272 lines
43 KiB
XML
272 lines
43 KiB
XML
<document id="3F5D1F7BEE8574E598D734F7BA372FCF" ID-DOI="10.1016/j.phytochem.2022.113256" ID-ISSN="1873-3700" ID-Zenodo-Dep="8235322" IM.bibliography_approvedBy="carolina" IM.illustrations_approvedBy="carolina" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.tables_approvedBy="carolina" IM.taxonomicNames_approvedBy="felipe" IM.treatments_approvedBy="carolina" checkinTime="1691690115347" checkinUser="felipe" docAuthor="Grignon-Dubois, Micheline, Rezzonico, Bernadette & Blanchet, Hugues" docDate="2022" docId="A2143D69FFEDFFD7FFDFFD765EADF814" docLanguage="en" docName="Phytochemistry.201.113256.pdf" docOrigin="Phytochemistry (113256) 201" docSource="http://dx.doi.org/10.1016/j.phytochem.2022.113256" docStyle="DocumentStyle:F36D69FC8B198FBE91029DF9C24697D3.5:Phytochemistry.2020-.journal_article" docStyleId="F36D69FC8B198FBE91029DF9C24697D3" docStyleName="Phytochemistry.2020-.journal_article" docStyleVersion="5" docTitle="Phyllospadix torreyi" docType="treatment" docVersion="3" lastPageNumber="7" masterDocId="5E2D4511FFEBFFD1FFBBFFFA5A78FFA8" masterDocTitle="Phenolic fingerprints of the Pacific seagrass Phyllospadix torreyi - Structural characterization and quantification of undescribed flavonoid sulfates" masterLastPageNumber="15" masterPageNumber="1" pageNumber="7" updateTime="1692303185427" updateUser="carolina">
|
||
<mods:mods id="5ECB9DB97033A2EA6EF28AF448C2186C" xmlns:mods="http://www.loc.gov/mods/v3">
|
||
<mods:titleInfo id="FF1A89ED1378A6762C601157D0BF7D57">
|
||
<mods:title id="546CD475CB7B2884D5136278DA447C40">Phenolic fingerprints of the Pacific seagrass Phyllospadix torreyi - Structural characterization and quantification of undescribed flavonoid sulfates</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:name id="70FB1BA13E375C972DF1E94DC670EE70" type="personal">
|
||
<mods:role id="4E1B8C418815A4413FA3C397C4F806DD">
|
||
<mods:roleTerm id="726930FF02F1EB09CF414286EE1ECEF3">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="A447C1724CD77B6FC4A106E106E95BE7">Grignon-Dubois, Micheline</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="13137C0B57E0B1F8E54293EC96BA3EAC" type="personal">
|
||
<mods:role id="84C5183041F8DF7362359A93FE9E20C9">
|
||
<mods:roleTerm id="60E16845107EDFEF76802C9133EAB8B8">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="E4DBD56330F46815BAC47DAC99084092">Rezzonico, Bernadette</mods:namePart>
|
||
</mods:name>
|
||
<mods:name id="696878F2CD4CCEC9E238D72D3086621F" type="personal">
|
||
<mods:role id="63523A8E9775255B4C40E8260FC31B97">
|
||
<mods:roleTerm id="B5CD02C0AD30C4A63520AB4A87DB78B4">Author</mods:roleTerm>
|
||
</mods:role>
|
||
<mods:namePart id="FF6CC58A9A6111DD57ACB14DF4A21BD2">Blanchet, Hugues</mods:namePart>
|
||
</mods:name>
|
||
<mods:typeOfResource id="C61CE1D44D6021EC80E3BD1682CC7B3E">text</mods:typeOfResource>
|
||
<mods:relatedItem id="C9DC152305EF0EA8EDD24546879D6707" type="host">
|
||
<mods:titleInfo id="51110D3EE4EA45414B4D9CD135BEE3D9">
|
||
<mods:title id="F4A5739EC7D5D19CD62B3AAE9407A7B5">Phytochemistry</mods:title>
|
||
</mods:titleInfo>
|
||
<mods:part id="4D5A28CE88CBAE956A37D6E39C628DA9">
|
||
<mods:date id="E6F9481D908C6F5244FFD964521E25BD">2022</mods:date>
|
||
<mods:detail id="094A7646E5992A21E11CE599704A1EC8" type="series">
|
||
<mods:title id="3A01EFEB88A5698695B8237609F1A7DB">113256</mods:title>
|
||
</mods:detail>
|
||
<mods:detail id="D5FFC703FBC70C7B9560458017580F7B" type="pubDate">
|
||
<mods:number id="C3A3C0AD47336B067E65312C7491D6D7">2022-09-30</mods:number>
|
||
</mods:detail>
|
||
<mods:detail id="0B004EF3AB72C8A1EE5B9D6946FD27AA" type="volume">
|
||
<mods:number id="1436347276471A20717BF14618A11B84">201</mods:number>
|
||
</mods:detail>
|
||
<mods:extent id="674879FF1CCF690CB6022B0F39528B9D" unit="page">
|
||
<mods:start id="0C2780ADD284AA9C22BB9E491F31307B">1</mods:start>
|
||
<mods:end id="14CD24D75226B4CCCF59E55F90F8B0FD">15</mods:end>
|
||
</mods:extent>
|
||
</mods:part>
|
||
</mods:relatedItem>
|
||
<mods:location id="6E9E190E72C31833645B7A015DF6E0A2">
|
||
<mods:url id="D376DA16705C099D978A056A48E1D519">http://dx.doi.org/10.1016/j.phytochem.2022.113256</mods:url>
|
||
</mods:location>
|
||
<mods:classification id="9609DF4284D0328BD158A02293C9AB6E">journal article</mods:classification>
|
||
<mods:identifier id="1086F4DF8B20340E06B3E6F24CD4CD6B" type="DOI">10.1016/j.phytochem.2022.113256</mods:identifier>
|
||
<mods:identifier id="AFA30094EC34E3BCFA03010A148A47F1" type="ISSN">1873-3700</mods:identifier>
|
||
<mods:identifier id="EF7CC9C7019CCE9DE57371A597DE4B6A" type="Zenodo-Dep">8235322</mods:identifier>
|
||
</mods:mods>
|
||
<treatment id="A2143D69FFEDFFD7FFDFFD765EADF814" LSID="urn:lsid:plazi:treatment:A2143D69FFEDFFD7FFDFFD765EADF814" httpUri="http://treatment.plazi.org/id/A2143D69FFEDFFD7FFDFFD765EADF814" lastPageNumber="7" pageId="6" pageNumber="7">
|
||
<subSubSection id="62A7DFF4FFEDFFD7FFDFFD76588AFD36" box="[100,754,651,671]" pageId="6" pageNumber="7" type="description">
|
||
<paragraph id="2A028C7FFFEDFFD7FFDFFD76588AFD36" blockId="6.[100,754,651,671]" box="[100,754,651,671]" pageId="6" pageNumber="7">
|
||
<heading id="714A3B13FFEDFFD7FFDFFD76588AFD36" bold="true" box="[100,754,651,671]" centered="true" fontSize="36" level="1" pageId="6" pageNumber="7" reason="1">
|
||
