treatments-xml/data/72/71/42/72714276FFAA3F0FFB42FEDDB349FEE4.xml
2024-06-21 12:40:12 +02:00

717 lines
89 KiB
XML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document ID-DOI="http://doi.org/10.5281/zenodo.4628225" ID-GBIF-Dataset="1aad5191-b2c2-4c16-9efc-13d53ac49544" ID-GBIF-Taxon="180663312" ID-Zenodo-Dep="4628225" approvedBy="diego" checkinTime="1616442086731" checkinUser="diego" docAuthor="Vullo, Romain, Frey, Eberhard, Ifrim, Christina, Gonzaléz, Margarito A. González, Stinnesbec, Eva S. &amp; Stinnesbeck, Wolfgang" docDate="2021" docId="72714276FFAA3F0FFB42FEDDB349FEE4" docLanguage="en" docName="Science.371.1253.suppl.pdf.imf" docOrigin="Science 371" docTitle="Aquilolamna milarcae Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck 2021, gen. et sp. nov" docType="treatment" docVersion="6" lastPageId="10" lastPageNumber="10" masterDocId="8E483A0EFFAF3F05FA62FFB1B636FFFF" masterDocTitle="Manta-like planktivorous sharks in Late Cretaceous oceans" masterLastPageNumber="33" masterPageNumber="1" pageId="5" pageNumber="6" updateTime="1634711666059" updateUser="ExternalLinkService">
<mods:mods xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo>
<mods:title>Manta-like planktivorous sharks in Late Cretaceous oceans</mods:title>
</mods:titleInfo>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Vullo, Romain</mods:namePart>
<mods:nameIdentifier type="email">romain.vullo@univ-rennes.fr</mods:nameIdentifier>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Frey, Eberhard</mods:namePart>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Ifrim, Christina</mods:namePart>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Gonzaléz, Margarito A. González</mods:namePart>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Stinnesbec, Eva S.</mods:namePart>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Stinnesbeck, Wolfgang</mods:namePart>
</mods:name>
<mods:typeOfResource>text</mods:typeOfResource>
<mods:relatedItem type="host">
<mods:titleInfo>
<mods:title>Science</mods:title>
</mods:titleInfo>
<mods:part>
<mods:date>2021</mods:date>
<mods:detail type="pubDate">
<mods:number>2021-03-19</mods:number>
</mods:detail>
<mods:detail type="volume">
<mods:number>371</mods:number>
</mods:detail>
<mods:extent unit="page">
<mods:start>1</mods:start>
<mods:end>33</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:classification>journal article</mods:classification>
<mods:identifier type="DOI">10.1126/science.abc1490</mods:identifier>
<mods:identifier type="GBIF-Dataset">1aad5191-b2c2-4c16-9efc-13d53ac49544</mods:identifier>
</mods:mods>
<treatment ID-DOI="http://doi.org/10.5281/zenodo.4628225" ID-GBIF-Taxon="180663312" ID-Zenodo-Dep="4628225" LSID="urn:lsid:plazi:treatment:72714276FFAA3F0FFB42FEDDB349FEE4" httpUri="http://treatment.plazi.org/id/72714276FFAA3F0FFB42FEDDB349FEE4" lastPageId="10" lastPageNumber="10" pageId="5" pageNumber="6">
<subSubSection pageId="5" pageNumber="6" type="nomenclature">
<paragraph blockId="5.[288,773,364,393]" lastBlockId="5.[192,334,475,504]" pageId="5" pageNumber="6">
<taxonomicName authority="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck, 2021" authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[288,575,364,393]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="5" pageNumber="6" phylum="Chordata" rank="species" species="milarcae" status="gen. et sp. nov">
<emphasis box="[288,575,364,393]" italics="true" pageId="5" pageNumber="6">Aquilolamna milarcae</emphasis>
</taxonomicName>
<taxonomicNameLabel box="[583,773,365,393]" pageId="5" pageNumber="6" rank="species">gen. et sp. nov</taxonomicNameLabel>
<heading box="[192,334,475,504]" pageId="5" pageNumber="6">Etymology</heading>
</paragraph>
</subSubSection>
<subSubSection pageId="5" pageNumber="6" type="etymology">
<paragraph blockId="5.[192,1440,530,780]" pageId="5" pageNumber="6">
Generic name combines ʿ
<emphasis box="[626,711,530,559]" italics="true" pageId="5" pageNumber="6">Aquila</emphasis>
ʾ (
<collectionCode box="[740,747,530,559]" pageId="5" pageNumber="6">Latin</collectionCode>
, eagle), and the shark genus name ʿ
<emphasis box="[1296,1385,531,559]" italics="true" pageId="5" pageNumber="6">Lamna</emphasis>
ʾ, in reference to the wing-shaped pectoral fins and aquilopelagic ecomorphotype of this probable lamniform. Specific epithet refers to the Museo La Milarca (San Pedro Garza García,
<collectingRegion pageId="5" pageNumber="6">Nuevo León State</collectingRegion>
,
<collectingCountry box="[276,376,696,725]" name="Mexico" pageId="5" pageNumber="6">Mexico</collectingCountry>
), where the
<typeStatus box="[546,658,696,725]" pageId="5" pageNumber="6">holotype</typeStatus>
is housed and exhibited. Proposed vernacular name: eagle shark.
</paragraph>
</subSubSection>
<subSubSection pageId="5" pageNumber="6" type="materials_examined">
<paragraph blockId="5.[192,654,861,890]" lastBlockId="5.[192,1440,917,1001]" pageId="5" pageNumber="6">
<materialsCitation ID-GBIF-Occurrence="3059865301" pageId="5" pageNumber="6">
<heading box="[192,654,861,890]" pageId="5" pageNumber="6">
<typeStatus box="[192,311,861,890]" pageId="5" pageNumber="6">Holotype</typeStatus>
and only known specimen
</heading>
<materialsCitation ID-GBIF-Occurrence="3059747301" collectionCode="INAH" country="Saint Pierre and Miquelon" pageId="5" pageNumber="6" specimenCount="2544" specimenCount-pupa="2544">
Instituto Nacional de Antropología e Historia (
<collectionCode box="[915,999,917,946]" collectionName="INAH" pageId="5" pageNumber="6">INAH</collectionCode>
)
<specimenCode box="[1020,1184,917,946]" pageId="5" pageNumber="6">
<specimenCount box="[1020,1123,917,946]" pageId="5" pageNumber="6" type="pupa">2544 P.</specimenCount>
F.17
</specimenCode>
, an articulated and nearly complete skeleton with associated soft tissue (
<figureCitation box="[871,959,972,1001]" captionStart="Fig" captionStartId="11.[192,238,1473,1502]" captionTargetBox="[192,1280,196,1454]" captionTargetId="figure-159@11.[192,1295,192,1464]" captionText="Fig. S1. Location, paleogeographic map, and stratigraphic column. A, Location of the Vallecillo Lagerstätte, Nuevo León State, Mexico. B, Paleogeographic map and paleoenvironments of northern Mexico during the early Turonian (ca. 93 million years ago); the dashed square marks the area of the zoomed map in A. C, Vallecillo composite section showing the biostratigraphic zonation based on inoceramids (In.) (I., Inoceramus; M., Mytiloides; M.h., Mytiloides hattini) and ammonites (Am.) (C., Collignoniceras; M., Mammites; N., Nigericeras; P., Pseudaspidoceras; V., Vascoceras; W., Watinoceras sp.), the stratigraphic range of Pseudaspidoceras pseudonodosoides, the distribution of main fish taxa, and the stratigraphic position (star) of the holotype of Aquilolamna milarcae; the photograph on the left shows a portion of the lower Turonian platy limestone. U. Cen., upper Cenomanian; M. Turonian, middle Turonian." pageId="5" pageNumber="6">Figs. 1</figureCitation>
and
<figureCitation box="[1021,1037,972,1001]" captionStart="Fig" captionStartId="12.[192,238,1613,1642]" captionTargetBox="[200,1427,202,1554]" captionTargetId="figure-47@12.[192,1440,192,1567]" captionText="Fig. S2. Ammonite and bony fish specimens associated with Aquilolamna milarcae. A, the acanthoceratid ammonite Pseudaspidoceras pseudonodosoides. B, the pycnodontid fish Paranursallia gutturosa. C, the pachyrhizodontid fish Goulmimichthys roberti. D, the dercetid fish Rhynchodercetis regio." pageId="5" pageNumber="6">2</figureCitation>
and
<figureCitation box="[1099,1205,972,1001]" captionStart="Fig" captionStartId="13.[192,238,922,951]" captionTargetBox="[192,1440,192,877]" captionTargetId="figure-56@13.[192,1440,192,877]" captionText="Fig. S3. Anatomical details of Aquilolamna milarcae. Photograph (A) and interpretative line drawing (B) of the head of A. milarcae (INAH 2544 P.F.17). cc, chondrocranium; ch, ceratohyal; hm, hyomandibula; Mc, Meckelʾs cartilage; nc, nasal capsules; oc, occipital centrum; pq, palatoquadrate; rc, rostral cartilages; vc, vertebral column." pageId="5" pageNumber="6">Figs. S3</figureCitation>
to S6)
</materialsCitation>
.
</materialsCitation>
</paragraph>
</subSubSection>
<subSubSection pageId="5" pageNumber="6" type="distribution">
<paragraph blockId="5.[192,459,1082,1111]" box="[192,459,1082,1111]" pageId="5" pageNumber="6">
<heading box="[192,459,1082,1111]" pageId="5" pageNumber="6">Locality and horizon</heading>
</paragraph>
<paragraph blockId="5.[192,1440,1137,1277]" pageId="5" pageNumber="6">
Vallecillo quarry area,
<collectingRegion box="[600,846,1137,1166]" pageId="5" pageNumber="6">Nuevo León State</collectingRegion>
,
<collectingCountry box="[865,963,1137,1166]" name="Mexico" pageId="5" pageNumber="6">Mexico</collectingCountry>
(
<geoCoordinate box="[986,1115,1137,1166]" degrees="26.655" direction="north" orientation="latitude" pageId="5" pageNumber="6" precision="55" value="26.655">
26.655°
<collectionCode box="[1090,1115,1137,1166]" pageId="5" pageNumber="6">N</collectionCode>
</geoCoordinate>
,
<geoCoordinate box="[1133,1286,1137,1166]" degrees="100.044" direction="west" orientation="longitude" pageId="5" pageNumber="6" precision="55" value="-100.044">
100.044°
<collectionCode box="[1253,1286,1137,1166]" pageId="5" pageNumber="6">W</collectionCode>
</geoCoordinate>
); Vallecillo Member of the Agua Nueva Formation, middle -upper
<taxonomicName authority="Zone" authorityName="Powell" authorityYear="1963" box="[903,1275,1193,1222]" class="Cephalopoda" family="Acanthoceratidae" genus="Pseudaspidoceras" higherTaxonomySource="GBIF" kingdom="Animalia" order="Ammonoidea" pageId="5" pageNumber="6" phylum="Mollusca" rank="species" species="flexuosum">
<emphasis box="[903,1275,1193,1222]" italics="true" pageId="5" pageNumber="6">Pseudaspidoceras flexuosum</emphasis>
</taxonomicName>
Zone, lower Turonian, Upper Cretaceous (
<figureCitation box="[573,666,1248,1277]" captionStart="Fig" captionStartId="11.[192,238,1473,1502]" captionTargetBox="[192,1280,196,1454]" captionTargetId="figure-159@11.[192,1295,192,1464]" captionText="Fig. S1. Location, paleogeographic map, and stratigraphic column. A, Location of the Vallecillo Lagerstätte, Nuevo León State, Mexico. B, Paleogeographic map and paleoenvironments of northern Mexico during the early Turonian (ca. 93 million years ago); the dashed square marks the area of the zoomed map in A. C, Vallecillo composite section showing the biostratigraphic zonation based on inoceramids (In.) (I., Inoceramus; M., Mytiloides; M.h., Mytiloides hattini) and ammonites (Am.) (C., Collignoniceras; M., Mammites; N., Nigericeras; P., Pseudaspidoceras; V., Vascoceras; W., Watinoceras sp.), the stratigraphic range of Pseudaspidoceras pseudonodosoides, the distribution of main fish taxa, and the stratigraphic position (star) of the holotype of Aquilolamna milarcae; the photograph on the left shows a portion of the lower Turonian platy limestone. U. Cen., upper Cenomanian; M. Turonian, middle Turonian." pageId="5" pageNumber="6">
Fig.
