treatments-xml/data/09/47/BB/0947BB4AFFBAFFB1FFDDFD1425B6FBFC.xml
2024-06-21 12:28:55 +02:00

867 lines
99 KiB
XML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="9169288FB5C04233F276C410A3453AA3" ID-DOI="10.1016/j.phytochem.2020.112272" ID-ISSN="1873-3700" ID-Zenodo-Dep="8294125" IM.bibliography_approvedBy="diego" IM.illustrations_approvedBy="diego" IM.materialsCitations_approvedBy="diego" IM.metadata_approvedBy="felipe" IM.tables_approvedBy="diego" IM.taxonomicNames_approvedBy="diego" IM.treatments_approvedBy="diego" checkinTime="1693255197596" checkinUser="felipe" docAuthor="Castellanos, Leonardo, Naranjo-Gaybor, Sandra Judith, Forero, Abel M., Morales, Gustavo, Wilson, Erica Georgina, Ramos, Freddy A. &amp; Choi, Young Hae" docDate="2020" docId="0947BB4AFFBAFFB1FFDDFD1425B6FBFC" docLanguage="en" docName="Phytochemistry.172.112272.pdf" docOrigin="Phytochemistry (112272) 172" docSource="http://dx.doi.org/10.1016/j.phytochem.2020.112272" docStyle="DocumentStyle:F36D69FC8B198FBE91029DF9C24697D3.5:Phytochemistry.2020-.journal_article" docStyleId="F36D69FC8B198FBE91029DF9C24697D3" docStyleName="Phytochemistry.2020-.journal_article" docStyleVersion="5" docTitle="Passiflora" docType="treatment" docVersion="3" lastPageNumber="7" masterDocId="F57EC332FFB8FFB7FFB9FFFD2651FFB8" masterDocTitle="Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity" masterLastPageNumber="13" masterPageNumber="1" pageNumber="3" updateTime="1693400110403" updateUser="diego">
<mods:mods id="363116FA3837AA8F3FFB7050D1427C17" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="6E541193178A4B02DFEDD4D868AF896C">
<mods:title id="3E2C7395DF439B8DE5616524F5910336">Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity</mods:title>
</mods:titleInfo>
<mods:name id="45EDCCF1628332FA5B389997B4F78CE6" type="personal">
<mods:role id="17333D8EC1FE00928A2DD86325CB7B64">
<mods:roleTerm id="68EB1A1192A12B8ACC5712652C0E6554">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="B153C169B484B2DFD229F4E35F5A5271">Castellanos, Leonardo</mods:namePart>
<mods:affiliation id="085F77A3EE17B7B4FB22123AA5B7CAA3"> &amp; Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ciencias - Departamento de Química, Carrera 30 # 45 - 03, Bogotá, D. C., 111321, Colombia &amp; &amp; Natural Products Laboratory, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands</mods:affiliation>
</mods:name>
<mods:name id="96C16FB42BD1D37DAABFCCE68C0DB0C0" type="personal">
<mods:role id="404AEB3158B9FA7F50662163E5DAA81B">
<mods:roleTerm id="AA847C42208B326C2F4BA4E21DE6BF50">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="3A9C0335906BD42AD1A32FCF4A183DFC">Naranjo-Gaybor, Sandra Judith</mods:namePart>
</mods:name>
<mods:name id="2808F674774D270C7887B49584B5BE37" type="personal">
<mods:role id="4B91E0D89B91E309C86EB43245A12E18">
<mods:roleTerm id="E48CC79457798EB668209B717670F090">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="287D5630F27DBD19467714F6C456185A">Forero, Abel M.</mods:namePart>
</mods:name>
<mods:name id="137A444A1990E68BC16F05594353A2DF" type="personal">
<mods:role id="99EF66232CEEF74BF7347809CE22AC42">
<mods:roleTerm id="0EA63E20B607B57520543CB6AEC1D0EB">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="4A3FB2D23C87CF7DF02D567503A55458">Morales, Gustavo</mods:namePart>
</mods:name>
<mods:name id="E368C21DDDAABB5F9F39A6DD05EC3003" type="personal">
<mods:role id="9183A79F7D508E2C70EE70D3CD1AE093">
<mods:roleTerm id="A5A1F170247B9A9E3D3067C96D3EA2C4">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="5FE06BC62538F4D9C3A001925483D4AE">Wilson, Erica Georgina</mods:namePart>
</mods:name>
<mods:name id="C9A5A136E816F0905542AA2B9D8A5B4A" type="personal">
<mods:role id="A744EA86DBA04E20AF424A09A41A3F78">
<mods:roleTerm id="0601AE4EDA9C126DB7D648CC89FC30D5">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="E5857DE281E3F4842C83D76C82084017">Ramos, Freddy A.</mods:namePart>
</mods:name>
<mods:name id="7E2E32405B22E3513743D644A7D0EDE6" type="personal">
<mods:role id="AFDD08F675E564F24E4C1C87E25A9E3A">
<mods:roleTerm id="3720064104A17871B8844006D0D19BD0">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="60D78EDDD7AD31F18EDD3D56083D1A41">Choi, Young Hae</mods:namePart>
</mods:name>
<mods:typeOfResource id="16C3413E1C6A808E191289BDF98E10B8">text</mods:typeOfResource>
<mods:relatedItem id="4991932D9AF56C8EF29E296DAF855A62" type="host">
<mods:titleInfo id="EF519E06C925A3957ADA5DFF34674511">
<mods:title id="076CD1096DC857F8B18A6232D76A99B2">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="5791F6833B464F75C7647155BA4C3581">
<mods:date id="DF1E15C2BD247CCE584309F307937E2D">2020</mods:date>
<mods:detail id="510041093017A7297B15F496F24D5646" type="series">
<mods:title id="3E244C10609B712591C418C62866BAB2">112272</mods:title>
</mods:detail>
<mods:detail id="FCD0BCB4783A88FB09939393B0E4DD06" type="pubDate">
<mods:number id="C39D04DFB5FCEA3F0ABFD447479561ED">2020-04-30</mods:number>
</mods:detail>
<mods:detail id="E0D939E16AB0E0EF6C57BD1E280B6616" type="volume">