<emphasis id="18C9506DFFEDFFD7FFDFFD76588AFD36" bold="true" box="[100,754,651,671]" italics="true" pageId="6" pageNumber="7">
|
||
2.4. Biological potential of the
|
||
<taxonomicName id="EDBDF7FCFFEDFFD7FEC4FD76585AFD36" box="[383,546,651,671]" class="Liliopsida" family="Zosteraceae" genus="Phyllospadix" kingdom="Plantae" order="Alismatales" pageId="6" pageNumber="7" phylum="Tracheophyta" rank="subSpecies" species="torreyi" subSpecies="phenolic">P. torreyi phenolic</taxonomicName>
|
||
content - evaluation of
|
||
</emphasis>
|
||
</heading>
|
||
</paragraph>
|
||
</subSubSection>
|
||
<subSubSection id="62A7DFF4FFEDFFD7FFDFFD525ADAFC45" pageId="6" pageNumber="7" type="nomenclature">
|
||
<paragraph id="2A028C7FFFEDFFD7FFDFFD52588AFD12" blockId="6.[100,754,679,699]" box="[100,754,679,699]" pageId="6" pageNumber="7">
|
||
<heading id="714A3B13FFEDFFD7FFDFFD52588AFD12" box="[100,754,679,699]" centered="true" fontSize="8" level="3" pageId="6" pageNumber="7" reason="8">
|
||
<emphasis id="18C9506DFFEDFFD7FFDFFD52588AFD12" bold="true" box="[100,754,679,699]" italics="true" pageId="6" pageNumber="7">
|
||
<taxonomicName id="EDBDF7FCFFEDFFD7FFDFFD525ACDFD12" ID-CoL="6VFPT" ID-ENA="55486" baseAuthorityName="Zapata and McMillan" baseAuthorityYear="1979" box="[100,181,679,699]" class="Liliopsida" family="Zosteraceae" genus="Phyllospadix" kingdom="Plantae" order="Alismatales" pageId="6" pageNumber="7" phylum="Tracheophyta" rank="species" species="torreyi">P. torreyi</taxonomicName>
|
||
beach cast detritus as a renewable source of bioactive compounds
|
||
</emphasis>
|
||
</heading>
|
||
</paragraph>
|
||
<paragraph id="2A028C7FFFEDFFD7FF3FFD255ADAFC45" blockId="6.[100,770,735,1982]" pageId="6" pageNumber="7">
|
||
Plant specialized metabolites are economically important in the field of food additives, nutraceuticals, and drugs. This is especially the case for phenolic acids and flavonoids, which possess a broad spectrum of pharmacological properties. Additionally, sulfated flavonoids have the advantage of being more water-soluble than their aglycones, which is an interesting property for therapeutic applications. Flavonoid sulfates are now recognized as potential candidates for the development of new drugs and some lead compounds are emerging mainly as anticoagulant and antiviral agents (see as examples:
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FE6BFC4458F2FC79" author="Martins, B. T. & da Silva, C. M. & Pinto, M. & Cidade, H. & Kijjoa, A." box="[464,650,958,978]" pageId="6" pageNumber="7" pagination="3260 - 3272" refId="ref18779" refString="Martins, B. T., da Silva, C. M., Pinto, M., Cidade, H., Kijjoa, A., 2019. Marine. Natural flavonoids: chemistry and biological activities. Nat. Prod. Res. 33, 3260 - 3272. https: // doi. org / 10.1080 / 14786419.2018.1470514." type="journal article" year="2019">Martins et al., 2019</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FD2DFC445AECFC45" author="Teles, Y. C. F. & Souza, M. S. R. & de Souza, M. F. V." pageId="6" pageNumber="7" pagination="480 - 491" refId="ref20689" refString="Teles, Y. C. F., Souza, M. S. R., de Souza, M. F. V., 2018. Sulphated flavonoids: biosynthesis, structures and biological activities. Molecules 23, 480 - 491. https: // doi. org / 10.3390 / molecules 23020480." type="journal article" year="2018">Teles et al., 2018</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
</subSubSection>
|
||
<subSubSection id="62A7DFF4FFEDFFD7FF3FFC0C5EADF814" pageId="6" pageNumber="7" type="description">
|
||
<paragraph id="2A028C7FFFEDFFD7FF3FFC0C5BD1FB41" blockId="6.[100,770,735,1982]" pageId="6" pageNumber="7">
|
||
The antiviral activity of luteolin 7, 3
|
||
<superScript id="DDC82137FFEDFFD7FE4FFC095B81FBA8" attach="none" box="[500,505,1011,1024]" fontSize="6" pageId="6" pageNumber="7">′</superScript>
|
||
-disulfate has been demonstrated using
|
||
<emphasis id="18C9506DFFEDFFD7FF55FBE85B57FB8D" bold="true" box="[238,303,1042,1061]" italics="true" pageId="6" pageNumber="7">in vivo</emphasis>
|
||
experimental model of tick-borne encephalitis (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FFD7FBD45B5FFBE9" author="Krylova, N. V. & Popov, A. M. & Leonova, G. N. & Artiukov, A. A. & Maistrovskaia, O. S." box="[108,295,1070,1089]" pageId="6" pageNumber="7" pagination="7 - 10" refId="ref17782" refString="Krylova, N. V., Popov, A. M., Leonova, G. N., Artiukov, A. A., Maistrovskaia, O. S., 2011. Comparative study of antiviral activity of luteolin and 7, 3 ' - disulfate luteolin. Antibiot. Chemother. 56, 7 - 10. PMID: 22856150." type="journal article" year="2011">Krylova et al., 2011</bibRefCitation>
|
||
). Luteolin 7, 3
|
||
<superScript id="DDC82137FFEDFFD7FE08FBD15BC0FB90" attach="none" box="[435,440,1067,1080]" fontSize="6" pageId="6" pageNumber="7">′</superScript>
|
||
-disulfate also exhibits antidiabetic and antihyperlipidemia effects, as well as antioxidant, cardioprotective, anti-inflammatory, hepatoprotective, antitumoral and antiviral actions (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FFD7FB785B49FB3D" author="Styshova, O. N. & Popov, A. M. & Artyukov, A. A. & Klimovich, A. A." box="[108,305,1154,1173]" pageId="6" pageNumber="7" pagination="1651 - 1659" refId="ref20375" refString="Styshova, O. N., Popov, A. M., Artyukov, A. A., Klimovich, A. A., 2017. Main constituents of polyphenol complex from seagrasses of the genus Zostera, their antidiabetic properties and mechanisms of action. Exp. Ther. Med. 13 (5), 1651 - 1659. https: // doi. org / 10.3892 / etm. 2017.4217." type="journal article" year="2017">Styshova et al., 2017</bibRefCitation>
