treatments-xml/data/19/E0/88/19E088D6EADFF32D53E62E7D40B41944.xml
2024-06-21 12:30:30 +02:00

905 lines
99 KiB
XML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document ID-DOI="http://dx.doi.org/10.3897/jhr.32.4663" ID-GBIF-Taxon="182249177" ID-Pensoft-Pub="1314-2607-32-17" ID-Pensoft-UUID="C36DFD2BFFB1F90FFFD4FFF0F505B103" ID-Zenodo-Dep="574817" ID-ZooBank="D481F35608124E8AB46DE00F1D298444" ModsDocID="1314-2607-32-17" checkinTime="1621552929459" checkinUser="pensoft" docAuthor="Huber, John T. &amp; Noyes, John S." docDate="2013" docId="19E088D6EADFF32D53E62E7D40B41944" docLanguage="en" docOrigin="Journal of Hymenoptera Research 32" docPubDate="2013-04-24" docSource="http://dx.doi.org/10.3897/jhr.32.4663" docTitle="Kikiki huna Huber &amp; Beardsley" docType="treatment" docVersion="2" id="C36DFD2BFFB1F90FFFD4FFF0F505B103" lastPageId="14" lastPageNumber="31" masterDocId="C36DFD2BFFB1F90FFFD4FFF0F505B103" masterDocTitle="A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera, Mymaridae), with comments on its sister genus Kikiki, and discussion on small size limits in arthropods" masterLastPageNumber="44" masterPageNumber="17" pageId="7" pageNumber="24" updateTime="1643536030641" updateUser="ExternalLinkService">
<mods:mods xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo>
<mods:title>A new genus and species of fairyfly, Tinkerbella nana (Hymenoptera, Mymaridae), with comments on its sister genus Kikiki, and discussion on small size limits in arthropods</mods:title>
</mods:titleInfo>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Huber, John T.</mods:namePart>
<mods:affiliation>Natural Resources Canada, c / o Canadian National Collection of Insects, AAFC, K. W. Neatby building, 960 Carling Avenue, Ottawa, ON, K 1 A 0 C 6, Canada</mods:affiliation>
<mods:nameIdentifier type="email">john.huber@agr.gc.ca</mods:nameIdentifier>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Noyes, John S.</mods:namePart>
<mods:affiliation>Department of Entomology, Natural History Museum, Cromwell Road, South Kensington, London, SW 7 5 BD, UK</mods:affiliation>
</mods:name>
<mods:typeOfResource>text</mods:typeOfResource>
<mods:relatedItem type="host">
<mods:titleInfo>
<mods:title>Journal of Hymenoptera Research</mods:title>
</mods:titleInfo>
<mods:part>
<mods:date>2013</mods:date>
<mods:detail type="pubDate">
<mods:number>2013-04-24</mods:number>
</mods:detail>
<mods:detail type="volume">
<mods:number>32</mods:number>
</mods:detail>
<mods:extent unit="page">
<mods:start>17</mods:start>
<mods:end>44</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location>
<mods:url>http://dx.doi.org/10.3897/jhr.32.4663</mods:url>
</mods:location>
<mods:classification>journal article</mods:classification>
<mods:identifier type="DOI">http://dx.doi.org/10.3897/jhr.32.4663</mods:identifier>
<mods:identifier type="Pensoft-Pub">1314-2607-32-17</mods:identifier>
<mods:identifier type="ZooBank">D481F35608124E8AB46DE00F1D298444</mods:identifier>
<mods:identifier type="Pensoft-UUID">C36DFD2BFFB1F90FFFD4FFF0F505B103</mods:identifier>
<mods:identifier type="Zenodo-Dep">574817</mods:identifier>
</mods:mods>
<subSection lastPageId="14" lastPageNumber="31" pageId="7" pageNumber="24" type="taxonomy">
<treatment ID-GBIF-Taxon="182249177" LSID="urn:lsid:plazi:treatment:19E088D6EADFF32D53E62E7D40B41944" httpUri="http://treatment.plazi.org/id/19E088D6EADFF32D53E62E7D40B41944" lastPageId="14" lastPageNumber="31" pageId="7" pageNumber="24">
<subSubSection pageId="7" pageNumber="24" type="nomenclature">
<paragraph pageId="7" pageNumber="24">
<taxonomicName LSID="http://species-id.net/wiki/Kikiki_huna" authority="Huber &amp; Beardsley" authorityName="Huber &amp; Beardsley" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="Kikiki huna" order="Hymenoptera" pageId="7" pageNumber="24" phylum="Arthropoda" rank="species" species="huna">Kikiki huna Huber &amp; Beardsley</taxonomicName>
<figureCitation captionStart="Figures 1, 2" captionStartId="F1" captionText="Figures 1, 2. Habitus, lateral. 1 Tinkerbella nana female 2 Kikiki huna, female. Scale line = 100 μm." httpUri="https://binary.pensoft.net/fig/11743" pageId="7" pageNumber="24">Figs 2</figureCitation>
<figureCitation captionStart="Figures 2326" captionStartId="F6" captionText="Figures 23 - 26. Kikiki huna female, on slide (cleared, except Fig. 23). 23 habitus, dorsal 24 head + right antenna, anterior 25 head, posterior 26 mesosoma, dorsal + metasoma, dorsal but focus at lower plane to show ovipositor. Scale line = 100 μm." httpUri="https://binary.pensoft.net/fig/11748" pageId="7" pageNumber="24">23</figureCitation>
<figureCitation captionStart="Figures 4348" captionStartId="F10" captionText="Figures 43 - 48. Kikiki huna, female, micrographs except Fig. 47. 43 antenna, lateral 44 mesosoma, dorsal 45 frenum - anterior half of metasoma, dorsal 46 metasoma, dorsal 47 hind leg, uncleared lateral, showing muscles; 48, right metatarsus, dorsal. Scale line = 20 μm, except Fig. 47 = 50 μm and 48 = 10 μm." httpUri="https://binary.pensoft.net/fig/11752" pageId="7" pageNumber="24">48</figureCitation>
</paragraph>
</subSubSection>
<subSubSection pageId="7" pageNumber="24" type="description">
<paragraph pageId="7" pageNumber="24">Description.</paragraph>
<paragraph pageId="7" pageNumber="24">
<emphasis bold="true" pageId="7" pageNumber="24">Female.</emphasis>
Body length (critical point dried specimens) 158-190
<normalizedToken originalValue="μm">μm</normalizedToken>
(n=10).
<emphasis bold="true" pageId="7" pageNumber="24">Antenna</emphasis>
. Funicle segments and basal claval segment without mps, apical claval segment with 3 mps (
<figureCitation captionStart="Figures 2326" captionStartId="F6" captionText="Figures 23 - 26. Kikiki huna female, on slide (cleared, except Fig. 23). 23 habitus, dorsal 24 head + right antenna, anterior 25 head, posterior 26 mesosoma, dorsal + metasoma, dorsal but focus at lower plane to show ovipositor. Scale line = 100 μm." httpUri="https://binary.pensoft.net/fig/11748" pageId="7" pageNumber="24">Figs 24</figureCitation>
,
<figureCitation captionStart="Figures 4348" captionStartId="F10" captionText="Figures 43 - 48. Kikiki huna, female, micrographs except Fig. 47. 43 antenna, lateral 44 mesosoma, dorsal 45 frenum - anterior half of metasoma, dorsal 46 metasoma, dorsal 47 hind leg, uncleared lateral, showing muscles; 48, right metatarsus, dorsal. Scale line = 20 μm, except Fig. 47 = 50 μm and 48 = 10 μm." httpUri="https://binary.pensoft.net/fig/11752" pageId="7" pageNumber="24">43</figureCitation>
). Antennal length/width measurements (n=4, Costa Rica specimens): scape, 36-47/10-11, pedicel 19-25/12-13, fl1 8-9/5-6, fl2 16-18/6, fl3 14-17/6-7, fl4 12-18/7-8, clava 46-54/15.
<emphasis bold="true" pageId="7" pageNumber="24">Wings.</emphasis>
Fore wing (
<figureCitation captionStart="Figures 2729" captionStartId="F7" captionText="Figures 27 - 29. Kikiki huna female, cleared on slide. 27 wings 28 metasoma, dorsal surface 29 metasoma, ventral surface (seen dorsally through cleared metasoma). Scale line = 100 μm." httpUri="https://binary.pensoft.net/fig/11749" pageId="7" pageNumber="24">Fig. 27</figureCitation>
) length 182-226, width 20-24, length/width 9.10-9.24, longest marginal setae 102-123 (n=3, slide mounts), hind wing (
<figureCitation captionStart="Figures 2326" captionStartId="F6" captionText="Figures 23 - 26. Kikiki huna female, on slide (cleared, except Fig. 23). 23 habitus, dorsal 24 head + right antenna, anterior 25 head, posterior 26 mesosoma, dorsal + metasoma, dorsal but focus at lower plane to show ovipositor. Scale line = 100 μm." httpUri="https://binary.pensoft.net/fig/11748" pageId="7" pageNumber="24">Figs 23</figureCitation>
,
<figureCitation captionStart="Figures 2729" captionStartId="F7" captionText="Figures 27 - 29. Kikiki huna female, cleared on slide. 27 wings 28 metasoma, dorsal surface 29 metasoma, ventral surface (seen dorsally through cleared metasoma). Scale line = 100 μm." httpUri="https://binary.pensoft.net/fig/11749" pageId="7" pageNumber="24">27</figureCitation>
) length 162-198, width 4-5, longest marginal setae 96 (n=1-3).
</paragraph>
<paragraph pageId="7" pageNumber="24">
<emphasis bold="true" pageId="7" pageNumber="24">Male</emphasis>
. Unknown for Neotropical region.
</paragraph>
</subSubSection>
<subSubSection pageId="8" pageNumber="25" type="material examined">
<paragraph pageId="8" pageNumber="25">
<pageBreakToken pageId="8" pageNumber="25" start="start">Material</pageBreakToken>
examined.
</paragraph>
<paragraph pageId="8" pageNumber="25">
20♀.
<emphasis bold="true" pageId="8" pageNumber="25">COSTA RICA</emphasis>
.
<emphasis bold="true" pageId="8" pageNumber="25">Heredia</emphasis>
. La Selva Biological Station,
<geoCoordinate degrees="10" direction="north" minutes="26" orientation="latitude" precision="925" value="10.433333">10°26'N</geoCoordinate>
,
<geoCoordinate degrees="84" direction="west" minutes="01" orientation="longitude" precision="925" value="-84.01667">84°01'W</geoCoordinate>
, 75m, 27-28.ii.2003, J.S. Noyes (1♀, CNC).
<emphasis bold="true" pageId="8" pageNumber="25">Puntarenas</emphasis>
. La Gamba Biological Station,
<geoCoordinate degrees="8" direction="north" minutes="42" orientation="latitude" precision="925" value="8.7">8°42'N</geoCoordinate>
,
<geoCoordinate degrees="83" direction="west" minutes="12" orientation="longitude" precision="925" value="-83.2">83°12'W</geoCoordinate>
, 150m, 13-14.ii.2006, J.S. Noyes (1♀, BMNH); Reserva Absoluta Cabo Blanco,
<geoCoordinate degrees="9" direction="north" minutes="35" orientation="latitude" precision="925" value="9.583333">9°35'N</geoCoordinate>
,
<geoCoordinate degrees="85" direction="west" minutes="36" orientation="longitude" precision="925" value="-85.6">85°36'W</geoCoordinate>
, 30m, 16-17.ii.2009, J.S. Noyes, sweeping (9♀, CNC, INBio, UCRC); Reserva Privada Karen Morgensen,
<geoCoordinate degrees="9" direction="north" minutes="52" orientation="latitude" precision="925" value="9.866667">9°52'N</geoCoordinate>
,
<geoCoordinate degrees="85" direction="west" minutes="03" orientation="longitude" precision="925" value="-85.05">85°03'W</geoCoordinate>
, 305m, 23-24.ii.2007, J.S. Noyes, sweeping (6♀, BMNH).