<mods:number id="71890AAC35FCECFA1F9BE71DE1F20F3A">172</mods:number>
</mods:detail>
<mods:extent id="7D64ABB76D6CBC6EAC5A315D4110BA3B" unit="page">
<mods:start id="E766CC7CCAEA31ED4614B5658B894A79">1</mods:start>
<mods:end id="34E36FC7FC5FD42077E813775931B9D0">13</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="C739AD61725E12406382CADC0EFFCBD9">
<mods:url id="C683F8B9D81480F9159BFB9399FBB270">http://dx.doi.org/10.1016/j.phytochem.2020.112272</mods:url>
</mods:location>
<mods:classification id="A5F28598F2F3923180C27FF25D2D8493">journal article</mods:classification>
<mods:identifier id="DCA9C91444C1517C4574C628666AA40E" type="DOI">10.1016/j.phytochem.2020.112272</mods:identifier>
<mods:identifier id="283FE237AF025E508CC6329EE609919F" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="7052EB1C82EEB430E11F1DA995D53A7A" type="Zenodo-Dep">8294125</mods:identifier>
</mods:mods>
<treatment id="0947BB4AFFBAFFB1FFDDFD1425B6FBFC" LSID="urn:lsid:plazi:treatment:0947BB4AFFBAFFB1FFDDFD1425B6FBFC" httpUri="http://treatment.plazi.org/id/0947BB4AFFBAFFB1FFDDFD1425B6FBFC" lastPageId="6" lastPageNumber="7" pageId="2" pageNumber="3">
<subSubSection id="C9F459D7FFBAFFB5FFDDFD14246BFD44" box="[100,570,745,764]" pageId="2" pageNumber="3" type="nomenclature">
<paragraph id="81510A5CFFBAFFB5FFDDFD14246BFD44" blockId="2.[100,570,745,764]" box="[100,570,745,764]" pageId="2" pageNumber="3">
<heading id="DA19BD30FFBAFFB5FFDDFD14246BFD44" bold="true" box="[100,570,745,764]" fontSize="36" level="1" pageId="2" pageNumber="3" reason="1">
<emphasis id="B39AD64EFFBAFFB5FFDDFD14246BFD44" bold="true" box="[100,570,745,764]" italics="true" pageId="2" pageNumber="3">
2.1. NMR metabolic fingerprint of
<taxonomicName id="46EE71DFFFBAFFB5FE19FD1427A6FD44" ID-CoL="6JGB" ID-ENA="3684" box="[416,503,745,764]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">Passiflora</taxonomicName>
species
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="C9F459D7FFBAFFB1FF3CFCDC25B6FBFC" lastPageId="6" lastPageNumber="7" pageId="2" pageNumber="3" type="description">
<paragraph id="81510A5CFFBAFFB5FF3CFCDC24C5FBDF" blockId="2.[100,771,801,1992]" pageId="2" pageNumber="3">
Freeze-dried samples of
<taxonomicName id="46EE71DFFFBAFFB5FE3CFCDC278DFC8C" box="[389,476,801,820]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B39AD64EFFBAFFB5FE3CFCDC278DFC8C" bold="true" box="[389,476,801,820]" italics="true" pageId="2" pageNumber="3">Passiflora</emphasis>
</taxonomicName>
leaves were extracted with
<collectingCountry id="F9F94ACCFFBAFFB5FFDDFCC026D0FCE8" box="[100,129,829,848]" name="Switzerland" pageId="2" pageNumber="3">CH</collectingCountry>
<subScript id="1D6A0819FFBAFFB5FF38FCB826DBFCEA" attach="both" box="[129,138,837,850]" fontSize="5" pageId="2" pageNumber="3">3</subScript>
OH-
<emphasis id="B39AD64EFFBAFFB5FF08FCC02694FCEA" bold="true" box="[177,197,829,850]" italics="true" pageId="2" pageNumber="3">
d
<subScript id="1D6A0819FFBAFFB5FF05FCB82694FCEA" attach="left" box="[188,197,837,850]" fontSize="5" pageId="2" pageNumber="3">4</subScript>
</emphasis>
-KH
<subScript id="1D6A0819FFBAFFB5FF50FCB826A3FCEA" attach="both" box="[233,242,837,850]" fontSize="5" pageId="2" pageNumber="3">2</subScript>
PO
<subScript id="1D6A0819FFBAFFB5FEB7FCB82746FCEA" attach="left" box="[270,279,837,850]" fontSize="5" pageId="2" pageNumber="3">4</subScript>
buffer in D
<subScript id="1D6A0819FFBAFFB5FE3EFCB827C1FCEA" attach="both" box="[391,400,837,850]" fontSize="5" pageId="2" pageNumber="3">2</subScript>
O (1:1, v/v), in order to obtain a wide range of metabolites that included sugars, amino acids, saponins and flavonoids, as these have been reported to be the major compounds in
<taxonomicName id="46EE71DFFFBAFFB5FFDDFC6C26EAFC1C" box="[100,187,912,932]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="undetermined">
<emphasis id="B39AD64EFFBAFFB5FFDDFC6C26EAFC1C" bold="true" box="[100,187,912,932]" italics="true" pageId="2" pageNumber="3">Passiflora</emphasis>
</taxonomicName>
species. The resulting spectra of the
<taxonomicName id="46EE71DFFFBAFFB5FD9DFC6C242AFC1C" box="[548,635,912,932]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B39AD64EFFBAFFB5FD9DFC6C242AFC1C" bold="true" box="[548,635,912,932]" italics="true" pageId="2" pageNumber="3">Passiflora</emphasis>
</taxonomicName>
extracts were analyzed with the Chenomx™ database, along with our in-house database and literature data. Because of the intense overlapping of proton signals, the identity of the proposed compounds was verified by 2DNMR experiments (J-resolved;
<superScript id="769BA714FFBAFFB5FE21FC0627F0FBB0" attach="right" box="[408,417,1019,1032]" fontSize="5" pageId="2" pageNumber="3">1</superScript>
H
<superScript id="769BA714FFBAFFB5FE02FC062795FBB0" attach="right" box="[443,452,1019,1032]" fontSize="5" pageId="2" pageNumber="3">1</superScript>
H-correlated spectroscopy-COSY- and heteronuclear multiple bond correlation -HMBC-). The complete NMR data for the identified compounds is presented in the supplementary information (Supp.