|
||
). Luteolin 7-sulfate was shown to inhibit cellular melanin synthesis (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FE80FB64586BFB19" author="Kwak, J. Y. & Seok, J. K. & Suh, H. J. & Choi, Y. H. & Hong, S. S. & Kim, D. S. & Boo, Y. C." box="[315,531,1182,1201]" pageId="6" pageNumber="7" pagination="501 - 511" refId="ref18011" refString="Kwak, J. Y., Seok, J. K., Suh, H. J., Choi, Y. H., Hong, S. S., Kim, D. S., Boo, Y. C., 2016. Antimelanogenic effects of luteolin 7 - sulfate isolated from Phyllospadix iwatensis Makino. Br. J. Dermatol. 175, 501 - 511. https: // doi. org / 10.1111 / bjd. 14496." type="journal article" year="2016">Kwak et al., 2016</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FD8BFB64588CFB19" author="Lee, S. W. & Kim, J. H. & Song, H. & Seok, J. K. & Hong, S. S. & Boo, Y. C." box="[560,756,1182,1201]" pageId="6" pageNumber="7" pagination="87" refId="ref18452" refString="Lee, S. W., Kim, J. H., Song, H., Seok, J. K., Hong, S. S., Boo, Y. C., 2019. Luteolin 7 - sulfate attenuates melanin synthesis through inhibition of CREB- and MITF-mediated tyrosinase expression. Antioxidants 8, 87. https: // doi. org / 10.3390 / antiox 8040087." type="journal article" year="2019">Lee et al., 2019</bibRefCitation>
|
||
). Luteolin-7-sulfate is also a nontoxic repellent, able to prevent bacterial settlement (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FF6EFB2F5BE3FB41" author="Papazian, S. & Parrot, D. & Weinberger, F. & Tasdemir, D." box="[213,411,1237,1257]" pageId="6" pageNumber="7" pagination="3323" refId="ref19460" refString="Papazian, S., Parrot, D., Buryˇskov´a, B., Weinberger, F., Tasdemir, D., 2019. Surface chemical defence of the eelgrass Zostera marina against microbial foulers. Sci. Rep. 9, 3323. https: // doi. org / 10.1038 / s 41598 - 019 - 39212 - 3." type="journal article" year="2019">Papazian et al., 2019</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="2A028C7FFFEDFFD7FF3FFB0B5AA5FA57" blockId="6.[100,770,735,1982]" pageId="6" pageNumber="7">
|
||
5-Methoxyluteolin exhibited a good antioxidant activity in DPPH and CUPRAC assays and a low cytotoxicity against 4T1 breast carcinoma cell line (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FF07FAD35BB9FA94" author="Rafieian-Kopaei, M. & Hamedi, A. & Dehkordi, E. S. & Pasdaran, A. & Pasdaran, A." box="[188,449,1321,1340]" pageId="6" pageNumber="7" pagination="360 - 370" refId="ref19786" refString="Rafieian-Kopaei, M., Hamedi, A., Dehkordi, E. S., Pasdaran, A., Pasdaran, A., 2020. Phytochemical investigation on volatile compositions and methoxylated flavonoids of Agrostis gigantea. Roth. Iran. J. Pharm. Res. 19 (2), 360 - 370. https: // doi. org / 10.22037 / ijpr. 2019.15209.12935." type="journal article" year="2020">Rafieian-Kopaei et al., 2020</bibRefCitation>
|
||
). Different extracts of
|
||
<taxonomicName id="EDBDF7FCFFEDFFD7FD2FFAD35ADEFAF0" pageId="6" pageNumber="7">
|
||
<emphasis id="18C9506DFFEDFFD7FD2FFAD35979FA94" bold="true" box="[660,769,1321,1340]" italics="true" pageId="6" pageNumber="7">Plectranthus</emphasis>
|
||
species
|
||
</taxonomicName>
|
||
containing 5-methoxyluteolin showed antioxidant, anti-inflammatory, analgesic, diuretic, cytotoxic and antimicrobial activities with variable potency (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FE3AFA87582AFA38" author="El-Hawary, S. S. & El-Sofany, R. H. & Abdel-Monem, A. R. & Ashour, R. S. & Sleem, A. A." box="[385,594,1405,1424]" pageId="6" pageNumber="7" pagination="45 - 54" refId="ref16574" refString="El-Hawary, S. S., El-Sofany, R. H., Abdel-Monem, A. R., Ashour, R. S., Sleem, A. A., 2012. Polyphenolics content and biological activity of Plectranthus amboinicus (Lour.) Spreng growing in Egypt (Lamiaceae). Phcog. J. 4 (32), 45 - 54. https: // doi. org / 10.5530 / pj. 2012.32.9." type="journal article" year="2012">El-Hawary et al., 2012</bibRefCitation>
|
||
). Schistosomicidal activity of 5-methoxyluteolin was also reported. Schistosomiasis, which is caused by trematode flatworms of the genus
|
||
<taxonomicName id="EDBDF7FCFFEDFFD7FDA2FA4E58FDFA6F" authorityName="Weinland" authorityYear="1858" box="[537,645,1460,1479]" class="Malacostraca" family="Mictosomatidae" genus="Schistosoma" kingdom="Animalia" order="Isopoda" pageId="6" pageNumber="7" phylum="Arthropoda" rank="genus">
|
||
<emphasis id="18C9506DFFEDFFD7FDA2FA4E58FDFA6F" bold="true" box="[537,645,1460,1479]" italics="true" pageId="6" pageNumber="7">Schistosoma</emphasis>
|
||
</taxonomicName>
|
||
, is one of the most significant and neglected tropical diseases in the world (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FD0FFA2A5AA8FA57" author="Pimenta, L. P. & Kellner Filho, L. C. & Liotti, R. G. & Soares, M. A. & Aguiar, D. P." pageId="6" pageNumber="7" pagination="182" refId="ref19616" refString="Pimenta, L. P., Kellner Filho, L. C., Liotti, R. G., Soares, M. A., Aguiar, D. P., et al., 2015. In vitro antischistosomal activity and cytotoxicity of 5 - methoxylated flavones from Vochysia divergens, a flood-adapted species from Brazilian Pantanal. Adv. Pharmacoepidemiol. Drug Saf. 4 (3), 182. https: // doi. org / 10.4172 / 2167 - 1052.100018." type="journal article" year="2015">Pimenta et al., 2015</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="2A028C7FFFEDFFD7FF3FF9F25B1DF80A" blockId="6.[100,770,735,1982]" pageId="6" pageNumber="7">
