biting teeth (therefore assuming 156 120 N bilaterally, less than, but approaching, values estimated by
<bibRefCitation author="Meers, M. B." box="[1301,1451,1423,1444]" journalOrPublisher="Hist. Biol." pageId="2" pageNumber="1453" pagination="1 - 12" part="16" refId="ref7239" refString="Meers, M. B. 2002 Maximum bite force and prey size of Tyrannosaurus rex and their relationship to the inference of feeding behaviour. Hist. Biol. 16, 1 - 12." title="Maximum bite force and prey size of Tyrannosaurus rex and their relationship to the inference of feeding behaviour" type="journal article" year="2002">Meers (2002))</bibRefCitation>
. However, it may be argued that being first to contact a prey item, the large caniniform teeth received the majority of bite force (
<emphasis box="[881,929,1515,1536]" italics="true" pageId="2" pageNumber="1453">sensu</emphasis>
<bibRefCitation author="Rayfield, E. J. &amp; Norman, D. B. &amp; Horner, C. C. &amp; Horner, J. R. &amp; May Smith, P. &amp; Thomason, J. J. &amp; Upchurch, P." box="[936,1129,1515,1536]" journalOrPublisher="Nature" pageId="2" pageNumber="1453" pagination="1033 - 1037" part="409" refId="ref7522" refString="Rayfield, E. J., Norman, D. B., Horner, C. C., Horner, J. R., May Smith, P., Thomason, J. J. &amp; Upchurch, P. 2001 Cranial design and function in a large theropod dinosaur. Nature 409, 1033 - 1037." title="Cranial design and function in a large theropod dinosaur" type="journal article" year="2001">
Rayfield
<emphasis box="[1023,1069,1515,1536]" italics="true" pageId="2" pageNumber="1453">et al.</emphasis>
2001
</bibRefCitation>
). In accordance with this suggestion, the two large caniniform teeth (
<figureCitation box="[1199,1292,1546,1567]" captionStart="Figure 1" captionStartId="1.[133,199,524,545]" captionTargetBox="[253,1330,169,497]" captionTargetPageId="1" captionText="Figure 1. Tyrannosaurus rex skull and FEM. (a) Skull of BHM 3033, left lateral view; and (b) 2D FE-mesh of BHM 3033 depicting skull as fused without mobile sutures. Grey areas indicate surfaces constrained from moving in all translatory directions, arrows indicate direction of bite force applied to all teeth, either vertical or horizontal tearing. Abbreviations: aof, antorbital fenestra; en, external naris; j, jugal; l, lacrimal; ltf, lower temporal fenestra; m, maxilla, n, nasals; or, orbit; p, premaxilla; po, postorbital; pt, pterygoid; q, quadrate; qj, quadratojugal; sq, squamosal. Scale bar 10 cm." figureDoi="http://doi.org/10.5281/zenodo.3958229" httpUri="https://zenodo.org/record/3958229/files/figure.png" pageId="2" pageNumber="1453">
figure 1
<emphasis box="[1281,1292,1546,1567]" italics="true" pageId="2" pageNumber="1453">b</emphasis>
</figureCitation>
) were allocated 13 000 N each, while the smaller incisiform and posterior maxillary teeth were allocated lesser values scaled to the size of the teeth. In this model a total of 31 000 N was applied.
</paragraph>
<paragraph blockId="2.[818,1455,1238,2086]" pageId="2" pageNumber="1453">
FEAs were performed to assess the stress response to this load in a fused or mobile skull. First, vertical dorsally directed bite forces representing the puncture aspect of feeding were applied to the tooth tips in all four models and the corresponding stress and strain patterns were calculated. The analyses were then rerun applying instead a horizontally orientated, anteriorly directed bite force to represent the pull tearing force, generated by the resistance of flesh and bone against the teeth during tugging and flesh-procuring behaviour (
<figureCitation box="[1180,1271,1912,1933]" captionStart="Figure 1" captionStartId="1.[133,199,524,545]" captionTargetBox="[253,1330,169,497]" captionTargetPageId="1" captionText="Figure 1. Tyrannosaurus rex skull and FEM. (a) Skull of BHM 3033, left lateral view; and (b) 2D FE-mesh of BHM 3033 depicting skull as fused without mobile sutures. Grey areas indicate surfaces constrained from moving in all translatory directions, arrows indicate direction of bite force applied to all teeth, either vertical or horizontal tearing. Abbreviations: aof, antorbital fenestra; en, external naris; j, jugal; l, lacrimal; ltf, lower temporal fenestra; m, maxilla, n, nasals; or, orbit; p, premaxilla; po, postorbital; pt, pterygoid; q, quadrate; qj, quadratojugal; sq, squamosal. Scale bar 10 cm." figureDoi="http://doi.org/10.5281/zenodo.3958229" httpUri="https://zenodo.org/record/3958229/files/figure.png" pageId="2" pageNumber="1453">
figure 1
<emphasis box="[1260,1271,1912,1933]" italics="true" pageId="2" pageNumber="1453">b</emphasis>
</figureCitation>
). Multiple tearing analyses applying moment-calculated forces, variable tooth-sizerelated forces and equal forces to all teeth were investigated. Because bite force was hypothetical but identical in related models, relative rather than absolute patterns of stress and strain could be assessed.
</paragraph>
<caption ID-DOI="http://doi.org/10.5281/zenodo.3958233" ID-Zenodo-Dep="3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="3" pageNumber="1454" startId="3.[133,199,1170,1191]" targetBox="[135,1451,163,1135]" targetPageId="3">
<paragraph blockId="3.[133,1449,1170,1275]" pageId="3" pageNumber="1454">
Figure 3. Stress in the fused FE
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[476,655,1170,1191]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="3" pageNumber="1454" phylum="Chordata" rank="species" species="rex">
<emphasis box="[476,655,1170,1191]" italics="true" pageId="3" pageNumber="1454">Tyrannosaurus rex</emphasis>
</taxonomicName>
skull model generated by vertical biting (left column) or tearing (right column). (
<emphasis box="[243,255,1198,1219]" italics="true" pageId="3" pageNumber="1454">a</emphasis>
) Principal stress 3 [P3], compressive stress; (
<emphasis box="[730,741,1198,1219]" italics="true" pageId="3" pageNumber="1454">b</emphasis>
) P1 tensile stress; (
<emphasis box="[947,956,1198,1219]" italics="true" pageId="3" pageNumber="1454">c</emphasis>
) shear stress; (
<emphasis box="[1115,1127,1198,1219]" italics="true" pageId="3" pageNumber="1454">d</emphasis>
) P3 compressive stress; (
<emphasis box="[1394,1403,1198,1219]" italics="true" pageId="3" pageNumber="1454">e</emphasis>
) P1 tensile stress; and (
<emphasis box="[338,345,1226,1247]" italics="true" pageId="3" pageNumber="1454">f</emphasis>
) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm
<superScript attach="left" box="[900,923,1252,1264]" fontSize="5" pageId="3" pageNumber="1454">
<emphasis bold="true" box="[900,913,1252,1264]" pageId="3" pageNumber="1454"></emphasis>
2
</superScript>
. See electronic Appendix C for strain plots.
</paragraph>
</caption>
<paragraph blockId="3.[133,285,1405,1428]" box="[133,285,1405,1428]" pageId="3" pageNumber="1454">
<heading allCaps="true" bold="true" box="[133,285,1405,1428]" fontSize="9" level="1" pageId="3" pageNumber="1454" reason="2">
<emphasis bold="true" box="[133,285,1405,1428]" pageId="3" pageNumber="1454">3. RESULTS</emphasis>
</heading>
</paragraph>
<paragraph blockId="3.[133,770,1453,2087]" pageId="3" pageNumber="1454">
Colour-coded stress distribution plots with superimposed stress vector orientation illustrate the pattern of stress and strain in the skull under biting and tearing loads (
<figureCitation box="[140,237,1545,1567]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="3" pageNumber="1454">figures 3</figureCitation>
and
<figureCitation box="[292,306,1545,1566]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="3" pageNumber="1454">4</figureCitation>
and electronic Appendices AC). By convention, tensile stresses and strains are allocated positive values, whereas compressive stresses and strains are assigned negative values. Principal stresses (P1 tensile; P3 compressive), shear stress in the sagittal (here
<emphasis box="[675,713,1668,1689]" italics="true" pageId="3" pageNumber="1454">XY</emphasis>
) 2D plane, normal
<emphasis box="[298,318,1699,1720]" italics="true" pageId="3" pageNumber="1454">X</emphasis>
, normal
<emphasis box="[425,443,1699,1720]" italics="true" pageId="3" pageNumber="1454">Y</emphasis>
and sagittal
<emphasis box="[592,630,1699,1720]" italics="true" pageId="3" pageNumber="1454">XY</emphasis>
shear strain were recorded (the software does not calculate principal strains). Principal stresses record peak compressive and tensile stresses when shear stress equals zero. Peak tensile, compressive and shear stresses and strains were recorded and treated as an indicator of skull strength: higher peak stresses mean that less force is needed to induce yielding, therefore the skull is weaker. Regardless of bite force magnitude (moment-arm versus tooth-size forces), nearly identical patterns of stress and strain were produced in models of the same geometry (although absolute magnitudes differ). It can be assumed that the stress patterns figured here apply to either biting regime.