<tableCitation id="CC6C3FE7FFBAFFB5FECDFBA927EAFBDF" box="[372,443,1108,1127]" captionStart="Table 1" captionStartId="2.[100,150,161,178]" captionTargetPageId="2" captionText="Table 1 Banana passion fruits samples collection data." pageId="2" pageNumber="3">Table 1</tableCitation>
, and Supp.
<figureCitation id="19D516D9FFBAFFB5FD97FBA92435FBDF" box="[558,612,1108,1127]" captionStart="Fig" captionStartId="8.[100,130,902,919]" captionTargetBox="[204,1246,169,873]" captionTargetId="figure-839@8.[187,1400,152,880]" captionTargetPageId="8" captionText="Fig. 6. PCA plot: The score plot of the principal component analysis (PCA) of 8 different species of banana passion fruits species shows a separation into four main groups." figureDoi="http://doi.org/10.5281/zenodo.8294137" httpUri="https://zenodo.org/record/8294137/files/figure.png" pageId="2" pageNumber="3">Fig. 6</figureCitation>
16).
</paragraph>
<paragraph id="81510A5CFFBAFFB5FF3CFB8D24F7FA92" blockId="2.[100,771,801,1992]" pageId="2" pageNumber="3">
The
<superScript id="769BA714FFBAFFB5FF0AFB9626EDFBC0" attach="right" box="[179,188,1131,1144]" fontSize="5" pageId="2" pageNumber="3">1</superScript>
H-NMR spectra of the
<taxonomicName id="46EE71DFFFBAFFB5FE24FB8D27A5FB3B" box="[413,500,1136,1155]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B39AD64EFFBAFFB5FE24FB8D27A5FB3B" bold="true" box="[413,500,1136,1155]" italics="true" pageId="2" pageNumber="3">Passiflora</emphasis>
</taxonomicName>
extracts proved to be very similar. As can be observed with the example of the
<taxonomicName id="46EE71DFFFBAFFB5FDDBFB71248FFB27" box="[610,734,1164,1183]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="tarminiana">
<emphasis id="B39AD64EFFBAFFB5FDDBFB71248FFB27" bold="true" box="[610,734,1164,1183]" italics="true" pageId="2" pageNumber="3">P. tarminiana</emphasis>
</taxonomicName>
extract, the presence of amino acids, carbohydrates, and flavonoids was confirmed (
<figureCitation id="19D516D9FFBAFFB5FF6FFB3E275EFB6E" box="[214,271,1219,1238]" captionStart="Fig" captionStartId="3.[100,130,1588,1605]" captionTargetBox="[197,1390,153,1554]" captionTargetId="figure-223@3.[187,1400,152,1565]" captionTargetPageId="3" captionText="Fig. 1. 1H NMR spectrum of Passiflora leave extract showing aliphatic, sugar and aromatic region and some assignments: ascorbic acid (I), proline (II), threonine (III), ethanol (IV), leucine (V) pipecolic acid (VI) and acetic acid (VIII) (A and B). Sugar region ascorbic acid (I) and glucose (X) (B and C). Phenolic region glucose (X), tyrosine (IX), 5-carboxymethyl-2,5-dihydrofuran-2-one (XI) shikimic acid (XII) (D). The whole NMR signals assignation can be consulted at Table 1 supporting information." figureDoi="http://doi.org/10.5281/zenodo.8294127" httpUri="https://zenodo.org/record/8294127/files/figure.png" pageId="2" pageNumber="3">Fig. 1</figureCitation>
and in Figure SI-1 supporting information for the other extracts). The main differences between species were observed in the aromatic region, suggesting that the composition of the flavonoids and other phenolics was distinctive between species (
<figureCitation id="19D516D9FFBAFFB5FDDBFAEA24C9FA92" box="[610,664,1303,1322]" captionStart="Fig" captionStartId="4.[100,130,1042,1059]" captionTargetBox="[163,1436,154,1018]" captionTargetId="figure-821@4.[150,1438,152,1020]" captionTargetPageId="4" captionText="Fig. 2. The main differences for Passiflora samples can be observed in the aromatic region, suggesting a different composition of flavonoids and other polyphenolic compounds for each species." figureDoi="http://doi.org/10.5281/zenodo.8294129" httpUri="https://zenodo.org/record/8294129/files/figure.png" pageId="2" pageNumber="3">Fig. 2</figureCitation>
).
</paragraph>
<paragraph id="81510A5CFFBAFFB5FF3CFACE27B0F92D" blockId="2.[100,771,801,1992]" pageId="2" pageNumber="3">
The analysis of the extracts revealed the presence of nine organic acids, seven amino acids, GABA, sucrose, glucose, myo-inositol and five other unidentified compounds. Their distribution among the studied species is presented as a barcoding of primary metabolites in
<figureCitation id="19D516D9FFBAFFB5FD26FA7A2485FA22" box="[671,724,1415,1434]" captionStart="Fig" captionStartId="5.[477,507,1943,1960]" captionTargetBox="[188,1399,154,1919]" captionTargetId="figure-1@5.[187,1400,152,1920]" captionTargetPageId="5" captionText="Fig. 3. Barcoding of primary metabolites for banana passion fruit species." figureDoi="http://doi.org/10.5281/zenodo.8294131" httpUri="https://zenodo.org/record/8294131/files/figure.png" pageId="2" pageNumber="3">Fig. 3</figureCitation>
, and shows that the species exhibiting most diversity were
<emphasis id="B39AD64EFFBAFFB5FDD1FA5E272BFA6A" bold="true" italics="true" pageId="2" pageNumber="3">
<taxonomicName id="46EE71DFFFBAFFB5FDD1FA5E24B5FA0E" box="[616,740,1443,1462]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="tarminiana">P. tarminiana</taxonomicName>
,
<taxonomicName id="46EE71DFFFBAFFB5FD49FA5E269EFA6A" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="cumbalensis">P. cumbalensis</taxonomicName>
,
<taxonomicName id="46EE71DFFFBAFFB5FF65FA422703FA6A" box="[220,338,1471,1490]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="mollissima">P. mollissima</taxonomicName>
and
</emphasis>
<taxonomicName id="46EE71DFFFBAFFB5FE3BFA42240CFA6A" authority="(Juss.) Poir" authorityName="Poir" baseAuthorityName="Juss." box="[386,605,1471,1490]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="tripartita">
<emphasis id="B39AD64EFFBAFFB5FE3BFA4227BBFA6A" bold="true" box="[386,490,1471,1490]" italics="true" pageId="2" pageNumber="3">P. tripartita</emphasis>
(Juss.) Poir
</taxonomicName>
(syn.