|
||
Nepetin has been widely used for centuries to treat fever, malaria, infections and diseases associated with inflammation (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FDD8F9DF588CF99F" author="Lee, C. W. & Lin, Z. C. & Hsu, L. F. & Fang, J. Y. & Chiang, Y. C. & Tsai, M. H. & Lee, M. H. & Li, S. Y. & Hu, S. C. & Lee, I. T. & Yen, F. L." box="[611,756,1572,1592]" pageId="6" pageNumber="7" pagination="300 - 309" refId="ref18328" refString="Lee, C. W., Lin, Z. C., Hsu, L. F., Fang, J. Y., Chiang, Y. C., Tsai, M. H., Lee, M. H., Li, S. Y., Hu, S. C., Lee, I. T., Yen, F. L., 2016. Eupafolin ameliorates COX- 2 expression and PGE 2 production in particulate pollutants-exposed human keratinocytes through ROS / MAPKs pathways. J. Ethnopharmacol. 189, 300 - 309. https: // doi. org / 10.1016 / j. jep. 2016.05.002." type="journal article" year="2016">Lee et al., 2016</bibRefCitation>
|
||
). Nepetin also exhibited cytotoxic activity against five tumor cell lines (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FFD7F9A65B59F9C7" author="Milittao, G. C. & Albuquerque, M. R. & Pessoa, O. D. & Pessoa, C. & Moraes, M. E. & de Moraes, M. O. & Costa-Lotufo, L. V." box="[108,289,1627,1647]" pageId="6" pageNumber="7" pagination="965 - 966" refId="ref19056" refString="Milittao, G. C., Albuquerque, M. R., Pessoa, O. D., Pessoa, C., Moraes, M. E., de Moraes, M. O., Costa-Lotufo, L. V., 2004. Cytotoxic activity of nepetin, a flavonoid from Eupatorium ballotaefolium HBK. Pharmazie 59, 965 - 966. PMID: 15638088." type="journal article" year="2004">Milit˜ao et al., 2004</bibRefCitation>
|
||
), and strongly protected primary cultured neurons against glutamate-induced oxidative stress (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FDB9F98258E2F923" author="Kim, S. R. & Park, M. J. & Lee, M. K. & Sung, S. H. & Park, E. J. & Kim, J. & Kim, S. Y. & Oh, T. H. & Markelonis, G. J. & Kim, Y. C." box="[514,666,1656,1675]" pageId="6" pageNumber="7" pagination="596 - 604" refId="ref17578" refString="Kim, S. R., Park, M. J., Lee, M. K., Sung, S. H., Park, E. J., Kim, J., Kim, S. Y., Oh, T. H., Markelonis, G. J., Kim, Y. C., 2002. Flavonoids of Inula britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radic. Biol. Med. 32 (7), 596 - 604. https: // doi. org / 10.1016 / S 0891 - 5849 (02) 00751 - 7." type="journal article" year="2002">Kim et al., 2002</bibRefCitation>
|
||
). In recent years, nepetin was reported to exhibit anti-inflammatory, anti-oxidant and anti-tumor cell proliferation effects (see as example
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FD2AF9555AECF977" author="Chen, X. & Yao, Z. & Peng, X. & Wu, L. & Wu, H. & Ou, Y. & Lai, J." pageId="6" pageNumber="7" pagination="5135 - 5144" refId="ref16292" refString="Chen, X., Yao, Z., Peng, X., Wu, L., Wu, H., Ou, Y., Lai, J., 2020. Eupafolin alleviates cerebral ischemia / reperfusion injury in rats via blocking the TLR 4 / NF-κB signaling pathway. Mol. Med. Rep. 22 (6), 5135 - 5144. https: // doi. org / 10.3892 / mmr. 2020.11637." type="journal article" year="2020">Chen et al., 2020</bibRefCitation>
|
||
and references therein). Strong antiproliferative activity against different cell lines was also observed with nepetin (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FD84F91D58A4F952" author="Talib, W. H. & Abu Zarga, M. H. & Mahasneh, A. M." box="[575,732,1767,1787]" pageId="6" pageNumber="7" pagination="3291 - 3303" refId="ref20632" refString="Talib, W. H., Abu Zarga, M. H., Mahasneh, A. M., 2012. Antiproliferative, antimicrobial and apoptosis inducing effects of compounds isolated from Inula viscosa. Molecules 17, 3291 - 3303. https: // doi. org / 10.3390 / molecules 17033291." type="journal article" year="2012">Talib et al., 2012</bibRefCitation>
|
||
). In the case of luteolin, it has been shown that the 7,3
|
||
<superScript id="DDC82137FFEDFFD7FD8DF8FA5843F8A5" attach="none" box="[566,571,1792,1805]" fontSize="6" pageId="6" pageNumber="7">′</superScript>
|
||
-disulfate has a lower toxic potential than the non-sulfated
|
||
<taxonomicName id="EDBDF7FCFFEDFFD7FE77F8E5585CF89A" box="[460,548,1823,1842]" form="and" pageId="6" pageNumber="7" rank="form">form and</taxonomicName>
|
||
that the efficacy of its pharmacological action may therefore be increased (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FDD0F8C15AECF8C2" author="Styshova, O. N. & Popov, A. M. & Artyukov, A. A. & Klimovich, A. A." pageId="6" pageNumber="7" pagination="1651 - 1659" refId="ref20375" refString="Styshova, O. N., Popov, A. M., Artyukov, A. A., Klimovich, A. A., 2017. Main constituents of polyphenol complex from seagrasses of the genus Zostera, their antidiabetic properties and mechanisms of action. Exp. Ther. Med. 13 (5), 1651 - 1659. https: // doi. org / 10.3892 / etm. 2017.4217." type="journal article" year="2017">Styshova et al., 2017</bibRefCitation>
|
||
). On this basis, the two unreported disulfates of nepetin and of 5-methoxyluteolin described here could constitute potential candidates in the search of new drugs.