</paragraph>
<paragraph blockId="3.[818,1455,1406,2087]" pageId="3" pageNumber="1454">
(
<emphasis bold="true" box="[827,841,1407,1428]" pageId="3" pageNumber="1454">a</emphasis>
)
<emphasis bold="true" box="[864,1427,1406,1429]" italics="true" pageId="3" pageNumber="1454">Stress in the fused-skull finite element model</emphasis>
<emphasis bold="true" box="[864,1181,1437,1460]" italics="true" pageId="3" pageNumber="1454">during biting and tearing</emphasis>
</paragraph>
<paragraph blockId="3.[818,1455,1406,2087]" pageId="3" pageNumber="1454">
Stress patterns in the vertical biting model (mimicking the puncture phase of feeding) suggest that during biting, compressive stresses arc posterodorsally from the biting teeth through the maxilla and into the nasals and lacrimals (
<figureCitation box="[825,936,1594,1616]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="3" pageNumber="1454">
figure 3
<emphasis box="[923,936,1595,1616]" italics="true" pageId="3" pageNumber="1454">a</emphasis>
</figureCitation>
). Stress vectors trace this curvature then become longitudinally orientated in the posterior region of the nasals and dorsal body of the postorbital (
<figureCitation box="[1338,1437,1657,1679]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="3" pageNumber="1454">
figure 3
<emphasis box="[1424,1437,1658,1679]" italics="true" pageId="3" pageNumber="1454">a</emphasis>
</figureCitation>
). Peak tensile stresses are orientated longitudinally within the jugal and posterior maxilla, ventral to the lower temporal fenestra, orbit and antorbital fenestra (
<figureCitation box="[1333,1438,1751,1773]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="3" pageNumber="1454">
figure 3
<emphasis box="[1426,1438,1751,1772]" italics="true" pageId="3" pageNumber="1454">b</emphasis>
</figureCitation>
). Tension follows the ventral rim of the antorbital fenestra, leaving the main body of the maxilla dorsal to the tooth row relatively untensed (
<figureCitation box="[1094,1195,1845,1867]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="3" pageNumber="1454">
figure 3
<emphasis box="[1183,1195,1845,1866]" italics="true" pageId="3" pageNumber="1454">b</emphasis>
</figureCitation>
). Peak shear occurs in the nasals dorsal to the central antorbital fenestra and dorsal to the orbit (
<figureCitation box="[998,1097,1908,1930]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="3" pageNumber="1454">
figure 3
<emphasis box="[1087,1097,1908,1929]" italics="true" pageId="3" pageNumber="1454">c</emphasis>
</figureCitation>
).
</paragraph>
<paragraph blockId="3.[818,1455,1406,2087]" lastBlockId="4.[818,1454,1912,2087]" lastPageId="4" lastPageNumber="1455" pageId="3" pageNumber="1454">
When the biting simulation is altered to reflect pulling and tearing (hereafter known as the tearing model), tensile vectors lose their anterodorsal component and trace the ventral edge of the skull (
<figureCitation box="[1133,1230,2033,2055]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="3" pageNumber="1454">
figure 3
<emphasis box="[1220,1230,2034,2055]" italics="true" pageId="3" pageNumber="1454">e</emphasis>
</figureCitation>
). The largest maxillary teeth are subject to bending stress: the posterior tooth edge is tensed while the anterior edge compresses along its curvature (
<figureCitation box="[293,414,1942,1964]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="4" pageNumber="1455">
figure 3
<emphasis box="[384,397,1942,1963]" italics="true" pageId="4" pageNumber="1455">d</emphasis>
,
<emphasis box="[404,414,1943,1964]" italics="true" pageId="4" pageNumber="1455">e</emphasis>
</figureCitation>
). Compressive vectors are less obvious in the maxilla but longitudinally orientated compression is maintained in the dorsal maxilla, nasal and lacrimal (
<figureCitation box="[205,305,2034,2056]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="4" pageNumber="1455">
figure 3
<emphasis box="[292,305,2034,2055]" italics="true" pageId="4" pageNumber="1455">d</emphasis>
</figureCitation>
). Large shear stresses are still observed in the nasals as during vertical biting, and the teeth are sheared also (
<figureCitation box="[964,1058,1912,1934]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="4" pageNumber="1455">
figure 3
<emphasis box="[1051,1058,1912,1933]" italics="true" pageId="4" pageNumber="1455">f</emphasis>
</figureCitation>
). Considering that the angle of bite force shifts by 90° from biting to tearing, stress distribution and orientation are surprisingly similar in both sets of models. There are, however, noticeable differences in stressstrain magnitude between the two loading conditions (
<tableCitation box="[909,986,2065,2087]" captionStart="Table 1" captionStartId="5.[133,192,167,188]" captionTargetBox="[137,1440,283,615]" captionTargetPageId="5" captionText="Table 1. Comparison of peak stress and strain values: owing to the simplistic nature of model, regard values as relative rather than absolute. (Stress values are megapascals (MPa); strain values are microstrain (με); X or Y refers to direction of peak strain.)" httpUri="http://table.plazi.org/id/3CFD11A9C777B008FF46E583FAB431FC" pageId="4" pageNumber="1455" tableUuid="3CFD11A9C777B008FF46E583FAB431FC">table 1</tableCitation>
).
</paragraph>
<caption ID-DOI="http://doi.org/10.5281/zenodo.3958235" ID-Zenodo-Dep="3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="4" pageNumber="1455" startId="4.[133,199,1626,1647]" targetBox="[133,1459,164,1595]" targetPageId="4">
<paragraph blockId="4.[133,1454,1626,1787]" pageId="4" pageNumber="1455">
Figure 4. Stress in the mobile FE
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[491,670,1626,1647]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="4" pageNumber="1455" phylum="Chordata" rank="species" species="rex">
<emphasis box="[491,670,1626,1647]" italics="true" pageId="4" pageNumber="1455">Tyrannosaurus rex</emphasis>
</taxonomicName>
skull models generated by vertical biting (left column) or tearing (right column). (
<emphasis box="[243,255,1654,1675]" italics="true" pageId="4" pageNumber="1455">a</emphasis>
,
<emphasis box="[262,273,1654,1675]" italics="true" pageId="4" pageNumber="1455">b</emphasis>
,
<emphasis box="[280,289,1654,1675]" italics="true" pageId="4" pageNumber="1455">e</emphasis>
,
<emphasis box="[300,307,1654,1675]" italics="true" pageId="4" pageNumber="1455">f</emphasis>
) have a mobile postorbitaljugal suture; (
<emphasis box="[747,812,1654,1675]" italics="true" pageId="4" pageNumber="1455">c,d,g,h</emphasis>
) have a mobile maxillajugal suture. (
<emphasis box="[1212,1224,1654,1675]" italics="true" pageId="4" pageNumber="1455">a</emphasis>
) Principal stress 3 [P3], compressive stress; (
<emphasis box="[405,416,1682,1703]" italics="true" pageId="4" pageNumber="1455">b</emphasis>
) P1 tensile stress; (
<emphasis box="[623,632,1682,1703]" italics="true" pageId="4" pageNumber="1455">c</emphasis>
) P3 compressive stress; (
<emphasis box="[897,909,1682,1703]" italics="true" pageId="4" pageNumber="1455">d</emphasis>
) P1 tensile stress; (
<emphasis box="[1118,1127,1682,1703]" italics="true" pageId="4" pageNumber="1455">e</emphasis>
) P3 compressive stress; (
<emphasis box="[1397,1404,1682,1703]" italics="true" pageId="4" pageNumber="1455">f</emphasis>
) P1 tensile stress; (
<emphasis box="[290,300,1710,1731]" italics="true" pageId="4" pageNumber="1455">g</emphasis>
) P3 compressive stress; and (
<emphasis box="[612,624,1710,1731]" italics="true" pageId="4" pageNumber="1455">h</emphasis>
) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or
<superScript attach="left" box="[1223,1240,1736,1748]" fontSize="5" pageId="4" pageNumber="1455">Nm2</superScript>
. See electronic Appendices B and C for shear stress and strain plots.
</paragraph>
</caption>
<caption ID-Table-UUID="3CFD11A9C777B008FF46E583FAB431FC" httpUri="http://table.plazi.org/id/3CFD11A9C777B008FF46E583FAB431FC" pageId="5" pageNumber="1456" startId="5.[133,192,167,188]" targetBox="[137,1440,283,615]" targetIsTable="true" targetPageId="5">
<paragraph blockId="5.[133,1455,167,244]" pageId="5" pageNumber="1456">Table 1. Comparison of peak stress and strain values: owing to the simplistic nature of model, regard values as relative rather than absolute.</paragraph>
<paragraph blockId="5.[133,1455,167,244]" box="[133,1327,223,244]" pageId="5" pageNumber="1456">
(Stress values are megapascals (MPa); strain values are microstrain (
<emphasis bold="true" box="[845,872,223,244]" pageId="5" pageNumber="1456">με</emphasis>
);
<emphasis box="[897,915,223,244]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
or
<emphasis box="[954,971,223,244]" italics="true" pageId="5" pageNumber="1456">Y</emphasis>
refers to direction of peak strain.)