<emphasis bold="true" pageId="8" pageNumber="25">HAWAIIAN ISLANDS</emphasis>
.
<emphasis bold="true" pageId="8" pageNumber="25">Molokai I</emphasis>
.: Mapulehu (1♀ paratype, CNC).
<emphasis bold="true" pageId="8" pageNumber="25">TRINIDAD &amp; TOBAGO</emphasis>
.
<emphasis bold="true" pageId="8" pageNumber="25">Trinidad</emphasis>
. Curepe, Santa Margarita Circular Road, 8.xii.1974-2.ii.1975, F.D. Bennett (2♀, CNC).
</paragraph>
</subSubSection>
<subSubSection lastPageId="9" lastPageNumber="26" pageId="8" pageNumber="25" type="discussion">
<paragraph pageId="8" pageNumber="25">Discussion.</paragraph>
<paragraph pageId="8" pageNumber="25">
We cannot find any morphological differences suggesting that the specimens from Costa Rica and Trinidad are different from the Hawaiian specimens. The number and distribution of mps on the antennal segments as reported by
<bibRefCitation author="Huber, JT" journalOrPublisher="Proceedings of the Hawaiian Entomological Society" pageId="14" pageNumber="31" refId="B21" refString="Huber, JT, Beardsley, JW, 2000b. A new genus of fairyfly, Kikiki, from the Hawaiian Islands (Hymenoptera: Mymaridae). Proceedings of the Hawaiian Entomological Society 34: 65-70." title="A new genus of fairyfly, Kikiki, from the Hawaiian Islands (Hymenoptera: Mymaridae). Proceedings of the Hawaiian Entomological Society 34: 65 - 70." year="2000 b">Huber and Beardsley (2000b)</bibRefCitation>
are incorrect, as mentioned above. Both the Hawaiian and the Neotropical American specimens have the same mps distribution. The body length of the former averages slightly larger, from 190-ca 330
<normalizedToken originalValue="μm">μm</normalizedToken>
long (
<bibRefCitation author="Huber, JT" journalOrPublisher="Proceedings of the Hawaiian Entomological Society" pageId="14" pageNumber="31" refId="B21" refString="Huber, JT, Beardsley, JW, 2000b. A new genus of fairyfly, Kikiki, from the Hawaiian Islands (Hymenoptera: Mymaridae). Proceedings of the Hawaiian Entomological Society 34: 65-70." title="A new genus of fairyfly, Kikiki, from the Hawaiian Islands (Hymenoptera: Mymaridae). Proceedings of the Hawaiian Entomological Society 34: 65 - 70." year="2000 b">Huber and Beardsley 2000b</bibRefCitation>
) but this is insufficient evidence for species separation.
</paragraph>
<paragraph pageId="8" pageNumber="25">
At the genus level, and even the species level, the Hawaiian fauna at low elevation appears to be almost entirely represented by exotic species (
<bibRefCitation author="Huber, JT" journalOrPublisher="Proceedings of the Hawaiian Entomological Society" pageId="14" pageNumber="31" pagination="49 - 60" refId="B20" refString="Huber, JT, Beardsley, JW, 2000a. Key to Gonatocerus from the Hawaiian Islands, with notes on the species (Hymenoptera: Mymaridae). Proceedings of the Hawaiian Entomological Society 34: 49 - 60" title="Key to Gonatocerus from the Hawaiian Islands, with notes on the species (Hymenoptera: Mymaridae)." volume="34" year="2000 a">Huber and Beardsley 2000a</bibRefCitation>
,
<bibRefCitation author="Beardsley, JW" journalOrPublisher="Proceedings of the Hawaiian Entomological Society" pageId="14" pageNumber="31" pagination="1 - 22" refId="B2" refString="Beardsley, JW, Huber, JT, 2000. Key to genera of Mymaridae from the Hawaiian Islands, with notes on some of the species (Hymenoptera: Mymaridae). Proceedings of the Hawaiian Entomological Society 34: 1 - 22" title="Key to genera of Mymaridae from the Hawaiian Islands, with notes on some of the species (Hymenoptera: Mymaridae)." volume="34" year="2000">Beardsley and Huber 2000</bibRefCitation>
,
<bibRefCitation author="Triapitsyn, SV" journalOrPublisher="Proceedings of the Hawaiian Entomological Society" pageId="14" pageNumber="31" pagination="23 - 48" refId="B39" refString="Triapitsyn, SV, Beardsley, JW, 2000. A review of the Hawaiian species of Anagrus (Hymenoptera: Mymaridae). Proceedings of the Hawaiian Entomological Society 34: 23 - 48" title="A review of the Hawaiian species of Anagrus (Hymenoptera: Mymaridae)." volume="34" year="2000">Triapitsyn and Beardsley 2000</bibRefCitation>
), except for one genus (
<taxonomicName class="Hexapoda" family="Mymaridae" genus="Polynema" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="8" pageNumber="25">Polynema</emphasis>
</taxonomicName>
) that has numerous, native species at higher elevations. Although
<taxonomicName class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="species" species="huna">
<emphasis italics="true" pageId="8" pageNumber="25">Kikiki huna</emphasis>
</taxonomicName>
appeared to be endemic(
<bibRefCitation author="Huber, JT" journalOrPublisher="Proceedings of the Hawaiian Entomological Society" pageId="14" pageNumber="31" refId="B21" refString="Huber, JT, Beardsley, JW, 2000b. A new genus of fairyfly, Kikiki, from the Hawaiian Islands (Hymenoptera: Mymaridae). Proceedings of the Hawaiian Entomological Society 34: 65-70." title="A new genus of fairyfly, Kikiki, from the Hawaiian Islands (Hymenoptera: Mymaridae). Proceedings of the Hawaiian Entomological Society 34: 65 - 70." year="2000 b">Huber and Beardsley 2000b</bibRefCitation>
), this is simply because specimens of the genus had not yet been collected elsewhere-not surprising given their minute size. Specimens have since been found in Argentina (
<bibRefCitation author="Luft Albarracin, EL" journalOrPublisher="Zootaxa" pageId="14" pageNumber="31" pagination="1 - 28" refId="B26" refString="Luft Albarracin, EL, Triapitsyn, SV, Virla, EG, 2009. Annotated key to the genera of Mymaridae (Hymenoptera: Chalcidoidea) of Argentina. Zootaxa 2129: 1 - 28" title="Annotated key to the genera of Mymaridae (Hymenoptera: Chalcidoidea) of Argentina." volume="2129" year="2009">Luft Albarracin et al. 2009</bibRefCitation>
), Australia (
<bibRefCitation author="Lin, N-Q" journalOrPublisher="Zootaxa" pageId="14" pageNumber="31" pagination="1 - 111" refId="B24" refString="Lin, N-Q, Huber, JT, La Salle, J, 2007. The Australian genera of Mymaridae (Hymenoptera: Chalcidoidea). Zootaxa 1596: 1 - 111" title="The Australian genera of Mymaridae (Hymenoptera: Chalcidoidea)." volume="1596" year="2007">Lin et al. 2007</bibRefCitation>
) and Costa Rica (this paper) indicating that the genus is widespread. Given its mostly low elevation range in the Hawaiian Islands it was almost certainly accidentally introduced from elsewhere. We therefore treat all the specimens as the same species and suggest
<taxonomicName class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="species" species="huna">
<emphasis italics="true" pageId="8" pageNumber="25">Kikiki huna</emphasis>
</taxonomicName>
in the Hawaiian Islands came originally from Central America.
</paragraph>
<paragraph pageId="8" pageNumber="25">
<taxonomicName authorityName="Huber &amp; Noyes" authorityYear="2013" class="Insecta" family="Mymaridae" genus="Tinkerbella" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="8" pageNumber="25">Tinkerbella</emphasis>
</taxonomicName>
would key to
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="8" pageNumber="25">Kikiki</emphasis>
</taxonomicName>
in
<bibRefCitation author="Huber, JT" journalOrPublisher="Zookeys" pageId="14" pageNumber="31" pagination="233 - 244" publicationUrl="10.3897/zookeys.20.116" refId="B18" refString="Huber, JT, 2009b. The genus Dicopomorpha (Hymenoptera, Mymaridae) in Africa and a key to Alaptus -group genera. Zookeys 20: 233 - 244, 10.3897/zookeys.20.116" title="The genus Dicopomorpha (Hymenoptera, Mymaridae) in Africa and a key to Alaptus - group genera." url="10.3897/zookeys.20.116" volume="20" year="2009 b">Huber (2009b)</bibRefCitation>
because at the time he thought that the genus included species with a variable number of tarsomeres (3 or 4) and, in females, funicle segments (4 or 5) and clava segments (1 or 2). Because
<taxonomicName authorityName="Huber &amp; Noyes" authorityYear="2013" class="Insecta" family="Mymaridae" genus="Tinkerbella" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="8" pageNumber="25">Tinkerbella</emphasis>
</taxonomicName>
is distinct on other features as well it is described here as a new genus.
<bibRefCitation author="Huber, JT" journalOrPublisher="Zookeys" pageId="14" pageNumber="31" pagination="233 - 244" publicationUrl="10.3897/zookeys.20.116" refId="B18" refString="Huber, JT, 2009b. The genus Dicopomorpha (Hymenoptera, Mymaridae) in Africa and a key to Alaptus -group genera. Zookeys 20: 233 - 244, 10.3897/zookeys.20.116" title="The genus Dicopomorpha (Hymenoptera, Mymaridae) in Africa and a key to Alaptus - group genera." url="10.3897/zookeys.20.116" volume="20" year="2009 b">Huber (2009b)</bibRefCitation>
and
<bibRefCitation author="Lin, N-Q" journalOrPublisher="Zootaxa" pageId="14" pageNumber="31" pagination="1 - 111" refId="B24" refString="Lin, N-Q, Huber, JT, La Salle, J, 2007. The Australian genera of Mymaridae (Hymenoptera: Chalcidoidea). Zootaxa 1596: 1 - 111" title="The Australian genera of Mymaridae (Hymenoptera: Chalcidoidea)." volume="1596" year="2007">Lin et al. (2007)</bibRefCitation>
included
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="8" pageNumber="25">Kikiki</emphasis>
</taxonomicName>
in the
<taxonomicName class="Hexapoda" family="Mymaridae" genus="Alaptus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="8" pageNumber="25">Alaptus</emphasis>
</taxonomicName>
group of genera, mainly because of its minute size. If the key in
<bibRefCitation author="Huber, JT" journalOrPublisher="Zookeys" pageId="14" pageNumber="31" pagination="233 - 244" publicationUrl="10.3897/zookeys.20.116" refId="B18" refString="Huber, JT, 2009b. The genus Dicopomorpha (Hymenoptera, Mymaridae) in Africa and a key to Alaptus -group genera. Zookeys 20: 233 - 244, 10.3897/zookeys.20.116" title="The genus Dicopomorpha (Hymenoptera, Mymaridae) in Africa and a key to Alaptus - group genera." url="10.3897/zookeys.20.116" volume="20" year="2009 b">Huber (2009b)</bibRefCitation>
is used, couplet 1 should be deleted and replaced with the following two couplets at the beginning of the key to separate
<taxonomicName authorityName="Huber &amp; Noyes" authorityYear="2013" class="Insecta" family="Mymaridae" genus="Tinkerbella" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="8" pageNumber="25">Tinkerbella</emphasis>
</taxonomicName>
and
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="8" pageNumber="25">Kikiki</emphasis>
</taxonomicName>
from the remaining
<taxonomicName class="Hexapoda" family="Mymaridae" genus="Alaptus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="8" pageNumber="25">Alaptus</emphasis>
</taxonomicName>
-group genera, and to distinguish them from each other.