|
||
</paragraph>
|
||
<paragraph id="2A028C7FFFEDFFD7FF3FF8515F30FEC2" blockId="6.[100,770,735,1982]" lastBlockId="6.[818,1488,148,1980]" pageId="6" pageNumber="7">
|
||
A strong antiproliferative activity against different cell lines was observed for hispidulin (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FB98FF6E5EB6FF0F" author="Talib, W. H. & Abu Zarga, M. H. & Mahasneh, A. M." box="[1059,1230,148,167]" pageId="6" pageNumber="7" pagination="3291 - 3303" refId="ref20632" refString="Talib, W. H., Abu Zarga, M. H., Mahasneh, A. M., 2012. Antiproliferative, antimicrobial and apoptosis inducing effects of compounds isolated from Inula viscosa. Molecules 17, 3291 - 3303. https: // doi. org / 10.3390 / molecules 17033291." type="journal article" year="2012">Talib et al., 2012</bibRefCitation>
|
||
). Hispidulin also suppress angiogenesis and growth of human pancreatic cancer (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FA81FF4A5FBFFF6B" author="He, L. & Wu, Y. & Lin, L. & Wang, J. & Wu, Y. & Chen, Y. & Yi, Z. & Liu, M. & Pang, X." box="[1338,1479,176,195]" pageId="6" pageNumber="7" pagination="219 - 225" refId="ref17272" refString="He, L., Wu, Y., Lin, L., Wang, J., Wu, Y., Chen, Y., Yi, Z., Liu, M., Pang, X., 2011. Hispidulin, a small flavonoid molecule, suppresses the angiogenesis and growth of human pancreatic cancer by targeting vascular endothelial growth factor receptor 2 - mediated PI 3 K / Akt / mTOR signalling pathway. Cancer Sci. 102, 219 - 225. https: // doi. org / 10.1111 / j. 1349 - 7006.2010.01778. x." type="journal article" year="2011">He et al., 2011</bibRefCitation>
|
||
) and potently inhibits human glioblastoma multiform cells (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FACAFF31591AFF53" author="Lin, Y. & Hung, C. & Tsai, J. & Lee, J. & Chen, Y. & Wei, C. & Kao, J. & Way, T." pageId="6" pageNumber="7" pagination="9511 - 9517" refId="ref18615" refString="Lin, Y., Hung, C., Tsai, J., Lee, J., Chen, Y., Wei, C., Kao, J., Way, T., 2010. Hispidulin potently inhibits human glioblastoma multiforme cells through activation of AMPactivated protein kinase (AMPK). J. Agric. Food Chem. 58, 9511 - 9517. https: // doi. org / 10.1021 / jf 1019533." type="journal article" year="2010">Lin et al., 2010</bibRefCitation>
|
||
). Jaceosidin was identified as a strong antimutagen (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FAC2FF1D59E1FEBE" author="Nakasugi, T. & Nakashima, M. & Komai, K." pageId="6" pageNumber="7" pagination="3256 - 3266" refId="ref19260" refString="Nakasugi, T., Nakashima, M., Komai, K., 2000. Antimutagens in gaiyou (Artemisia argyi Levl. et Vant.). J. Agric. Food Chem. 48, 3256 - 3266. https: // doi. org / 10.1021 / jf 9906679." type="journal article" year="2000">Nakasugi et al., 2000</bibRefCitation>
|
||
), and a putative oncogene inhibitor which might be used as a potential drug for the treatment of cervical cancers associated with the human papillomavirus (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FBAFFEC15EDFFEE6" author="Lee, H. - G. & Yu, K. - A. & Oh, W. - K. & Baeg, T. - W. & Oh, H. - C. & Ahn, J. - S. & Jang, W. - C. & Kim, J. - W. & Lim, J. - S. & Choe, Y. - K. & Yoon, D. - Y." box="[1044,1191,315,334]" pageId="6" pageNumber="7" pagination="39 - 43" refId="ref18188" refString="Lee, H. - G., Yu, K. - A., Oh, W. - K., Baeg, T. - W., Oh, H. - C., Ahn, J. - S., Jang, W. - C., Kim, J. - W., Lim, J. - S., Choe, Y. - K., Yoon, D. - Y., 2005. Inhibitory effect of jaceosidin isolated from Artemisia argyi on the function of E 6 and E 7 oncoproteins of HPV 16. J. Ethnopharmacol. 98 (3), 39 - 43. https: // doi. org / 10.1016 / j. jep. 2005.01.054." type="journal article" year="2005">Lee et al., 2005</bibRefCitation>
|
||
). As mentioned above, it could be of interest to evaluate their respective 7-monosulfate.
|
||
</paragraph>
|
||
<paragraph id="2A028C7FFFEDFFD7FCEAFE895FF6FDE1" blockId="6.[818,1488,148,1980]" pageId="6" pageNumber="7">
|
||
Rosmarinic acid is a bioactive phytochemical, which possesses remarkable pharmacological activities, including antioxidant, antisettlement, anti-inflammatory, antiviral, antibacterial, antidepressant, anticarcionogenic, nematicidal, and chemopreventive properties. Rosmarinic acid also has significant antinociceptive, neuroprotective, and neuroregenerative effects (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FB8AFE045E93FDB9" author="Amoah, S. K. & Sandjo, L. P. & Kratz, J. M. & Biavatti, M. W." box="[1073,1259,510,530]" pageId="6" pageNumber="7" pagination="388 - 406" refId="ref16061" refString="Amoah, S. K., Sandjo, L. P., Kratz, J. M., Biavatti, M. W., 2016. Rosmarinic acidpharmaceutical and clinical aspects. Planta Med. 82, 388 - 406 https // doi. org / 10.1055 / s- 0035 - 1568274." type="journal article" year="2016">Amoah et al., 2016</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FB43FE055FE5FDB9" author="Noor, S. & Mohammad, T. & Rub, M. A. & Raza, A. & Azum, N. & Yadav, D. K. & Hassan, M. I. & Asiri, A. M." box="[1272,1437,510,530]" pageId="6" pageNumber="7" pagination="1 - 24" refId="ref19315" refString="Noor, S., Mohammad, T., Rub, M. A., Raza, A., Azum, N., Yadav, D. K., Hassan, M. I., Asiri, A. M., 2022. Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm. Res. (Seoul) 1 - 24. https: // doi. org / 10.1007 / s 12272 - 022 - 01378 - 2. Advance online publication." type="book chapter" year="2022">Noor et al., 2022</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FA10FE0459A3FD85" author="Styshova, O. N. & Popov, A. M. & Artyukov, A. A. & Klimovich, A. A." pageId="6" pageNumber="7" pagination="1651 - 1659" refId="ref20375" refString="Styshova, O. N., Popov, A. M., Artyukov, A. A., Klimovich, A. A., 2017. Main constituents of polyphenol complex from seagrasses of the genus Zostera, their antidiabetic properties and mechanisms of action. Exp. Ther. Med. 13 (5), 1651 - 1659. https: // doi. org / 10.3892 / etm. 2017.4217." type="journal article" year="2017">Styshova et al., 2017</bibRefCitation>
|
||