<taxonomicName id="46EE71DFFFBAFFB5FD20FA422553FA6A" box="[665,770,1471,1490]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="tripartita">
<emphasis id="B39AD64EFFBAFFB5FD20FA422553FA6A" bold="true" box="[665,770,1471,1490]" italics="true" pageId="2" pageNumber="3">P. tripartita</emphasis>
</taxonomicName>
var.
<taxonomicName id="46EE71DFFFBAFFB5FF2BFA2726B6FA55" box="[146,231,1498,1517]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="tripartita">
<emphasis id="B39AD64EFFBAFFB5FF2BFA2726B6FA55" bold="true" box="[146,231,1498,1517]" italics="true" pageId="2" pageNumber="3">Tripartita</emphasis>
</taxonomicName>
), while the least complex were those of
<taxonomicName id="46EE71DFFFBAFFB5FDC4FA2726FCF9B1" authority="L. K. Escobar" authorityName="L. K. Escobar" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="uribei">
<emphasis id="B39AD64EFFBAFFB5FDC4FA27249BFA55" bold="true" box="[637,714,1498,1517]" italics="true" pageId="2" pageNumber="3">P. uribei</emphasis>
L. K. Escobar
</taxonomicName>
and
<taxonomicName id="46EE71DFFFBAFFB5FF67FA0B27D9F9B1" authority="Mast." authorityName="Mast." box="[222,392,1526,1545]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="lehmannii">
<emphasis id="B39AD64EFFBAFFB5FF67FA0B271CF9B1" bold="true" box="[222,333,1526,1545]" italics="true" pageId="2" pageNumber="3">P. lehmannii</emphasis>
Mast.
</taxonomicName>
The latter was included in this study as an outlier in order to compare the chemical composition of
<taxonomicName id="46EE71DFFFBAFFB5FD12F9EF26DAF9F9" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="undetermined">
<emphasis id="B39AD64EFFBAFFB5FD12F9EF2553F99D" bold="true" box="[683,770,1554,1573]" italics="true" pageId="2" pageNumber="3">Passiflora</emphasis>
spp.
</taxonomicName>
In two different subgenera. The content of sugars, polyhydroxyalcohols and other compounds was found to be very similar for the seven extracts, but the content of organic acids and amino acids did not show a distinct distribution pattern.
</paragraph>
<paragraph id="81510A5CFFBAFFB5FF3CF9632381FAF4" blockId="2.[100,771,801,1992]" lastBlockId="2.[818,1488,667,1970]" pageId="2" pageNumber="3">
The amino acid content of two species of the
<taxonomicName id="46EE71DFFFBAFFB5FDFCF96324CDF909" box="[581,668,1693,1713]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B39AD64EFFBAFFB5FDFCF96324CDF909" bold="true" box="[581,668,1693,1713]" italics="true" pageId="2" pageNumber="3">Passiflora</emphasis>
</taxonomicName>
genus has been reported. Twenty one amino acids have been identified in
<taxonomicName id="46EE71DFFFBAFFB5FD69F94427DDF950" authority="(Gavasheli et al., 1974)" baseAuthorityName="Gavasheli" baseAuthorityYear="1974" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="incarnata">
<emphasis id="B39AD64EFFBAFFB5FD69F94426F9F950" bold="true" italics="true" pageId="2" pageNumber="3">P. incarnata</emphasis>
(
<bibRefCitation id="E57F77ADFFBAFFB5FF0EF92827D4F950" author="Gavasheli, N. &amp; Moniava, I. &amp; Eristavi, L." box="[183,389,1749,1768]" pageId="2" pageNumber="3" pagination="266" refId="ref11910" refString="Gavasheli, N., Moniava, I., Eristavi, L., 1974. Aminoacids from P. incarnata cultivated in the Georgian SSR. Khimiya Prir. Soedin. (Tashkent) 10, 266." type="journal article" year="1974">Gavasheli et al., 1974</bibRefCitation>
)
</taxonomicName>
and
<quantity id="4616A7B9FFBAFFB5FE05F92827BCF950" box="[444,493,1749,1768]" metricMagnitude="-1" metricUnit="m" metricValue="4.318" pageId="2" pageNumber="3" unit="in" value="17.0">17 in</quantity>
<taxonomicName id="46EE71DFFFBAFFB5FE4DF928246EF950" box="[500,575,1749,1768]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="edulis">
<emphasis id="B39AD64EFFBAFFB5FE4DF928246EF950" bold="true" box="[500,575,1749,1768]" italics="true" pageId="2" pageNumber="3">P. edulis</emphasis>
</taxonomicName>
seeds, an ingredient of “Tainung No. 1”, a passion fruit formulation used in
<collectingCountry id="F9F94ACCFFBAFFB5FDDFF90C24CCF8BC" box="[614,669,1777,1796]" name="China" pageId="2" pageNumber="3">China</collectingCountry>
(
<bibRefCitation id="E57F77ADFFBAFFB5FD12F90C26C5F898" author="Liu, S. &amp; Yang, F. &amp; Li, J. &amp; Zhang, C. &amp; Ji, H. &amp; Hong, P." pageId="2" pageNumber="3" pagination="706 - 715" refId="ref12577" refString="Liu, S., Yang, F., Li, J., Zhang, C., Ji, H., Hong, P., 2008. Physical and chemical analysis of Passiflora seeds and seed oil from China. Int. J. Food Sci. Nutr. 59, 706 - 715. https: // doi. org / 10.1080 / 09637480801931128." type="journal article" year="2008">Liu et al., 2008</bibRefCitation>
). The presence of γ- aminobutyric acid (GABA) was detected in most of the studied species, including
<emphasis id="B39AD64EFFBAFFB5FE61F8D4241DF884" bold="true" box="[472,588,1833,1852]" italics="true" pageId="2" pageNumber="3">
<taxonomicName id="46EE71DFFFBAFFB5FE61F8D42418F884" box="[472,585,1833,1852]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="mollisima">P. mollisima</taxonomicName>
,
</emphasis>
the species that is approved in