</paragraph>
<paragraph pageId="8" pageNumber="25">
<table inLine="true" pageId="8" pageNumber="25">
<tr pageId="8" pageNumber="25">
<td colspan="1" pageId="8" pageNumber="25" rowspan="1">1</td>
<td colspan="1" pageId="8" pageNumber="25" rowspan="1">Venation long, clearly more than half wing length; tarsi 3- or 4-segmented</td>
<td colspan="1" pageId="8" pageNumber="25" rowspan="1">1a</td>
</tr>
<tr pageId="8" pageNumber="25">
<td colspan="1" pageId="8" pageNumber="25" rowspan="1">-</td>
<td colspan="1" pageId="8" pageNumber="25" rowspan="1">Venation short, clearly less than half wing length; tarsi 5-segmented</td>
<td colspan="1" pageId="8" pageNumber="25" rowspan="1">
couplet 2 in
<bibRefCitation author="Huber, JT" journalOrPublisher="Zookeys" pageId="14" pageNumber="31" pagination="233 - 244" publicationUrl="10.3897/zookeys.20.116" refId="B18" refString="Huber, JT, 2009b. The genus Dicopomorpha (Hymenoptera, Mymaridae) in Africa and a key to Alaptus -group genera. Zookeys 20: 233 - 244, 10.3897/zookeys.20.116" title="The genus Dicopomorpha (Hymenoptera, Mymaridae) in Africa and a key to Alaptus - group genera." url="10.3897/zookeys.20.116" volume="20" year="2009 b">Huber (2009b)</bibRefCitation>
</td>
</tr>
<tr pageId="8" pageNumber="25">
<td colspan="1" pageId="8" pageNumber="25" rowspan="1">1a</td>
<td colspan="1" pageId="8" pageNumber="25" rowspan="1">Clava 2-segmented, funicle 4-segmented; tarsi 3-segmented</td>
<td colspan="1" pageId="8" pageNumber="25" rowspan="1">
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="8" pageNumber="25">Kikiki</emphasis>
</taxonomicName>
Huber and Beardsley
</td>
</tr>
<tr pageId="8" pageNumber="25">
<td colspan="1" pageId="8" pageNumber="25" rowspan="1">-</td>
<td colspan="1" pageId="8" pageNumber="25" rowspan="1">Clava entire; funicle 5-segmented, tarsi 4-segmented</td>
<td colspan="1" pageId="8" pageNumber="25" rowspan="1">
<taxonomicName authorityName="Huber &amp; Noyes" authorityYear="2013" class="Insecta" family="Mymaridae" genus="Tinkerbella" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="8" pageNumber="25" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="8" pageNumber="25">Tinkerbella</emphasis>
</taxonomicName>
Huber and Noyes
</td>
</tr>
</table>
</paragraph>
<paragraph pageId="9" pageNumber="26">
<pageBreakToken pageId="9" pageNumber="26" start="start">However</pageBreakToken>
, several features of both genera show that their placement in the
<taxonomicName class="Hexapoda" family="Mymaridae" genus="Alaptus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Alaptus</emphasis>
</taxonomicName>
group of genera is wrong and that they are best placed in the
<taxonomicName authorityName="Haliday" authorityYear="1833" class="Hexapoda" family="Mymaridae" genus="Anagrus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Anagrus</emphasis>
</taxonomicName>
-group because they share at least seven features with some or all of those genera: frenum apparently longitudinally divided by a groove, petiole and base of gaster distinctly narrower than propodeum and middle of gaster, tarsi with at most 4 tarsomeres (3 in
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Kikiki</emphasis>
</taxonomicName>
), stemmaticum present, mandibles with 4 teeth, fore wing venation with proximal macrochaeta much shorter than distal macrochaeta, and second phragma not projecting past posterior margin of propodeum.
</paragraph>
<paragraph pageId="9" pageNumber="26">
Both
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Kikiki</emphasis>
</taxonomicName>
and
<taxonomicName authorityName="Huber &amp; Noyes" authorityYear="2013" class="Insecta" family="Mymaridae" genus="Tinkerbella" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Tinkerbella</emphasis>
</taxonomicName>
are distinguished from other
<taxonomicName authorityName="Haliday" authorityYear="1833" class="Hexapoda" family="Mymaridae" genus="Anagrus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Anagrus</emphasis>
</taxonomicName>
-group genera by the venation clearly longer than half the wing length and hind wing essentially without fringe setae on the anterior margin. The other genera in the group have the venation clearly less than half wing length and the hind wing fringed with fairly long setae on the anterior margin. No member of the
<taxonomicName authorityName="Haliday" authorityYear="1833" class="Hexapoda" family="Mymaridae" genus="Anagrus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Anagrus</emphasis>
</taxonomicName>
group of genera is anywhere near as small as
<taxonomicName authorityName="Huber &amp; Noyes" authorityYear="2013" class="Insecta" family="Mymaridae" genus="Tinkerbella" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Tinkerbella</emphasis>
</taxonomicName>
or
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Kikiki</emphasis>
</taxonomicName>
so these genera can be distinguished on body size alone.
</paragraph>
<paragraph pageId="9" pageNumber="26">
Some members of the
<taxonomicName class="Hexapoda" family="Mymaridae" genus="Alaptus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Alaptus</emphasis>
</taxonomicName>
or
<taxonomicName authorityName="Forster" authorityYear="1856" class="Hexapoda" family="Mymaridae" genus="Camptoptera" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Camptoptera</emphasis>
</taxonomicName>
groups of genera are also extremely small but except for
<taxonomicName authorityName="Dozier" authorityYear="1932" class="Hexapoda" family="Mymaridae" genus="Alaptus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="species" species="borinquensis">
<emphasis italics="true" pageId="9" pageNumber="26">Alaptus borinquensis</emphasis>
</taxonomicName>
none has been found that equal minute size of
<taxonomicName authorityName="Huber &amp; Noyes" authorityYear="2013" class="Insecta" family="Mymaridae" genus="Tinkerbella" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Tinkerbella</emphasis>
</taxonomicName>
or
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Kikiki</emphasis>
</taxonomicName>
, i.e., less that about 250
<normalizedToken originalValue="μm">μm</normalizedToken>
. One specimen of
<taxonomicName class="Hexapoda" family="Mymaridae" genus="Alaptus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Alaptus</emphasis>
</taxonomicName>
from the same collecting event in Costa Rica as
<taxonomicName class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="species" species="huna">
<emphasis italics="true" pageId="9" pageNumber="26">Kikiki huna</emphasis>
</taxonomicName>
measured 272
<normalizedToken originalValue="μm">μm</normalizedToken>
and species of
<taxonomicName authorityName="Mathot" authorityYear="1966" class="Insecta" family="Mymaridae" genus="Eofoersteria" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Eofoersteria</emphasis>
</taxonomicName>
(also with 4-segmented tarsi, despite being in the
<taxonomicName authorityName="Forster" authorityYear="1856" class="Hexapoda" family="Mymaridae" genus="Camptoptera" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="9" pageNumber="26">Camptoptera</emphasis>
</taxonomicName>
group) are about 320
<normalizedToken originalValue="μm">μm</normalizedToken>
. The six specimens (4 females, 2 males, on 4 slides, USNM) of
<taxonomicName authorityName="Dozier" authorityYear="1932" class="Hexapoda" family="Mymaridae" genus="Alaptus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="species" species="borinquensis">
<emphasis italics="true" pageId="9" pageNumber="26">Alaptus borinquensis</emphasis>
</taxonomicName>
are uncleared and mounted mostly in lateral view in Canada balsam, and some are slightly shrivelled. The smallest specimen, a male, measured 203
<normalizedToken originalValue="μm">μm</normalizedToken>
in length, not 186
<normalizedToken originalValue="μm">μm</normalizedToken>
as reported by
<bibRefCitation author="Dozier, HL" journalOrPublisher="Journal of the Department of Agriculture of Puerto Rico" pageId="14" pageNumber="31" pagination="81 - 91" refId="B7" refString="Dozier, HL, 1932. Descriptions of mymarid egg parasites from Haiti and Puerto Rico. Journal of the Department of Agriculture of Puerto Rico 16: 81 - 91" title="Descriptions of mymarid egg parasites from Haiti and Puerto Rico." volume="16" year="1932">Dozier (1932)</bibRefCitation>
. The ranges for females and males, respectively, are 215-411
<normalizedToken originalValue="μm">μm</normalizedToken>
(n=4) and 203-311
<normalizedToken originalValue="μm">μm</normalizedToken>
(n=2), measured with a filar micrometer at 400
<normalizedToken originalValue="×">x</normalizedToken>
by JTH.
</paragraph>
</subSubSection>
<subSubSection lastPageId="14" lastPageNumber="31" pageId="9" pageNumber="26" type="body size limits in arthropods">
<paragraph pageId="9" pageNumber="26">Body size limits in arthropods</paragraph>
<paragraph pageId="9" pageNumber="26">What is the smallest size that an adult insect can attain, as measured by body length, and/or fore wing length for flying insects? If something is physically possible in living things some individuals of at least one species, extinct or extant, will likely have achieved it. So the lower size limit, by whatever measure of size is chosen, was almost certainly already evolved-somewhere, sometime. If we have not already found them, we must surely be close to discovering the smallest insects and other arthropods.</paragraph>
<paragraph lastPageId="10" lastPageNumber="27" pageId="9" pageNumber="26">
The minimum size possible for invertebrates with articulated appendages of locomotion (superphylum
<taxonomicName class="Insecta" family="Meganeuridae" genus="Arthropoda" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Meganisoptera" pageId="9" pageNumber="26" phylum="Arthropoda" rank="genus">Arthropoda</taxonomicName>
) that would allow crawling, walking, or active flight (wing flapping, not gliding) is determined by two types of constraint: internal (physiological and structural) and external (physical). For multicellular animals, the size and structure of cells cannot go below a certain minimum before they cannot function for the purpose intended. Therefore, once any type of cell has attained its minimum size, the number of cells making up a particular tissue or organ must decrease as the animal becomes smaller. But there evidently is a lower limit to cell number in any particular
<pageBreakToken pageId="10" pageNumber="27" start="start">organ</pageBreakToken>
for it to function as intended, perhaps as low as one, e.g., a single muscle fiber or ommatidium. Or the tissue or organ may be dispensed with entirely, usually because it is no longer necessary, e.g., eye loss in obligate cave-dwelling species (troglobites). Once these internal constraints are reached the arthropod cannot become any smaller.
<bibRefCitation author="Nuzzaci, G" editor="Lindquist, EE" journalOrPublisher="Elsevier Science, Amsterdam" pageId="14" pageNumber="31" pagination="101 - 150" publicationUrl="10.1016/S1572-4379(96)80006-6" refId="B35" refString="Nuzzaci, G, Alberti, G, 1996. Chapter 1.2. Internal anatomy and physiology. In: Lindquist, EE, Sabelis, MW, Bruin, J, Eds., Eriophyoid mites: their biology, natural enemies and control. Elsevier Science, Amsterdam: 101 - 150, 10.1016/S1572-4379(96)80006-6" title="Chapter 1.2. Internal anatomy and physiology." url="10.1016/S1572-4379(96)80006-6" volumeTitle="Eriophyoid mites: their biology, natural enemies and control." year="1996">Nuzzaci and Alberti (1996)</bibRefCitation>
showed that
<taxonomicName class="Arachnida" family="Eriophyidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Acari" pageId="10" pageNumber="27" phylum="Arthropoda" rank="family">Eriophyidae</taxonomicName>
(Acari) have no respiratory system and no striated muscle [in contrast to insects and other Acari, which have striated muscle exclusively (
<bibRefCitation author="Beinbrech, G" editor="Harrison, FW" journalOrPublisher="Volume 11 B. Insecta. Wiley-Liss, New York" pageId="14" pageNumber="31" pagination="553 - 572" refId="B3" refString="Beinbrech, G, 1998. Chapter 23. Muscle Structure. In: Harrison, FW, Locke, M, Eds., Microscopic Anatomy of Invertebrates. Volume 11B. Insecta. Wiley-Liss, New York: 553 - 572" title="Chapter 23. Muscle Structure." volumeTitle="Microscopic Anatomy of Invertebrates." year="1998">Beinbrech 1998</bibRefCitation>
,
<bibRefCitation author="Alberti, G" editor="Harrison, FW" journalOrPublisher="Volume 8 C. Chelicerate Arthropoda. Wiley-Liss, New York" pageId="14" pageNumber="31" pagination="515 - 1215" refId="B1" refString="Alberti, G, Coons, LB, 1999. Chapter 6. Acari: Mites. In: Harrison, FW, Foelix, RF, Eds., Microscopic Anatomy of Invertebrates. Volume 8C. Chelicerate Arthropoda. Wiley-Liss, New York: 515 - 1215" title="Chapter 6. Acari: Mites." volumeTitle="Microscopic Anatomy of Invertebrates." year="1999">Alberti and Coons 1999</bibRefCitation>
)].