). In addition, rosmarinic acid is able to prevent bacterial settlement in marine environment (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FB02FDCC5FF8FDE1" author="Papazian, S. & Parrot, D. & Weinberger, F. & Tasdemir, D." box="[1209,1408,566,586]" pageId="6" pageNumber="7" pagination="3323" refId="ref19460" refString="Papazian, S., Parrot, D., Buryˇskov´a, B., Weinberger, F., Tasdemir, D., 2019. Surface chemical defence of the eelgrass Zostera marina against microbial foulers. Sci. Rep. 9, 3323. https: // doi. org / 10.1038 / s 41598 - 019 - 39212 - 3." type="journal article" year="2019">Papazian et al., 2019</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="2A028C7FFFEDFFD7FCEAFDA85EE7FC78" blockId="6.[818,1488,148,1980]" pageId="6" pageNumber="7">
|
||
Given the economic potential of the phenolic content of
|
||
<taxonomicName id="EDBDF7FCFFEDFFD7FAD8FDA85FCDFDCD" baseAuthorityName="Zapata and McMillan" baseAuthorityYear="1979" box="[1379,1461,594,613]" class="Liliopsida" family="Zosteraceae" genus="Phyllospadix" kingdom="Plantae" order="Alismatales" pageId="6" pageNumber="7" phylum="Tracheophyta" rank="species" species="torreyi">
|
||
<emphasis id="18C9506DFFEDFFD7FAD8FDA85FCDFDCD" bold="true" box="[1379,1461,594,613]" italics="true" pageId="6" pageNumber="7">P. torreyi</emphasis>
|
||
</taxonomicName>
|
||
, it seemed worthwhile to assess the accumulated detrital stocks on beaches. The production of Torrey’ s surfgrass is very high with an average maximum biomass estimated at
|
||
<quantity id="ED45219AFFEDFFD7FBDBFD5C5EEDFD11" box="[1120,1173,678,697]" metricMagnitude="-1" metricUnit="kg" metricValue="5.86" pageId="6" pageNumber="7" unit="g" value="586.0">586 g</quantity>
|
||
dw m
|
||
<superScript id="DDC82137FFEDFFD7FB67FD5A5E9DFD06" attach="right" box="[1244,1253,672,686]" fontSize="6" pageId="6" pageNumber="7">2</superScript>
|
||
day
|
||
<superScript id="DDC82137FFEDFFD7FAA2FD5A5F5AFD06" attach="right" box="[1305,1314,672,686]" fontSize="6" pageId="6" pageNumber="7">1</superScript>
|
||
(shoot) and
|
||
<quantity id="ED45219AFFEDFFD7FA21FD5C5FB7FD11" box="[1434,1487,678,697]" metricMagnitude="-1" metricUnit="kg" metricValue="4.86" pageId="6" pageNumber="7" unit="g" value="486.0">486 g</quantity>
|
||
dw m
|
||
<superScript id="DDC82137FFEDFFD7FCCFFD465905FD62" attach="right" box="[884,893,700,714]" fontSize="6" pageId="6" pageNumber="7">2</superScript>
|
||
day
|
||
<superScript id="DDC82137FFEDFFD7FC09FD4659C3FD62" attach="right" box="[946,955,700,714]" fontSize="6" pageId="6" pageNumber="7">1</superScript>
|
||
(rhizome) (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FB95FD385EF1FD7D" author="Les, D. H." box="[1070,1161,706,725]" pageId="6" pageNumber="7" refId="ref18527" refString="Les, D. H., 2020. Aquatic Monocotyledons of North America: Ecology, Life History, and Systematics. CRC Press, ISBN 9781138054936." type="journal volume" year="2020">Les, 2020</bibRefCitation>
|
||
). Physical events and natural seasonal leaf drop result in large accumulations of detritus along the wave-exposed sandy beaches in southern
|
||
<collectingRegion id="E879429DFFEDFFD7FB6EFD035F4DFCA4" box="[1237,1333,761,780]" country="United States of America" name="California" pageId="6" pageNumber="7">California</collectingRegion>
|
||
. Seagrasses are much more resistant to decomposition than are freshwater angiosperms or algae. The rate of decomposition of seagrass detritus is generally low (
|
||
<emphasis id="18C9506DFFEDFFD7FC81FCB75932FCC8" box="[826,842,845,864]" italics="true" pageId="6" pageNumber="7"><</emphasis>
|
||
1% of dry wt/day) compared with other sources of detritus (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FA22FCB759E6FCD4" author="Mews, M. & Zimmer, M. & Jelinski, D. E." pageId="6" pageNumber="7" pagination="155 - 160" refId="ref18996" refString="Mews, M., Zimmer, M., Jelinski, D. E., 2006. Species-specific decomposition rates of beach-cast wrack in Barkley Sound, British Columbia, Canada. Mar. Ecol. Prog. Ser. 328, 155 - 160. https: // doi. org / 10.3354 / meps 328155." type="book chapter" year="2006">Mews et al., 2006</bibRefCitation>
|
||
). We have previously shown in the case of
|
||
<taxonomicName id="EDBDF7FCFFEDFFD7FA86FC935FDDFCD4" box="[1341,1445,873,892]" class="Liliopsida" family="Zosteraceae" genus="Zostera" kingdom="Plantae" order="Alismatales" pageId="6" pageNumber="7" phylum="Tracheophyta" rank="species" species="undetermined">
|
||
<emphasis id="18C9506DFFEDFFD7FA86FC935F06FCD4" bold="true" box="[1341,1406,873,892]" italics="true" pageId="6" pageNumber="7">Zostera</emphasis>
|
||
spp
|
||
</taxonomicName>
|
||
and
|
||
<taxonomicName id="EDBDF7FCFFEDFFD7FC89FC7F59B0FC30" box="[818,968,901,920]" class="Liliopsida" family="Cymodoceaceae" kingdom="Plantae" order="Alismatales" pageId="6" pageNumber="7" phylum="Tracheophyta" rank="family">Cymodoceaceae</taxonomicName>
|
||
members that significant concentrations of phenolic compounds remain in the detrital leaves (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FB59FC5B5FB1FC1C" author="Achamlale, S. & Rezzonico, B. & Grignon-Dubois, M." box="[1250,1481,929,948]" pageId="6" pageNumber="7" pagination="878 - 883" refId="ref16005" refString="Achamlale, S., Rezzonico, B., Grignon-Dubois, M., 2009. Rosmarinic acid from beach waste: isolation and HPLC quantification in Zostera detritus from Arcachon lagoon. Food Chem. 113, 878 - 883 https // doi. org / 10.1016 / j. foodchem. 2008.07.040." type="journal article" year="2009">Achamlale et al., 2009</bibRefCitation>
|
||
;
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FC89FC475EE9FC78" author="Grignon-Dubois, M. & Rezzonico, B." box="[818,1169,957,976]" pageId="6" pageNumber="7" pagination="83 - 94" refId="ref16990" refString="Grignon-Dubois, M., Rezzonico, B., 2017. High value-added biomolecules from beach waste of marine origin - screening for potential candidates among seagrass of the Cymodoceaceae family. TOBCJ 5, 83 - 94. https: // doi. org / 10.2174 / 1874847301705010083." type="journal article" year="2017">Grignon-Dubois and Rezzonico, 2017</bibRefCitation>
|
||
).