</paragraph>
</caption>
<paragraph pageId="5" pageNumber="1456">
<table box="[137,1440,283,615]" gridcols="8" gridrows="9" pageId="5" pageNumber="1456">
<tr box="[137,1440,283,360]" gridrow="0" pageId="5" pageNumber="1456" rowspan-0="1" rowspan-1="1">
<th box="[530,651,283,360]" gridcol="2" gridrow="0" pageId="5" pageNumber="1456">peak tensile stress (P1)</th>
<th box="[684,808,283,360]" gridcol="3" gridrow="0" pageId="5" pageNumber="1456">peak compressive stress (P3)</th>
<th box="[847,955,283,360]" gridcol="4" gridrow="0" pageId="5" pageNumber="1456">peak shear stress</th>
<th box="[996,1116,283,360]" gridcol="5" gridrow="0" pageId="5" pageNumber="1456">peak tensile strain</th>
<th box="[1157,1286,283,360]" gridcol="6" gridrow="0" pageId="5" pageNumber="1456">peak compressive strain</th>
<th box="[1322,1440,283,360]" gridcol="7" gridrow="0" pageId="5" pageNumber="1456">
peak
<emphasis box="[1391,1426,311,332]" italics="true" pageId="5" pageNumber="1456">XY</emphasis>
shear strain
</th>
</tr>
<tr box="[137,1440,399,420]" gridrow="1" pageId="5" pageNumber="1456">
<th box="[137,278,399,420]" gridcol="0" gridrow="1" pageId="5" pageNumber="1456">vertical biting</th>
<td box="[332,514,399,420]" gridcol="1" gridrow="1" pageId="5" pageNumber="1456">fused model</td>
<td box="[530,651,399,420]" gridcol="2" gridrow="1" pageId="5" pageNumber="1456">11.4</td>
<td box="[684,808,399,420]" gridcol="3" gridrow="1" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[715,734,399,420]" pageId="5" pageNumber="1456"></emphasis>
12.1
</td>
<td box="[847,955,399,420]" gridcol="4" gridrow="1" pageId="5" pageNumber="1456">4.6</td>
<td box="[996,1116,399,420]" gridcol="5" gridrow="1" pageId="5" pageNumber="1456">
1100 (
<emphasis box="[1083,1101,399,420]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
)
</td>
<td box="[1157,1286,399,420]" gridcol="6" gridrow="1" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[1170,1189,399,420]" pageId="5" pageNumber="1456"></emphasis>
1100 (
<emphasis box="[1256,1274,399,420]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
)
</td>
<td box="[1322,1440,399,420]" gridcol="7" gridrow="1" pageId="5" pageNumber="1456">1300</td>
</tr>
<tr box="[137,1440,426,447]" gridrow="2" pageId="5" pageNumber="1456" rowspan-0="1">
<td box="[332,514,426,447]" gridcol="1" gridrow="2" pageId="5" pageNumber="1456">post.-jugal kinesis</td>
<td box="[530,651,426,447]" gridcol="2" gridrow="2" pageId="5" pageNumber="1456">10.2</td>
<td box="[684,808,426,447]" gridcol="3" gridrow="2" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[715,734,426,447]" pageId="5" pageNumber="1456"></emphasis>
14.1
</td>
<td box="[847,955,426,447]" gridcol="4" gridrow="2" pageId="5" pageNumber="1456">5.1</td>
<td box="[996,1116,426,447]" gridcol="5" gridrow="2" pageId="5" pageNumber="1456">
1160 (
<emphasis box="[1083,1101,426,447]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
)
</td>
<td box="[1157,1286,426,447]" gridcol="6" gridrow="2" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[1170,1189,426,447]" pageId="5" pageNumber="1456"></emphasis>
1300 (
<emphasis box="[1256,1274,426,447]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
)
</td>
<td box="[1322,1440,426,447]" gridcol="7" gridrow="2" pageId="5" pageNumber="1456">1620</td>
</tr>
<tr box="[137,1440,454,475]" gridrow="3" pageId="5" pageNumber="1456" rowspan-0="1">
<td box="[332,514,454,475]" gridcol="1" gridrow="3" pageId="5" pageNumber="1456">max.-jugal kinesis</td>
<td box="[530,651,454,475]" gridcol="2" gridrow="3" pageId="5" pageNumber="1456">85.2</td>
<td box="[684,808,454,475]" gridcol="3" gridrow="3" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[702,721,454,475]" pageId="5" pageNumber="1456"></emphasis>
117.0
</td>
<td box="[847,955,454,475]" gridcol="4" gridrow="3" pageId="5" pageNumber="1456">43.2</td>
<td box="[996,1116,454,475]" gridcol="5" gridrow="3" pageId="5" pageNumber="1456">
12400 (
<emphasis box="[1083,1101,454,475]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
)
</td>
<td box="[1157,1286,454,475]" gridcol="6" gridrow="3" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[1157,1176,454,475]" pageId="5" pageNumber="1456"></emphasis>
11500 (
<emphasis box="[1256,1274,454,475]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
)
</td>
<td box="[1322,1440,454,475]" gridcol="7" gridrow="3" pageId="5" pageNumber="1456">12400</td>
</tr>
<tr box="[137,1440,482,503]" gridrow="4" pageId="5" pageNumber="1456" rowspan-0="1">
<td box="[332,514,482,503]" gridcol="1" gridrow="4" pageId="5" pageNumber="1456">double kinesis</td>
<td box="[530,651,482,503]" gridcol="2" gridrow="4" pageId="5" pageNumber="1456">85.2</td>
<td box="[684,808,482,503]" gridcol="3" gridrow="4" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[702,721,482,503]" pageId="5" pageNumber="1456"></emphasis>
117.0
</td>
<td box="[847,955,482,503]" gridcol="4" gridrow="4" pageId="5" pageNumber="1456">43.2</td>
<td box="[996,1116,482,503]" gridcol="5" gridrow="4" pageId="5" pageNumber="1456">
12400 (
<emphasis box="[1083,1101,482,503]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
)
</td>
<td box="[1157,1286,482,503]" gridcol="6" gridrow="4" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[1157,1176,482,503]" pageId="5" pageNumber="1456"></emphasis>
11500 (
<emphasis box="[1256,1274,482,503]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
)
</td>
<td box="[1322,1440,482,503]" gridcol="7" gridrow="4" pageId="5" pageNumber="1456">12400</td>
</tr>
<tr box="[137,1440,510,531]" gridrow="5" pageId="5" pageNumber="1456">
<th box="[137,278,510,531]" gridcol="0" gridrow="5" pageId="5" pageNumber="1456">tearing biting</th>
<td box="[332,514,510,531]" gridcol="1" gridrow="5" pageId="5" pageNumber="1456">fused model</td>
<td box="[530,651,510,531]" gridcol="2" gridrow="5" pageId="5" pageNumber="1456">16.8</td>
<td box="[684,808,510,531]" gridcol="3" gridrow="5" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[715,734,510,531]" pageId="5" pageNumber="1456"></emphasis>
19.4
</td>
<td box="[847,955,510,531]" gridcol="4" gridrow="5" pageId="5" pageNumber="1456">7.2</td>
<td box="[996,1116,510,531]" gridcol="5" gridrow="5" pageId="5" pageNumber="1456">
2080 (
<emphasis box="[1084,1101,510,531]" italics="true" pageId="5" pageNumber="1456">Y</emphasis>
)
</td>
<td box="[1157,1286,510,531]" gridcol="6" gridrow="5" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[1171,1190,510,531]" pageId="5" pageNumber="1456"></emphasis>
1830 (
<emphasis box="[1257,1274,510,531]" italics="true" pageId="5" pageNumber="1456">Y</emphasis>
)
</td>
<td box="[1322,1440,510,531]" gridcol="7" gridrow="5" pageId="5" pageNumber="1456">2170</td>
</tr>
<tr box="[137,1440,538,559]" gridrow="6" pageId="5" pageNumber="1456" rowspan-0="1">
<td box="[332,514,538,559]" gridcol="1" gridrow="6" pageId="5" pageNumber="1456">post.-jugal kinesis</td>
<td box="[530,651,538,559]" gridcol="2" gridrow="6" pageId="5" pageNumber="1456">13.9</td>
<td box="[684,808,538,559]" gridcol="3" gridrow="6" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[715,734,538,559]" pageId="5" pageNumber="1456"></emphasis>
19.5
</td>
<td box="[847,955,538,559]" gridcol="4" gridrow="6" pageId="5" pageNumber="1456">7.3</td>
<td box="[996,1116,538,559]" gridcol="5" gridrow="6" pageId="5" pageNumber="1456">
2080 (
<emphasis box="[1084,1101,538,559]" italics="true" pageId="5" pageNumber="1456">Y</emphasis>
)
</td>
<td box="[1157,1286,538,559]" gridcol="6" gridrow="6" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[1171,1190,538,559]" pageId="5" pageNumber="1456"></emphasis>
1820 (
<emphasis box="[1257,1274,538,559]" italics="true" pageId="5" pageNumber="1456">Y</emphasis>
)
</td>
<td box="[1322,1440,538,559]" gridcol="7" gridrow="6" pageId="5" pageNumber="1456">2170</td>
</tr>
<tr box="[137,1440,566,587]" gridrow="7" pageId="5" pageNumber="1456" rowspan-0="1">
<td box="[332,514,566,587]" gridcol="1" gridrow="7" pageId="5" pageNumber="1456">max.-jugal kinesis</td>
<td box="[530,651,566,587]" gridcol="2" gridrow="7" pageId="5" pageNumber="1456">120.8</td>
<td box="[684,808,566,587]" gridcol="3" gridrow="7" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[702,721,566,587]" pageId="5" pageNumber="1456"></emphasis>
156.4
</td>
<td box="[847,955,566,587]" gridcol="4" gridrow="7" pageId="5" pageNumber="1456">54.3</td>
<td box="[996,1116,566,587]" gridcol="5" gridrow="7" pageId="5" pageNumber="1456">
16190 (
<emphasis box="[1083,1101,566,587]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
)
</td>
<td box="[1157,1286,566,587]" gridcol="6" gridrow="7" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[1157,1176,566,587]" pageId="5" pageNumber="1456"></emphasis>
14320 (
<emphasis box="[1256,1274,566,587]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
)
</td>
<td box="[1322,1440,566,587]" gridcol="7" gridrow="7" pageId="5" pageNumber="1456">15810</td>
</tr>
<tr box="[137,1440,594,615]" gridrow="8" pageId="5" pageNumber="1456" rowspan-0="1">
<td box="[332,514,594,615]" gridcol="1" gridrow="8" pageId="5" pageNumber="1456">double kinesis</td>
<td box="[530,651,594,615]" gridcol="2" gridrow="8" pageId="5" pageNumber="1456">120.8</td>