<bibRefCitation author="Polilov, AA" editor="Rasnitsyn, AP" journalOrPublisher="KMK Scientific Press, Moscow" pageId="14" pageNumber="31" pagination="50 - 64" refId="B36" refString="Polilov, AA, 2007. Miniaturization-related structural features in Mymaridae. In: Rasnitsyn, AP, Gokhman, VE, Eds., Studies on Hymenopteran Insects. KMK Scientific Press, Moscow: 50 - 64" title="Miniaturization-related structural features in Mymaridae." volumeTitle="Studies on Hymenopteran Insects." year="2007">Polilov (2007)</bibRefCitation>
discussed miniaturization related features in
<taxonomicName class="Hexapoda" family="Mymaridae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="10" pageNumber="27" phylum="Arthropoda" rank="family">Mymaridae</taxonomicName>
, and
<bibRefCitation author="Polilov, AA" journalOrPublisher="Arthropod Structure &amp; Development" pageId="14" pageNumber="31" pagination="29 - 34" refId="B37" refString="Polilov, AA, 2012. The smallest insects evolve anucleate neurons. Arthropod Structure &amp; Development 41: 29 - 34" title="The smallest insects evolve anucleate neurons." volume="41" year="2012">Polilov (2012)</bibRefCitation>
showed that neurons of
<taxonomicName authorityName="Timberlake" authorityYear="1924" class="Hexapoda" family="Trichogrammatidae" genus="Megaphragma" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="10" pageNumber="27" phylum="Arthropoda" rank="species" species="mymaripenne">
<emphasis italics="true" pageId="10" pageNumber="27">Megaphragma mymaripenne</emphasis>
</taxonomicName>
Timberlake are anucleate.
<bibRefCitation author="Fischer, S" journalOrPublisher="Visual Neuroscience" pageId="14" pageNumber="31" pagination="295 - 308" publicationUrl="10.1017/S0952523810000192" refId="B11" refString="Fischer, S, Mueller, CHG, Meyer-Rochow, B, 2011. How small can small be: the compound eye of the parasitoid wasp Trichogramma evanescens (Westwood, 1833) (Hymenoptera, Hexapoda), an insect of 0.3- to 0.4-mm total body size. Visual Neuroscience 28: 295 - 308, 10.1017/S0952523810000192" title="How small can small be: the compound eye of the parasitoid wasp Trichogramma evanescens (Westwood, 1833) (Hymenoptera, Hexapoda), an insect of 0.3 - to 0.4 - mm total body size." url="10.1017/S0952523810000192" volume="28" year="2011">Fischer et al. (2011)</bibRefCitation>
discussed size limits in ommatidia in a small parasitic wasp,
<taxonomicName authorityName="Westwood" authorityYear="1833" class="Hexapoda" family="Trichogrammatidae" genus="Trichogramma" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="10" pageNumber="27" phylum="Arthropoda" rank="species" species="evanescens">
<emphasis italics="true" pageId="10" pageNumber="27">Trichogramma evanescens</emphasis>
</taxonomicName>
Westwood.
<bibRefCitation author="Grebennikov, VV" journalOrPublisher="European Journal of Entomology" pageId="14" pageNumber="31" pagination="313 - 328" refId="B15" refString="Grebennikov, VV, 2008. How small can you go: factors limiting body miniaturization in winged insects with a review of the panatropical genus Discheramocephalus and description of six new species of the smallest beetles (Pterygota: Coleoptera: Ptiliidae). European Journal of Entomology 105: 313 - 328" title="How small can you go: factors limiting body miniaturization in winged insects with a review of the panatropical genus Discheramocephalus and description of six new species of the smallest beetles (Pterygota: Coleoptera: Ptiliidae)." volume="105" year="2008">Grebennikov (2008)</bibRefCitation>
reviewed the limiting factors for small size in arthropods.
</paragraph>
<paragraph pageId="10" pageNumber="27">
As body size decreases, external constraints, e.g., desiccation (
<bibRefCitation author="Neville, C" editor="Harrison, FW" journalOrPublisher="Volume 11 A. Insecta. Wiley-Liss, New York" pageId="14" pageNumber="31" pagination="151 - 176" refId="B34" refString="Neville, C, 1998. Chapter 7. The significance of insect cuticle. In: Harrison, FW, Locke, M, Eds., Microscopic Anatomy of Invertebrates. Volume 11A. Insecta. Wiley-Liss, New York: 151 - 176" title="Chapter 7. The significance of insect cuticle." volumeTitle="Microscopic Anatomy of Invertebrates." year="1998">Neville 1998</bibRefCitation>
), surface tension, and fluid viscosity become relatively more important. Thus, in minute organisms the muscle strength needed to power an articulated appendage for active locomotion is determined not only by internal factors such as the minimum muscle cell size and cell number but also by external factors such as viscosity of the fluid (air or water) in which active movement occurs. Although surface area to volume ratio increases with decreasing size allowing small organisms to be relatively stronger than larger organisms, there still comes a point at which muscles are so small that they cannot power an articulated appendage in a medium that, for their size, must be quite viscous. Yet, external physical factors such as air viscosity are likely still not a constraining factor because even the smallest walking or flying insects appear to be large enough to overcome them. Their problem is to overcome their own inertia, not viscosity of the fluid in which they move. For even smaller organisms than arthropods, viscosity and surface tension may finally become the limiting factor. These organisms do not (and cannot) have articulated appendages of locomotion, particularly if the appendages have intrinsic muscles that move the various segments independently.
</paragraph>
<paragraph pageId="10" pageNumber="27">
Even with the increased mechanical efficiency resulting from smaller body size and energy conservation efficiencies conferred by Weis-Fogh clap-and-fling flapping (
<bibRefCitation author="Weis-Fogh, T" journalOrPublisher="Journal of Experimental Biology" pageId="14" pageNumber="31" pagination="169 - 230" refId="B40" refString="Weis-Fogh, T, 1973. Quick estimation of flight fitness in hovering animals, including novel mechanism for lift production. Journal of Experimental Biology 59: 169 - 230" title="Quick estimation of flight fitness in hovering animals, including novel mechanism for lift production." volume="59" year="1973">Weis-Fogh 1973</bibRefCitation>
,
<bibRefCitation author="Miller, LA" journalOrPublisher="Journal of Experimental Biology" pageId="14" pageNumber="31" pagination="195 - 212" publicationUrl="10.1242/jeb.01376" refId="B30" refString="Miller, LA, Peskin, CS, 2005. A computational fluid dynamics of 'clap and fling' in the smallest insects. Journal of Experimental Biology 208: 195 - 212, 10.1242/jeb.01376" title="A computational fluid dynamics of ' clap and fling' in the smallest insects." url="10.1242/jeb.01376" volume="208" year="2005">Miller and Peskin 2005</bibRefCitation>
), the elastomeric protein resilin (
<bibRefCitation author="Neville, C" editor="Harrison, FW" journalOrPublisher="Volume 11 A. Insecta. Wiley-Liss, New York" pageId="14" pageNumber="31" pagination="151 - 176" refId="B34" refString="Neville, C, 1998. Chapter 7. The significance of insect cuticle. In: Harrison, FW, Locke, M, Eds., Microscopic Anatomy of Invertebrates. Volume 11A. Insecta. Wiley-Liss, New York: 151 - 176" title="Chapter 7. The significance of insect cuticle." volumeTitle="Microscopic Anatomy of Invertebrates." year="1998">Neville 1998</bibRefCitation>
,
<bibRefCitation author="Elvin, CM" journalOrPublisher="Nature" pageId="14" pageNumber="31" pagination="999 - 1002" publicationUrl="10.1038/nature04085" refId="B8" refString="Elvin, CM, Carr, AG, Huson, MG, Maxwell, JM, Pearson, RD, Vuocolo, T, Liyou, NE, Wang, DCC, Merritt, DJ, Dixon, NE, 2005. Synthesis and properties of crosslinked recombinant pro-resilin. Nature 437: 999 - 1002, 10.1038/nature04085" title="Synthesis and properties of crosslinked recombinant pro-resilin." url="10.1038/nature04085" volume="437" year="2005">Elvin et al. 2005</bibRefCitation>
), the natural elasticity of muscle and cuticle itself, and light cuticular wings (
<bibRefCitation author="Neville, C" editor="Harrison, FW" journalOrPublisher="Volume 11 A. Insecta. Wiley-Liss, New York" pageId="14" pageNumber="31" pagination="151 - 176" refId="B34" refString="Neville, C, 1998. Chapter 7. The significance of insect cuticle. In: Harrison, FW, Locke, M, Eds., Microscopic Anatomy of Invertebrates. Volume 11A. Insecta. Wiley-Liss, New York: 151 - 176" title="Chapter 7. The significance of insect cuticle." volumeTitle="Microscopic Anatomy of Invertebrates." year="1998">Neville 1998</bibRefCitation>
) it is difficult to believe for winged insects that such a small size as occurs in
<taxonomicName class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="10" pageNumber="27" phylum="Arthropoda" rank="species" species="huna">
<emphasis italics="true" pageId="10" pageNumber="27">Kikiki huna</emphasis>
</taxonomicName>
is possible. The fact that some specimens of
<taxonomicName class="Hexapoda" family="Trichogrammatidae" genus="Megaphragma" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="10" pageNumber="27" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="10" pageNumber="27">Megaphragma</emphasis>
</taxonomicName>
are about the same minimum size as some specimens of
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="10" pageNumber="27" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="10" pageNumber="27">Kikiki</emphasis>
</taxonomicName>
suggests that winged insects have indeed reached their limit for size reduction.