|
||
</paragraph>
|
||
<paragraph id="2A028C7FFFEDFFD7FCEAFC235F1CFAFE" blockId="6.[818,1488,148,1980]" pageId="6" pageNumber="7">
|
||
Seagrass beds have been shown to be one of the most efficient ecosystems for carbon sequestration. However, if disturbed or degraded, they can release carbon into the environment and accelerate the rate of global climate change (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FBADFBD65E89FB97" author="Macreadie, P. I. & Baird, M. E. & Trevathan-Tackett, S. M. & Larkum, A. W. & Ralph, P. J." box="[1046,1265,1068,1088]" pageId="6" pageNumber="7" pagination="430 - 439" refId="ref18699" refString="Macreadie, P. I., Baird, M. E., Trevathan-Tackett, S. M., Larkum, A. W., Ralph, P. J., 2014. Quantifying and modelling the carbon sequestration capacity of seagrass meadows-a critical assessment. Mar. Pollut. Bull. 83 (2), 430 - 439. https: // doi. org / 10.1016 / j. marpolbul. 2013.07.038." type="journal article" year="2014">Macreadie et al., 2014</bibRefCitation>
|
||
). Seagrass wracks also have an important ecological value and provide important ecosystem services (see as example:
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FBA5FB9E5E8AFBDF" author="Nordstrom, K. F. & Jackson, N. L. & Korotky, K. H." box="[1054,1266,1124,1143]" pageId="6" pageNumber="7" pagination="211 - 217" refId="ref19408" refString="Nordstrom, K. F., Jackson, N. L., Korotky, K. H., 2011. Aeolian sediment transport across beach wrack. J. Coast Res. 59, 211 - 217. https: // doi. org / 10.2307 / 29783118." type="journal article" year="2011">Nordstrom et al., 2011</bibRefCitation>
|
||
). However, wrack piles can also release CO
|
||
<subScript id="B6398E3AFFEDFFD7FC58FB7D5994FB3D" attach="left" box="[995,1004,1159,1173]" fontSize="6" pageId="6" pageNumber="7">2</subScript>
|
||
and
|
||
<collectingCountry id="52AACCEFFFEDFFD7FBA3FB7A5E4DFB3B" box="[1048,1077,1152,1171]" name="Switzerland" pageId="6" pageNumber="7">CH</collectingCountry>
|
||
<subScript id="B6398E3AFFEDFFD7FB8EFB7D5E46FB3D" attach="left" box="[1077,1086,1159,1173]" fontSize="6" pageId="6" pageNumber="7">4</subScript>
|
||
during the decomposition process and thus become a significant source of greenhouse emissions. In addition, stranded litter can significantly reduce local tourism income and local managers are under strong public pressure to remove seagrass wracks when they accumulate along beaches and shorelines used for recreational purposes. The negative impact on the tourism industry in the affected areas results in costly beach cleanup and disposal processes. In most cases, the collected biomass is disposed of in landfills.
|
||
</paragraph>
|
||
<paragraph id="2A028C7FFFEDFFD7FCEAFAA55EADF814" blockId="6.[818,1488,148,1980]" pageId="6" pageNumber="7">
|
||
<taxonomicName id="EDBDF7FCFFEDFFD7FCEAFAA559BAFADA" box="[849,962,1375,1394]" class="Liliopsida" family="Zosteraceae" genus="Phyllospadix" kingdom="Plantae" order="Alismatales" pageId="6" pageNumber="7" phylum="Tracheophyta" rank="genus">
|
||
<emphasis id="18C9506DFFEDFFD7FCEAFAA559BAFADA" bold="true" box="[849,962,1375,1394]" italics="true" pageId="6" pageNumber="7">Phyllospadix</emphasis>
|
||
</taxonomicName>
|
||
wracks are resistant to decomposition (
|
||
<bibRefCitation id="4E2CF18EFFEDFFD7FAEEFA9A591AFA26" author="Mews, M. & Zimmer, M. & Jelinski, D. E." pageId="6" pageNumber="7" pagination="155 - 160" refId="ref18996" refString="Mews, M., Zimmer, M., Jelinski, D. E., 2006. Species-specific decomposition rates of beach-cast wrack in Barkley Sound, British Columbia, Canada. Mar. Ecol. Prog. Ser. 328, 155 - 160. https: // doi. org / 10.3354 / meps 328155." type="book chapter" year="2006">Mews et al., 2006</bibRefCitation>
|
||
), and answers may come from flotsam recycling. Compared to algae, seagrasses remain largely unexploited as a raw material for the production of bioactive compounds, despite the fact that they offer enormous opportunities to find phytochemicals of commercial value. A detrital sample was collected from plant materials deposited on the shoreline, between La Jolla Underwater Park (+
|
||
<geoCoordinate id="4F89EAB8FFEDFFD7FB4DF9FC5F24F9B2" box="[1270,1372,1542,1562]" degrees="32.8528" direction="north" orientation="latitude" pageId="6" pageNumber="7" precision="5" value="32.8528">32.8528 N</geoCoordinate>
|
||
;
|
||
<geoCoordinate id="4F89EAB8FFEDFFD7FACEF9FC5930F99D" degrees="117.2614" direction="west" orientation="longitude" pageId="6" pageNumber="7" precision="5" value="-117.2614">117.2614 W</geoCoordinate>
|
||
) and Ellen Browning Scripps memorial pier (
|
||
<geoCoordinate id="4F89EAB8FFEDFFD7FB48F9D85F23F99E" box="[1267,1371,1570,1590]" degrees="32.8662" direction="north" orientation="latitude" pageId="6" pageNumber="7" precision="5" value="32.8662">32.8662 N</geoCoordinate>
|
||
;
|
||
<geoCoordinate id="4F89EAB8FFEDFFD7FACEF9D85932F9F9" degrees="117.2614" direction="west" orientation="longitude" pageId="6" pageNumber="7" precision="5" value="-117.2614">117.2614 W</geoCoordinate>
|
||
). It was collected at the same time as the fresh sample Phy3-F, and was referenced as Phy3-D (
|
||
<tableCitation id="673FB9C4FFEDFFD7FBB5F9A05E2EF9C5" box="[1038,1110,1626,1645]" captionStart="Table 1" captionStartId="1.[101,151,993,1009]" captionTargetPageId="1" captionText="Table 1 Peak number, HPLC retention time (Rt), sampling dates and sample names, concentration (mg g 1 dw of plant tissue, mean values SD) of phenolic compounds from ± Phyllospadix torreyi." pageId="6" pageNumber="7">Table 1</tableCitation>