<td box="[684,808,594,615]" gridcol="3" gridrow="8" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[702,721,594,615]" pageId="5" pageNumber="1456"></emphasis>
156.4
</td>
<td box="[847,955,594,615]" gridcol="4" gridrow="8" pageId="5" pageNumber="1456">54.3</td>
<td box="[996,1116,594,615]" gridcol="5" gridrow="8" pageId="5" pageNumber="1456">
16200 (
<emphasis box="[1083,1101,594,615]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
)
</td>
<td box="[1157,1286,594,615]" gridcol="6" gridrow="8" pageId="5" pageNumber="1456">
<emphasis bold="true" box="[1157,1176,594,615]" pageId="5" pageNumber="1456"></emphasis>
14330 (
<emphasis box="[1256,1274,594,615]" italics="true" pageId="5" pageNumber="1456">X</emphasis>
)
</td>
<td box="[1322,1440,594,615]" gridcol="7" gridrow="8" pageId="5" pageNumber="1456">15810</td>
</tr>
</table>
</paragraph>
<paragraph blockId="5.[133,770,719,1170]" pageId="5" pageNumber="1456">
(
<emphasis bold="true" box="[143,158,720,741]" pageId="5" pageNumber="1456">b</emphasis>
)
<emphasis bold="true" italics="true" pageId="5" pageNumber="1456">Predicting the effect of introducing cranial mobility from solid finite element models</emphasis>
</paragraph>
<paragraph blockId="5.[133,770,719,1170]" box="[133,387,781,803]" pageId="5" pageNumber="1456">
(i)
<emphasis box="[172,387,781,803]" italics="true" pageId="5" pageNumber="1456">Maxillajugal suture</emphasis>
</paragraph>
<paragraph blockId="5.[133,770,719,1170]" pageId="5" pageNumber="1456">
This suture is located at the point of peak tensile stress in the biting skull model, and at a region of high magnitude (but not peak) tension in the tearing skull model (
<figureCitation box="[140,259,903,925]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="5" pageNumber="1456">
figure 3
<emphasis box="[230,242,903,924]" italics="true" pageId="5" pageNumber="1456">b</emphasis>
,
<emphasis box="[249,259,904,925]" italics="true" pageId="5" pageNumber="1456">e</emphasis>
</figureCitation>
). Tensile vectors are oriented along the predicted axis of suture movement (slightly more so in biting than tearing: compare
<figureCitation box="[390,499,964,986]" captionStart="Figure 2" captionStartId="2.[133,199,869,890]" captionTargetBox="[289,1298,170,840]" captionTargetPageId="2" captionText="Figure 2. Sutural morphology and mobility. (a) Postorbitaljugal suture in Tyrannosaurus rex; (b) maxillajugal suture in T. rex; (c) 2D FEM of T. rex skull with mobile postorbitaljugal contact; and (d) 2D FEM of T. rex skull with mobile maxillajugal contact. Double-headed arrows indicate direction of slight adjustive movement at suture. Single-headed arrows indicate location of suture in FE-mesh. Illustrations after BHM 3033. Grey areas and abbreviations as defined in figure 1; pal, palatine." figureDoi="http://doi.org/10.5281/zenodo.3958231" httpUri="https://zenodo.org/record/3958231/files/figure.png" pageId="5" pageNumber="1456">
figures 2
<emphasis box="[487,499,964,985]" italics="true" pageId="5" pageNumber="1456">b</emphasis>
</figureCitation>
and
<figureCitation box="[559,602,964,986]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="5" pageNumber="1456">
3
<emphasis box="[573,585,964,985]" italics="true" pageId="5" pageNumber="1456">b</emphasis>
,
<emphasis box="[592,602,965,986]" italics="true" pageId="5" pageNumber="1456">e</emphasis>
</figureCitation>
) and it is predicted that the introduction of suture mobility will act to reduce regional tensile stress, although whether the skull will be weaker or stronger is unclear. Small compressive vectors act perpendicularly to the axis of movement in the biting skull (not shown) and may operate to maintain contact of opposing joint surfaces.
</paragraph>
<paragraph blockId="5.[133,770,1209,1506]" box="[133,419,1209,1231]" pageId="5" pageNumber="1456">
(ii)
<emphasis box="[179,419,1209,1231]" italics="true" pageId="5" pageNumber="1456">Postorbitaljugal suture</emphasis>
</paragraph>
<paragraph blockId="5.[133,770,1209,1506]" pageId="5" pageNumber="1456">
Low-magnitude compressive vectors act along the long axis of the postorbitaljugal strut during biting and tearing, and tensile stresses are absent (
<figureCitation box="[518,604,1300,1322]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="5" pageNumber="1456">figure 3</figureCitation>
<emphasis box="[604,642,1300,1321]" italics="true" pageId="5" pageNumber="1456">ad</emphasis>
). This pattern is not congruent with the predicted axis of postorbitaljugal suture movement (
<figureCitation box="[541,644,1361,1383]" captionStart="Figure 2" captionStartId="2.[133,199,869,890]" captionTargetBox="[289,1298,170,840]" captionTargetPageId="2" captionText="Figure 2. Sutural morphology and mobility. (a) Postorbitaljugal suture in Tyrannosaurus rex; (b) maxillajugal suture in T. rex; (c) 2D FEM of T. rex skull with mobile postorbitaljugal contact; and (d) 2D FEM of T. rex skull with mobile maxillajugal contact. Double-headed arrows indicate direction of slight adjustive movement at suture. Single-headed arrows indicate location of suture in FE-mesh. Illustrations after BHM 3033. Grey areas and abbreviations as defined in figure 1; pal, palatine." figureDoi="http://doi.org/10.5281/zenodo.3958231" httpUri="https://zenodo.org/record/3958231/files/figure.png" pageId="5" pageNumber="1456">
figure 2
<emphasis box="[631,644,1362,1383]" italics="true" pageId="5" pageNumber="1456">a</emphasis>
</figureCitation>
). It would therefore be predicted that mobilizing the postorbitaljugal suture should have a negligible effect upon stress distribution and overall strength of the skull under both biting regimes.
</paragraph>
<paragraph blockId="5.[133,771,1544,2087]" pageId="5" pageNumber="1456">
(
<emphasis bold="true" box="[143,156,1545,1566]" pageId="5" pageNumber="1456">c</emphasis>
)
<emphasis bold="true" box="[178,736,1544,1567]" italics="true" pageId="5" pageNumber="1456">The effect of introducing sutures into a finite</emphasis>
<emphasis bold="true" box="[178,360,1575,1598]" italics="true" pageId="5" pageNumber="1456">element model</emphasis>
</paragraph>
<paragraph blockId="5.[133,771,1544,2087]" pageId="5" pageNumber="1456">
As predicted, introducing a mobile postorbitaljugal suture into a FE-skull model has no notable effect on stress distribution and magnitude during biting and tearing (
<tableCitation box="[183,261,1698,1720]" captionStart="Table 1" captionStartId="5.[133,192,167,188]" captionTargetBox="[137,1440,283,615]" captionTargetPageId="5" captionText="Table 1. Comparison of peak stress and strain values: owing to the simplistic nature of model, regard values as relative rather than absolute. (Stress values are megapascals (MPa); strain values are microstrain (με); X or Y refers to direction of peak strain.)" httpUri="http://table.plazi.org/id/3CFD11A9C777B008FF46E583FAB431FC" pageId="5" pageNumber="1456" tableUuid="3CFD11A9C777B008FF46E583FAB431FC">table 1</tableCitation>
and compare
<figureCitation box="[422,539,1698,1720]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="5" pageNumber="1456">
figure 4
<emphasis box="[507,520,1699,1720]" italics="true" pageId="5" pageNumber="1456">a</emphasis>
,
<emphasis box="[527,539,1698,1719]" italics="true" pageId="5" pageNumber="1456">b</emphasis>
</figureCitation>
with
<figureCitation box="[604,721,1698,1720]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="5" pageNumber="1456">
figure 3
<emphasis box="[689,702,1699,1720]" italics="true" pageId="5" pageNumber="1456">a</emphasis>
,
<emphasis box="[709,721,1698,1719]" italics="true" pageId="5" pageNumber="1456">b</emphasis>
</figureCitation>
and
<figureCitation box="[133,249,1728,1750]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="5" pageNumber="1456">
figure 4
<emphasis box="[221,231,1729,1750]" italics="true" pageId="5" pageNumber="1456">e</emphasis>
,
<emphasis box="[242,249,1728,1749]" italics="true" pageId="5" pageNumber="1456">f</emphasis>
</figureCitation>
with
<figureCitation box="[321,439,1728,1750]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="5" pageNumber="1456">
figure 3
<emphasis box="[409,422,1728,1749]" italics="true" pageId="5" pageNumber="1456">d</emphasis>
,
<emphasis box="[429,439,1729,1750]" italics="true" pageId="5" pageNumber="1456">e</emphasis>
</figureCitation>
). Apart from a loss of compression in the postorbital bar (compare
<figureCitation box="[593,713,1759,1781]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="5" pageNumber="1456">
figure 3
<emphasis box="[679,692,1760,1781]" italics="true" pageId="5" pageNumber="1456">a</emphasis>
,
<emphasis box="[700,713,1759,1780]" italics="true" pageId="5" pageNumber="1456">d</emphasis>
</figureCitation>
with
<figureCitation box="[133,251,1789,1811]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="5" pageNumber="1456">
figure 4
<emphasis box="[221,234,1790,1811]" italics="true" pageId="5" pageNumber="1456">a</emphasis>
,
<emphasis box="[241,251,1790,1811]" italics="true" pageId="5" pageNumber="1456">e</emphasis>
</figureCitation>
) and marginal alterations to shear stress (see electronic Appendices A and B) in the mobile postorbitaljugal model, the stress environment and peak stresses and strain are practically identical to that of the fused skull.