<collectionCode box="[633,653,1248,1277]" pageId="5" pageNumber="6">S</collectionCode>
1
</figureCitation>
) (
<bibRefCitation author="C. Ifrim &amp; W. Stinnesbeck &amp; E. Frey" box="[696,728,1248,1277]" journalOrPublisher="N. Jb. Geol. Palaont. Abh." pageId="5" pageNumber="6" pagination="81" part="71" refId="ref9685" refString="32. C. Ifrim, W. Stinnesbeck, E. Frey, Upper Cretaceous (Cenomanian ± Turonian and Turonian ± Coniacian) open marine plattenkalk deposits in NE Mexico. N. Jb. Geol. Palaont. Abh. 245, 71 ± 81 (2007). doi: 10.1127 / 0077 - 7749 / 2007 / 0245 - 0071" title="Upper Cretaceous (Cenomanian ± Turonian and Turonian ± Coniacian) open marine plattenkalk deposits in NE Mexico" type="journal article" year="2007">
<emphasis box="[696,728,1248,1277]" italics="true" pageId="5" pageNumber="6">32</emphasis>
</bibRefCitation>
). This stratigraphic level is ca. 93 million years in age.
</paragraph>
</subSubSection>
<subSubSection pageId="5" pageNumber="6" type="diagnosis">
<paragraph blockId="5.[192,691,1358,1387]" box="[192,691,1358,1387]" pageId="5" pageNumber="6">
<heading box="[192,691,1358,1387]" pageId="5" pageNumber="6">Diagnosis of family, genus and species</heading>
</paragraph>
<paragraph blockId="5.[192,1440,1414,1718]" pageId="5" pageNumber="6">Medium-sized neoselachian shark that differs from all other selachimorphs in having hypertrophied, scythe-shaped plesodic pectoral fins whose span exceeds the total length of the animal. High number (~70) of anteriorly directed pectoral radials. Head short and broad, with wide and near-terminal mouth. Caudal fin markedly heterocercal. Caudal fin skeleton showing a high hypochordal ray angle (i.e., ventrally directed hypochordal rays). Caudal tip slender with no (or strongly reduced?) terminal lobe. Squamation strongly reduced (or completely absent?).</paragraph>
</subSubSection>
<subSubSection lastPageId="6" lastPageNumber="7" pageId="5" pageNumber="6" type="discussion">
<paragraph blockId="5.[192,547,1800,1829]" box="[192,547,1800,1829]" pageId="5" pageNumber="6">
<heading box="[192,547,1800,1829]" pageId="5" pageNumber="6">
Remark on
<taxonomicName authority="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck, 2021" authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[341,547,1800,1829]" class="Chondrichthyes" family="Aquilolamnidae" higherTaxonomySource="Manual Input" kingdom="Animalia" order="Lamniformes" pageId="5" pageNumber="6" phylum="Chordata" rank="family" status="fam. nov.">Aquilolamnidae</taxonomicName>
</heading>
</paragraph>
<paragraph blockId="6.[192,1440,199,559]" pageId="6" pageNumber="7">
The family
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[438,644,199,228]" class="Chondrichthyes" family="Aquilolamnidae" higherTaxonomySource="Manual Input" kingdom="Animalia" order="Lamniformes" pageId="6" pageNumber="7" phylum="Chordata" rank="family">Aquilolamnidae</taxonomicName>
(
<typeStatus box="[661,718,199,228]" pageId="6" pageNumber="7">type</typeStatus>
and only known genus:
<taxonomicName box="[1034,1199,199,228]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="6" pageNumber="7" phylum="Chordata" rank="genus">
<emphasis box="[1034,1199,199,228]" italics="true" pageId="6" pageNumber="7">Aquilolamna</emphasis>
</taxonomicName>
) possibly includes the enigmatic, poorly known Late Cretaceous genera
<taxonomicName box="[878,1031,255,283]" class="Chondrichthyes" family="Elasmobranchiomorphi (awaiting allocation)" genus="Cretomanta" higherTaxonomySource="GBIF" kingdom="Animalia" order="Elasmobranchiomorphi (awaiting allocation)" pageId="6" pageNumber="7" phylum="Chordata" rank="genus">
<emphasis box="[878,1031,255,283]" italics="true" pageId="6" pageNumber="7">Cretomanta</emphasis>
</taxonomicName>
(
<bibRefCitation author="G. R. Case &amp; T. T. Tokaryk &amp; D. Baird" box="[1050,1082,254,283]" journalOrPublisher="Canada. Can. J. Earth Sci." pageId="6" pageNumber="7" pagination="1094" part="1084" refId="ref9166" refString="24. G. R. Case, T. T. Tokaryk, D. Baird, Selachians from the Niobrara Formation of the Upper Cretaceous (Coniacian) of Carrot River, Saskatchewan, Canada. Can. J. Earth Sci. 27, 1084 ± 1094 (1990). doi: 10.1139 / e 90 - 112" title="Selachians from the Niobrara Formation of the Upper Cretaceous (Coniacian) of Carrot River, Saskatchewan" type="journal article" year="1990">
<emphasis box="[1050,1082,254,283]" italics="true" pageId="6" pageNumber="7">24</emphasis>
</bibRefCitation>
) and
<taxonomicName authorityName="J.H.Johnson &amp; B.F.Howell" authorityYear="1948" box="[1155,1370,254,283]" class="Chondrichthyes" family="Elasmobranchii (awaiting allocation)" genus="Platylithophycus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Elasmobranchii (awaiting allocation)" pageId="6" pageNumber="7" phylum="Chordata" rank="genus">
<emphasis box="[1155,1370,254,283]" italics="true" pageId="6" pageNumber="7">Platylithophycus</emphasis>
</taxonomicName>
(
<bibRefCitation author="A. W. Bronson &amp; J. G. Maisey" box="[1389,1421,254,283]" journalOrPublisher="J. Paleontol." pageId="6" pageNumber="7" pagination="750" part="743" refId="ref9329" refString="27. A. W. Bronson, J. G. Maisey, Resolving the identity of Platylithophycus, an enigmatic fossil from the Niobrara Chalk (Upper Cretaceous, Coniacian ± Campanian). J. Paleontol. 92, 743 ± 750 (2018). doi: 10.1017 / jpa. 2018.14" title="Resolving the identity of Platylithophycus, an enigmatic fossil from the Niobrara Chalk (Upper Cretaceous, Coniacian ± Campanian)" type="journal article" year="2018">
<emphasis box="[1389,1421,254,283]" italics="true" pageId="6" pageNumber="7">27</emphasis>
</bibRefCitation>
). Systematic and paleoecological assumptions combined with stratigraphic evidence (see main text) suggest that the tooth-based genus
<taxonomicName box="[631,784,365,393]" class="Chondrichthyes" family="Elasmobranchiomorphi (awaiting allocation)" genus="Cretomanta" higherTaxonomySource="GBIF" kingdom="Animalia" order="Elasmobranchiomorphi (awaiting allocation)" pageId="6" pageNumber="7" phylum="Chordata" rank="genus">
<emphasis box="[631,784,365,393]" italics="true" pageId="6" pageNumber="7">Cretomanta</emphasis>
</taxonomicName>
is a suitable candidate for being the dental elements of the skeleton-based genus
<taxonomicName box="[575,740,420,449]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="6" pageNumber="7" phylum="Chordata" rank="genus">
<emphasis box="[575,740,420,449]" italics="true" pageId="6" pageNumber="7">Aquilolamna</emphasis>
</taxonomicName>
(for which teeth are unknown in the sole specimen available to date) and thus may be a senior synonym of the latter; however, both taxa must be considered distinct pending the discovery of overlapping material.
</paragraph>
</subSubSection>
<subSubSection lastPageId="7" lastPageNumber="8" pageId="6" pageNumber="7" type="description">
<paragraph blockId="6.[192,341,641,670]" box="[192,341,641,670]" pageId="6" pageNumber="7">
<heading box="[192,341,641,670]" pageId="6" pageNumber="7">Description</heading>
</paragraph>
<paragraph blockId="6.[192,1440,696,1884]" lastBlockId="7.[192,1440,199,780]" lastPageId="7" lastPageNumber="8" pageId="6" pageNumber="7">
<materialsCitation ID-GBIF-Occurrence="3059747310" collectionCode="TL" country="American Samoa" pageId="6" pageNumber="7" specimenCount="1" typeStatus="holotype">
The
<typeStatus box="[347,459,696,725]" pageId="6" pageNumber="7">holotype</typeStatus>
is a 166-cm-long (total length TL) holomorphic specimen with a precaudal length (PCL) of
<quantity box="[411,509,751,780]" metricMagnitude="0" metricUnit="m" metricValue="1.22" pageId="6" pageNumber="7" unit="cm" value="122.0">122 cm</quantity>
and an estimated pectoral fin span (PFS) of about
<quantity box="[1186,1284,751,780]" metricMagnitude="0" metricUnit="m" metricValue="1.9" pageId="6" pageNumber="7" unit="cm" value="190.0">190 cm</quantity>
(
<quantity box="[1304,1403,751,780]" metricMagnitude="0" metricUnit="m" metricValue="1.58" pageId="6" pageNumber="7" unit="cm" value="158.0">158 cm</quantity>
as preserved) (PFS about 1.1 times TL and 1.6 times PCL)
</materialsCitation>
;
<materialsCitation ID-GBIF-Occurrence="3059747307" country="American Samoa" pageId="6" pageNumber="7" specimenCount="1">
the specimen is preserved flattened dorsoventrally, with the exception of the tail exposed in lateral view (
<figureCitation box="[1067,1141,861,890]" captionStart="Fig" captionStartId="11.[192,238,1473,1502]" captionTargetBox="[192,1280,196,1454]" captionTargetId="figure-159@11.[192,1295,192,1464]" captionText="Fig. S1. Location, paleogeographic map, and stratigraphic column. A, Location of the Vallecillo Lagerstätte, Nuevo León State, Mexico. B, Paleogeographic map and paleoenvironments of northern Mexico during the early Turonian (ca. 93 million years ago); the dashed square marks the area of the zoomed map in A. C, Vallecillo composite section showing the biostratigraphic zonation based on inoceramids (In.) (I., Inoceramus; M., Mytiloides; M.h., Mytiloides hattini) and ammonites (Am.) (C., Collignoniceras; M., Mammites; N., Nigericeras; P., Pseudaspidoceras; V., Vascoceras; W., Watinoceras sp.), the stratigraphic range of Pseudaspidoceras pseudonodosoides, the distribution of main fish taxa, and the stratigraphic position (star) of the holotype of Aquilolamna milarcae; the photograph on the left shows a portion of the lower Turonian platy limestone. U. Cen., upper Cenomanian; M. Turonian, middle Turonian." pageId="6" pageNumber="7">Fig. 1</figureCitation>
)
</materialsCitation>
.
<materialsCitation ID-GBIF-Occurrence="3059747302" country="American Samoa" pageId="6" pageNumber="7" specimenCount="1">The vertebral column consists of about 225 asterospondylic vertebrae, with the caudal vertebral count (~120) higher than the precaudal vertebral count (~105)</materialsCitation>
.
<materialsCitation ID-GBIF-Occurrence="3059747303" country="American Samoa" pageId="6" pageNumber="7" specimenCount="1">
Anteriorly, there is no synarcual element, indicating that this specimen cannot be classified as a batoid (
<bibRefCitation author="L. J. V. Compagno" box="[770,786,1027,1056]" journalOrPublisher="Am. Zool." pageId="6" pageNumber="7" pagination="322" part="303" refId="ref8412" refString="9. L. J. V. Compagno, Phyletic relationships of living sharks and rays. Am. Zool. 17, 303 ± 322 (1977). doi: 10.1093 / icb / 17.2.303" title="Phyletic relationships of living sharks and rays" type="journal article" year="1977">
<emphasis box="[770,786,1027,1056]" italics="true" pageId="6" pageNumber="7">9</emphasis>
</bibRefCitation>
)
</materialsCitation>
.