</paragraph>
<paragraph lastPageId="11" lastPageNumber="28" pageId="10" pageNumber="27">
A diversity of other very small insects capable of active flight have the wing surface (membrane) reduced and wing fringes, especially of the hind wing, greatly lengthened, e.g., species of
<taxonomicName authorityName="Haliday" authorityYear="1836" class="Magnoliopsida" family="Malvaceae" genus="Thysanoptera" higherTaxonomySource="GBIF" kingdom="Plantae" lsidName="" order="Malvales" pageId="10" pageNumber="27" phylum="Tracheophyta" rank="genus">Thysanoptera</taxonomicName>
, various families of small
<taxonomicName authorityName="Linnaeus" authorityYear="1758" class="Magnoliopsida" family="Malvaceae" genus="Lepidoptera" higherTaxonomySource="GBIF" kingdom="Plantae" lsidName="" order="Malvales" pageId="10" pageNumber="27" phylum="Tracheophyta" rank="genus">Lepidoptera</taxonomicName>
and parasitic
<taxonomicName class="Magnoliopsida" family="Malvaceae" genus="Hymenoptera" higherTaxonomySource="GBIF" kingdom="Plantae" lsidName="" order="Malvales" pageId="10" pageNumber="27" phylum="Tracheophyta" rank="genus">Hymenoptera</taxonomicName>
, and
<taxonomicName class="Hexapoda" family="Ptiliidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Coleoptera" pageId="10" pageNumber="27" phylum="Arthropoda" rank="family">Ptiliidae</taxonomicName>
(
<taxonomicName authorityName="Linnaeus" authorityYear="1758" class="Magnoliopsida" family="Malvaceae" genus="Coleoptera" higherTaxonomySource="GBIF" kingdom="Plantae" lsidName="" order="Malvales" pageId="10" pageNumber="27" phylum="Tracheophyta" rank="genus">Coleoptera</taxonomicName>
). While this may slightly reduce wing weight the reduced wing surface and relatively long setae are more likely to have an aerodynamic function, perhaps to reduce turbulence and hence drag on a wing flapping at several hundred beats per second. Interestingly, in
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="10" pageNumber="27" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="10" pageNumber="27">Kikiki</emphasis>
</taxonomicName>
(
<figureCitation captionStart="Figures 2729" captionStartId="F7" captionText="Figures 27 - 29. Kikiki huna female, cleared on slide. 27 wings 28 metasoma, dorsal surface 29 metasoma, ventral surface (seen dorsally through cleared metasoma). Scale line = 100 μm." httpUri="https://binary.pensoft.net/fig/11749" pageId="10" pageNumber="27">Fig. 27</figureCitation>
),
<taxonomicName authorityName="Huber &amp; Noyes" authorityYear="2013" class="Insecta" family="Mymaridae" genus="Tinkerbella" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="10" pageNumber="27" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="10" pageNumber="27">Tinkerbella</emphasis>
</taxonomicName>
(
<figureCitation captionStart="Figures 57" captionStartId="F3" captionText="Figures 5 - 7. Tinkerbella nana female paratype, cleared on slide. 5 head + right antenna, anterior 6 wings 7 mesosoma + metasoma dorsal, and ovipositor ventral (inset). Scale line = 100 μm." httpUri="https://binary.pensoft.net/fig/11745" pageId="10" pageNumber="27">Fig. 6</figureCitation>
) and
<taxonomicName class="Hexapoda" family="Trichogrammatidae" genus="Megaphragma" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="10" pageNumber="27" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="10" pageNumber="27">Megaphragma</emphasis>
</taxonomicName>
(
<figureCitation captionStart="Figures 4951" captionStartId="F11" captionText="Figures 49 - 51. Megaphragma sp., uncleared on slide. 49 head + antenna, anterior (note black eyes) 50 mesosoma + metasoma, dorsal (note huge mesophragma, hence the genus name) 51 wings + middle leg (note 3 - segmented tarsi, diagnostic for Trichogrammatidae). Scale line = 100 μm." httpUri="https://binary.pensoft.net/fig/11753" pageId="10" pageNumber="27">Fig. 51</figureCitation>
) the fringe setae along the leading edge of the hind wing are
<pageBreakToken pageId="11" pageNumber="28" start="start">absent</pageBreakToken>
or almost so, whereas in other genera of
<taxonomicName class="Hexapoda" family="Trichogrammatidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="11" pageNumber="28" phylum="Arthropoda" rank="family">Trichogrammatidae</taxonomicName>
and
<taxonomicName class="Hexapoda" family="Mymaridae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="11" pageNumber="28" phylum="Arthropoda" rank="family">Mymaridae</taxonomicName>
they are present, albeit short. The separation of muscles that power flapping, i.e., the indirect flight muscles that cause thoracic distortion, resulting in wing flapping, from the direct flight muscles that control wing pitch may also be important in allowing insects capable of active flight to attain a minute body size.
</paragraph>
<paragraph pageId="11" pageNumber="28">
Relatively long legs powered by sufficiently strong muscles to elevate the body may be linked to and necessary for active flight. The muscles required to move articulated legs to enable walking by lifting the entire body off the ground and moving forward must have a lower size limit or the legs could not be used for that purpose. Two sets of opposing intrinsic muscles are needed: extensor/elevator muscles strong enough to lift the entire body sufficiently above the substrate to initiate flight, perhaps by allowing a wing stroke of more than 90°, and flexor/depressor muscles to allow walking, and perhaps secondarily to draw the legs against the body during flight to reduce drag. High speed photography of
<taxonomicName class="Hexapoda" family="Trichogrammatidae" genus="Trichogramma" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="11" pageNumber="28" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="11" pageNumber="28">Trichogramma</emphasis>
</taxonomicName>
lifting off a substrate (
<bibRefCitation author="Lentink, D" journalOrPublisher="Proceedings of the Entomological Society of Ontario" pageId="14" pageNumber="31" refId="B23" refString="Lentink, D, Voesenek, K, 2012. Trichogramma flight video. A second in the life of a parasitic wasp. Wageningen University, Wageningen." title="Trichogramma flight video. A second in the life of a parasitic wasp. Wageningen University, Wageningen." year="2012">Lentink and Voesenek 2012</bibRefCitation>
) suggests that the first wing stroke is greater than 90° and, once airborne, that individuals in flight move forward by pushing air forcefully backwards, especially on the up stroke. With about 350 wing beats per second
<taxonomicName class="Hexapoda" family="Trichogrammatidae" genus="Trichogramma" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="11" pageNumber="28" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="11" pageNumber="28">Trichogramma</emphasis>
</taxonomicName>
individuals keep themselves in a reasonably high Reynolds number range. But the video clip does not seem to show that the legs are used to leap vertically off the substrate prior to initiating a wing flap. In these wasps the legs need only be long and strong enough to lift the entire body off the ground for normal walking and perhaps to allow the first wing flap to be greater than 90°, sufficient to allow lift off.
<taxonomicName class="Hexapoda" family="Trichogrammatidae" genus="Trichogramma" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="11" pageNumber="28" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="11" pageNumber="28">Trichogramma</emphasis>
</taxonomicName>
spp, have relatively wide wings, (200-300
<normalizedToken originalValue="μm">μm</normalizedToken>
), with a fore wing width to length ratio about 0.5 and wing fringes that are about 0.2
<normalizedToken originalValue="×">x</normalizedToken>
wing width. These are quite unlike
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="11" pageNumber="28" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="11" pageNumber="28">Kikiki</emphasis>
</taxonomicName>
, with a forewing width of 20-25
<normalizedToken originalValue="μm">μm</normalizedToken>
, a width to length ratio of 0.11 and fringes about 5.0
<normalizedToken originalValue="×">x</normalizedToken>
the wing width, so flight aerodynamics between the two genera may be very different.
</paragraph>
<paragraph pageId="11" pageNumber="28">
In insects with free living adults and larvae the lower body length limit seems to be about 400
<normalizedToken originalValue="μm">μm</normalizedToken>
(
<bibRefCitation author="Grebennikov, VV" journalOrPublisher="European Journal of Entomology" pageId="14" pageNumber="31" pagination="313 - 328" refId="B15" refString="Grebennikov, VV, 2008. How small can you go: factors limiting body miniaturization in winged insects with a review of the panatropical genus Discheramocephalus and description of six new species of the smallest beetles (Pterygota: Coleoptera: Ptiliidae). European Journal of Entomology 105: 313 - 328" title="How small can you go: factors limiting body miniaturization in winged insects with a review of the panatropical genus Discheramocephalus and description of six new species of the smallest beetles (Pterygota: Coleoptera: Ptiliidae)." volume="105" year="2008">Grebennikov 2008</bibRefCitation>
), imposed by the need to have a sufficiently large egg to nourish the developing larva sufficiently so it can be free-living, i.e., it must have the necessary initial body resources to move around actively upon hatching, perhaps to search for food and avoid potential predators. Females of the smallest oribatid mites (Acari) also lay only a single, relatively enormous egg at a time, e.g., a species of
<taxonomicName authorityName="A.Berlese" authorityYear="1910" class="Arachnida" family="Brachychthoniidae" genus="Brachychthonius" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Oribatida" pageId="11" pageNumber="28" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="11" pageNumber="28">Brachychthonius</emphasis>
</taxonomicName>
(
<taxonomicName authorityName="Thor" authorityYear="1934" class="Arachnida" family="Brachychthoniidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Oribatida" pageId="11" pageNumber="28" phylum="Arthropoda" rank="family">Brachychthoniidae</taxonomicName>
)with a female 180
<normalizedToken originalValue="μm">μm</normalizedToken>
long (distorted by compression of the coverslip) has an egg of 100
<normalizedToken originalValue="μm">μm</normalizedToken>
(D. Walter, pers. comm.). The smallest known fly is also 0.4 mm long (
<bibRefCitation author="Brown, BV" journalOrPublisher="Annals of the Entomological Society of America" pageId="14" pageNumber="31" pagination="550 - 554" publicationUrl="10.1603/AN12011" refId="B5" refString="Brown, BV, 2012. Small size no protection for acrobat ants: world's smallest fly is a parasitic phorid (Diptera: Phoridae). Annals of the Entomological Society of America 105: 550 - 554, 10.1603/AN12011" title="Small size no protection for acrobat ants: world's smallest fly is a parasitic phorid (Diptera: Phoridae)." url="10.1603/AN12011" volume="105" year="2012">Brown 2012</bibRefCitation>
).
</paragraph>
<paragraph lastPageId="12" lastPageNumber="29" pageId="11" pageNumber="28">
The constraint of minimum egg size as a determinant of minimum body size does not apply to parasitic insects. Eggs in these can be much smaller because the larvae hatch inside the host. They do not have to search actively for food because it completely envelops them. The limiting factor to small size in adult parasitic insects must therefore be minimum cell size and sufficient cells of each type of tissue, as discussed above. Females of
<taxonomicName authorityName="Huber &amp; Noyes" authorityYear="2013" class="Insecta" family="Mymaridae" genus="Tinkerbella" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="11" pageNumber="28" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="11" pageNumber="28">Tinkerbella</emphasis>
</taxonomicName>
,
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="11" pageNumber="28" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="11" pageNumber="28">Kikiki</emphasis>
</taxonomicName>
, and
<taxonomicName authorityName="Dozier" authorityYear="1932" class="Hexapoda" family="Mymaridae" genus="Alaptus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="11" pageNumber="28" phylum="Arthropoda" rank="species" species="borinquensis">
<emphasis italics="true" pageId="11" pageNumber="28">Alaptus borinquensis</emphasis>
</taxonomicName>
are the smallest
<taxonomicName class="Hexapoda" family="Mymaridae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="11" pageNumber="28" phylum="Arthropoda" rank="family">Mymaridae</taxonomicName>
, and some specimens of
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="11" pageNumber="28" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="11" pageNumber="28">Kikiki</emphasis>
</taxonomicName>
are the smallest recorded winged insects. The body length of five specimens from Costa Rica is 158
<normalizedToken originalValue="μm">μm</normalizedToken>
(1 female), 160
<normalizedToken originalValue="μm">μm</normalizedToken>
(2 females), and 170
<pageBreakToken pageId="12" pageNumber="29" start="start">
<normalizedToken originalValue="μm">μm</normalizedToken>
</pageBreakToken>
(2 females). Three specimens are thus smaller than the smallest recorded females of
<taxonomicName authorityName="Delvare" authorityYear="1993" class="Hexapoda" family="Trichogrammatidae" genus="Megaphragma" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="12" pageNumber="29" phylum="Arthropoda" rank="species" species="caribea">
<emphasis italics="true" pageId="12" pageNumber="29">Megaphragma caribea</emphasis>
</taxonomicName>
, the previous record holder at 170
<normalizedToken originalValue="μm">μm</normalizedToken>
(
<bibRefCitation author="Delvare, G" journalOrPublisher="Revue francaise d'Entomologie (Nouvelle Serie)" pageId="14" pageNumber="31" pagination="149 - 152" refId="B6" refString="Delvare, G, 1993. Sur les Megaphragma de Guadeloupe avec la description d'une espece nouvelle [Hymenoptera, Trichogrammatidae]. Revue francaise d'Entomologie (Nouvelle Serie) 15: 149 - 152" title="Sur les Megaphragma de Guadeloupe avec la description d'une espece nouvelle [Hymenoptera, Trichogrammatidae]." volume="15" year="1993">Delvare 1993</bibRefCitation>
).