</paragraph>
<paragraph blockId="5.[133,771,1544,2087]" lastBlockId="5.[818,1455,720,1200]" pageId="5" pageNumber="1456">
Introducing a mobile contact at the maxillajugal suture removes tensile and shear stresses along the ventral region of the skull model. Peak tensile, compressive and shear stresses are instead concentrated in the posterior portion of the nasals and in the lacrimal dorsal to the antorbital fenestra (compare
<figureCitation box="[343,462,2065,2087]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="5" pageNumber="1456">
figure 3
<emphasis box="[430,443,2065,2086]" italics="true" pageId="5" pageNumber="1456">a</emphasis>
,
<emphasis box="[450,462,2065,2086]" italics="true" pageId="5" pageNumber="1456">b</emphasis>
</figureCitation>
with
<figureCitation box="[530,646,2065,2087]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="5" pageNumber="1456">
figure 4
<emphasis box="[616,626,2065,2086]" italics="true" pageId="5" pageNumber="1456">c</emphasis>
,
<emphasis box="[633,646,2065,2086]" italics="true" pageId="5" pageNumber="1456">d</emphasis>
</figureCitation>
and
<figureCitation box="[707,861,720,2087]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="5" pageNumber="1456">
figure 3
<emphasis box="[831,844,720,741]" italics="true" pageId="5" pageNumber="1456">d</emphasis>
,
<emphasis box="[851,861,721,742]" italics="true" pageId="5" pageNumber="1456">e</emphasis>
</figureCitation>
with
<figureCitation box="[928,1045,720,742]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="5" pageNumber="1456">
figure 4
<emphasis box="[1014,1025,721,742]" italics="true" pageId="5" pageNumber="1456">g</emphasis>
,
<emphasis box="[1032,1045,720,741]" italics="true" pageId="5" pageNumber="1456">h</emphasis>
</figureCitation>
; see electronic Appendices A and B for shear plots). Stress distribution is comparable during biting and tearing (compare biting
<figureCitation box="[1218,1335,781,803]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="5" pageNumber="1456">
figure 4
<emphasis box="[1305,1315,782,803]" italics="true" pageId="5" pageNumber="1456">c</emphasis>
,
<emphasis box="[1322,1335,781,802]" italics="true" pageId="5" pageNumber="1456">d</emphasis>
</figureCitation>
to tearing
<figureCitation box="[818,938,811,833]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="5" pageNumber="1456">
figure 4
<emphasis box="[906,917,812,833]" italics="true" pageId="5" pageNumber="1456">g</emphasis>
,
<emphasis box="[925,938,811,832]" italics="true" pageId="5" pageNumber="1456">h</emphasis>
</figureCitation>
). Dorsal to the antorbital fenestra, the skull experiences bending stresses as the lacrimal and possibly the posterior maxilla experience tension as the nasals are compressed (
<figureCitation box="[963,1120,903,925]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="5" pageNumber="1456">
figure 4
<emphasis box="[1051,1061,904,925]" italics="true" pageId="5" pageNumber="1456">c</emphasis>
,
<emphasis box="[1068,1081,903,924]" italics="true" pageId="5" pageNumber="1456">d</emphasis>
,
<emphasis box="[1088,1099,904,925]" italics="true" pageId="5" pageNumber="1456">g</emphasis>
,
<emphasis box="[1107,1120,903,924]" italics="true" pageId="5" pageNumber="1456">h</emphasis>
</figureCitation>
). Although opening the maxillajugal suture has removed large tensile stresses from the ventral skull, peak stresses have been concentrated dorsal to the antorbital fenestra at magnitudes of 7 to 11 times greater than fused model peak stressstrain values (
<tableCitation box="[825,901,1056,1078]" captionStart="Table 1" captionStartId="5.[133,192,167,188]" captionTargetBox="[137,1440,283,615]" captionTargetPageId="5" captionText="Table 1. Comparison of peak stress and strain values: owing to the simplistic nature of model, regard values as relative rather than absolute. (Stress values are megapascals (MPa); strain values are microstrain (με); X or Y refers to direction of peak strain.)" httpUri="http://table.plazi.org/id/3CFD11A9C777B008FF46E583FAB431FC" pageId="5" pageNumber="1456" tableUuid="3CFD11A9C777B008FF46E583FAB431FC">table 1</tableCitation>
). The dominant effect of the maxillajugal suture is such that the introduction of a second mobile joint at the postorbitaljugal contact has no modifying effect on mechanical performance and cranial stress patterns (see electronic Appendix A).
</paragraph>
<paragraph blockId="5.[818,1008,1253,1276]" box="[818,1008,1253,1276]" pageId="5" pageNumber="1456">
<heading allCaps="true" bold="true" box="[818,1008,1253,1276]" fontSize="9" level="1" pageId="5" pageNumber="1456" reason="2">
<emphasis bold="true" box="[818,1008,1253,1276]" pageId="5" pageNumber="1456">4. DISCUSSION</emphasis>
</heading>
</paragraph>
<paragraph blockId="5.[818,1455,1301,1781]" pageId="5" pageNumber="1456">
Stressstrain distribution and orientation are remarkably similar during simulations of both biting and tearing. Morphological features that resist biting loads are used equally in the resistance of tearing forces, meaning that the skull appears to be equally well adapted for the puncture and pull components of the proposed feeding strategy. Fused-skull models and those with a mobile postorbitaljugal suture are characterized by ventral tension and posterodorsally arcing compression from the tooth row to the skull roof, whereas models with a mobile maxillajugal suture experience bending stress in the roof of the snout, dorsal to the antorbital fenestra. Tensile and compressive patterns appear similar, but not identical, to those observed in a three-dimensional (3D)
<taxonomicName authorityName="Marsh" authorityYear="1877" class="Reptilia" family="Allosauridae" genus="Allosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="1456" phylum="Chordata" rank="species" species="fragilis">
<emphasis italics="true" pageId="5" pageNumber="1456">Allosaurus fragilis</emphasis>
</taxonomicName>
FEM during bilateral bite loading (
<bibRefCitation author="Rayfield, E. J. &amp; Norman, D. B. &amp; Horner, C. C. &amp; Horner, J. R. &amp; May Smith, P. &amp; Thomason, J. J. &amp; Upchurch, P." journalOrPublisher="Nature" pageId="5" pageNumber="1456" pagination="1033 - 1037" part="409" refId="ref7522" refString="Rayfield, E. J., Norman, D. B., Horner, C. C., Horner, J. R., May Smith, P., Thomason, J. J. &amp; Upchurch, P. 2001 Cranial design and function in a large theropod dinosaur. Nature 409, 1033 - 1037." title="Cranial design and function in a large theropod dinosaur" type="journal article" year="2001">
Rayfield
<emphasis box="[1396,1454,1729,1750]" italics="true" pageId="5" pageNumber="1456">et al.</emphasis>
2001
</bibRefCitation>
;
<figureCitation box="[890,978,1759,1781]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="5" pageNumber="1456">figure 3</figureCitation>
).