<collectingCountry id="F9F94ACCFFBAFFB5FF56F8B82718F8E0" box="[239,329,1861,1880]" name="Colombia" pageId="2" pageNumber="3">Colombia</collectingCountry>
as a mild tranquilizer (Ministerio de
<bibRefCitation id="E57F77ADFFBAFFB5FD48F8B827EAF8CC" author="Ministerio de la Proteccion Social de Colombia" pageId="2" pageNumber="3" refId="ref12709" refString="Ministerio de la Proteccion Social de Colombia, 2008. Vademecum Colombiano de Plantas Medicinales. Univ. Nac." type="book" year="2008">
la Protección Social de
<collectingCountry id="F9F94ACCFFBAFFB5FE9FF89C27D3F8CC" box="[294,386,1889,1908]" name="Colombia" pageId="2" pageNumber="3">Colombia</collectingCountry>
, 2008
</bibRefCitation>
) and in
<emphasis id="B39AD64EFFBAFFB5FDBEF89C2407F8CC" bold="true" box="[519,598,1889,1908]" italics="true" pageId="2" pageNumber="3">
<taxonomicName id="46EE71DFFFBAFFB5FDBEF89C2403F8CC" box="[519,594,1889,1908]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="uribei">P. uribei</taxonomicName>
,
</emphasis>
that appears to be the most abundant source of this compound among the studied samples. It is thought that GABA, that has also been detected in
<taxonomicName id="46EE71DFFFBAFFB5FD35F86424ADF814" box="[652,764,1945,1964]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="incarnata">
<emphasis id="B39AD64EFFBAFFB5FD35F86424ADF814" bold="true" box="[652,764,1945,1964]" italics="true" pageId="2" pageNumber="3">P. incarnata</emphasis>
</taxonomicName>
, might be responsible for the anxiolytic and sedative properties of Passion fruit leaf extracts (
<bibRefCitation id="E57F77ADFFBAFFB5FB8AFD662289FD16" author="Elsas, S. M. &amp; Rossi, D. J. &amp; Raber, J. &amp; White, G. &amp; Seeley, C. A. &amp; Gregory, W. L. &amp; Mohr, C. &amp; Pfankuch, T. &amp; Soumyanath, A." box="[1075,1240,667,686]" pageId="2" pageNumber="3" pagination="940 - 949" refId="ref11455" refString="Elsas, S. M., Rossi, D. J., Raber, J., White, G., Seeley, C. A., Gregory, W. L., Mohr, C., Pfankuch, T., Soumyanath, A., 2010. Passiflora incarnata L. (Passionflower) extracts elicit GABA currents in hippocampal neurons in vitro, and show anxiogenic and anticonvulsant effects in vivo, varying with extraction method. Phytomedicine 17, 940 - 949. https: // doi. org / 10.1016 / j. phymed. 2010.03.002." type="journal article" year="2010">Elsas et al., 2010</bibRefCitation>
), though the extent of its pharmacological significance is still unclear (
<bibRefCitation id="E57F77ADFFBAFFB5FB67FD4A232EFD72" author="Elsas, S. M. &amp; Rossi, D. J. &amp; Raber, J. &amp; White, G. &amp; Seeley, C. A. &amp; Gregory, W. L. &amp; Mohr, C. &amp; Pfankuch, T. &amp; Soumyanath, A." box="[1246,1407,695,714]" pageId="2" pageNumber="3" pagination="940 - 949" refId="ref11455" refString="Elsas, S. M., Rossi, D. J., Raber, J., White, G., Seeley, C. A., Gregory, W. L., Mohr, C., Pfankuch, T., Soumyanath, A., 2010. Passiflora incarnata L. (Passionflower) extracts elicit GABA currents in hippocampal neurons in vitro, and show anxiogenic and anticonvulsant effects in vivo, varying with extraction method. Phytomedicine 17, 940 - 949. https: // doi. org / 10.1016 / j. phymed. 2010.03.002." type="journal article" year="2010">Elsas et al., 2010</bibRefCitation>
; Jawna-Zboi
<emphasis id="B39AD64EFFBAFFB5FCE5FD2E2539FD5E" bold="true" box="[860,872,723,742]" pageId="2" pageNumber="3">ń</emphasis>
ska et al., 2016). Trigonelline, which was identified in all samples as a minor compound has been associated to neuroprotective, antimigraine, sedative, memory-boosting and hypoglycemic activities (
<bibRefCitation id="E57F77ADFFBAFFB5FC83FCDA25B7FC82" author="Zhou, J. &amp; Chan, L. &amp; Zhou, S." box="[826,998,807,826]" pageId="2" pageNumber="3" pagination="3523 - 3531" refId="ref14281" refString="Zhou, J., Chan, L., Zhou, S., 2012. Trigonelline: a plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr. Med. Chem. 19, 3523 - 3531. https: // doi. org / 10.2174 / 092986712801323171." type="journal article" year="2012">Zhou et al., 2012</bibRefCitation>
). All these pharmacological properties have been detected in different
<taxonomicName id="46EE71DFFFBAFFB5FC40FCBE222FFCEE" box="[1017,1150,834,854]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="undetermined">
<emphasis id="B39AD64EFFBAFFB5FC40FCBE2201FCEE" bold="true" box="[1017,1104,834,854]" italics="true" pageId="2" pageNumber="3">Passiflora</emphasis>
spp.
</taxonomicName>
Extracts and support its traditional medicinal use. The presence of 5-carboxymethyl-2,5-dihydrofuran-2- one was unexpected as this compound has only been previously isolated from an unrelated organism, the marine sponge
<taxonomicName id="46EE71DFFFBAFFB5FAB2FC6B23F0FC11" box="[1291,1441,918,937]" class="Demospongiae" family="Petrosiidae" genus="Xestospongia" kingdom="Animalia" order="Haplosclerida" pageId="2" pageNumber="3" phylum="Porifera" rank="species" species="undetermined">
<emphasis id="B39AD64EFFBAFFB5FAB2FC6B232CFC11" bold="true" box="[1291,1405,918,937]" italics="true" pageId="2" pageNumber="3">Xestospongia</emphasis>
sp.