<materialsCitation ID-GBIF-Occurrence="3059747313" country="American Samoa" pageId="6" pageNumber="7" specimenCount="1">
Tessellated prismatic calcified cartilage is well preserved in various parts of the specimen, with tesserae showing the sub-hexagonal close-packing arrangement typical of chondrichthyans (
<bibRefCitation author="A. W. Bronson &amp; J. G. Maisey" box="[728,760,1137,1166]" journalOrPublisher="J. Paleontol." pageId="6" pageNumber="7" pagination="750" part="743" refId="ref9329" refString="27. A. W. Bronson, J. G. Maisey, Resolving the identity of Platylithophycus, an enigmatic fossil from the Niobrara Chalk (Upper Cretaceous, Coniacian ± Campanian). J. Paleontol. 92, 743 ± 750 (2018). doi: 10.1017 / jpa. 2018.14" title="Resolving the identity of Platylithophycus, an enigmatic fossil from the Niobrara Chalk (Upper Cretaceous, Coniacian ± Campanian)" type="journal article" year="2018">
<emphasis box="[728,760,1137,1166]" italics="true" pageId="6" pageNumber="7">27</emphasis>
</bibRefCitation>
)
</materialsCitation>
.
<materialsCitation ID-GBIF-Occurrence="3059747306" collectionCode="S" country="American Samoa" pageId="6" pageNumber="7" specimenCount="1">
Soft-tissue imprints (skin, muscles) are preserved, providing information on the body outline (
<figureCitation box="[745,833,1193,1222]" captionStart="Fig" captionStartId="11.[192,238,1473,1502]" captionTargetBox="[192,1280,196,1454]" captionTargetId="figure-159@11.[192,1295,192,1464]" captionText="Fig. S1. Location, paleogeographic map, and stratigraphic column. A, Location of the Vallecillo Lagerstätte, Nuevo León State, Mexico. B, Paleogeographic map and paleoenvironments of northern Mexico during the early Turonian (ca. 93 million years ago); the dashed square marks the area of the zoomed map in A. C, Vallecillo composite section showing the biostratigraphic zonation based on inoceramids (In.) (I., Inoceramus; M., Mytiloides; M.h., Mytiloides hattini) and ammonites (Am.) (C., Collignoniceras; M., Mammites; N., Nigericeras; P., Pseudaspidoceras; V., Vascoceras; W., Watinoceras sp.), the stratigraphic range of Pseudaspidoceras pseudonodosoides, the distribution of main fish taxa, and the stratigraphic position (star) of the holotype of Aquilolamna milarcae; the photograph on the left shows a portion of the lower Turonian platy limestone. U. Cen., upper Cenomanian; M. Turonian, middle Turonian." pageId="6" pageNumber="7">Figs. 1</figureCitation>
and
<figureCitation box="[894,910,1193,1222]" captionStart="Fig" captionStartId="12.[192,238,1613,1642]" captionTargetBox="[200,1427,202,1554]" captionTargetId="figure-47@12.[192,1440,192,1567]" captionText="Fig. S2. Ammonite and bony fish specimens associated with Aquilolamna milarcae. A, the acanthoceratid ammonite Pseudaspidoceras pseudonodosoides. B, the pycnodontid fish Paranursallia gutturosa. C, the pachyrhizodontid fish Goulmimichthys roberti. D, the dercetid fish Rhynchodercetis regio." pageId="6" pageNumber="7">2</figureCitation>
and
<figureCitation box="[970,1075,1193,1222]" captionStart="Fig" captionStartId="13.[192,238,922,951]" captionTargetBox="[192,1440,192,877]" captionTargetId="figure-56@13.[192,1440,192,877]" captionText="Fig. S3. Anatomical details of Aquilolamna milarcae. Photograph (A) and interpretative line drawing (B) of the head of A. milarcae (INAH 2544 P.F.17). cc, chondrocranium; ch, ceratohyal; hm, hyomandibula; Mc, Meckelʾs cartilage; nc, nasal capsules; oc, occipital centrum; pq, palatoquadrate; rc, rostral cartilages; vc, vertebral column." pageId="6" pageNumber="7">Figs. S3</figureCitation>
to S6)
</materialsCitation>
.
<materialsCitation ID-GBIF-Occurrence="3059747308" country="American Samoa" pageId="6" pageNumber="7" specimenCount="1">
The skin seems to be overall devoid of dermal denticles, as in many myliobatiform rays (
<bibRefCitation author="W. Meyer &amp; U. Seegers" box="[1101,1133,1248,1277]" journalOrPublisher="J. Fish Biol." pageId="6" pageNumber="7" pagination="1967" part="1940" refId="ref11191" refString="54. W. Meyer, U. Seegers, Basics of skin structure and function in elasmobranchs: A review. J. Fish Biol. 80, 1940 ± 1967 (2012). doi: 10.1111 / j. 1095 - 8649.2011.03207. x Medline" title="Basics of skin structure and function in elasmobranchs: A review" type="journal article" year="2012">
<emphasis box="[1101,1133,1248,1277]" italics="true" pageId="6" pageNumber="7">54</emphasis>
</bibRefCitation>
)
</materialsCitation>
.
<materialsCitation ID-GBIF-Occurrence="3059747305" country="American Samoa" pageId="6" pageNumber="7" specimenCount="1">The head is severely crushed dorsoventrally</materialsCitation>
;
<materialsCitation ID-GBIF-Occurrence="3059747312" collectionCode="A" country="American Samoa" pageId="6" pageNumber="7" specimenCount="1">
it is short, with an indistinct snout and a wide mouth (
<figureCitation box="[1220,1321,1303,1332]" captionStart="Fig" captionStartId="12.[192,238,1613,1642]" captionTargetBox="[200,1427,202,1554]" captionTargetId="figure-47@12.[192,1440,192,1567]" captionText="Fig. S2. Ammonite and bony fish specimens associated with Aquilolamna milarcae. A, the acanthoceratid ammonite Pseudaspidoceras pseudonodosoides. B, the pycnodontid fish Paranursallia gutturosa. C, the pachyrhizodontid fish Goulmimichthys roberti. D, the dercetid fish Rhynchodercetis regio." pageId="6" pageNumber="7">Fig. 2A</figureCitation>
and
<figureCitation captionStart="Fig" captionStartId="13.[192,238,922,951]" captionTargetBox="[192,1440,192,877]" captionTargetId="figure-56@13.[192,1440,192,877]" captionText="Fig. S3. Anatomical details of Aquilolamna milarcae. Photograph (A) and interpretative line drawing (B) of the head of A. milarcae (INAH 2544 P.F.17). cc, chondrocranium; ch, ceratohyal; hm, hyomandibula; Mc, Meckelʾs cartilage; nc, nasal capsules; oc, occipital centrum; pq, palatoquadrate; rc, rostral cartilages; vc, vertebral column." pageId="6" pageNumber="7">Fig. S3</figureCitation>
)
</materialsCitation>
.
<materialsCitation ID-GBIF-Occurrence="3059747311" country="American Samoa" pageId="6" pageNumber="7" specimenCount="1">
As indicated by the position of the anteriormost vertebra, the poorly preserved chondrocranium represents about 10% of the precaudal length. The overall outline of the chondrocranium is not recognizable, although some structures can be tentatively interpreted as rostral cartilages and nasal capsules. The jaws are long, extending posterior to the occiput. With the exception of a disarticulated and displaced Meckelʾs cartilage (
<quantity box="[1109,1224,1579,1608]" metricMagnitude="-1" metricUnit="m" metricValue="2.59" pageId="6" pageNumber="7" unit="mm" value="259.0">259 mm</quantity>
in length), jaw elements cannot be identified with certainty, as those of hyoid and branchial arches. No teeth are preserved, possibly due to rapid post-mortem disarticulation and scattering affecting the dentition, like in fossil skeletons of cetorhinid sharks (
<bibRefCitation author="D. C. Hovestadt &amp; M. Hovestadt-Euler" box="[772,804,1746,1774]" journalOrPublisher="Palaontol. Z." pageId="6" pageNumber="7" pagination="83" part="71" refId="ref11239" refString="55. D. C. Hovestadt, M. Hovestadt-Euler, A partial skeleton of Cetorhinus parvus Leriche, 1910 (Chondrichthyes, Cetorhinidae) from the Oligocene of Germany. Palaontol. Z. 86, 71 ± 83 (2012). doi: 10.1007 / s 12542 - 011 - 0118 - 9" title="A partial skeleton of Cetorhinus parvus Leriche, 1910 (Chondrichthyes, Cetorhinidae) from the Oligocene of Germany" type="journal article" year="2012">
<emphasis box="[772,804,1746,1774]" italics="true" pageId="6" pageNumber="7">55</emphasis>
</bibRefCitation>
,
<bibRefCitation author="A. M. Prokofiev &amp; E. K. Sychevskaya" box="[823,855,1745,1774]" journalOrPublisher="J. Ichthyol" pageId="6" pageNumber="7" pagination="138" part="127" refId="ref11296" refString="56. A. M. Prokofiev, E. K. Sychevskaya, Basking shark (Lamniformes: Cetorhinidae) from the lower Oligocene of the Caucasus. J. Ichthyol. 58, 127 ± 138 (2018). doi: 10.1134 / S 0032945218020121" title="Basking shark (Lamniformes: Cetorhinidae) from the lower Oligocene of the Caucasus" type="journal article" year="2018">
<emphasis box="[823,855,1745,1774]" italics="true" pageId="6" pageNumber="7">56</emphasis>
</bibRefCitation>
)
</materialsCitation>
.
<materialsCitation ID-GBIF-Occurrence="3059747309" collectionCode="D" country="American Samoa" pageId="6" pageNumber="7" specimenCount="1">
The hyper-elongate pectoral fins are rather broad at their bases, slightly forward-directed, and gently recurved at their ends (
<figureCitation box="[1228,1328,1800,1829]" captionStart="Fig" captionStartId="12.[192,238,1613,1642]" captionTargetBox="[200,1427,202,1554]" captionTargetId="figure-47@12.[192,1440,192,1567]" captionText="Fig. S2. Ammonite and bony fish specimens associated with Aquilolamna milarcae. A, the acanthoceratid ammonite Pseudaspidoceras pseudonodosoides. B, the pycnodontid fish Paranursallia gutturosa. C, the pachyrhizodontid fish Goulmimichthys roberti. D, the dercetid fish Rhynchodercetis regio." pageId="6" pageNumber="7">Fig. 2D</figureCitation>
and
<figureCitation captionStart="Fig" captionStartId="14.[192,238,1689,1718]" captionTargetBox="[192,1071,192,1643]" captionTargetId="figure-60@14.[192,1072,192,1643]" captionText="Fig. S4. Anatomical details of Aquilolamna milarcae. Photographs (A, C) and interpretative line drawing (B, D) of the pectoral fins of the holotype of A. milarcae (INAH 2544 P.F.17). dr, distal radials; ir, intermediate radials; mtpa, metapterygial axis; mtp, metapterygium; pr, proximal radials; prp, propterygium; sc, scapula; sp, scapular process." pageId="6" pageNumber="7">Fig. S4</figureCitation>
)
</materialsCitation>
.
<materialsCitation ID-GBIF-Occurrence="3059747304" box="[252,1435,1855,1884]" country="American Samoa" pageId="6" pageNumber="7" specimenCount="1">They show an extremely increased number of radial cartilages. At least 70 radials are present</materialsCitation>
, probably supported by several rodlike metapterygial elements. These radials are directed towards the anterior margin of the pectoral fin and some of them are bifurcated anteriorly (
<figureCitation box="[1257,1352,254,283]" captionStart="Fig" captionStartId="15.[192,238,1673,1702]" captionTargetBox="[192,1267,193,1626]" captionTargetId="figure-40@15.[192,1268,192,1627]" captionText="Fig. S5. Anatomical details of Aquilolamna milarcae. Detail of the left pectoral fin of A. milarcae (INAH 2544 P.F.17), showing the arrangement of the radials and the typical structure of the tessellated prismatic calcified cartilage." pageId="7" pageNumber="8">
Fig.