</paragraph>
<paragraph blockId="5.[818,1455,1819,2087]" box="[818,1205,1819,1842]" pageId="5" pageNumber="1456">
<heading bold="true" box="[818,1205,1819,1842]" fontSize="9" level="2" pageId="5" pageNumber="1456" reason="6">
(
<emphasis bold="true" box="[827,841,1820,1841]" pageId="5" pageNumber="1456">a</emphasis>
)
<emphasis bold="true" box="[864,1205,1819,1842]" italics="true" pageId="5" pageNumber="1456">Rostral stress transmission</emphasis>
</heading>
</paragraph>
<paragraph blockId="5.[818,1455,1819,2087]" lastBlockId="6.[133,770,170,528]" lastPageId="6" lastPageNumber="1457" pageId="5" pageNumber="1456">
It has been suggested that
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[1156,1223,1851,1872]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="5" pageNumber="1456" phylum="Chordata" rank="species" species="rex">
<emphasis box="[1156,1223,1851,1872]" italics="true" pageId="5" pageNumber="1456">T. rex</emphasis>
</taxonomicName>
cranial suture morphology dictates that biting-induced compressive stresses pass directly from the maxilla to the nasals and bypass the maxillalacrimal contact (
<bibRefCitation author="Hurum, J. H. &amp; Sabath, K." box="[1101,1365,1942,1964]" journalOrPublisher="Acta Palaentologica. Polonica" pageId="5" pageNumber="1456" pagination="161 - 190" part="48" refId="ref6937" refString="Hurum, J. H. &amp; Sabath, K. 2003 Giant theropod dinosaurs from Asia and North America: skulls of Tarbosaurus bataar and Tyrannosaurus rex compared. Acta Palaentologica. Polonica 48, 161 - 190." title="Giant theropod dinosaurs from Asia and North America: skulls of Tarbosaurus bataar and Tyrannosaurus rex compared" type="journal article" year="2003">Hurum &amp; Sabath 2003</bibRefCitation>
). FEMs confirm that compressive stresses do bypass the lacrimal when the maxillajugal suture is mobile (
<figureCitation box="[1268,1384,2003,2025]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="5" pageNumber="1456">
figure 4
<emphasis box="[1356,1366,2004,2025]" italics="true" pageId="5" pageNumber="1456">c</emphasis>
,
<emphasis box="[1373,1384,2004,2025]" italics="true" pageId="5" pageNumber="1456">g</emphasis>
</figureCitation>
). The maxillalacrimal contact is subject to large tensile bending stresses instead (
<figureCitation box="[1013,1140,2065,2087]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="5" pageNumber="1456">
figure 4
<emphasis box="[1107,1120,2065,2086]" italics="true" pageId="5" pageNumber="1456">d</emphasis>
,
<emphasis box="[1127,1140,2065,2086]" italics="true" pageId="5" pageNumber="1456">h</emphasis>
</figureCitation>
). The complex interlacing morphology of the maxillanasal suture is consistent with the efficient accommodation of compressive strain and shock-absorption (
<bibRefCitation author="Jaslow, C. R." box="[342,477,231,253]" journalOrPublisher="J. Biomech." pageId="6" pageNumber="1457" pagination="313 - 321" part="23" refId="ref7038" refString="Jaslow, C. R. 1990 Mechanical properties of cranial sutures. J. Biomech. 23, 313 - 321." title="Mechanical properties of cranial sutures" type="journal article" year="1990">Jaslow 1990</bibRefCitation>
) and the groove-like morphology of the maxillalacrimal contact suggests an adaptation to accommodate tensile strain across this suture. Nevertheless, when the maxillajugal suture is immobilized in the fused skull models, high-magnitude compressive stresses do pass directly from maxilla to lacrimal (
<figureCitation box="[140,260,414,436]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="6" pageNumber="1457">
figure 3
<emphasis box="[227,240,415,436]" italics="true" pageId="6" pageNumber="1457">a</emphasis>
,
<emphasis box="[247,260,414,435]" italics="true" pageId="6" pageNumber="1457">d</emphasis>
</figureCitation>
and
<figureCitation box="[316,360,414,436]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="6" pageNumber="1457">
4
<emphasis box="[330,343,415,436]" italics="true" pageId="6" pageNumber="1457">a</emphasis>
,
<emphasis box="[350,360,415,436]" italics="true" pageId="6" pageNumber="1457">e</emphasis>
</figureCitation>
). This observation questions the distinctions drawn between the skulls of
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[631,708,445,466]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="6" pageNumber="1457" phylum="Chordata" rank="species" species="rex">
<emphasis box="[631,708,445,466]" italics="true" pageId="6" pageNumber="1457">T. rex</emphasis>
</taxonomicName>
and
<emphasis box="[133,338,475,496]" italics="true" pageId="6" pageNumber="1457">
<taxonomicName authorityName="Maleev" authorityYear="1955" box="[133,260,475,496]" class="Reptilia" family="Tyrannosauridae" genus="Tarbosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="6" pageNumber="1457" phylum="Chordata" rank="genus">Tarbosaurus</taxonomicName>
baatar
</emphasis>
based upon compressive stress transmission (
<bibRefCitation author="Hurum, J. H. &amp; Sabath, K." box="[233,500,506,528]" journalOrPublisher="Acta Palaentologica. Polonica" pageId="6" pageNumber="1457" pagination="161 - 190" part="48" refId="ref6937" refString="Hurum, J. H. &amp; Sabath, K. 2003 Giant theropod dinosaurs from Asia and North America: skulls of Tarbosaurus bataar and Tyrannosaurus rex compared. Acta Palaentologica. Polonica 48, 161 - 190." title="Giant theropod dinosaurs from Asia and North America: skulls of Tarbosaurus bataar and Tyrannosaurus rex compared" type="journal article" year="2003">Hurum &amp; Sabath 2003</bibRefCitation>
).
</paragraph>
<paragraph blockId="6.[133,771,566,1567]" box="[133,579,566,589]" pageId="6" pageNumber="1457">
(
<emphasis bold="true" box="[143,158,567,588]" pageId="6" pageNumber="1457">b</emphasis>
)
<emphasis bold="true" box="[180,579,566,589]" italics="true" pageId="6" pageNumber="1457">Nasal robustness and rugosities</emphasis>
</paragraph>
<paragraph blockId="6.[133,771,566,1567]" pageId="6" pageNumber="1457">
Tyrannosaurid nasals are extremely rugose dorsally, and fused along the majority of their length, while the postorbitals display a dorsal, laterally expanded, thickened boss with a roughened surface (
<figureCitation box="[479,589,689,711]" captionStart="Figure 1" captionStartId="1.[133,199,524,545]" captionTargetBox="[253,1330,169,497]" captionTargetPageId="1" captionText="Figure 1. Tyrannosaurus rex skull and FEM. (a) Skull of BHM 3033, left lateral view; and (b) 2D FE-mesh of BHM 3033 depicting skull as fused without mobile sutures. Grey areas indicate surfaces constrained from moving in all translatory directions, arrows indicate direction of bite force applied to all teeth, either vertical or horizontal tearing. Abbreviations: aof, antorbital fenestra; en, external naris; j, jugal; l, lacrimal; ltf, lower temporal fenestra; m, maxilla, n, nasals; or, orbit; p, premaxilla; po, postorbital; pt, pterygoid; q, quadrate; qj, quadratojugal; sq, squamosal. Scale bar 10 cm." figureDoi="http://doi.org/10.5281/zenodo.3958229" httpUri="https://zenodo.org/record/3958229/files/figure.png" pageId="6" pageNumber="1457">
figures 1
<emphasis box="[576,589,690,711]" italics="true" pageId="6" pageNumber="1457">a</emphasis>
</figureCitation>
and
<figureCitation box="[644,671,689,711]" captionStart="Figure 2" captionStartId="2.[133,199,869,890]" captionTargetBox="[289,1298,170,840]" captionTargetPageId="2" captionText="Figure 2. Sutural morphology and mobility. (a) Postorbitaljugal suture in Tyrannosaurus rex; (b) maxillajugal suture in T. rex; (c) 2D FEM of T. rex skull with mobile postorbitaljugal contact; and (d) 2D FEM of T. rex skull with mobile maxillajugal contact. Double-headed arrows indicate direction of slight adjustive movement at suture. Single-headed arrows indicate location of suture in FE-mesh. Illustrations after BHM 3033. Grey areas and abbreviations as defined in figure 1; pal, palatine." figureDoi="http://doi.org/10.5281/zenodo.3958231" httpUri="https://zenodo.org/record/3958231/files/figure.png" pageId="6" pageNumber="1457">
2
<emphasis box="[658,671,690,711]" italics="true" pageId="6" pageNumber="1457">a</emphasis>
</figureCitation>
po). In all FEMs, peak compressive and shear stresses are concentrated in the nasals and dorsal portion of the postorbital, particularly when the maxillajugal suture is mobilized. The morphology of these rugose cranial bones suggests that they are optimized to withstand the type of compressive, shearing and bending stresses predicted by the FEM. As fused nasals are found in all tyrannosaurids and the tyrannosauroid
<emphasis box="[305,477,934,955]" italics="true" pageId="6" pageNumber="1457">Eotyrannus lengi</emphasis>
(
<bibRefCitation author="Hutt, S. &amp; Naish, D. W. &amp; Martill, D. M. &amp; Barker, M. J. &amp; Newbery, P." box="[492,668,934,956]" journalOrPublisher="Cret. Res." pageId="6" pageNumber="1457" pagination="227 - 242" part="22" refId="ref6977" refString="Hutt, S., Naish, D. W., Martill, D. M., Barker, M. J. &amp; Newbery, P. 2001 A preliminary account of a new tyrannosaurid theropod from the Wessex Formation (Early Cretaceous) of southern England. Cret. Res. 22, 227 - 242." title="A preliminary account of a new tyrannosaurid theropod from the Wessex Formation (Early Cretaceous) of southern England" type="journal article" year="2001">
Hutt
<emphasis box="[554,605,934,955]" italics="true" pageId="6" pageNumber="1457">et al.</emphasis>
2001
</bibRefCitation>
) perhaps we should expect to see similar patterns of cranial stress distribution in all members of the Tyrannosauroidea. In marked contrast, peak compressive and shear stresses accumulate in the fronto-parietal region rather than the nasals in biting
<taxonomicName authorityName="Marsh" authorityYear="1877" box="[309,412,1087,1108]" class="Reptilia" family="Allosauridae" genus="Allosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="6" pageNumber="1457" phylum="Chordata" rank="species" species="fragilis">
<emphasis box="[309,412,1087,1108]" italics="true" pageId="6" pageNumber="1457">A. fragilis</emphasis>
</taxonomicName>
FEMs (
<bibRefCitation author="Rayfield, E. J." box="[506,667,1087,1109]" journalOrPublisher="University of Cambridge, UK" pageId="6" pageNumber="1457" refId="ref7489" refString="Rayfield, E. J. 2001 Cranial design and function in a large theropod dinosaur: a study using finite element analysis. PhD thesis, University of Cambridge, UK." title="Cranial design and function in a large theropod dinosaur: a study using finite element analysis" type="book" year="2001">Rayfield 2001</bibRefCitation>
;
<bibRefCitation author="Rayfield, E. J. &amp; Norman, D. B. &amp; Horner, C. C. &amp; Horner, J. R. &amp; May Smith, P. &amp; Thomason, J. J. &amp; Upchurch, P." journalOrPublisher="Nature" pageId="6" pageNumber="1457" pagination="1033 - 1037" part="409" refId="ref7522" refString="Rayfield, E. J., Norman, D. B., Horner, C. C., Horner, J. R., May Smith, P., Thomason, J. J. &amp; Upchurch, P. 2001 Cranial design and function in a large theropod dinosaur. Nature 409, 1033 - 1037." title="Cranial design and function in a large theropod dinosaur" type="journal article" year="2001">
Rayfield
<emphasis box="[133,188,1117,1139]" italics="true" pageId="6" pageNumber="1457">et al.</emphasis>
2001
</bibRefCitation>
). As predicted by the FE-stress patterns, the frontals and parietals are fused or strongly sutured and thickened, and although the lateral borders of
<taxonomicName authorityName="Marsh" authorityYear="1877" box="[664,769,1178,1199]" class="Reptilia" family="Allosauridae" genus="Allosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="6" pageNumber="1457" phylum="Chordata" rank="species" species="fragilis">
<emphasis box="[664,769,1178,1199]" italics="true" pageId="6" pageNumber="1457">A. fragilis</emphasis>
</taxonomicName>
nasals are rugose, medially they are smooth elements meeting at a midline butt-joint that is often patent.