</taxonomicName>
Collected in the island of
<collectingCountry id="F9F94ACCFFBAFFB5FC46FC4F2270FC7D" box="[1023,1057,946,965]" name="Fiji" pageId="2" pageNumber="3">Viti</collectingCountry>
Levu (
<collectingCountry id="F9F94ACCFFBAFFB5FBD9FC4F22D4FC7D" box="[1120,1157,946,965]" name="Fiji" pageId="2" pageNumber="3">Fiji</collectingCountry>
). This compound has been reported to possess a mild cytotoxic activity against P388 murine leukemia cells (
<bibRefCitation id="E57F77ADFFBAFFB5FC83FC1725A0FC45" author="Quinoa, E. &amp; Kho, E. &amp; Manes, L. V. &amp; Crews, P. &amp; Bakus, G. J." box="[826,1009,1002,1021]" pageId="2" pageNumber="3" pagination="4260 - 4264" refId="ref13152" refString="Quinoa, E., Kho, E., Manes, L. V., Crews, P., Bakus, G. J., 1986. Heterocycles from the marine sponge Xestospongia sp. J. Org. Chem. 51, 4260 - 4264. https: // doi. org / 10. 1021 / jo 00372 a 029." type="journal article" year="1986">Quinoa et al., 1986</bibRefCitation>
), and has been identified as a key intermediate in the catechol branch of the β- ketoadipate pathway for the degradation of many arenes by a variety of organisms including microorganisms (
<bibRefCitation id="E57F77ADFFBAFFB5FC83FBC32204FBE9" author="Ribbons, D. W. &amp; Sutherland, A. G." box="[826,1109,1086,1105]" pageId="2" pageNumber="3" pagination="3587 - 3594" refId="ref13348" refString="Ribbons, D. W., Sutherland, A. G., 1994. (+) - Muconolactone from arene biotransformation in Pseudomonas putida: production, absolute configuration and enantiomeric purity. Tetrahedron 50, 3587 - 3594. https: // doi. org / 10.1016 / S 0040 - 4020 (01) 87035 - 6." type="journal article" year="1994">Ribbons and Sutherland, 1994</bibRefCitation>
). The microbial origin of this compound can explain the variability in its concentration in some of the examined samples, including those of
<taxonomicName id="46EE71DFFFBAFFB5FB8EFB8B22CBFB31" box="[1079,1178,1142,1161]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="caerulea">
<emphasis id="B39AD64EFFBAFFB5FB8EFB8B22CBFB31" bold="true" box="[1079,1178,1142,1161]" italics="true" pageId="2" pageNumber="3">P. caerulea</emphasis>
</taxonomicName>
and
<taxonomicName id="46EE71DFFFBAFFB5FB70FB8B2364FB31" box="[1225,1333,1142,1161]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="incarnata">
<emphasis id="B39AD64EFFBAFFB5FB70FB8B2364FB31" bold="true" box="[1225,1333,1142,1161]" italics="true" pageId="2" pageNumber="3">P. incarnata</emphasis>
</taxonomicName>
acquired in
<collectingCountry id="F9F94ACCFFBAFFB5FA15FB8B25F2FB1D" name="Netherlands" pageId="2" pageNumber="3">The Netherlands</collectingCountry>
(results not shown). Finally, considering that saponins have been reported as major compounds in other species of the subgenus
<taxonomicName id="46EE71DFFFBAFFB5FCD4FB342595FB64" box="[877,964,1225,1244]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B39AD64EFFBAFFB5FCD4FB342595FB64" bold="true" box="[877,964,1225,1244]" italics="true" pageId="2" pageNumber="3">Passiflora</emphasis>
</taxonomicName>
of the
<taxonomicName id="46EE71DFFFBAFFB5FBBDFB34220AFB64" box="[1028,1115,1225,1244]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B39AD64EFFBAFFB5FBBDFB34220AFB64" bold="true" box="[1028,1115,1225,1244]" italics="true" pageId="2" pageNumber="3">Passiflora</emphasis>
</taxonomicName>
genus, i.e.,
<taxonomicName id="46EE71DFFFBAFFB5FB70FB3422C7FB40" authority="(Serie Incarnatae) (Yoshikawa et al., 2000)" baseAuthorityName="Serie Incarnatae" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="variety" species="edulis" variety="flavicarpa">
<emphasis id="B39AD64EFFBAFFB5FB70FB3423C2FB64" bold="true" box="[1225,1427,1225,1244]" italics="true" pageId="2" pageNumber="3">P. edulis var flavicarpa</emphasis>
(Serie
<emphasis id="B39AD64EFFBAFFB5FC8BFB1825C0FB40" bold="true" box="[818,913,1253,1272]" italics="true" pageId="2" pageNumber="3">Incarnatae</emphasis>
) (
<bibRefCitation id="E57F77ADFFBAFFB5FC12FB1822DFFB40" author="Yoshikawa, K. &amp; Katsuta, S. &amp; Mizumori, J. &amp; Arihara, S." box="[939,1166,1253,1272]" pageId="2" pageNumber="3" pagination="1377 - 1380" refId="ref14226" refString="Yoshikawa, K., Katsuta, S., Mizumori, J., Arihara, S., 2000. New cycloartane triterpenoids from Passiflora edulis 1. J. Nat. Prod. 63, 1377 - 1380. https: // doi. org / 10.1021 / np 000182 a." type="journal article" year="2000">Yoshikawa et al., 2000</bibRefCitation>
)
</taxonomicName>
,
<taxonomicName id="46EE71DFFFBAFFB5FB1FFB18225FFAAC" authority="(Serie Quadrangulares) (Reginatto et al., 2004)" baseAuthorityName="Serie Quadrangulares" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="alata">
<emphasis id="B39AD64EFFBAFFB5FB1FFB1822BEFB40" bold="true" box="[1190,1263,1253,1272]" italics="true" pageId="2" pageNumber="3">P. alata</emphasis>