<collectionCode box="[1318,1336,254,283]" pageId="7" pageNumber="8">S</collectionCode>
5
</figureCitation>
), as in the megamouth shark (
<bibRefCitation author="T. Tomita &amp; S. Tanaka &amp; K. Sato &amp; K. Nakaya" box="[482,498,310,338]" journalOrPublisher="PLOS ONE" pageId="7" pageNumber="8" pagination="86205" part="9" refId="ref8306" refString="7. T. Tomita, S. Tanaka, K. Sato, K. Nakaya, Pectoral fin of the megamouth shark: Skeletal and muscular systems, skin histology, and functional morphology. PLOS ONE 9, e 86205 (2014). doi: 10.1371 / journal. pone. 0086205 Medline" title="Pectoral fin of the megamouth shark: Skeletal and muscular systems, skin histology, and functional morphology" type="journal article" year="2014">
<emphasis box="[482,498,310,338]" italics="true" pageId="7" pageNumber="8">7</emphasis>
</bibRefCitation>
). The trunk is moderately slender. No stomach/gut contents are preserved. There are no traces of dorsal, pelvic or anal fins; this reflects either original morphology (true phylogenetic absence) or taphonomic loss (post-mortem disarticulation and degradation). The caudal fin skeleton is characterized by ventrally directed hypochordal rays (hypochordal ray angle = 120°). The heterocercal caudal fin shows an elongate and slender dorsal lobe (dorsal margin length =
<quantity box="[308,390,585,614]" metricMagnitude="-1" metricUnit="m" metricValue="5.1" pageId="7" pageNumber="8" unit="cm" value="51.0">51 cm</quantity>
) at a moderate angle above the body axis (heterocercal angle = 27°), and a rather strong ventral lobe (preventral margin length =
<quantity box="[839,926,641,670]" metricMagnitude="-1" metricUnit="m" metricValue="2.1" pageId="7" pageNumber="8" unit="cm" value="21.0">21 cm</quantity>
) at a high angle below the body axis (hypocercal angle = 55°) [&quot;lamniform caudal fin
<typeStatus box="[845,900,697,725]" pageId="7" pageNumber="8">type</typeStatus>
2&quot; sensu (
<bibRefCitation author="S. H. Kim &amp; K. Shimada &amp; C. K. Rigsby" box="[1046,1078,696,725]" journalOrPublisher="Anat. Rec." pageId="7" pageNumber="8" pagination="442" part="433" refId="ref8578" refString="13. S. H. Kim, K. Shimada, C. K. Rigsby, Anatomy and evolution of heterocercal tail in lamniform sharks. Anat. Rec. 296, 433 ± 442 (2013). doi: 10.1002 / ar. 22647 Medline" title="Anatomy and evolution of heterocercal tail in lamniform sharks" type="journal article" year="2013">
<emphasis box="[1046,1078,696,725]" italics="true" pageId="7" pageNumber="8">13</emphasis>
</bibRefCitation>
)]. No terminal lobe can be discerned at the caudal tip (
<figureCitation box="[544,641,751,780]" captionStart="Fig" captionStartId="12.[192,238,1613,1642]" captionTargetBox="[200,1427,202,1554]" captionTargetId="figure-47@12.[192,1440,192,1567]" captionText="Fig. S2. Ammonite and bony fish specimens associated with Aquilolamna milarcae. A, the acanthoceratid ammonite Pseudaspidoceras pseudonodosoides. B, the pycnodontid fish Paranursallia gutturosa. C, the pachyrhizodontid fish Goulmimichthys roberti. D, the dercetid fish Rhynchodercetis regio." pageId="7" pageNumber="8">
Fig. 2
<collectionCode box="[619,641,751,780]" pageId="7" pageNumber="8">C</collectionCode>
</figureCitation>
and
<figureCitation box="[703,795,751,780]" captionStart="Fig" captionStartId="16.[192,238,922,951]" captionTargetBox="[192,1440,192,878]" captionTargetId="figure-62@16.[192,1440,192,878]" captionText="Fig. S6. Anatomical details of Aquilolamna milarcae. Photographs (A, B) and interpretative line drawing (C) of the caudal fin of the holotype of A. milarcae (INAH 2544 P.F.17). cv, caudal vertebrae; dlcf, dorsal lobe of the caudal fin; hr, hypochordal rays; hr.a, hypochordal ray angle; vlcf, ventral lobe of the caudal fin." pageId="7" pageNumber="8">
Fig.
<collectionCode box="[761,779,751,780]" pageId="7" pageNumber="8">S</collectionCode>
6
</figureCitation>
).
</paragraph>
<paragraph blockId="7.[192,597,861,890]" box="[192,597,861,890]" pageId="7" pageNumber="8">
<heading box="[192,597,861,890]" pageId="7" pageNumber="8">Remark on the caudal fin shape</heading>
</paragraph>
</subSubSection>
<subSubSection pageId="7" pageNumber="8" type="materials_examined">
<paragraph blockId="7.[192,1441,917,1608]" pageId="7" pageNumber="8">
Interestingly, the caudal fin shape of sharks is generally related to their primary habitat and lifestyle (
<bibRefCitation author="L. J. V. Compagno" box="[313,329,972,1001]" journalOrPublisher="Environ. Biol. Fishes" pageId="7" pageNumber="8" pagination="75" part="33" refId="ref7971" refString="1. L. J. V. Compagno, Alternative life-history styles of cartilaginous fishes in time and space. Environ. Biol. Fishes 28, 33 ± 75 (1990). doi: 10.1007 / BF 00751027" title="Alternative life-history styles of cartilaginous fishes in time and space" type="journal article" volumeTitle="28" year="1990">
<emphasis box="[313,329,972,1001]" italics="true" pageId="7" pageNumber="8">1</emphasis>
</bibRefCitation>
,
<bibRefCitation author="K. S. Thomson &amp; D. E. Simanek" box="[344,376,973,1001]" journalOrPublisher="Am. Zool." pageId="7" pageNumber="8" pagination="354" part="343" refId="ref11344" refString="57. K. S. Thomson, D. E. Simanek, Body form and locomotion in sharks. Am. Zool. 17, 343 ± 354 (1977). doi: 10.1093 / icb / 17.2.343" title="Body form and locomotion in sharks" type="journal article" year="1977">
<emphasis box="[344,376,973,1001]" italics="true" pageId="7" pageNumber="8">57</emphasis>
</bibRefCitation>
). Among modern sharks, four main
<typeStatus box="[838,905,973,1001]" pageId="7" pageNumber="8">types</typeStatus>
of caudal fin shape can be identified (
<bibRefCitation author="K. S. Thomson &amp; D. E. Simanek" box="[1389,1421,973,1001]" journalOrPublisher="Am. Zool." pageId="7" pageNumber="8" pagination="354" part="343" refId="ref11344" refString="57. K. S. Thomson, D. E. Simanek, Body form and locomotion in sharks. Am. Zool. 17, 343 ± 354 (1977). doi: 10.1093 / icb / 17.2.343" title="Body form and locomotion in sharks" type="journal article" year="1977">
<emphasis box="[1389,1421,973,1001]" italics="true" pageId="7" pageNumber="8">57</emphasis>
</bibRefCitation>
). The caudal fin
<typeStatus box="[383,438,1028,1056]" pageId="7" pageNumber="8">type</typeStatus>
observed in
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[601,888,1027,1056]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="7" pageNumber="8" phylum="Chordata" rank="species" species="milarcae">
<emphasis box="[601,888,1027,1056]" italics="true" pageId="7" pageNumber="8">Aquilolamna milarcae</emphasis>
</taxonomicName>
is present in most active-swimming littoral and oceanic species (e.g.,
<taxonomicName authorityName="Taylor, Compagno &amp; Struhsaker" authorityYear="1983" box="[540,751,1082,1111]" class="Elasmobranchii" family="Megachasmidae" kingdom="Animalia" order="Lamniformes" pageId="7" pageNumber="8" phylum="Chordata" rank="family">Megachasmidae</taxonomicName>
,
<taxonomicName authorityName="J.P.Muller &amp; Henle" authorityYear="1839" box="[767,972,1082,1111]" class="Elasmobranchii" family="Odontaspididae" kingdom="Animalia" order="Lamniformes" pageId="7" pageNumber="8" phylum="Chordata" rank="family">Odontaspididae</taxonomicName>
,
<taxonomicName authorityName="D.S.Jordan &amp; Evermann" authorityYear="1896" box="[987,1185,1082,1111]" class="Elasmobranchii" family="Carcharhinidae" kingdom="Animalia" order="Carcharhiniformes" pageId="7" pageNumber="8" phylum="Chordata" rank="family">Carcharhinidae</taxonomicName>
) (
<bibRefCitation author="L. J. V. Compagno" box="[1216,1232,1082,1111]" journalOrPublisher="Environ. Biol. Fishes" pageId="7" pageNumber="8" pagination="75" part="33" refId="ref7971" refString="1. L. J. V. Compagno, Alternative life-history styles of cartilaginous fishes in time and space. Environ. Biol. Fishes 28, 33 ± 75 (1990). doi: 10.1007 / BF 00751027" title="Alternative life-history styles of cartilaginous fishes in time and space" type="journal article" volumeTitle="28" year="1990">
<emphasis box="[1216,1232,1082,1111]" italics="true" pageId="7" pageNumber="8">1</emphasis>
</bibRefCitation>
,
<bibRefCitation author="S. H. Kim &amp; K. Shimada &amp; C. K. Rigsby" box="[1252,1284,1082,1111]" journalOrPublisher="Anat. Rec." pageId="7" pageNumber="8" pagination="442" part="433" refId="ref8578" refString="13. S. H. Kim, K. Shimada, C. K. Rigsby, Anatomy and evolution of heterocercal tail in lamniform sharks. Anat. Rec. 296, 433 ± 442 (2013). doi: 10.1002 / ar. 22647 Medline" title="Anatomy and evolution of heterocercal tail in lamniform sharks" type="journal article" year="2013">
<emphasis box="[1252,1284,1082,1111]" italics="true" pageId="7" pageNumber="8">13</emphasis>
</bibRefCitation>
,
<bibRefCitation author="K. S. Thomson &amp; D. E. Simanek" box="[1303,1335,1083,1111]" journalOrPublisher="Am. Zool." pageId="7" pageNumber="8" pagination="354" part="343" refId="ref11344" refString="57. K. S. Thomson, D. E. Simanek, Body form and locomotion in sharks. Am. Zool. 17, 343 ± 354 (1977). doi: 10.1093 / icb / 17.2.343" title="Body form and locomotion in sharks" type="journal article" year="1977">
<emphasis box="[1303,1335,1083,1111]" italics="true" pageId="7" pageNumber="8">57</emphasis>
</bibRefCitation>
). High-speed pelagic sharks with a tuna-like morphology (
<taxonomicName authorityName="Bonaparte" authorityYear="1835" box="[935,1063,1137,1166]" class="Elasmobranchii" family="Lamnidae" kingdom="Animalia" order="Lamniformes" pageId="7" pageNumber="8" phylum="Chordata" rank="family">Lamnidae</taxonomicName>
) have a crescentic, rather symmetrical caudal fin (i.e., high heterocercal and hypocercal angles) (
<bibRefCitation author="L. J. V. Compagno" box="[1148,1164,1193,1222]" journalOrPublisher="Environ. Biol. Fishes" pageId="7" pageNumber="8" pagination="75" part="33" refId="ref7971" refString="1. L. J. V. Compagno, Alternative life-history styles of cartilaginous fishes in time and space. Environ. Biol. Fishes 28, 33 ± 75 (1990). doi: 10.1007 / BF 00751027" title="Alternative life-history styles of cartilaginous fishes in time and space" type="journal article" volumeTitle="28" year="1990">
<emphasis box="[1148,1164,1193,1222]" italics="true" pageId="7" pageNumber="8">1</emphasis>
</bibRefCitation>
,
<bibRefCitation author="S. H. Kim &amp; K. Shimada &amp; C. K. Rigsby" box="[1185,1217,1193,1222]" journalOrPublisher="Anat. Rec." pageId="7" pageNumber="8" pagination="442" part="433" refId="ref8578" refString="13. S. H. Kim, K. Shimada, C. K. Rigsby, Anatomy and evolution of heterocercal tail in lamniform sharks. Anat. Rec. 296, 433 ± 442 (2013). doi: 10.1002 / ar. 22647 Medline" title="Anatomy and evolution of heterocercal tail in lamniform sharks" type="journal article" year="2013">
<emphasis box="[1185,1217,1193,1222]" italics="true" pageId="7" pageNumber="8">13</emphasis>
</bibRefCitation>
,
<bibRefCitation author="K. S. Thomson &amp; D. E. Simanek" box="[1238,1270,1194,1222]" journalOrPublisher="Am. Zool." pageId="7" pageNumber="8" pagination="354" part="343" refId="ref11344" refString="57. K. S. Thomson, D. E. Simanek, Body form and locomotion in sharks. Am. Zool. 17, 343 ± 354 (1977). doi: 10.1093 / icb / 17.2.343" title="Body form and locomotion in sharks" type="journal article" year="1977">
<emphasis box="[1238,1270,1194,1222]" italics="true" pageId="7" pageNumber="8">57</emphasis>
</bibRefCitation>
). Deepwater sharks such as
<taxonomicName authorityName="Goodrich" authorityYear="1909" box="[379,550,1248,1277]" class="Elasmobranchii" kingdom="Animalia" order="Squaliformes" pageId="7" pageNumber="8" phylum="Chordata" rank="order">Squaliformes</taxonomicName>