</paragraph>
<paragraph pageId="12" pageNumber="29">
The next step in body length reduction in insects is in
<taxonomicName authorityName="Mockford" authorityYear="1997" class="Insecta" family="Mymaridae" genus="Dicopomorpha" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="12" pageNumber="29" phylum="Arthropoda" rank="species" species="echmepterygis">
<emphasis italics="true" pageId="12" pageNumber="29">Dicopomorpha echmepterygis</emphasis>
</taxonomicName>
. Females are winged and relatively long (one measured 386
<normalizedToken originalValue="μm">μm</normalizedToken>
dry but not shivelled and 550
<normalizedToken originalValue="μm">μm</normalizedToken>
on a slide mount), but the males slide-mounted males were 139-240
<normalizedToken originalValue="μm">μm</normalizedToken>
long (n=8) (
<bibRefCitation author="Mockford, EL" journalOrPublisher="Annals of the Entomological Society of America" pageId="14" pageNumber="31" pagination="115 - 120" refId="B31" refString="Mockford, EL, 1997. A new species of Dicopomorpha (Hymenoptera: Mymaridae) with diminutive, apterous males. Annals of the Entomological Society of America 90: 115 - 120" title="A new species of Dicopomorpha (Hymenoptera: Mymaridae) with diminutive, apterous males." volume="90" year="1997">Mockford 1997</bibRefCitation>
). One critical point dried female (CNC) measured by JTH is 340
<normalizedToken originalValue="μm">μm</normalizedToken>
long and two critical point dried males (BMNH, CNC) from the remaining 10 male paratypes, measured independently by JTH and JSN are 126.17
<normalizedToken originalValue="μm">μm</normalizedToken>
and 130
<normalizedToken originalValue="μm">μm</normalizedToken>
, respectively (ESEM measurement). Males have significant morphological reductions or losses. They lack eyes and ocelli, and the appendages are greatly reduced (antenna, tarsi) or absent (wings, mouthparts) (
<figureCitation captionStart="Figures 5255" captionStartId="F12" captionText="Figures 52 - 55. Dicopomorpha echmepterygis male, paratype, ventral. 52 habitus 53 head + prothorax + procoxa 54 apex of gaster 55 mesosoma + base of most legs and metasoma. Scale line = 20 μm, except Fig. 52 = 50 μm." httpUri="https://binary.pensoft.net/fig/11754" pageId="12" pageNumber="29">Figs 52-55</figureCitation>
). Because they cannot feed their only energy source is what has been stored as larvae, which would have obtained all their nutrients from their psocopteran host egg. The leg segments of males are strangely disproportionate, with huge coxae (
<figureCitation captionStart="Figures 5255" captionStartId="F12" captionText="Figures 52 - 55. Dicopomorpha echmepterygis male, paratype, ventral. 52 habitus 53 head + prothorax + procoxa 54 apex of gaster 55 mesosoma + base of most legs and metasoma. Scale line = 20 μm, except Fig. 52 = 50 μm." httpUri="https://binary.pensoft.net/fig/11754" pageId="12" pageNumber="29">Figs 52</figureCitation>
, 53, 55) as long as the femora, protibiae shorter than the femora, and the tarsi absent except for the large, bell-shaped arolium on each (
<figureCitation captionStart="Figures 5255" captionStartId="F12" captionText="Figures 52 - 55. Dicopomorpha echmepterygis male, paratype, ventral. 52 habitus 53 head + prothorax + procoxa 54 apex of gaster 55 mesosoma + base of most legs and metasoma. Scale line = 20 μm, except Fig. 52 = 50 μm." httpUri="https://binary.pensoft.net/fig/11754" pageId="12" pageNumber="29">Figs 52, 55</figureCitation>
) that presumably acts as suction cups to attach to females. Because the legs, especially the hind legs, are long relative to the body length, males clearly can raise their entire body above the substrate in order to walk more or less normally over the short distance necessary to find a female. The tarsal structure, and the fact that some males were found attached to females (
<bibRefCitation author="Mockford, EL" journalOrPublisher="Annals of the Entomological Society of America" pageId="14" pageNumber="31" pagination="115 - 120" refId="B31" refString="Mockford, EL, 1997. A new species of Dicopomorpha (Hymenoptera: Mymaridae) with diminutive, apterous males. Annals of the Entomological Society of America 90: 115 - 120" title="A new species of Dicopomorpha (Hymenoptera: Mymaridae) with diminutive, apterous males." volume="90" year="1997">Mockford 1997</bibRefCitation>
), show that males are phoretic and need only walk only far enough to crawl onto a female to copulate, almost certainly while the female is still in the egg (females presumably emerge from the same host egg or egg cluster so the distance traversed by a male is very short). Males evidently have enough energy to do this and probably nothing else.
</paragraph>
<paragraph lastPageId="13" lastPageNumber="30" pageId="12" pageNumber="29">
Further reductions in body length occur in terrestrial
<taxonomicName class="Insecta" family="Meganeuridae" genus="Arthropoda" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Meganisoptera" pageId="12" pageNumber="29" phylum="Arthropoda" rank="genus">Arthropoda</taxonomicName>
other than insects. In mites, the smallest adult individuals of several species in three families are less than 95
<normalizedToken originalValue="μm">μm</normalizedToken>
in length:
<taxonomicName class="Arachnida" family="Microdispidae" genus="Cochlodispus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Actinedida" pageId="12" pageNumber="29" phylum="Arthropoda" rank="species" species="minimus">
<emphasis italics="true" pageId="12" pageNumber="29">Cochlodispus minimus</emphasis>
</taxonomicName>
Mahunka at 79
<normalizedToken originalValue="μm">μm</normalizedToken>
(
<bibRefCitation author="Mahunka, S" journalOrPublisher="Acta Zoologica Academiae Scientiarum Hungaricae" pageId="14" pageNumber="31" pagination="69 - 96" refId="B28" refString="Mahunka, S, 1976. Aeethiopische Tarsonemiden (Acari: Tarsonemida). II. Acta Zoologica Academiae Scientiarum Hungaricae 22: 69 - 96" title="Aeethiopische Tarsonemiden (Acari: Tarsonemida). II." volume="22" year="1976">Mahunka 1976</bibRefCitation>
) and
<taxonomicName class="Arachnida" family="Microdispidae" genus="Microdispus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Actinedida" pageId="12" pageNumber="29" phylum="Arthropoda" rank="species" species="australis">
<emphasis italics="true" pageId="12" pageNumber="29">Microdispus australis</emphasis>
</taxonomicName>
Mahunka at 82
<normalizedToken originalValue="μm">μm</normalizedToken>
(
<bibRefCitation author="Mahunka, S" journalOrPublisher="Acta Zoologica Academiae Scientiarum Hungaricae" pageId="14" pageNumber="31" pagination="63 - 90" refId="B27" refString="Mahunka, S, 1969. The scientific results of the Hungarian soil zoological expeditions to South America 9. Acari: Pyemotidae and Scutacaridae from the Guayaramerin Region in Bolivia. Acta Zoologica Academiae Scientiarum Hungaricae 15: 63 - 90" title="The scientific results of the Hungarian soil zoological expeditions to South America 9. Acari: Pyemotidae and Scutacaridae from the Guayaramerin Region in Bolivia." volume="15" year="1969">Mahunka 1969</bibRefCitation>
) (both
<taxonomicName authorityName="Cross" authorityYear="1965" class="Arachnida" family="Microdispidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Actinedida" pageId="12" pageNumber="29" phylum="Arthropoda" rank="family">Microdispidae</taxonomicName>
), female of
<taxonomicName class="Arachnida" family="Eriophyidae" genus="Indosetacus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Actinedida" pageId="12" pageNumber="29" phylum="Arthropoda" rank="species" species="rhinacanthi">
<emphasis italics="true" pageId="12" pageNumber="29">Indosetacus rhinacanthi</emphasis>
</taxonomicName>
Ghosh and Chakrabarti at 86
<normalizedToken originalValue="μm">μm</normalizedToken>
(
<bibRefCitation author="Ghosh, NK" journalOrPublisher="Entomon" pageId="14" pageNumber="31" pagination="49 - 54" refId="B13" refString="Ghosh, NK, Chakrabarti, S, 1987. A new genus and three new species of eriophyid mites (Acarina: Eriophyoidea) from West Bengal India. Entomon 12: 49 - 54" title="A new genus and three new species of eriophyid mites (Acarina: Eriophyoidea) from West Bengal India." volume="12" year="1987">Ghosh and Chakrabarti 1987</bibRefCitation>
), male of
<taxonomicName baseAuthorityName="Nalepa" baseAuthorityYear="1892" class="Arachnida" family="Eriophyidae" genus="Eriophyes" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Acari" pageId="12" pageNumber="29" phylum="Arthropoda" rank="species" species="parvulus">
<emphasis italics="true" pageId="12" pageNumber="29">Eriophyes parvulus</emphasis>
</taxonomicName>
(Nalepa) at 90
<normalizedToken originalValue="μm">μm</normalizedToken>
(
<bibRefCitation author="Nalepa, A" journalOrPublisher="Systematic Parasitology" pageId="14" pageNumber="31" refId="B33" refString="Nalepa, A, 1892. Neue Arten der Gattung Phytoptus Duj. und Cecidophys Nal. Denkschriften der kaiserlichen Akademie der Wissenschaften Mathematich-naturwissenschaftliche Klasse 59: 525-540 + 4 plates." title="Neue Arten der Gattung Phytoptus Duj. und Cecidophys Nal. Denkschriften der kaiserlichen Akademie der Wissenschaften Mathematich-naturwissenschaftliche Klasse 59: 525 - 540 + 4 plates." year="1892">Nalepa 1892</bibRefCitation>
), both sexes of
<taxonomicName authorityName="Farkas" authorityYear="1960" class="Arachnida" family="Eriophyidae" genus="Achaetocoptes" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Actinedida" pageId="12" pageNumber="29" phylum="Arthropoda" rank="species" species="quercifolii">
<emphasis italics="true" pageId="12" pageNumber="29">Achaetocoptes quercifolii</emphasis>
</taxonomicName>
Farkas at 90
<normalizedToken originalValue="μm">μm</normalizedToken>
(
<bibRefCitation author="Farkas, HK" journalOrPublisher="Acta Zoologica Academiae Scientiarum Hungaricae" pageId="14" pageNumber="31" pagination="73 - 76" refId="B10" refString="Farkas, HK, 1961. Ueber die Eriophyiden (Acarina) Ungarns II. Beschreibung neuer Gattung und zwei neuer Arten. Acta Zoologica Academiae Scientiarum Hungaricae 7: 73 - 76" title="Ueber die Eriophyiden (Acarina) Ungarns II. Beschreibung neuer Gattung und zwei neuer Arten." volume="7" year="1961">Farkas 1961</bibRefCitation>
) (all
<taxonomicName class="Arachnida" family="Eriophyidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Acari" pageId="12" pageNumber="29" phylum="Arthropoda" rank="family">Eriophyidae</taxonomicName>
), and females of
<taxonomicName class="Arachnida" family="Tarsonemidae" genus="Iponemus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Actinedida" pageId="12" pageNumber="29" phylum="Arthropoda" rank="subSpecies" species="truncatus" subSpecies="eurus">
<emphasis italics="true" pageId="12" pageNumber="29">Iponemus truncatus eurus</emphasis>
</taxonomicName>
Lindquist at 93
<normalizedToken originalValue="μm">μm</normalizedToken>
and
<taxonomicName class="Arachnida" family="Tarsonemidae" genus="Iponemus" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Actinedida" pageId="12" pageNumber="29" phylum="Arthropoda" rank="subSpecies" species="confusus" subSpecies="oriens">
<emphasis italics="true" pageId="12" pageNumber="29">Iponemus confusus oriens</emphasis>
</taxonomicName>
(Lindquist and Bedard) at 94
<normalizedToken originalValue="μm">μm</normalizedToken>
(both
<taxonomicName authorityName="P.Kramer" authorityYear="1877" class="Arachnida" family="Tarsonemidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Actinedida" pageId="12" pageNumber="29" phylum="Arthropoda" rank="family">Tarsonemidae</taxonomicName>
) (
<bibRefCitation author="Lindquist, EE" journalOrPublisher="Memoirs of the Entomological Society of Canada" pageId="14" pageNumber="31" pagination="1 - 111" publicationUrl="10.4039/entm10160fv" refId="B25" refString="Lindquist, EE, 1969. Review of Holarctic tarsonemid mites (Acarina: Prostigmata) parasitizing eggs of ipine bark beetles. Memoirs of the Entomological Society of Canada 60: 1 - 111, 10.4039/entm10160fv" title="Review of Holarctic tarsonemid mites (Acarina: Prostigmata) parasitizing eggs of ipine bark beetles." url="10.4039/entm10160fv" volume="60" year="1969">Lindquist 1969</bibRefCitation>
). That small size in arthropods is not a recent evolutionary phenomenon is shown by a Triassic mite,
<taxonomicName authorityName="Lindquist &amp; Grimaldi" authorityYear="2012" class="Arachnida" family="Triasacaridae" genus="Ampezzoa" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Actinedida" pageId="12" pageNumber="29" phylum="Arthropoda" rank="species" species="triassica">
<emphasis italics="true" pageId="12" pageNumber="29">Ampezzoa triassica</emphasis>
</taxonomicName>
Lindquist and Grimaldi (
<taxonomicName class="Arachnida" family="Eriophyidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Acari" pageId="12" pageNumber="29" phylum="Arthropoda" rank="family">Eriophyidae</taxonomicName>
), 124
<normalizedToken originalValue="μm">μm</normalizedToken>
in length (
<bibRefCitation author="Schmidt, AR" journalOrPublisher="Arthropod Structure &amp; Development" pageId="14" pageNumber="31" publicationUrl="10.1073/pnas.1208464109" refId="B38" refString="Schmidt, AR, Jancke, S, Lindquist, E, Ragazzi, E, Roghi, G, Nascimbene, PC, Schmidt, K, Wappler, T, Grimaldi, DA, 2012. Arthropods in amber from the Triassic Period. ., 10.1073/pnas.1208464109" title="Arthropods in amber from the Triassic Period." url="10.1073/pnas.1208464109" year="2012">Schmidt et al. 2012</bibRefCitation>
). Adults of
<taxonomicName class="Arachnida" family="Eriophyidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Acari" pageId="12" pageNumber="29" phylum="Arthropoda" rank="family">Eriophyidae</taxonomicName>
have only two pairs of usually 5-segmented legs yet they are evidently capable of locomotion but the legs are so reduced that they cannot lift the entire body off the substrate.