</paragraph>
<paragraph blockId="6.[133,771,566,1567]" pageId="6" pageNumber="1457">
Nasal robustness and dorsal protuberances become more pronounced throughout
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[464,525,1301,1322]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="6" pageNumber="1457" phylum="Chordata" rank="species" species="rex">
<emphasis box="[464,481,1301,1322]" italics="true" pageId="6" pageNumber="1457">T</emphasis>
.
<emphasis box="[494,525,1301,1322]" italics="true" pageId="6" pageNumber="1457">rex</emphasis>
</taxonomicName>
ontogeny (
<bibRefCitation author="Carr, T. D." box="[646,761,1301,1323]" journalOrPublisher="J. Vert. Paleontol." pageId="6" pageNumber="1457" pagination="497 - 520" part="19" refId="ref6512" refString="Carr, T. D. 1999 Craniofacial ontogeny in Tyrannosauridae (Dinosauria, Coelurosauria). J. Vert. Paleontol. 19, 497 - 520." title="Craniofacial ontogeny in Tyrannosauridae (Dinosauria, Coelurosauria)" type="journal article" year="1999">Carr 1999</bibRefCitation>
) and this may be consistent with resisting greater bite forces in more mature individuals, if bite force scales with positive allometry to body mass and length as seen in the American alligator
<emphasis box="[345,594,1423,1444]" italics="true" pageId="6" pageNumber="1457">Alligator mississippiensis</emphasis>
(
<bibRefCitation author="Erickson, G. M. &amp; Lappin, A. K. &amp; Vliet, K. A." journalOrPublisher="J. Zool. Lond." pageId="6" pageNumber="1457" pagination="317 - 327" part="260" refId="ref6717" refString="Erickson, G. M., Lappin, A. K. &amp; Vliet, K. A. 2003 The ontogeny of bite-force performance in American alligator (Alligator mississippiensis). J. Zool. Lond. 260, 317 - 327." title="The ontogeny of bite-force performance in American alligator (Alligator mississippiensis)" type="journal article" year="2003">
Erickson
<emphasis box="[717,770,1423,1444]" italics="true" pageId="6" pageNumber="1457">et al.</emphasis>
2003
</bibRefCitation>
). In an unusual example of less robust nasals (FMNH PR2081), prominent nasal protuberances are still observed dorsal to the antorbital fenestra (
<bibRefCitation author="Brochu, C. A." box="[605,757,1514,1537]" journalOrPublisher="J. Vert. Paleontol." pageId="6" pageNumber="1457" pagination="1 - 138" part="22 (Suppl. 4" refId="ref6395" refString="Brochu, C. A. 2003 Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull. J. Vert. Paleontol. 22 (Suppl. 4), 1 - 138." title="Osteology of Tyrannosaurus rex: insights from a nearly complete skeleton and high-resolution computed tomographic analysis of the skull" type="journal article" year="2003">Brochu 2003</bibRefCitation>
), in the region predicted by the FEMs.
</paragraph>
<paragraph blockId="6.[133,770,1605,2087]" box="[133,739,1605,1628]" pageId="6" pageNumber="1457">
(
<emphasis bold="true" box="[143,156,1606,1627]" pageId="6" pageNumber="1457">c</emphasis>
)
<emphasis bold="true" box="[178,739,1605,1628]" italics="true" pageId="6" pageNumber="1457">Cantilever bending and lacrimal morphology</emphasis>
</paragraph>
<paragraph blockId="6.[133,770,1605,2087]" pageId="6" pageNumber="1457">
Patterns of dorsal compression and ventral tension are consistent with the nasal region of the skull bending as a cantilever beam during biting. Even so, the presence of stress in the lacrimal and postorbital bars demonstrates that the skull does not act as a simple beam in the manner suggested by
<bibRefCitation author="Molnar, R. E." box="[281,449,1789,1812]" journalOrPublisher="Gaia" pageId="6" pageNumber="1457" pagination="193 - 218" part="15" refId="ref7300" refString="Molnar, R. E. 2000 Mechanical factors in the design of the skull of Tyrannosaurus rex (Osborn 1905). Gaia 15, 193 - 218." title="Mechanical factors in the design of the skull of Tyrannosaurus rex (Osborn 1905)" type="journal article" year="2000">Molnar (2000)</bibRefCitation>
, because the postulated neutral axis of bending in the region occupied by the interfenestral bars does in fact experience stress. Furthermore, modelled stress patterns in the lacrimal can be correlated with bony morphology as the axis of biting-induced compressive stress lies along a thin but medially prominent ridge of bone in the
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[373,439,1973,1994]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="6" pageNumber="1457" phylum="Chordata" rank="species" species="rex">
<emphasis box="[373,439,1973,1994]" italics="true" pageId="6" pageNumber="1457">T. rex</emphasis>
</taxonomicName>
lacrimal (e.g.
<figureCitation box="[608,718,1973,1995]" captionStart="Figure 3" captionStartId="3.[133,199,1170,1191]" captionTargetBox="[135,1451,163,1135]" captionTargetId="figure@3.[591,1308,214,1114]" captionTargetPageId="3" captionText="Figure 3. Stress in the fused FE Tyrannosaurus rex skull model generated by vertical biting (left column) or tearing (right column). (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) shear stress; (d) P3 compressive stress; (e) P1 tensile stress; and (f) shear stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm‾2. See electronic Appendix C for strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958233" httpUri="https://zenodo.org/record/3958233/files/figure.png" pageId="6" pageNumber="1457">
figures 3
<emphasis box="[705,718,1973,1994]" italics="true" pageId="6" pageNumber="1457">a</emphasis>
</figureCitation>
and
<figureCitation box="[133,160,2004,2025]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="6" pageNumber="1457">
4
<emphasis box="[147,160,2004,2025]" italics="true" pageId="6" pageNumber="1457">a</emphasis>
</figureCitation>
). When the postorbitaljugal suture is open during tearing, this ridge withstands tensile stress instead (
<figureCitation box="[140,236,2065,2087]" captionStart="Figure 4" captionStartId="4.[133,199,1626,1647]" captionTargetBox="[133,1459,164,1595]" captionTargetId="figure@4.[574,1312,211,1597]" captionTargetPageId="4" captionText="Figure 4. Stress in the mobile FE Tyrannosaurus rex skull models generated by vertical biting (left column) or tearing (right column). (a,b,e, f) have a mobile postorbitaljugal suture; (c,d,g,h) have a mobile maxillajugal suture. (a) Principal stress 3 [P3], compressive stress; (b) P1 tensile stress; (c) P3 compressive stress; (d) P1 tensile stress; (e) P3 compressive stress; (f) P1 tensile stress; (g) P3 compressive stress; and (h) P1 tensile stress. Divergent arrows indicate orientation of tensile stress trajectories; convergent arrows indicate orientation of compressive stress trajectories. Units are Pa or Nm2. See electronic Appendices B and C for shear stress and strain plots." figureDoi="http://doi.org/10.5281/zenodo.3958235" httpUri="https://zenodo.org/record/3958235/files/figure.png" pageId="6" pageNumber="1457">
figure 4
<emphasis box="[229,236,2065,2086]" italics="true" pageId="6" pageNumber="1457">f</emphasis>
</figureCitation>
).
</paragraph>
<paragraph blockId="6.[818,1455,169,1750]" box="[818,1089,169,192]" pageId="6" pageNumber="1457">
<heading bold="true" box="[818,1089,169,192]" fontSize="9" level="2" pageId="6" pageNumber="1457" reason="6">
(
<emphasis bold="true" box="[827,842,170,191]" pageId="6" pageNumber="1457">d</emphasis>
)
<emphasis bold="true" box="[868,1089,169,192]" italics="true" pageId="6" pageNumber="1457">Tensile resistance</emphasis>
</heading>
</paragraph>
<paragraph blockId="6.[818,1455,169,1750]" pageId="6" pageNumber="1457">
According to FEMs, the postorbitaljugal suture did not play an active role in cranial stress accommodation, despite the sliding nature of the joint. The suture may not be mechano-functionally adapted or the position of model constraints may be affecting this result, and it should be investigated in future models. By contrast, FEMs suggest that the maxillajugal suture of
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[1161,1222,384,405]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="6" pageNumber="1457" phylum="Chordata" rank="species" species="rex">
<emphasis box="[1161,1222,384,405]" italics="true" pageId="6" pageNumber="1457">T. rex</emphasis>
</taxonomicName>
was adapted to resist biting- and tearing-induced tensile strain in the ventral skull. Regardless of how mobile the sutures were in life, even minor adjustments in articulation would have served to protect bony tissue from damaging strains. The simple morphology of the maxillajugal suture is consistent with the observation that decreasing interdigitation and lack of fusion are associated with the presence of tensile strains at mammalian sutures (
<bibRefCitation author="Rafferty, K. L. &amp; Herring, S. W." box="[1080,1363,628,650]" journalOrPublisher="J. Morphol." pageId="6" pageNumber="1457" pagination="167 - 179" part="242" refId="ref7383" refString="Rafferty, K. L. &amp; Herring, S. W. 1999 Craniofacial sutures: morphology, growth and in υiυo masticatory strains. J. Morphol. 242, 167 - 179." title="Craniofacial sutures: morphology, growth and in υiυo masticatory strains" type="journal article" year="1999">Rafferty &amp; Herring 1999</bibRefCitation>
).