generally have a caudal fin with a moderate to low heterocercal angle, a well-developed epichordal (= epicaudal) lobe, and a large terminal lobe (
<bibRefCitation author="L. J. V. Compagno" box="[1151,1167,1303,1332]" journalOrPublisher="Environ. Biol. Fishes" pageId="7" pageNumber="8" pagination="75" part="33" refId="ref7971" refString="1. L. J. V. Compagno, Alternative life-history styles of cartilaginous fishes in time and space. Environ. Biol. Fishes 28, 33 ± 75 (1990). doi: 10.1007 / BF 00751027" title="Alternative life-history styles of cartilaginous fishes in time and space" type="journal article" volumeTitle="28" year="1990">
<emphasis box="[1151,1167,1303,1332]" italics="true" pageId="7" pageNumber="8">1</emphasis>
</bibRefCitation>
,
<bibRefCitation author="K. S. Thomson &amp; D. E. Simanek" box="[1184,1216,1304,1332]" journalOrPublisher="Am. Zool." pageId="7" pageNumber="8" pagination="354" part="343" refId="ref11344" refString="57. K. S. Thomson, D. E. Simanek, Body form and locomotion in sharks. Am. Zool. 17, 343 ± 354 (1977). doi: 10.1093 / icb / 17.2.343" title="Body form and locomotion in sharks" type="journal article" year="1977">
<emphasis box="[1184,1216,1304,1332]" italics="true" pageId="7" pageNumber="8">57</emphasis>
</bibRefCitation>
). Lastly, bottom-dwelling sharks usually have a caudal fin characterized by a very low heterocercal angle and a poorly defined (or no separate) ventral lobe (
<bibRefCitation author="L. J. V. Compagno" box="[767,783,1413,1442]" journalOrPublisher="Environ. Biol. Fishes" pageId="7" pageNumber="8" pagination="75" part="33" refId="ref7971" refString="1. L. J. V. Compagno, Alternative life-history styles of cartilaginous fishes in time and space. Environ. Biol. Fishes 28, 33 ± 75 (1990). doi: 10.1007 / BF 00751027" title="Alternative life-history styles of cartilaginous fishes in time and space" type="journal article" volumeTitle="28" year="1990">
<emphasis box="[767,783,1413,1442]" italics="true" pageId="7" pageNumber="8">1</emphasis>
</bibRefCitation>
,
<bibRefCitation author="K. S. Thomson &amp; D. E. Simanek" box="[799,831,1414,1442]" journalOrPublisher="Am. Zool." pageId="7" pageNumber="8" pagination="354" part="343" refId="ref11344" refString="57. K. S. Thomson, D. E. Simanek, Body form and locomotion in sharks. Am. Zool. 17, 343 ± 354 (1977). doi: 10.1093 / icb / 17.2.343" title="Body form and locomotion in sharks" type="journal article" year="1977">
<emphasis box="[799,831,1414,1442]" italics="true" pageId="7" pageNumber="8">57</emphasis>
</bibRefCitation>
) (
<figureCitation box="[859,953,1414,1443]" captionStart="Fig" captionStartId="17.[192,238,1262,1291]" captionTargetBox="[192,1440,192,1217]" captionTargetId="figure-117@17.[192,1440,192,1217]" captionText="Fig. S7. Caudal fin shape of Aquilolamna milarcae. Comparison of the caudal fin shape of A. milarcae (A) with the four main types identified in modern sharks: active-swimming littoral and oceanic species (e.g., tiger shark, Galeocerdo cuvier) (B), high-speed pelagic species (e.g., shortfin mako shark, Isurus oxyrinchus) (C), deepwater species (e.g., whitefin dogfish, Scymnodalatias albicauda) (D), and bottom-dwelling species (e.g., nurse shark, Ginglymostoma cirratum) (E). Not to scale. het.a, heterocercal angle; hyp.a, hypocercal angle. Line drawings in B-D after (44) and E after (57)." pageId="7" pageNumber="8">
Fig.
<collectionCode box="[919,937,1414,1443]" pageId="7" pageNumber="8">S</collectionCode>
7
</figureCitation>
).
</paragraph>
<paragraph blockId="7.[192,1441,917,1608]" pageId="7" pageNumber="8">
In conclusion, the
<taxonomicName box="[545,716,1469,1498]" class="Elasmobranchii" family="Megachasmidae" genus="Megachasma" kingdom="Animalia" order="Lamniformes" pageId="7" pageNumber="8" phylum="Chordata" rank="genus">
<emphasis box="[545,716,1469,1498]" italics="true" pageId="7" pageNumber="8">Megachasma</emphasis>
</taxonomicName>
-like caudal fin shape of
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[1068,1363,1469,1498]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="7" pageNumber="8" phylum="Chordata" rank="species" species="milarcae">
<emphasis box="[1068,1363,1469,1498]" italics="true" pageId="7" pageNumber="8">Aquilolamna milarcae</emphasis>
</taxonomicName>
, well distinct from that of benthic species, strongly indicates that this shark was an active-swimming pelagic form (although not capable of high swimming speeds) (
<figureCitation box="[1004,1098,1579,1608]" captionStart="Fig" captionStartId="18.[192,238,1449,1478]" captionTargetBox="[192,1440,192,1404]" captionTargetId="figure-59@18.[192,1440,192,1405]" captionText="Fig. S8. Life reconstruction of Aquilolamna milarcae. Artistʾs reconstruction showing a group of three individuals feeding on zooplankton in surface waters of the mid-Cretaceous Gulf of Mexico; the ammonite Pseudaspidoceras pseudonodosoides and a small school of the needle fish Rhynchodercetis regio are also foraging in this open marine environment. Artwork: Oscar Sanisidro." pageId="7" pageNumber="8">
Fig.
<collectionCode box="[1064,1082,1579,1608]" pageId="7" pageNumber="8">S</collectionCode>
8
</figureCitation>
).
</paragraph>
</subSubSection>
<subSubSection box="[192,997,1689,1718]" pageId="7" pageNumber="8" type="description">
<paragraph blockId="7.[192,997,1689,1718]" box="[192,997,1689,1718]" pageId="7" pageNumber="8">
<heading box="[192,997,1689,1718]" pageId="7" pageNumber="8">Remark on the presence/absence of dorsal, pelvic and anal fins</heading>
</paragraph>
</subSubSection>
<subSubSection lastPageId="8" lastPageNumber="9" pageId="7" pageNumber="8" type="materials_examined">
<paragraph blockId="7.[192,1440,1745,1978]" lastBlockId="8.[192,1441,199,1111]" lastPageId="8" lastPageNumber="9" pageId="7" pageNumber="8">
<materialsCitation ID-GBIF-Occurrence="3059747314" collectionCode="INAH" country="American Samoa" pageId="7" pageNumber="8" specimenCode="INAH 2544 P.F.17" specimenCount="1">
As mentioned above, the apparent absence of dorsal, pelvic and anal fins in
<specimenCode pageId="7" pageNumber="8">INAH 2544 P.F.17</specimenCode>
reflects either original morphology or taphonomic loss. In modern sharks, the first dorsal fin is more or less developed (
<emphasis box="[622,677,1855,1884]" italics="true" pageId="7" pageNumber="8">
<bibRefCitation author="L. J. V. Compagno" box="[622,638,1855,1884]" journalOrPublisher="Environ. Biol. Fishes" pageId="7" pageNumber="8" pagination="75" part="33" refId="ref7971" refString="1. L. J. V. Compagno, Alternative life-history styles of cartilaginous fishes in time and space. Environ. Biol. Fishes 28, 33 ± 75 (1990). doi: 10.1007 / BF 00751027" title="Alternative life-history styles of cartilaginous fishes in time and space" type="journal article" volumeTitle="28" year="1990">1</bibRefCitation>
,
<bibRefCitation author="L. J. V. Compagno" box="[661,677,1855,1884]" journalOrPublisher="Am. Zool." pageId="7" pageNumber="8" pagination="322" part="303" refId="ref8412" refString="9. L. J. V. Compagno, Phyletic relationships of living sharks and rays. Am. Zool. 17, 303 ± 322 (1977). doi: 10.1093 / icb / 17.2.303" title="Phyletic relationships of living sharks and rays" type="journal article" year="1977">9</bibRefCitation>
</emphasis>
). Among filter-feeding
<taxonomicName authorityName="Berg" authorityYear="1958" box="[1007,1182,1855,1884]" class="Elasmobranchii" kingdom="Animalia" order="Lamniformes" pageId="7" pageNumber="8" phylum="Chordata" rank="order">Lamniformes</taxonomicName>
, the basking shark
</materialsCitation>
(
<taxonomicName baseAuthorityName="La" box="[203,473,199,228]" class="Elasmobranchii" family="Cetorhinidae" genus="Cetorhinus" kingdom="Animalia" order="Lamniformes" pageId="8" pageNumber="9" phylum="Chordata" rank="species" species="maximus">
<emphasis box="[203,473,199,228]" italics="true" pageId="8" pageNumber="9">Cetorhinus maximus</emphasis>
</taxonomicName>
; derived tachypelagic form) has a high, well-developed first dorsal fin, whereas the megamouth shark (
<taxonomicName baseAuthorityName="La" box="[601,889,254,283]" class="Elasmobranchii" family="Megachasmidae" genus="Megachasma" kingdom="Animalia" order="Lamniformes" pageId="8" pageNumber="9" phylum="Chordata" rank="species" species="pelagios">
<emphasis box="[601,889,254,283]" italics="true" pageId="8" pageNumber="9">Megachasma pelagios</emphasis>
</taxonomicName>
; macroceanic form) has a low, moderately large first dorsal fin (
<bibRefCitation author="L. J. V. Compagno" box="[469,501,309,338]" journalOrPublisher="NOAA Tech. Rep." pageId="8" pageNumber="9" pagination="379" part="357" refId="ref8719" refString="16. L. J. V. Compagno, Relationships of the megamouth shark, Megachasma pelagios (Lamniformes: Megachasmidae), with comments on its feeding habits. NOAA Tech. Rep. NMFS 90, 357 ± 379 (1990)." title="Relationships of the megamouth shark, Megachasma pelagios (Lamniformes: Megachasmidae), with comments on its feeding habits" type="journal article" year="1990">
<emphasis box="[469,501,309,338]" italics="true" pageId="8" pageNumber="9">16</emphasis>
</bibRefCitation>
). Interestingly, this is inversely proportional to the development of their pectoral fins. In
<taxonomicName authorityName="H.De Blainville" authorityYear="1816" box="[407,550,364,393]" class="Elasmobranchii" family="Cetorhinidae" genus="Cetorhinus" kingdom="Animalia" order="Lamniformes" pageId="8" pageNumber="9" phylum="Chordata" rank="genus">
<emphasis box="[407,550,364,393]" italics="true" pageId="8" pageNumber="9">Cetorhinus</emphasis>
</taxonomicName>
and
<taxonomicName box="[616,787,364,393]" class="Elasmobranchii" family="Megachasmidae" genus="Megachasma" kingdom="Animalia" order="Lamniformes" pageId="8" pageNumber="9" phylum="Chordata" rank="genus">
<emphasis box="[616,787,364,393]" italics="true" pageId="8" pageNumber="9">Megachasma</emphasis>
</taxonomicName>
, the pectoral fin span represents 54% and 70% of the precaudal length, respectively (see
<tableCitation box="[690,807,420,449]" captionStart="Table S" captionStartId="22.[192,270,200,229]" captionTargetPageId="22" captionText="Table S1. Precaudal length (PCL), caudal fin length (CFL) and pectoral fin span (PFS) of Aquilolamna milarcae and 26 extant oceanic pelagic shark species; these measurements are also provided for four extant benthic shark species with enlarged pectoral fins (squatinobenthic ecomorphotype). For A. milarcae, hypothetical measurements inferred from a 250 cm hypothetical maximum total length are indicated in brackets. Ca, Carcharhiniformes; He, Hexanchiformes; La, Lamniformes; Or, Orectolobiformes; Sq, Squaliformes; St, Squatiniformes." httpUri="http://table.plazi.org/id/AEA7A3E8FFB93F13FAA2FF79B5FEFE1A" pageId="8" pageNumber="9" tableUuid="AEA7A3E8FFB93F13FAA2FF79B5FEFE1A">
Table
<collectionCode box="[772,793,420,449]" pageId="8" pageNumber="9">S</collectionCode>
1
</tableCitation>
). Furthermore, the pectoral area is about equal to the first dorsal fin area in
<taxonomicName authorityName="H.De Blainville" authorityYear="1816" box="[528,670,475,504]" class="Elasmobranchii" family="Cetorhinidae" genus="Cetorhinus" kingdom="Animalia" order="Lamniformes" pageId="8" pageNumber="9" phylum="Chordata" rank="genus">
<emphasis box="[528,670,475,504]" italics="true" pageId="8" pageNumber="9">Cetorhinus</emphasis>
</taxonomicName>
, whereas the pectoral area is about triple the first dorsal fin area in