<normalizedToken originalValue="“Walking”">&quot;Walking&quot;</normalizedToken>
in
<taxonomicName class="Arachnida" family="Eriophyidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Acari" pageId="12" pageNumber="29" phylum="Arthropoda" rank="family">Eriophyidae</taxonomicName>
is an inching or looping motion. The more or less worm-like body is arched between the two pairs of forelegs anteriorly and the terminal sucker posteriorly, and alternate gripping and releasing by the legs and sucker allow the mite to inch along. True walking using the legs only presumably does not occur and they probably do not move much by this method during their life time. Instead, dispersal is by aerial drifting. However,
<taxonomicName authorityName="Cross" authorityYear="1965" class="Arachnida" family="Microdispidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Actinedida" pageId="12" pageNumber="29" phylum="Arthropoda" rank="family">Microdispidae</taxonomicName>
and
<taxonomicName authorityName="P.Kramer" authorityYear="1877" class="Arachnida" family="Tarsonemidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Actinedida" pageId="12" pageNumber="29" phylum="Arthropoda" rank="family">Tarsonemidae</taxonomicName>
have 4 pairs
<pageBreakToken pageId="13" pageNumber="30" start="start">of</pageBreakToken>
legs and are capable of normal walking. The smallest adult of
<taxonomicName baseAuthorityName="Forsslund" baseAuthorityYear="1942" class="Arachnida" family="Brachychthoniidae" genus="Neoliochthonius" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Sarcoptiformes" pageId="13" pageNumber="30" phylum="Arthropoda" rank="species" species="piluliferus">
<emphasis italics="true" pageId="13" pageNumber="30">Neoliochthonius piluliferus</emphasis>
</taxonomicName>
(Forsslund) (
<taxonomicName authorityName="Thor" authorityYear="1934" class="Arachnida" family="Brachychthoniidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Oribatida" pageId="13" pageNumber="30" phylum="Arthropoda" rank="family">Brachychthoniidae</taxonomicName>
) is 123
<normalizedToken originalValue="μm">μm</normalizedToken>
(
<bibRefCitation author="Forsslund, KH" journalOrPublisher="Visual Neuroscience" pageId="14" pageNumber="31" refId="B12" refString="Forsslund, KH, 1942. Schwedische Oribatei (Acari) I. Arkiv foer Zoologi 34A(10): 1-11." title="Schwedische Oribatei (Acari) I. Arkiv foer Zoologi 34 A (10): 1 - 11." year="1942">Forsslund 1942</bibRefCitation>
). If a mite doubles in size with each moult or increases in body length by a factor of about 1.3 (
<normalizedToken originalValue="Hutchinsons">Hutchinson's</normalizedToken>
Ratio-applied to comparison of different life stages within a species instead of comparing competing species in the same habitat) a larva or protonymph would be as small as about 50
<normalizedToken originalValue="μm">μm</normalizedToken>
in length. A larva of this length was found by D. Walter (pers. comm.). Whereas Insecta have two sets of opposing intrinsic muscles in their leg segments (
<figureCitation captionStart="Figures 4348" captionStartId="F10" captionText="Figures 43 - 48. Kikiki huna, female, micrographs except Fig. 47. 43 antenna, lateral 44 mesosoma, dorsal 45 frenum - anterior half of metasoma, dorsal 46 metasoma, dorsal 47 hind leg, uncleared lateral, showing muscles; 48, right metatarsus, dorsal. Scale line = 20 μm, except Fig. 47 = 50 μm and 48 = 10 μm." httpUri="https://binary.pensoft.net/fig/11752" pageId="13" pageNumber="30">Fig. 47</figureCitation>
) as indicated above, Acari only have flexors (except for those moving the apotele, at the apex of the tarsus). In all Acari the distal segments flex due to muscular contraction and extend due to hydrostatic pressure (
<bibRefCitation author="Alberti, G" editor="Harrison, FW" journalOrPublisher="Volume 8 C. Chelicerate Arthropoda. Wiley-Liss, New York" pageId="14" pageNumber="31" pagination="515 - 1215" refId="B1" refString="Alberti, G, Coons, LB, 1999. Chapter 6. Acari: Mites. In: Harrison, FW, Foelix, RF, Eds., Microscopic Anatomy of Invertebrates. Volume 8C. Chelicerate Arthropoda. Wiley-Liss, New York: 515 - 1215" title="Chapter 6. Acari: Mites." volumeTitle="Microscopic Anatomy of Invertebrates." year="1999">Alberti and Coons 1999</bibRefCitation>
).
</paragraph>
<paragraph lastPageId="14" lastPageNumber="31" pageId="13" pageNumber="30">
For comparison with terrestrial arthropods, larvae of the marine parasites of
<taxonomicName class="Insecta" family="Apidae" genus="Copepoda" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="13" pageNumber="30" phylum="Arthropoda" rank="genus">Copepoda</taxonomicName>
<taxonomicName authorityName="Boxshall &amp; Huys" authorityYear="1989" class="Hexanauplia" family="Basipodellidae" genus="Stygotantulus" higherTaxonomySource="CoL" kingdom="Animalia" lsidName="" order="Not" pageId="13" pageNumber="30" phylum="Arthropoda" rank="species" species="stocki">
<emphasis italics="true" pageId="13" pageNumber="30">Stygotantulus stocki</emphasis>
</taxonomicName>
Boxhall and Huys at 94
<normalizedToken originalValue="μm">μm</normalizedToken>
(
<bibRefCitation author="Boxhall, GA" journalOrPublisher="Journal of Crustacean Biology" pageId="14" pageNumber="31" pagination="126 - 140" publicationUrl="10.2307/1548454" refId="B4" refString="Boxhall, GA, Huys, R, 1989. New tantulocarid, Stygotantulus stocki, parasitic on harpacticoid copepods, with an analysis of the phylogenetic relationships within the Maxillopoda. Journal of Crustacean Biology 9: 126 - 140, 10.2307/1548454" title="New tantulocarid, Stygotantulus stocki, parasitic on harpacticoid copepods, with an analysis of the phylogenetic relationships within the Maxillopoda." url="10.2307/1548454" volume="9" year="1989">Boxhall and Huys 1989</bibRefCitation>
) and
<taxonomicName genus="Tantulus" lsidName="" pageId="14" pageNumber="31" rank="species" species="dieteri">
<emphasis italics="true" pageId="14" pageNumber="31">
<pageBreakToken pageId="14" pageNumber="31" start="start">Tantulus</pageBreakToken>
dieteri
</emphasis>
</taxonomicName>
Mohrbeck, Arbizu and Glatzel (
<taxonomicName class="Insecta" family="Apidae" genus="Crustacea" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="genus">Crustacea</taxonomicName>
:
<taxonomicName authorityName="G.A.Boxshall &amp; R.J.Lincoln" authorityYear="1983" class="Insecta" family="Apidae" genus="Tantulocarida" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="genus">Tantulocarida</taxonomicName>
,
<taxonomicName authorityName="Boxshall &amp; Lincoln" authorityYear="1983" class="Hexanauplia" family="Basipodellidae" higherTaxonomySource="CoL" kingdom="Animalia" lsidName="" order="Not" pageId="14" pageNumber="31" phylum="Arthropoda" rank="family">Basipodellidae</taxonomicName>
) (
<bibRefCitation author="Mohrbeck, I" journalOrPublisher="Systematic Parasitology" pageId="14" pageNumber="31" pagination="131 - 151" publicationUrl="10.1007/s11230-010-9260-0" refId="B32" refString="Mohrbeck, I, Martinez, P, Glazel, T, 2010. Tantulocarida (Crustacea) from the Southern Ocean deep sea, and the description of three new species of Tantulacus Huys, Andersen &amp; Kristensen, 1992. Systematic Parasitology 77: 131 - 151, 10.1007/s11230-010-9260-0" title="Tantulocarida (Crustacea) from the Southern Ocean deep sea, and the description of three new species of Tantulacus Huys, Andersen &amp; Kristensen, 1992." url="10.1007/s11230-010-9260-0" volume="77" year="2010">Mohrbeck et al. 2010</bibRefCitation>
,
<bibRefCitation author="Martin, JW" journalOrPublisher="Natural History Museum of Los Angeles County, Science Series" pageId="14" pageNumber="31" pagination="1 - 124" refId="B29" refString="Martin, JW, Davis, GE, 2001. An updated classification of the recent Crustacea. Natural History Museum of Los Angeles County, Science Series 39: 1 - 124" title="An updated classification of the recent Crustacea." volume="39" year="2001">Martin and Davis 2001</bibRefCitation>
) at ca. 85
<normalizedToken originalValue="μm">μm</normalizedToken>
are the shortest. Notably, all members of the subclass lack recognizable cephalic limbs, other than paired antennules in one known stage (
<bibRefCitation author="Martin, JW" journalOrPublisher="Natural History Museum of Los Angeles County, Science Series" pageId="14" pageNumber="31" pagination="1 - 124" refId="B29" refString="Martin, JW, Davis, GE, 2001. An updated classification of the recent Crustacea. Natural History Museum of Los Angeles County, Science Series 39: 1 - 124" title="An updated classification of the recent Crustacea." volume="39" year="2001">Martin and Davis 2001</bibRefCitation>
). The loss of appendages and the parasitic life style of adults means that the much higher viscosity of water compared to air is irrelevant in impeding locomotion, because the immature stages evidently disperse by passive drifting (as do
<taxonomicName class="Arachnida" family="Eriophyidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Acari" pageId="14" pageNumber="31" phylum="Arthropoda" rank="family">Eriophyidae</taxonomicName>
), and adults are parasitic so evidently do not move.