(Serie
<emphasis id="B39AD64EFFBAFFB5FA83FB182396FB40" bold="true" box="[1338,1479,1253,1272]" italics="true" pageId="2" pageNumber="3">Quadrangulares</emphasis>
) (
<bibRefCitation id="E57F77ADFFBAFFB5FC83FAFC2254FAAC" author="Reginatto, F. H. &amp; Gosmann, G. &amp; Schripsema, J. &amp; Schenkel, E. P." box="[826,1029,1281,1300]" pageId="2" pageNumber="3" pagination="195 - 197" refId="ref13283" refString="Reginatto, F. H., Gosmann, G., Schripsema, J., Schenkel, E. P., 2004. Assay of quadranguloside, the major saponin of leaves of Passiflora alata, by HPLC-UV. Phytochem. Anal. 15, 195 - 197. https: // doi. org / 10.1002 / pca. 768." type="journal article" year="2004">Reginatto et al., 2004</bibRefCitation>
)
</taxonomicName>
,
<taxonomicName id="46EE71DFFFBAFFB5FBA0FAFC23DFFAAC" authority="(Serie Quadrangulares)" baseAuthorityName="Serie Quadrangulares" box="[1049,1422,1281,1300]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="quadrangularis">
<emphasis id="B39AD64EFFBAFFB5FBA0FAFC22E7FAAC" bold="true" box="[1049,1206,1281,1300]" italics="true" pageId="2" pageNumber="3">P. quadrangularis</emphasis>
(Serie
<emphasis id="B39AD64EFFBAFFB5FB40FAFC23D7FAAC" bold="true" box="[1273,1414,1281,1300]" italics="true" pageId="2" pageNumber="3">Quadrangulares</emphasis>
)
</taxonomicName>
and
<taxonomicName id="46EE71DFFFBAFFB5FA04FAFC227BFA88" authority="(Serie Tiliaefoliae)" baseAuthorityName="Serie Tiliaefoliae" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="ligularis">
<emphasis id="B39AD64EFFBAFFB5FA04FAFC2529FA88" bold="true" italics="true" pageId="2" pageNumber="3">P. ligularis</emphasis>
(Serie
<emphasis id="B39AD64EFFBAFFB5FC07FAE02270FA88" bold="true" box="[958,1057,1309,1328]" italics="true" pageId="2" pageNumber="3">Tiliaefoliae</emphasis>
)
</taxonomicName>
, it is noteworthy that no saponins were detected with these methods in the studied species (unpublished results).
</paragraph>
<paragraph id="81510A5CFFBAFFB5FCEAFAA825EAF993" blockId="2.[818,1488,667,1970]" pageId="2" pageNumber="3">
The direct analysis of the content of phenolic compounds in the NMR spectra of the extracts was hindered by the high complexity of the aromatic region, the shifting of
<superScript id="769BA714FFBAFFB5FBCEFA7522D1FA2D" attach="right" box="[1143,1152,1416,1429]" fontSize="5" pageId="2" pageNumber="3">1</superScript>
H NMR signals and the low concentration of some of these compounds. Thus, the main phenolics, including some
<emphasis id="B39AD64EFFBAFFB5FC03FA392596FA6F" bold="true" box="[954,967,1476,1495]" italics="true" pageId="2" pageNumber="3">C</emphasis>
-glycosyl flavonoids and catechins, had to be isolated from the extracts for their identification. Their chemical shifts in
<collectingCountry id="F9F94ACCFFBAFFB5FC8BFA01251EF9B7" box="[818,847,1532,1551]" name="Switzerland" pageId="2" pageNumber="3">CH</collectingCountry>
<subScript id="1D6A0819FFBAFFB5FCF6F9F92509F9A9" attach="both" box="[847,856,1540,1553]" fontSize="5" pageId="2" pageNumber="3">3</subScript>
OH-
<emphasis id="B39AD64EFFBAFFB5FCC7FA0125D8F9B7" bold="true" box="[894,905,1532,1551]" italics="true" pageId="2" pageNumber="3">d</emphasis>
<quantity id="4616A7B9FFBAFFB5FC30F9F925FAF9B7" box="[905,939,1532,1553]" metricMagnitude="-1" metricUnit="m" metricValue="1.016" pageId="2" pageNumber="3" unit="in" value="4.0">
<emphasis id="B39AD64EFFBAFFB5FC30F9F925C3F9A9" bold="true" box="[905,914,1540,1553]" italics="true" pageId="2" pageNumber="3">
<subScript id="1D6A0819FFBAFFB5FC30F9F925C3F9A9" attach="left" box="[905,914,1540,1553]" fontSize="5" pageId="2" pageNumber="3">4</subScript>
</emphasis>
in
</quantity>
buffer (90 mM KH
<subScript id="1D6A0819FFBAFFB5FBDDF9F9223CF9A9" attach="both" box="[1124,1133,1540,1553]" fontSize="5" pageId="2" pageNumber="3">2</subScript>
PO
<quantity id="4616A7B9FFBAFFB5FB30F9F922FAF9B7" box="[1161,1195,1532,1553]" metricMagnitude="-1" metricUnit="m" metricValue="1.016" pageId="2" pageNumber="3" unit="in" value="4.0">
<subScript id="1D6A0819FFBAFFB5FB30F9F922C3F9A9" attach="left" box="[1161,1170,1540,1553]" fontSize="5" pageId="2" pageNumber="3">4</subScript>
in
</quantity>
D
<subScript id="1D6A0819FFBAFFB5FB7BF9F9229AF9A9" attach="both" box="[1218,1227,1540,1553]" fontSize="5" pageId="2" pageNumber="3">2</subScript>
O) solvent are presented in Supp.
<tableCitation id="CC6C3FE7FFBAFFB5FCD7F9E525E4F993" box="[878,949,1560,1579]" captionStart="Table 2" captionStartId="7.[100,150,161,178]" captionTargetPageId="7" captionText="Table 2 1H and13C NMR data for Apigenin-4-O-glucopyranosyl, 8-C-(6″acetyl)- β-glucopyranoside (1) and Apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside (2) (Methanol-d4, δ in ppm, J in Hz)." pageId="2" pageNumber="3">Table 2</tableCitation>
.