<taxonomicName box="[301,472,530,559]" class="Elasmobranchii" family="Megachasmidae" genus="Megachasma" kingdom="Animalia" order="Lamniformes" pageId="8" pageNumber="9" phylum="Chordata" rank="genus">
<emphasis box="[301,472,530,559]" italics="true" pageId="8" pageNumber="9">Megachasma</emphasis>
</taxonomicName>
(
<bibRefCitation author="L. J. V. Compagno" box="[497,529,530,559]" journalOrPublisher="NOAA Tech. Rep." pageId="8" pageNumber="9" pagination="379" part="357" refId="ref8719" refString="16. L. J. V. Compagno, Relationships of the megamouth shark, Megachasma pelagios (Lamniformes: Megachasmidae), with comments on its feeding habits. NOAA Tech. Rep. NMFS 90, 357 ± 379 (1990)." title="Relationships of the megamouth shark, Megachasma pelagios (Lamniformes: Megachasmidae), with comments on its feeding habits" type="journal article" year="1990">
<emphasis box="[497,529,530,559]" italics="true" pageId="8" pageNumber="9">16</emphasis>
</bibRefCitation>
). Similarly, pelagic cownose, eagle and devil rays (
<taxonomicName authorityName="Jordan &amp; Evermann" authorityYear="1896" box="[1251,1436,530,559]" class="Elasmobranchii" family="Rhinopteridae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Myliobatiformes" pageId="8" pageNumber="9" phylum="Chordata" rank="family">Rhinopteridae</taxonomicName>
,
<taxonomicName authorityName="Bonaparte" authorityYear="1832" box="[192,362,585,614]" class="Elasmobranchii" family="Myliobatidae" kingdom="Animalia" order="Myliobatiformes" pageId="8" pageNumber="9" phylum="Chordata" rank="family">Myliobatidae</taxonomicName>
and
<taxonomicName authorityName="Gill" authorityYear="1893" box="[433,576,585,614]" class="Elasmobranchii" family="Mobulidae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Myliobatiformes" pageId="8" pageNumber="9" phylum="Chordata" rank="family">Mobulidae</taxonomicName>
; aquilopelagic forms) have enlarged winglike pectoral fins and a small dorsal fin (despite the lack of caudal fin) (
<bibRefCitation author="L. J. V. Compagno" box="[807,823,641,670]" journalOrPublisher="Environ. Biol. Fishes" pageId="8" pageNumber="9" pagination="75" part="33" refId="ref7971" refString="1. L. J. V. Compagno, Alternative life-history styles of cartilaginous fishes in time and space. Environ. Biol. Fishes 28, 33 ± 75 (1990). doi: 10.1007 / BF 00751027" title="Alternative life-history styles of cartilaginous fishes in time and space" type="journal article" volumeTitle="28" year="1990">
<emphasis box="[807,823,641,670]" italics="true" pageId="8" pageNumber="9">1</emphasis>
</bibRefCitation>
,
<bibRefCitation author="L. J. V. Compagno" box="[839,855,641,670]" journalOrPublisher="Am. Zool." pageId="8" pageNumber="9" pagination="322" part="303" refId="ref8412" refString="9. L. J. V. Compagno, Phyletic relationships of living sharks and rays. Am. Zool. 17, 303 ± 322 (1977). doi: 10.1093 / icb / 17.2.303" title="Phyletic relationships of living sharks and rays" type="journal article" year="1977">
<emphasis box="[839,855,641,670]" italics="true" pageId="8" pageNumber="9">9</emphasis>
</bibRefCitation>
). In analogy with modern elasmobranchs, the hyper-elongate pectoral fins of
<taxonomicName box="[610,775,696,725]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="8" pageNumber="9" phylum="Chordata" rank="genus">
<emphasis box="[610,775,696,725]" italics="true" pageId="8" pageNumber="9">Aquilolamna</emphasis>
</taxonomicName>
would suggest that the first dorsal fin, if present, might have been small.
</paragraph>
<paragraph blockId="7.[192,1440,1745,1978]" box="[1424,1440,1949,1978]" pageId="7" pageNumber="8">
<pageNumber ambiguity="1" box="[1424,1440,1949,1978]" fuzzyness="0" pageId="7" pageNumber="8" score="238.0" value="8">
<pageTitle box="[1424,1440,1949,1978]" pageId="7" pageNumber="8">8</pageTitle>
</pageNumber>
</paragraph>
<paragraph blockId="8.[192,1441,199,1111]" pageId="8" pageNumber="9">
Whereas the anal fin was secondarily lost in many living sharks and all living batoids, pelvic fins are present in all modern elasmobranchs (
<bibRefCitation author="L. J. V. Compagno" box="[887,903,861,890]" journalOrPublisher="Am. Zool." pageId="8" pageNumber="9" pagination="322" part="303" refId="ref8412" refString="9. L. J. V. Compagno, Phyletic relationships of living sharks and rays. Am. Zool. 17, 303 ± 322 (1977). doi: 10.1093 / icb / 17.2.303" title="Phyletic relationships of living sharks and rays" type="journal article" year="1977">
<emphasis box="[887,903,861,890]" italics="true" pageId="8" pageNumber="9">9</emphasis>
</bibRefCitation>
,
<bibRefCitation author="O. Larouche &amp; M. L. Zelditch &amp; R. Cloutier" box="[921,953,861,890]" journalOrPublisher="BMC Biol." pageId="8" pageNumber="9" pagination="32" part="15" refId="ref8450" refString="10. O. Larouche, M. L. Zelditch, R. Cloutier, Fin modules: An evolutionary perspective on appendage disparity in basal vertebrates. BMC Biol. 15, 32 (2017). doi: 10.1186 / s 12915 - 017 - 0370 - x Medline" title="Fin modules: An evolutionary perspective on appendage disparity in basal vertebrates" type="journal article" year="2017">
<emphasis box="[921,953,861,890]" italics="true" pageId="8" pageNumber="9">10</emphasis>
</bibRefCitation>
). Pelvic fins were not secondary lost because males have paired copulatory organs (claspers) whose cartilaginous elements correspond to a modified portion of the pelvic fin skeleton (
<bibRefCitation author="L. J. V. Compagno" box="[818,834,972,1001]" journalOrPublisher="Am. Zool." pageId="8" pageNumber="9" pagination="322" part="303" refId="ref8412" refString="9. L. J. V. Compagno, Phyletic relationships of living sharks and rays. Am. Zool. 17, 303 ± 322 (1977). doi: 10.1093 / icb / 17.2.303" title="Phyletic relationships of living sharks and rays" type="journal article" year="1977">
<emphasis box="[818,834,972,1001]" italics="true" pageId="8" pageNumber="9">9</emphasis>
</bibRefCitation>
). Therefore, the apparent lack of pelvic fins in the
<typeStatus box="[242,354,1027,1056]" pageId="8" pageNumber="9">holotype</typeStatus>
of
<taxonomicName box="[402,567,1027,1056]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="8" pageNumber="9" phylum="Chordata" rank="genus">
<emphasis box="[402,567,1027,1056]" italics="true" pageId="8" pageNumber="9">Aquilolamna</emphasis>
</taxonomicName>
is most likely due to taphonomic loss. Only the discovery of new material may help determine whether
<taxonomicName box="[675,840,1082,1111]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="8" pageNumber="9" phylum="Chordata" rank="genus">
<emphasis box="[675,840,1082,1111]" italics="true" pageId="8" pageNumber="9">Aquilolamna</emphasis>
</taxonomicName>
actually possessed dorsal, pelvic and anal fins.
</paragraph>
</subSubSection>
<subSubSection box="[192,510,1193,1222]" pageId="8" pageNumber="9" type="description">
<paragraph blockId="8.[192,510,1193,1222]" box="[192,510,1193,1222]" pageId="8" pageNumber="9">
<heading box="[192,510,1193,1222]" pageId="8" pageNumber="9">Remark on the body size</heading>
</paragraph>
</subSubSection>
<subSubSection pageId="8" pageNumber="9" type="materials_examined">
<paragraph blockId="8.[192,1441,1248,1829]" pageId="8" pageNumber="9">
The
<typeStatus box="[350,462,1248,1277]" pageId="8" pageNumber="9">holotype</typeStatus>
and single known specimen of
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[894,1186,1248,1277]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="8" pageNumber="9" phylum="Chordata" rank="species" species="milarcae">
<emphasis box="[894,1186,1248,1277]" italics="true" pageId="8" pageNumber="9">Aquilolamna milarcae</emphasis>
</taxonomicName>
is a medium-sized individual; however, it is not possible to determine 1) whether this specimen represents a juvenile, subadult or adult individual, and 2) the maximum size attainable by this species. Unfortunately, the origin and evolutionary history of
<taxonomicName authority="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck, 2021" authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[682,888,1414,1443]" class="Chondrichthyes" family="Aquilolamnidae" higherTaxonomySource="Manual Input" kingdom="Animalia" order="Lamniformes" pageId="8" pageNumber="6" phylum="Chordata" rank="family" status="fam. nov.">Aquilolamnidae</taxonomicName>
are undocumented, and we do not know if these putative lamniform sharks could reach gigantic sizes like in the four modern lineages of filter-feeding elasmobranchs (i.e.,
<taxonomicName authorityName="Muller &amp; Henle" authorityYear="1839" box="[650,856,1524,1553]" class="Elasmobranchii" family="Rhincodontidae" kingdom="Animalia" order="Orectolobiformes" pageId="8" pageNumber="9" phylum="Chordata" rank="family">Rhincodontidae</taxonomicName>
,
<taxonomicName authorityName="Taylor, Compagno &amp; Struhsaker" authorityYear="1983" box="[874,1085,1524,1553]" class="Elasmobranchii" family="Megachasmidae" kingdom="Animalia" order="Lamniformes" pageId="8" pageNumber="9" phylum="Chordata" rank="family">Megachasmidae</taxonomicName>
,
<taxonomicName authorityName="Gill" authorityYear="1861" box="[1103,1272,1524,1553]" class="Elasmobranchii" family="Cetorhinidae" kingdom="Animalia" order="Lamniformes" pageId="8" pageNumber="9" phylum="Chordata" rank="family">Cetorhinidae</taxonomicName>
,
<taxonomicName authorityName="Gill" authorityYear="1893" box="[1290,1431,1524,1553]" class="Elasmobranchii" family="Mobulidae" higherTaxonomySource="GBIF" kingdom="Animalia" order="Myliobatiformes" pageId="8" pageNumber="9" phylum="Chordata" rank="family">Mobulidae</taxonomicName>
) (
<bibRefCitation author="C. Pimiento &amp; J. L. Cantalapiedra &amp; K. Shimada &amp; D. J. Field &amp; J. B. Smaers" box="[203,219,1579,1608]" journalOrPublisher="Evolution" pageId="8" pageNumber="9" pagination="599" part="588" refId="ref8074" refString="3. C. Pimiento, J. L. Cantalapiedra, K. Shimada, D. J. Field, J. B. Smaers, Evolutionary pathways toward gigantism in sharks and rays. Evolution 73, 588 ± 599 (2019). doi: 10.1111 / evo. 13680 Medline" title="Evolutionary pathways toward gigantism in sharks and rays" type="journal article" year="2019">
<emphasis box="[203,219,1579,1608]" italics="true" pageId="8" pageNumber="9">3</emphasis>
</bibRefCitation>
). If the enigmatic genus
<taxonomicName authorityName="J.H.Johnson &amp; B.F.Howell" authorityYear="1948" box="[556,771,1579,1608]" class="Chondrichthyes" family="Elasmobranchii (awaiting allocation)" genus="Platylithophycus" higherTaxonomySource="GBIF" kingdom="Animalia" order="Elasmobranchii (awaiting allocation)" pageId="8" pageNumber="9" phylum="Chordata" rank="genus">
<emphasis box="[556,771,1579,1608]" italics="true" pageId="8" pageNumber="9">Platylithophycus</emphasis>
</taxonomicName>
(known by a single specimen representing a large individual) (
<bibRefCitation author="A. W. Bronson &amp; J. G. Maisey" box="[351,383,1634,1663]" journalOrPublisher="J. Paleontol." pageId="8" pageNumber="9" pagination="750" part="743" refId="ref9329" refString="27. A. W. Bronson, J. G. Maisey, Resolving the identity of Platylithophycus, an enigmatic fossil from the Niobrara Chalk (Upper Cretaceous, Coniacian ± Campanian). J. Paleontol. 92, 743 ± 750 (2018). doi: 10.1017 / jpa. 2018.14" title="Resolving the identity of Platylithophycus, an enigmatic fossil from the Niobrara Chalk (Upper Cretaceous, Coniacian ± Campanian)" type="journal article" year="2018">
<emphasis box="[351,383,1634,1663]" italics="true" pageId="8" pageNumber="9">27</emphasis>
</bibRefCitation>
) can be proven to be actually an aquilolamnid, this would suggest an evolutionary pathway toward gigantism in this lineage of Late Cretaceous sharks.