</paragraph>
<paragraph blockId="6.[818,1455,169,1750]" pageId="6" pageNumber="1457">
As a consequence of removing tension in the ventral skull, stresses and strains are directed elsewhere. In the case of the mobile maxillajugal model, stresses an order of magnitude greater than those generated in the fused model are experienced in the nasals, maxilla and lacrimal. During actual dynamic loading
<emphasis box="[1174,1247,812,833]" italics="true" pageId="6" pageNumber="1457">in υiυo</emphasis>
, sutural ligaments could act as shock-absorbers, absorbing tensile strain energy and reducing the magnitude of stress and strain in the dorsal skull, so increasing the adaptive significance of the suture. But it still appears fair to say that, as safety factors appear constant across taxa of all sizes, although higher in crocodilians than mammals and birds (
<bibRefCitation author="Biewener, A. A." journalOrPublisher="J. Exp. Biol." pageId="6" pageNumber="1457" pagination="289 - 301" part="98" refId="ref6304" refString="Biewener, A. A. 1982 Bone strength in small mammals and bipedal birds: do safety factors change with body size? J. Exp. Biol. 98, 289 - 301." title="Bone strength in small mammals and bipedal birds: do safety factors change with body size?" type="journal article" year="1982">Biewener 1982</bibRefCitation>
;
<bibRefCitation author="Thomason, J. J. &amp; Russell, A. P." box="[887,1180,1025,1047]" journalOrPublisher="J. Morphol." pageId="6" pageNumber="1457" pagination="199 - 213" part="189" refId="ref7736" refString="Thomason, J. J. &amp; Russell, A. P. 1986 Mechanical factors in the evolution of the mammalian secondary palate: a theoretical analysis. J. Morphol. 189, 199 - 213." title="Mechanical factors in the evolution of the mammalian secondary palate: a theoretical analysis" type="journal article" year="1986">Thomason &amp; Russell 1986</bibRefCitation>
;
<bibRefCitation author="Blob, R. W. &amp; Biewener, A. A." box="[1190,1441,1025,1048]" journalOrPublisher="J. Exp. Biol." pageId="6" pageNumber="1457" pagination="1023 - 1046" part="202" refId="ref6340" refString="Blob, R. W. &amp; Biewener, A. A. 1999 In υiυo locomotor strain in the hindlimb bones of Alligator mississippiensis and Iguana iguana: implications for the evolution of limb bone safety factors and non-sprawling limb posture. J. Exp. Biol. 202, 1023 - 1046." title="In υiυo locomotor strain in the hindlimb bones of Alligator mississippiensis and Iguana iguana: implications for the evolution of limb bone safety factors and non-sprawling limb posture" type="journal article" year="1999">Blob &amp; Biewener 1999</bibRefCitation>
), the introduction of a mobile maxillajugal suture effectively weakens the skull model, such that lower maximum bite forces can be tolerated, to maintain a constant ratio between stress generated during everyday use and peak yield stress (i.e. the safety factor). Although the maxillajugal suture is locally adapted to stress resistance, there is an overall functional cost of introducing this suture in terms of reduced skull strength. Fused skull models and those with mobility at the postorbitaljugal suture are stronger and can tolerate higher maximum bite forces while maintaining a similar margin of safety.
</paragraph>
<paragraph blockId="6.[818,1455,169,1750]" pageId="6" pageNumber="1457">
The FEMs presented here are obviously crude representations of skull geometry and suture mobility. Strain-absorbing soft tissues are absent and loads are not transmitted across the suture as they are
<emphasis box="[1294,1370,1484,1505]" italics="true" pageId="6" pageNumber="1457">in υiυo</emphasis>
and
<emphasis italics="true" pageId="6" pageNumber="1457">in υitro</emphasis>
(
<bibRefCitation author="Buckland-Wright, J. C." box="[887,1154,1514,1536]" journalOrPublisher="J. Morphol." pageId="6" pageNumber="1457" pagination="35 - 62" part="155" refId="ref6439" refString="Buckland-Wright, J. C. 1978 Bone structure and the patterns of force transmission in the cat skull (Felis catus). J. Morphol. 155, 35 - 62." title="Bone structure and the patterns of force transmission in the cat skull (Felis catus)" type="journal article" year="1978">Buckland-Wright 1978</bibRefCitation>
;
<bibRefCitation author="Thomason, J. J. &amp; Grovum, L. E. &amp; Deswysen, A. G. &amp; Bignell, W. W." box="[1173,1442,1514,1537]" journalOrPublisher="Anat. Rec." pageId="6" pageNumber="1457" pagination="325 - 338" part="264" refId="ref7775" refString="Thomason, J. J., Grovum, L. E., Deswysen, A. G. &amp; Bignell, W. W. 2001 In υiυo surface strain and stereology of the frontal and maxillary bones of sheep: implications for the structural design of the mammalian skull. Anat. Rec. 264, 325 - 338." title="In υiυo surface strain and stereology of the frontal and maxillary bones of sheep: implications for the structural design of the mammalian skull" type="journal article" year="2001">
Thomason
<emphasis box="[1307,1367,1514,1536]" italics="true" pageId="6" pageNumber="1457">et al.</emphasis>
2001
</bibRefCitation>
). Nevertheless, generating testable predictions and correlation of stress patterns to cranial morphology is possible using these simple models. Factors such as investigating the performance of a 3D model, altering the position of constraints and incorporating soft tissues at tooth sockets and further sutural contacts will all advance our understanding of
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[950,1015,1729,1750]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="6" pageNumber="1457" phylum="Chordata" rank="species" species="rex">
<emphasis box="[950,1015,1729,1750]" italics="true" pageId="6" pageNumber="1457">T. rex</emphasis>
</taxonomicName>
cranial mechanical behaviour.
</paragraph>
<paragraph blockId="6.[818,1020,1803,1826]" box="[818,1020,1803,1826]" pageId="6" pageNumber="1457">
<heading allCaps="true" bold="true" box="[818,1020,1803,1826]" fontSize="9" level="1" pageId="6" pageNumber="1457" reason="2">
<emphasis bold="true" box="[818,1020,1803,1826]" pageId="6" pageNumber="1457">5. CONCLUSION</emphasis>
</heading>
</paragraph>
<paragraph blockId="6.[818,1455,1850,2087]" pageId="6" pageNumber="1457">
The cranium of
<taxonomicName authorityName="Osborn" authorityYear="1905" box="[1028,1093,1851,1872]" class="Reptilia" family="Tyrannosauridae" genus="Tyrannosaurus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Dinosauria" pageId="6" pageNumber="1457" phylum="Chordata" rank="species" species="rex">
<emphasis box="[1028,1093,1851,1872]" italics="true" pageId="6" pageNumber="1457">T. rex</emphasis>
</taxonomicName>
appears equally well adapted to resist biting and tearing loading. This suggests that the puncturepull feeding strategy inferred from toothmarked bones is consistent with the mechanical construction and performance of the skull. Stress patterns predicted by FEMs are consistent with the bony morphology of the skull and a number of formfunction adaptations can be identified.
</paragraph>
<paragraph blockId="7.[144,770,170,620]" pageId="7" pageNumber="1458">(i) The robust nasals, positioned along the dorsal edge of the rostrum, act to resist compressive and shear stresses. This raises questions as to the evolution of tyrannosauroid nasal robusticity in relation to feeding behaviour: did the evolution of robusticity permit a shift in feeding strategy or did a novel strategy arise in which robusticity was advantageous?</paragraph>
<paragraph blockId="7.[144,770,170,620]" pageId="7" pageNumber="1458">(ii) The lacrimal is constructed to resist a complex suite of stresses found during simulated biting and tearing.</paragraph>
<paragraph blockId="7.[144,770,170,620]" pageId="7" pageNumber="1458">(iii) The maxillanasal contact acts to dissipate biting loads as previously suggested.</paragraph>
<paragraph blockId="7.[144,770,170,620]" pageId="7" pageNumber="1458">(iv) The maxillajugal suture appears to be adapted to resist tension in the ventral skull although at a cost of reduced cranial strength and capacity.</paragraph>
<paragraph blockId="7.[133,770,664,1267]" pageId="7" pageNumber="1458">
Sutural fusion appears to be controlled by an interplay of genetic and epigenetic factors (
<bibRefCitation author="Herring, S. W." box="[499,655,695,717]" editor="M. M. Cohen &amp; R. E. MacLean" journalOrPublisher="Oxford University Press" pageId="7" pageNumber="1458" pagination="3 - 10" refId="ref6853" refString="Herring, S. W. 2000 Sutures and craniosynostosis: a comparative, functional, and evolutionary perspective. In Craniosynostosis (ed. M. M. Cohen &amp; R. E. MacLean), pp. 3 - 10. Oxford University Press." title="Sutures and craniosynostosis: a comparative, functional, and evolutionary perspective" type="book chapter" volumeTitle="Craniosynostosis" year="2000">Herring 2000</bibRefCitation>
). The detrimental weakening effect of loosening the maxillajugal suture raises the possibility that mobility of sutures evolved in a correlated manner as an adaptive response to resist potentially damaging stresses generated during particular feeding styles, although the behaviour of the postorbitaljugal suture challenges the idea that all sutures are functionally adaptive.
</paragraph>
<paragraph blockId="7.[133,770,664,1267]" pageId="7" pageNumber="1458">Using stress vectors generated in fused cranial models it is possible to predict the localized mechanical effect of introducing sutural mobility and the possible functional role and adaptive significance of the suture concerned. There is considerable potential for the use of FEA in the elucidation of patterns of cranial evolution, including the development of intracranial mobility within and across groups. However, steps towards modelling of soft tissues that are also integral to the behaviour of the cranium must be taken to achieve a more complete understanding of such morpho-functional evolutionary events.</paragraph>
</subSubSection>
</treatment>
</document>