|
||
). An aqueous-methanolic extract (50% v/v) was prepared in the same conditions used for fresh samples and analyzed by quantitative HPLC. Its chromatographic profile was found to be similar to that of Phy3-F and the concentrations of the individual, although lower than in the fresh material, remain significant (
|
||
<tableCitation id="673FB9C4FFEDFFD7FA39F9305FB1F975" box="[1410,1481,1738,1757]" captionStart="Table 1" captionStartId="1.[101,151,993,1009]" captionTargetPageId="1" captionText="Table 1 Peak number, HPLC retention time (Rt), sampling dates and sample names, concentration (mg g 1 dw of plant tissue, mean values SD) of phenolic compounds from ± Phyllospadix torreyi." pageId="6" pageNumber="7">Table 1</tableCitation>
|
||
,
|
||
<figureCitation id="B28690FAFFEDFFD7FC89F91C5910F951" box="[818,872,1766,1785]" captionStart="Fig" captionStartId="5.[100,130,736,753]" captionTargetBox="[264,1323,149,707]" captionTargetId="figure-940@5.[263,1324,148,708]" captionTargetPageId="5" captionText="Fig. 4. Inter-annual variation in the amounts of phenolic compound in fresh (samples Phy1-F to Phy5-F) and detrital (sample Phy-3 D). Concentrations values on ordinate are given as mg g ¡1 dw of plant tissue, mean values SD (n 3). Products are given in order of elution: Caff: 1; Nep7,4’: 2; OMeLu2S: 3; 6OHLu2S: 4; ± = Coum: 5; Lu2S: 6; Nep2S: 7; 5OMeLu7S: 8; 6OHLu7S: 9; RA: 10; L7S: 11; Nep7S: 12; Lu3′S: 13; Nep3′S: 14; Hispi7S: 15; Jaceo7S: 16. See Fig. 3 for formulae and Table 1 for full data." figureDoi="http://doi.org/10.5281/zenodo.8235330" httpUri="https://zenodo.org/record/8235330/files/figure.png" pageId="6" pageNumber="7">Fig. 4</figureCitation>
|
||
). Nepetin 7, 3
|
||
<superScript id="DDC82137FFEDFFD7FC4FF9185981F947" attach="none" box="[1012,1017,1762,1775]" fontSize="6" pageId="6" pageNumber="7">′</superScript>
|
||
-disulfate remains the major product (
|
||
<emphasis id="18C9506DFFEDFFD7FADCF91C5F0BF951" bold="true" box="[1383,1395,1766,1785]" pageId="6" pageNumber="7">7</emphasis>
|
||
,
|
||
<quantity id="ED45219AFFEDFFD7FA3AF91C5FB7F951" box="[1409,1487,1766,1785]" metricMagnitude="-6" metricUnit="kg" metricValue="4.46" pageId="6" pageNumber="7" unit="mg" value="4.46">4.46 mg</quantity>
|
||
g
|
||
<superScript id="DDC82137FFEDFFD7FCF2F906592AF8A2" attach="right" box="[841,850,1788,1802]" fontSize="6" pageId="6" pageNumber="7">1</superScript>
|
||
), followed by luteolin 7, 3
|
||
<superScript id="DDC82137FFEDFFD7FBFEF9045E32F8A3" attach="none" box="[1093,1098,1790,1803]" fontSize="6" pageId="6" pageNumber="7">′</superScript>
|
||
-disulfate (
|
||
<emphasis id="18C9506DFFEDFFD7FB15F8FB5EC2F8BC" bold="true" box="[1198,1210,1793,1812]" pageId="6" pageNumber="7">6</emphasis>
|
||
,
|
||
<quantity id="ED45219AFFEDFFD7FB7EF8F85F68F8BD" box="[1221,1296,1794,1813]" metricMagnitude="-6" metricUnit="kg" metricValue="1.49" pageId="6" pageNumber="7" unit="mg" value="1.49">1.49 mg</quantity>
|
||
g
|
||
<superScript id="DDC82137FFEDFFD7FA96F9065F4EF8A2" attach="right" box="[1325,1334,1788,1802]" fontSize="6" pageId="6" pageNumber="7">1</superScript>
|
||
), and 5-methoxyluteolin 7, 3
|
||
<superScript id="DDC82137FFEDFFD7FC09F8E059CFF88F" attach="none" box="[946,951,1818,1831]" fontSize="6" pageId="6" pageNumber="7">′</superScript>
|
||
-disulfate (
|
||
<emphasis id="18C9506DFFEDFFD7FBA5F8E75E52F898" bold="true" box="[1054,1066,1821,1840]" pageId="6" pageNumber="7">3</emphasis>
|
||
,
|
||
<quantity id="ED45219AFFEDFFD7FB83F8E45EFEF899" box="[1080,1158,1822,1841]" metricMagnitude="-6" metricUnit="kg" metricValue="1.19" pageId="6" pageNumber="7" unit="mg" value="1.19">1.19 mg</quantity>
|
||
g
|
||
<superScript id="DDC82137FFEDFFD7FB1EF8E25ED6F88E" attach="right" box="[1189,1198,1816,1830]" fontSize="6" pageId="6" pageNumber="7">1</superScript>
|
||
). The rosmarinic acid content also remains significant (
|
||
<emphasis id="18C9506DFFEDFFD7FB9AF8C35E42F8E4" bold="true" box="[1057,1082,1849,1868]" pageId="6" pageNumber="7">10</emphasis>
|
||
,
|
||
<quantity id="ED45219AFFEDFFD7FBFCF8C35EEDF8E5" box="[1095,1173,1849,1869]" metricMagnitude="-7" metricUnit="kg" metricValue="5.4" pageId="6" pageNumber="7" unit="mg" value="0.54">0.54 mg</quantity>
|
||
g
|
||
<superScript id="DDC82137FFEDFFD7FB0FF8CE5EC5F8EA" attach="right" box="[1204,1213,1844,1858]" fontSize="6" pageId="6" pageNumber="7">1</superScript>
|
||
). The significant amounts of disulfates in
|
||
<taxonomicName id="EDBDF7FCFFEDFFD7FC10F8AF5E64F8C0" box="[939,1052,1877,1896]" class="Liliopsida" family="Zosteraceae" genus="Phyllospadix" kingdom="Plantae" order="Alismatales" pageId="6" pageNumber="7" phylum="Tracheophyta" rank="genus">
|
||
<emphasis id="18C9506DFFEDFFD7FC10F8AF5E64F8C0" bold="true" box="[939,1052,1877,1896]" italics="true" pageId="6" pageNumber="7">Phyllospadix</emphasis>
|
||
</taxonomicName>
|
||
detritus are particularly interesting given the broad spectrum of biological properties of nepetin and luteolin derivatives. These results make this abundant detrital biomass interesting for dietary and pharmaceutical applications.
|
||
</paragraph>
|
||
</subSubSection>
|
||
</treatment>
|
||
</document> |