</paragraph>
</subSubSection>
<subSubSection lastPageId="9" lastPageNumber="10" pageId="8" pageNumber="9" type="description">
<paragraph blockId="8.[192,1441,1248,1829]" lastBlockId="9.[192,1440,199,283]" lastPageId="9" lastPageNumber="10" pageId="8" pageNumber="9">
Similarly, it is not possible, based on the current knowledge, to assess whether aquilolamnids arose from medium-sized benthic ancestors (as did rhincodontids and mobulids) (
<bibRefCitation author="C. Pimiento &amp; J. L. Cantalapiedra &amp; K. Shimada &amp; D. J. Field &amp; J. B. Smaers" box="[203,219,199,228]" journalOrPublisher="Evolution" pageId="9" pageNumber="10" pagination="599" part="588" refId="ref8074" refString="3. C. Pimiento, J. L. Cantalapiedra, K. Shimada, D. J. Field, J. B. Smaers, Evolutionary pathways toward gigantism in sharks and rays. Evolution 73, 588 ± 599 (2019). doi: 10.1111 / evo. 13680 Medline" title="Evolutionary pathways toward gigantism in sharks and rays" type="journal article" year="2019">
<emphasis box="[203,219,199,228]" italics="true" pageId="9" pageNumber="10">3</emphasis>
</bibRefCitation>
), large-sized pelagic ancestors (as did megachasmatids and cetorhinids) (
<bibRefCitation author="C. Pimiento &amp; J. L. Cantalapiedra &amp; K. Shimada &amp; D. J. Field &amp; J. B. Smaers" box="[1178,1194,199,228]" journalOrPublisher="Evolution" pageId="9" pageNumber="10" pagination="599" part="588" refId="ref8074" refString="3. C. Pimiento, J. L. Cantalapiedra, K. Shimada, D. J. Field, J. B. Smaers, Evolutionary pathways toward gigantism in sharks and rays. Evolution 73, 588 ± 599 (2019). doi: 10.1111 / evo. 13680 Medline" title="Evolutionary pathways toward gigantism in sharks and rays" type="journal article" year="2019">
<emphasis box="[1178,1194,199,228]" italics="true" pageId="9" pageNumber="10">3</emphasis>
</bibRefCitation>
), or medium-sized pelagic ancestors.
</paragraph>
<paragraph blockId="9.[192,349,364,393]" box="[192,349,364,393]" pageId="9" pageNumber="10">
<heading box="[192,349,364,393]" pageId="9" pageNumber="10">LDA results</heading>
</paragraph>
</subSubSection>
<subSubSection lastPageId="10" lastPageNumber="11" pageId="9" pageNumber="10" type="materials_examined">
<paragraph blockId="9.[192,1441,420,1884]" pageId="9" pageNumber="10">
The first LDA including only shark species (correct classification = 88.5%;
<tableCitation box="[1310,1429,420,449]" captionStart="Table S" captionStartId="27.[192,270,200,229]" captionTargetBox="[192,1439,457,1305]" captionText="Table S5. Confusion matrix showing the prediction accuracy of the linear discriminant analysis based on morphometric measurements for sharks in Table S1. This matrix provides for each given ecomorphotype (rows) the number of correctly (in bold) and incorrectly (in red) predicted ecomorphotypes (columns)." pageId="9" pageNumber="10">
Table
<collectionCode box="[1395,1413,420,449]" pageId="9" pageNumber="10">S</collectionCode>
5
</tableCitation>
) shows that
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[353,649,475,504]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="9" pageNumber="10" phylum="Chordata" rank="species" species="milarcae">
<emphasis box="[353,649,475,504]" italics="true" pageId="9" pageNumber="10">Aquilolamna milarcae</emphasis>
</taxonomicName>
clearly falls outside the five specialized ecomorphotypes considered here (
<figureCitation box="[411,521,530,559]" captionStart="Fig" captionStartId="20.[192,238,1120,1149]" captionTargetBox="[192,1440,192,1110]" captionTargetId="figure-221@20.[192,1440,192,1111]" captionText="Fig. S10. Ecomorphotype of Aquilolamna milarcae: comparison with living pelagic and squatinobenthic sharks. Linear discriminant analysis based on log-transformed precaudal length, caudal fin length and pectoral fin span (or disc width) measurements for 26 living shark species belonging to five specialized ecomorphotypes, with Aquilolamna milarcae added. Note the isolated position of A. milarcae (black star), showing that this distinctive shark cannot be assigned to any of the five ecomorphotypes. The white star corresponds to a 250 cm hypothetical maximum length for A. milarcae. A.p, Alopias pelagicus; C.c, Carcharodon carcharias; C.f, Carcharhinus falciformis; C.l, Carcharhinus longimanus; C.m, Cetorhinus maximus; E.b, Euprotomicrus bispinatus; E.d, Eucrossorhinus dasypogon; H.g, Hexanchus griseus; H.m, Heteroscymnoides marleyi; H.p, Heptranchias perlo; I.b, Isistius brasiliensis; I.o, Isurus oxyrinchus; I.p, Isurus paucus; L.n, Lamna nasus; M.o, Mitsukurina owstoni; M.p, Megachasma pelagios; O.n, Odontaspis noronhai O.o, Orectolobus ornatus; P.g, Prionace glauca; P.k, Pseudocarcharias kamoharai; R.t, Rhincodon typus; Sc.a, Scymnodalatias albicauda; Sq.a, Squatina aculeata; S.j, Squatina japonica; So.a, Somniosus antarcticus; Z.s, Zameus squamulosus." pageId="9" pageNumber="10">
Fig.
<collectionCode box="[471,489,530,559]" pageId="9" pageNumber="10">S</collectionCode>
10
</figureCitation>
). This is also true when a
<quantity box="[859,954,530,559]" metricMagnitude="0" metricUnit="m" metricValue="2.5" pageId="9" pageNumber="10" unit="cm" value="250.0">250 cm</quantity>
hypothetical maximum total length is used for
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[319,476,585,614]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="9" pageNumber="10" phylum="Chordata" rank="species" species="milarcae">
<emphasis box="[319,476,585,614]" italics="true" pageId="9" pageNumber="10">A. milarcae</emphasis>
</taxonomicName>
. This strongly suggests that the body proportions of
<taxonomicName box="[1221,1386,585,614]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="9" pageNumber="10" phylum="Chordata" rank="genus">
<emphasis box="[1221,1386,585,614]" italics="true" pageId="9" pageNumber="10">Aquilolamna</emphasis>
</taxonomicName>
are distinctive among selachimorphs.
</paragraph>
<paragraph blockId="9.[192,1441,420,1884]" lastBlockId="10.[192,1441,199,283]" lastPageId="10" lastPageNumber="11" pageId="9" pageNumber="10">
The second LDA including both shark and batoid species (correct classification = 73.6%;
<tableCitation box="[192,311,751,780]" captionStart="Table S" captionStartId="27.[192,270,963,992]" captionTargetBox="[206,1398,457,850]" captionText="Table S6. Confusion matrix showing the prediction accuracy of the linear discriminant analysis based on morphometric measurements for sharks and batoids in Table S2. This matrix provides for each given ecomorphotype (rows) the number of correctly (in bold) and incorrectly (in red) predicted ecomorphotypes (columns)." httpUri="http://table.plazi.org/id/AEA7A3E8FFB43F1EFAA2FC72B413FB68" pageId="9" pageNumber="10" tableUuid="AEA7A3E8FFB43F1EFAA2FC72B413FB68">
Table
<collectionCode box="[277,294,751,780]" pageId="9" pageNumber="10">S</collectionCode>
6
</tableCitation>
) shows that
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[486,640,751,780]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="9" pageNumber="10" phylum="Chordata" rank="species" species="milarcae">
<emphasis box="[486,640,751,780]" italics="true" pageId="9" pageNumber="10">A. milarcae</emphasis>
</taxonomicName>
falls in the overlapping area between the aquilopelagic and rajobenthic ecomorphotypes (
<figureCitation box="[588,670,806,835]" captionStart="Fig" captionStartId="13.[192,238,922,951]" captionTargetBox="[192,1440,192,877]" captionTargetId="figure-56@13.[192,1440,192,877]" captionText="Fig. S3. Anatomical details of Aquilolamna milarcae. Photograph (A) and interpretative line drawing (B) of the head of A. milarcae (INAH 2544 P.F.17). cc, chondrocranium; ch, ceratohyal; hm, hyomandibula; Mc, Meckelʾs cartilage; nc, nasal capsules; oc, occipital centrum; pq, palatoquadrate; rc, rostral cartilages; vc, vertebral column." pageId="9" pageNumber="10">Fig. 3</figureCitation>
and
<figureCitation box="[748,864,806,835]" captionStart="Fig" captionStartId="21.[192,238,1120,1149]" captionTargetBox="[192,1440,192,1111]" captionTargetId="figure-365@21.[192,1440,192,1111]" captionText="Fig. S11. Ecomorphotype of Aquilolamna milarcae: comparison with living pelagic and benthic elasmobranchs. Linear discriminant analysis based on log-transformed precaudal length (or disc length) and pectoral fin span (or disc width) measurements for 53 living elasmobranch species (26 sharks and 27 batoids) belonging to eight specialized ecomorphotypes, with Aquilolamna milarcae added. Note the isolated position of A. milarcae (black star), suggesting an aquilopelagic-like ecomorphotype for this unique shark; this is confirmed when a 250 cm hypothetical maximum total length is used for A. milarcae (white star). A.f, Aetobatus flagellum; A.n, Aetobatus narinari; A.p, Alopias pelagicus; A.r, Aptychotrema rostrata; C.c, Carcharodon carcharias; C.f, Carcharhinus falciformis; C.l, Carcharhinus longimanus; C.m, Cetorhinus maximus; D.o, Dipturus olseni; E.b, Euprotomicrus bispinatus; E.d, Eucrossorhinus dasypogon; G.a, Gymnura altavela; G.g, Glaucostegus granulatus; G.h, Glaucostegus halavi; G.m, Gymnura micrura; G.t, Glaucostegus thoin; H.b, Hexatrygon bickelli; He.g, Hexanchus griseus; H.m, Heteroscymnoides marleyi; H.p, Heptranchias perlo; Hy.g, Hypanus guttatus; I.b, Isistius brasiliensis; I.o, Isurus oxyrinchus; I.p, Isurus paucus; L.n, Lamna nasus; M.a, Mobula alfredi; M.b, Mobula birostris; M.f, Myliobatis freminvillei; M.g, Myliobatis goodei; M.k, Mobula kuhlii; M.m, Mobula mobular; M.o, Mitsukurina owstoni; M.p, Megachasma pelagios; M.s, Malacoraja senta; M.ta, Mobula tarapacana; M.th, Mobula thurstoni; O.n, Odontaspis noronhai O.o, Orectolobus ornatus; P.g, Prionace glauca; P.k, Pseudocarcharias kamoharai; P.v, Pteroplatytrygon violacea; R.an, Rhina ancylostoma; R.au, Rhynchobatus australiae; R.b, Rhinoptera brasiliensis; R.e, Rostroraja eglanteria; R.s, Rhinobatos schlegelii; R.t, Rhincodon typus; Sc.a, Scymnodalatias albicauda; S.j, Squatina japonica; S.l, Springeria longirostris; So.a, Somniosus antarcticus; Sq.a, Squatina aculeata; Z.s, Zameus squamulosus." pageId="9" pageNumber="10">
Fig.