</paragraph>
<paragraph pageId="14" pageNumber="31">
Below a certain body length it is useless to have articulated appendages because the segments could not be moved relative to one another, or the entire appendage relative to the body, by intrinsic muscle power alone. Instead, if appendages of locomotion exist at all (e.g., pseudopods), they would be short and wide, would not be articulated, and would be moved instead by body muscles causing hydrostatic changes in pressure, combined perhaps with flexor muscles originating within the body but attached near or at the appendage apex. The length of the larva of
<taxonomicName baseAuthorityName="Forsslund" baseAuthorityYear="1942" class="Arachnida" family="Brachychthoniidae" genus="Neoliochthonius" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Sarcoptiformes" pageId="14" pageNumber="31" phylum="Arthropoda" rank="species" species="piluliferus">
<emphasis italics="true" pageId="14" pageNumber="31">Neoliochthonius piluliferus</emphasis>
</taxonomicName>
rivals some Rotifera, also as short as 50
<normalizedToken originalValue="μm">μm</normalizedToken>
, suggesting that at about this size the changeover from locomotion by partial muscle power intrinsic to leg segments (Acari) to hydrostatic power alone (Rotifera, other non-
<taxonomicName class="Insecta" family="Meganeuridae" genus="Arthropoda" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Meganisoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="genus">Arthropoda</taxonomicName>
) may occur.
</paragraph>
<paragraph pageId="14" pageNumber="31">
We suggest that the smallest winged insects capable of flapping flight could not be less than about150
<normalizedToken originalValue="μm">μm</normalizedToken>
in length, and the smallest capable of normal walking (body lifted entirely of substrate) not below about 125
<normalizedToken originalValue="μm">μm</normalizedToken>
. Among insects,
<taxonomicName class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="species" species="huna">
<emphasis italics="true" pageId="14" pageNumber="31">Kikiki huna</emphasis>
</taxonomicName>
may well have attained the lower limit for active flight and
<taxonomicName authorityName="Mockford" authorityYear="1997" class="Insecta" family="Mymaridae" genus="Dicopomorpha" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="species" species="echmepterygis">
<emphasis italics="true" pageId="14" pageNumber="31">Dicopomorpha echmepterygis</emphasis>
</taxonomicName>
the lower limit for normal walking. Among other arthropods capable of walking, 80
<normalizedToken originalValue="μm">μm</normalizedToken>
is suggested as the lower limit for adults and ca. 50
<normalizedToken originalValue="μm">μm</normalizedToken>
for immatures.
</paragraph>
<caption httpUri="https://binary.pensoft.net/fig/11748" pageId="14" pageNumber="31" start="Figures 2326" startId="F6">
<paragraph pageId="14" pageNumber="31">
<emphasis bold="true" pageId="14" pageNumber="31">Figures 23-26.</emphasis>
<taxonomicName class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="species" species="huna">
<emphasis italics="true" pageId="14" pageNumber="31">Kikiki huna</emphasis>
</taxonomicName>
female, on slide (cleared, except Fig. 23).
<emphasis bold="true" pageId="14" pageNumber="31">23</emphasis>
habitus, dorsal
<emphasis bold="true" pageId="14" pageNumber="31">24</emphasis>
head + right antenna, anterior
<emphasis bold="true" pageId="14" pageNumber="31">25</emphasis>
head, posterior
<emphasis bold="true" pageId="14" pageNumber="31">26</emphasis>
mesosoma, dorsal + metasoma, dorsal but focus at lower plane to show ovipositor. Scale line = 100
<normalizedToken originalValue="μm">μm</normalizedToken>
.
</paragraph>
</caption>
<caption httpUri="https://binary.pensoft.net/fig/11749" pageId="14" pageNumber="31" start="Figures 2729" startId="F7">
<paragraph pageId="14" pageNumber="31">
<emphasis bold="true" pageId="14" pageNumber="31">Figures 27-29.</emphasis>
<taxonomicName class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="species" species="huna">
<emphasis italics="true" pageId="14" pageNumber="31">Kikiki huna</emphasis>
</taxonomicName>
female, cleared on slide.
<emphasis bold="true" pageId="14" pageNumber="31">27</emphasis>
wings
<emphasis bold="true" pageId="14" pageNumber="31">28</emphasis>
metasoma, dorsal surface
<emphasis bold="true" pageId="14" pageNumber="31">29</emphasis>
metasoma, ventral surface (seen dorsally through cleared metasoma). Scale line = 100
<normalizedToken originalValue="μm">μm</normalizedToken>
.
</paragraph>
</caption>
<caption httpUri="https://binary.pensoft.net/fig/11750" pageId="14" pageNumber="31" start="Figures 3035" startId="F8">
<paragraph pageId="14" pageNumber="31">
<emphasis bold="true" pageId="14" pageNumber="31">Figures 30-35.</emphasis>
<taxonomicName authorityName="Huber &amp; Beardsley" authorityYear="2000" class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="14" pageNumber="31">Kikiki</emphasis>
</taxonomicName>
sp. male, cleared on slide.
<emphasis bold="true" pageId="14" pageNumber="31">30</emphasis>
head anterodorsal + mesosoma and metasoma, dorsal
<emphasis bold="true" pageId="14" pageNumber="31">31</emphasis>
head, posterior
<emphasis bold="true" pageId="14" pageNumber="31">32</emphasis>
head from anterior, focused at different plane to show internal skeleton and mandibles
<emphasis bold="true" pageId="14" pageNumber="31">33</emphasis>
antenna
<emphasis bold="true" pageId="14" pageNumber="31">34</emphasis>
protarsus
<emphasis bold="true" pageId="14" pageNumber="31">35</emphasis>
genitalia, dorsolateral. Scale line = 100
<normalizedToken originalValue="μm">μm</normalizedToken>
, except Figures
<emphasis bold="true" pageId="14" pageNumber="31">34</emphasis>
and
<emphasis bold="true" pageId="14" pageNumber="31">35</emphasis>
= 50
<normalizedToken originalValue="μm">μm</normalizedToken>
.
</paragraph>
</caption>
<caption httpUri="https://binary.pensoft.net/fig/11751" pageId="14" pageNumber="31" start="Figures 3642" startId="F9">
<paragraph pageId="14" pageNumber="31">
<emphasis bold="true" pageId="14" pageNumber="31">Figures 36-42.</emphasis>
<taxonomicName class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="species" species="huna">
<emphasis italics="true" pageId="14" pageNumber="31">Kikiki huna</emphasis>
</taxonomicName>
female, micrographs.
<emphasis bold="true" pageId="14" pageNumber="31">36</emphasis>
habitus, dorsal
<emphasis bold="true" pageId="14" pageNumber="31">37</emphasis>
, head + antennae, anterior
<emphasis bold="true" pageId="14" pageNumber="31">38</emphasis>
habitus, lateral
<emphasis bold="true" pageId="14" pageNumber="31">39</emphasis>
head, lateral
<emphasis bold="true" pageId="14" pageNumber="31">40</emphasis>
head + anterior mesosoma, dorsolateral
<emphasis bold="true" pageId="14" pageNumber="31">41</emphasis>
head + base of antenna, dorsal
<emphasis bold="true" pageId="14" pageNumber="31">42</emphasis>
head, posterodorsal + anterior mesosoma, dorsal. Scale line = 20
<normalizedToken originalValue="μm">μm</normalizedToken>
, except 36, 38 = 100
<normalizedToken originalValue="μm">μm</normalizedToken>
.
</paragraph>
</caption>
<caption httpUri="https://binary.pensoft.net/fig/11752" pageId="14" pageNumber="31" start="Figures 4348" startId="F10">
<paragraph pageId="14" pageNumber="31">
<emphasis bold="true" pageId="14" pageNumber="31">Figures 43-48.</emphasis>
<taxonomicName class="Insecta" family="Mymaridae" genus="Kikiki" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="species" species="huna">
<emphasis italics="true" pageId="14" pageNumber="31">Kikiki huna</emphasis>
</taxonomicName>
, female, micrographs except Fig.
<emphasis bold="true" pageId="14" pageNumber="31">47</emphasis>
.
<emphasis bold="true" pageId="14" pageNumber="31">43</emphasis>
antenna, lateral
<emphasis bold="true" pageId="14" pageNumber="31">44</emphasis>
mesosoma, dorsal
<emphasis bold="true" pageId="14" pageNumber="31">45</emphasis>
frenum - anterior half of metasoma, dorsal
<emphasis bold="true" pageId="14" pageNumber="31">46</emphasis>
metasoma, dorsal
<emphasis bold="true" pageId="14" pageNumber="31">47</emphasis>
hind leg, uncleared lateral, showing muscles; 48, right metatarsus, dorsal. Scale line = 20
<normalizedToken originalValue="μm">μm</normalizedToken>
, except Fig.
<emphasis bold="true" pageId="14" pageNumber="31">47</emphasis>
= 50
<normalizedToken originalValue="μm">μm</normalizedToken>
and
<emphasis bold="true" pageId="14" pageNumber="31">48</emphasis>
= 10
<normalizedToken originalValue="μm">μm</normalizedToken>
.
</paragraph>
</caption>
<caption httpUri="https://binary.pensoft.net/fig/11753" pageId="14" pageNumber="31" start="Figures 4951" startId="F11">
<paragraph pageId="14" pageNumber="31">
<emphasis bold="true" pageId="14" pageNumber="31">Figures 49-51.</emphasis>
<taxonomicName class="Hexapoda" family="Trichogrammatidae" genus="Megaphragma" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="genus">
<emphasis italics="true" pageId="14" pageNumber="31">Megaphragma</emphasis>
</taxonomicName>
sp., uncleared on slide.
<emphasis bold="true" pageId="14" pageNumber="31">49</emphasis>
head + antenna, anterior (note black eyes)
<emphasis bold="true" pageId="14" pageNumber="31">50</emphasis>
mesosoma + metasoma, dorsal (note huge mesophragma, hence the genus name)
<emphasis bold="true" pageId="14" pageNumber="31">51</emphasis>
wings + middle leg (note 3-segmented tarsi, diagnostic for
<taxonomicName class="Hexapoda" family="Trichogrammatidae" higherTaxonomySource="GBIF" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="family">Trichogrammatidae</taxonomicName>
). Scale line = 100
<normalizedToken originalValue="μm">μm</normalizedToken>
.
</paragraph>
</caption>
<caption httpUri="https://binary.pensoft.net/fig/11754" pageId="14" pageNumber="31" start="Figures 5255" startId="F12">
<paragraph pageId="14" pageNumber="31">
<emphasis bold="true" pageId="14" pageNumber="31">Figures 52-55.</emphasis>
<taxonomicName authorityName="Mockford" authorityYear="1997" class="Insecta" family="Mymaridae" genus="Dicopomorpha" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" lsidName="" order="Hymenoptera" pageId="14" pageNumber="31" phylum="Arthropoda" rank="species" species="echmepterygis">
<emphasis italics="true" pageId="14" pageNumber="31">Dicopomorpha echmepterygis</emphasis>
</taxonomicName>
male, paratype, ventral.
<emphasis bold="true" pageId="14" pageNumber="31">52</emphasis>
habitus
<emphasis bold="true" pageId="14" pageNumber="31">53</emphasis>
head + prothorax + procoxa
<emphasis bold="true" pageId="14" pageNumber="31">54</emphasis>
apex of gaster
<emphasis bold="true" pageId="14" pageNumber="31">55</emphasis>
mesosoma + base of most legs and metasoma. Scale line = 20
<normalizedToken originalValue="μm">μm</normalizedToken>
, except Fig.
<emphasis bold="true" pageId="14" pageNumber="31">52</emphasis>
= 50
<normalizedToken originalValue="μm">μm</normalizedToken>
.
</paragraph>
</caption>
</subSubSection>
</treatment>
</subSection>
</document>