<collectionCode box="[813,831,806,835]" pageId="9" pageNumber="10">S</collectionCode>
11
</figureCitation>
). However, the LDA classifier assigns
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="9" pageNumber="10" phylum="Chordata" rank="species" species="milarcae">
<emphasis box="[1412,1440,807,835]" italics="true" pageId="9" pageNumber="10">A.</emphasis>
<emphasis box="[192,306,861,890]" italics="true" pageId="9" pageNumber="10">milarcae</emphasis>
</taxonomicName>
to the aquilopelagic group based on the minimal Mahalanobis distanceto the group mean. This is confirmed when a
<quantity box="[523,617,917,946]" metricMagnitude="0" metricUnit="m" metricValue="2.5" pageId="9" pageNumber="10" unit="cm" value="250.0">250 cm</quantity>
hypothetical maximum total length is used for
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[1219,1368,916,945]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="9" pageNumber="10" phylum="Chordata" rank="species" species="milarcae">
<emphasis box="[1219,1368,916,945]" italics="true" pageId="9" pageNumber="10">A. milarcae</emphasis>
</taxonomicName>
, with a new position located within the aquilopelagic ecomorphotype but outside the rajobenthic ecomorphotype. The partial overlap observed between the aquilopelagic and rajobenthic ecomorphotypes is due to the aquilopelagic-like disc proportions (i.e., disc markedly wider than long) of the butterfly rays (
<taxonomicName authorityName="Kuhl" authorityYear="1823" box="[557,678,1138,1166]" class="Elasmobranchii" family="Gymnuridae" genus="Gymnura" kingdom="Animalia" order="Myliobatiformes" pageId="9" pageNumber="10" phylum="Chordata" rank="genus">
<emphasis box="[557,678,1138,1166]" italics="true" pageId="9" pageNumber="10">Gymnura</emphasis>
</taxonomicName>
spp.) (
<bibRefCitation author="L. J. Rosenberger" box="[775,807,1137,1166]" journalOrPublisher="J. Exp. Biol." pageId="9" pageNumber="10" pagination="394" part="379" refId="ref9018" refString="21. L. J. Rosenberger, Pectoral fin locomotion in batoid fishes: Undulation versus oscillation. J. Exp. Biol. 204, 379 ± 394 (2001). Medline" title="Pectoral fin locomotion in batoid fishes: Undulation versus oscillation" type="journal article" year="2001">
<emphasis box="[775,807,1137,1166]" italics="true" pageId="9" pageNumber="10">21</emphasis>
</bibRefCitation>
,
<bibRefCitation author="O. Franklin &amp; C. Palmer &amp; G. Dyke" box="[827,859,1137,1166]" journalOrPublisher="J. Morphol." pageId="9" pageNumber="10" pagination="1186" part="1173" refId="ref11385" refString="58. O. Franklin, C. Palmer, G. Dyke, Pectoral fin morphology of batoid fishes (Chondrichthyes: Batoidea): Explaining phylogenetic variation with geometric morphometrics. J. Morphol. 275, 1173 ± 1186 (2014). doi: 10.1002 / jmor. 20294 Medline" title="Pectoral fin morphology of batoid fishes (Chondrichthyes: Batoidea): Explaining phylogenetic variation with geometric morphometrics" type="journal article" year="2014">
<emphasis box="[827,859,1137,1166]" italics="true" pageId="9" pageNumber="10">58</emphasis>
</bibRefCitation>
). Gymnurids were originally categorized as bottom-dwelling, undulatory rajobenthic rays (
<bibRefCitation author="L. J. V. Compagno" box="[821,837,1193,1222]" journalOrPublisher="Environ. Biol. Fishes" pageId="9" pageNumber="10" pagination="75" part="33" refId="ref7971" refString="1. L. J. V. Compagno, Alternative life-history styles of cartilaginous fishes in time and space. Environ. Biol. Fishes 28, 33 ± 75 (1990). doi: 10.1007 / BF 00751027" title="Alternative life-history styles of cartilaginous fishes in time and space" type="journal article" volumeTitle="28" year="1990">
<emphasis box="[821,837,1193,1222]" italics="true" pageId="9" pageNumber="10">1</emphasis>
</bibRefCitation>
) (ecomorphotype assignment followed here;
<tableCitation box="[192,312,1248,1277]" captionStart="Table S" captionStartId="24.[192,270,200,229]" captionTargetBox="[206,1424,420,1917]" captionText="Table S2. Disc length (DL) (or precaudal length for rhinobenthic species) and disc width (DW) (or pectoral fin span for rhinobenthic species) of 27 extant benthic and oceanic pelagic batoid species. My, Myliobatiformes; Ra, Rajiformes; Rh, Rhinopristiformes." httpUri="http://table.plazi.org/id/AEA7A3E8FFB73F1DFAA2FF79B597FE88" pageId="9" pageNumber="10" tableUuid="AEA7A3E8FFB73F1DFAA2FF79B597FE88">
Table
<collectionCode box="[278,295,1248,1277]" pageId="9" pageNumber="10">S</collectionCode>
2
</tableCitation>
), but subsequently studies demonstrated that this group actually use fin movements intermediate between undulatory (like in typical rajobenthic forms) and oscillatory (like in typical aquilopelagic forms) locomotion (
<bibRefCitation author="L. J. Rosenberger" box="[647,679,1358,1387]" journalOrPublisher="J. Exp. Biol." pageId="9" pageNumber="10" pagination="394" part="379" refId="ref9018" refString="21. L. J. Rosenberger, Pectoral fin locomotion in batoid fishes: Undulation versus oscillation. J. Exp. Biol. 204, 379 ± 394 (2001). Medline" title="Pectoral fin locomotion in batoid fishes: Undulation versus oscillation" type="journal article" year="2001">
<emphasis box="[647,679,1358,1387]" italics="true" pageId="9" pageNumber="10">21</emphasis>
</bibRefCitation>
,
<bibRefCitation author="O. Franklin &amp; C. Palmer &amp; G. Dyke" box="[701,733,1358,1387]" journalOrPublisher="J. Morphol." pageId="9" pageNumber="10" pagination="1186" part="1173" refId="ref11385" refString="58. O. Franklin, C. Palmer, G. Dyke, Pectoral fin morphology of batoid fishes (Chondrichthyes: Batoidea): Explaining phylogenetic variation with geometric morphometrics. J. Morphol. 275, 1173 ± 1186 (2014). doi: 10.1002 / jmor. 20294 Medline" title="Pectoral fin morphology of batoid fishes (Chondrichthyes: Batoidea): Explaining phylogenetic variation with geometric morphometrics" type="journal article" year="2014">
<emphasis box="[701,733,1358,1387]" italics="true" pageId="9" pageNumber="10">58</emphasis>
</bibRefCitation>
). Gymnurids exhibit an undulatory-based swimming mode near the sea bottom, whereas their locomotion is more oscillatory in the water column (
<bibRefCitation author="L. J. Rosenberger" box="[1389,1421,1413,1442]" journalOrPublisher="J. Exp. Biol." pageId="9" pageNumber="10" pagination="394" part="379" refId="ref9018" refString="21. L. J. Rosenberger, Pectoral fin locomotion in batoid fishes: Undulation versus oscillation. J. Exp. Biol. 204, 379 ± 394 (2001). Medline" title="Pectoral fin locomotion in batoid fishes: Undulation versus oscillation" type="journal article" year="2001">
<emphasis box="[1389,1421,1413,1442]" italics="true" pageId="9" pageNumber="10">21</emphasis>
</bibRefCitation>
). Therefore, gymnurids should not be considered as a rajobenthic group sensu stricto. Arajobenthic ecomorphotype can be ruled out for
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[684,838,1524,1553]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="9" pageNumber="10" phylum="Chordata" rank="species" species="milarcae">
<emphasis box="[684,838,1524,1553]" italics="true" pageId="9" pageNumber="10">A. milarcae</emphasis>
</taxonomicName>
, as the latter was likely an active-swimming pelagic form (see above) characterized by pectoral fins with a narrowly angular shape and gently recurved distal tips (unlike gymnurids but like aquilopelagic myliobatiforms). With the exception of its typical shark caudal fin,
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[581,730,1689,1718]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="9" pageNumber="10" phylum="Chordata" rank="species" species="milarcae">
<emphasis box="[581,730,1689,1718]" italics="true" pageId="9" pageNumber="10">A. milarcae</emphasis>
</taxonomicName>
shows aquilopelagic-like morphology and proportions, clearly distinct from those observed in selachimorphs. Interestingly, the living demersal species
<taxonomicName authorityName="Bloch &amp; J.G.Schneider" authorityYear="1801" box="[192,444,1800,1829]" class="Insecta" family="Curculionidae" genus="Rhina" kingdom="Animalia" order="Coleoptera" pageId="9" pageNumber="10" phylum="Arthropoda" rank="species" species="ancylostoma">
<emphasis box="[192,444,1800,1829]" italics="true" pageId="9" pageNumber="10">Rhina ancylostoma</emphasis>
</taxonomicName>
(shark ray), which is similar to
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[888,1043,1800,1829]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="9" pageNumber="10" phylum="Chordata" rank="species" species="milarcae">
<emphasis box="[888,1043,1800,1829]" italics="true" pageId="9" pageNumber="10">A. milarcae</emphasis>
</taxonomicName>
in having a shark -ray mixed appearance, is a rhinobenthic batoid that falls between the macroceanic and squatinobenthic shark species. Whereas the body of
<taxonomicName authorityName="Vullo &amp; Frey &amp; Ifrim &amp; Gonzaléz &amp; Stinnesbec &amp; Stinnesbeck" authorityYear="2021" box="[590,742,199,228]" class="Actinopterygii" family="Pachyrhizodontidae" genus="Aquilolamna" higherTaxonomySource="GBIF" kingdom="Animalia" order="Crossognathiformes" pageId="10" pageNumber="11" phylum="Chordata" rank="species" species="milarcae">
<emphasis box="[590,742,199,228]" italics="true" pageId="10" pageNumber="11">A. milarcae</emphasis>
</taxonomicName>
is wider than long, that of
<taxonomicName authorityName="Bloch &amp; J.G.Schneider" authorityYear="1801" box="[1109,1310,199,228]" class="Insecta" family="Curculionidae" genus="Rhina" kingdom="Animalia" order="Coleoptera" pageId="10" pageNumber="11" phylum="Arthropoda" rank="species" species="ancylostoma">
<emphasis box="[1109,1310,199,228]" italics="true" pageId="10" pageNumber="11">R. ancylostoma</emphasis>
</taxonomicName>
is clearly longer than wide, with precaudal length about 0.6 and 1.5 times pectoral fin span, respectively.
</paragraph>
</subSubSection>
</treatment>
</document>