</paragraph>
<paragraph id="81510A5CFFBAFFB5FCEAF9C92240F8E6" blockId="2.[818,1488,667,1970]" pageId="2" pageNumber="3">
The signals for a
<emphasis id="B39AD64EFFBAFFB5FC4BF9C925AEF9FF" bold="true" box="[1010,1023,1588,1607]" italics="true" pageId="2" pageNumber="3">C</emphasis>
-neohesperidoside glycosyl were detected in most of the
<superScript id="769BA714FFBAFFB5FCD6F9B62529F9E0" attach="right" box="[879,888,1611,1624]" fontSize="5" pageId="2" pageNumber="3">1</superScript>
H-NMR spectra of the
<taxonomicName id="46EE71DFFFBAFFB5FBF2F9AD22F3F9DB" box="[1099,1186,1616,1635]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="genus">
<emphasis id="B39AD64EFFBAFFB5FBF2F9AD22F3F9DB" bold="true" box="[1099,1186,1616,1635]" italics="true" pageId="2" pageNumber="3">Passiflora</emphasis>
</taxonomicName>
extracts, except in
<taxonomicName id="46EE71DFFFBAFFB5FAE3F9AD239EF9DB" box="[1370,1487,1616,1635]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="mollissima">
<emphasis id="B39AD64EFFBAFFB5FAE3F9AD239EF9DB" bold="true" box="[1370,1487,1616,1635]" italics="true" pageId="2" pageNumber="3">P. mollissima</emphasis>
</taxonomicName>
and
<taxonomicName id="46EE71DFFFBAFFB5FCD9F99125E1F9C7" box="[864,944,1644,1663]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="2" pageNumber="3" phylum="Tracheophyta" rank="species" species="mixta">
<emphasis id="B39AD64EFFBAFFB5FCD9F99125E1F9C7" bold="true" box="[864,944,1644,1663]" italics="true" pageId="2" pageNumber="3">P. mixta</emphasis>
</taxonomicName>
samples that showed a very low amount if any. The identification of the
<emphasis id="B39AD64EFFBAFFB5FC41F9752254F923" bold="true" box="[1016,1029,1672,1691]" italics="true" pageId="2" pageNumber="3">C</emphasis>
-neohesperidoside diglycoside was based on the signals for methyl groups at 0.60 ppm that were assigned to its rhamnose methyl protons. This shift is due to the spatial shielding effect of the A-ring of the flavonoid aglycone when the disaccharide moiety is attached at position C-6 or C-8. The rotational barrier around the
<emphasis id="B39AD64EFFBAFFB5FA02F90A2399F8B2" bold="true" box="[1467,1480,1783,1802]" italics="true" pageId="2" pageNumber="3">C</emphasis>
- glycosidic linkage also leads to signal doubling in the NMR spectra, as a result of the presence of two main conformers (
<bibRefCitation id="E57F77ADFFBAFFB5FB46F8D22398F8FA" author="Camargo, L. M. D. M. &amp; Ferezou, J. - P. &amp; Tinoco, L. W. &amp; Kaiser, C. R. &amp; Costa, S. S." box="[1279,1481,1839,1858]" pageId="2" pageNumber="3" refId="ref10992" refString="Camargo, L. M. D. M., Ferezou, J. - P., Tinoco, L. W., Kaiser, C. R., Costa, S. S., 2012." type="book" year="2012">Camargo et al., 2012</bibRefCitation>
;
<bibRefCitation id="E57F77ADFFBAFFB5FC8BF8B62255F8E6" author="Larionova, M. &amp; Spengler, I. &amp; Nogueiras, C. &amp; Quijano, L. &amp; Ramirez-Gualito, K. &amp; Guzman, F. &amp; Cuevas, G. &amp; Calderon, J. S." box="[818,1028,1867,1886]" pageId="2" pageNumber="3" pagination="1623 - 1627" refId="ref12487" refString="Larionova, M., Spengler, I., Nogueiras, C., Quijano, L., Ramirez-Gualito, K., Cortes- Guzman, F., Cuevas, G., Calderon, J. S., 2010. A C-glycosylflavone from piper ossanum, a compound conformationally controlled by CH / π and other weak intramolecular interactions. J. Nat. Prod. 73, 1623 - 1627. https: // doi. org / 10.1021 / np 100004 v." type="journal article" year="2010">Larionova et al., 2010</bibRefCitation>
).
</paragraph>
<paragraph id="81510A5CFFBAFFB4FCEAF89A228BF82E" blockId="2.[818,1488,667,1970]" lastBlockId="3.[818,1487,1723,1970]" lastPageId="3" lastPageNumber="4" pageId="2" pageNumber="3">
The LC-MS analysis of flavonoids using MS and MS/MS data proved to be useful for the structural elucidation of both
<emphasis id="B39AD64EFFBAFFB5FAAAF87E2378F82E" bold="true" box="[1299,1321,1923,1942]" italics="true" pageId="2" pageNumber="3">O-</emphasis>
glycosides and
<emphasis id="B39AD64EFFBAFFB5FA02F87E25D8F80A" bold="true" italics="true" pageId="2" pageNumber="3">Cglycoside</emphasis>
flavonoids. This technique has been widely used for flavonoid characterization in
<taxonomicName id="46EE71DFFFBBFFB4FE9BF9422728F96A" box="[290,377,1727,1746]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="3" pageNumber="4" phylum="Tracheophyta" rank="genus">
<emphasis id="B39AD64EFFBBFFB4FE9BF9422728F96A" bold="true" box="[290,377,1727,1746]" italics="true" pageId="3" pageNumber="4">Passiflora</emphasis>
</taxonomicName>
extracts (
<bibRefCitation id="E57F77ADFFBBFFB4FE64F94224DCF96A" author="Farag, M. A. &amp; Otify, A. &amp; Porzel, A. &amp; Michel, C. G. &amp; Elsayed, A. &amp; Wessjohann, L. A." box="[477,653,1727,1746]" pageId="3" pageNumber="4" refId="ref11619" refString="Farag, M. A., Otify, A., Porzel, A., Michel, C. G., Elsayed, A., Wessjohann, L. A., 2016." type="book" year="2016">Farag et al., 2016</bibRefCitation>
;
<bibRefCitation id="E57F77ADFFBBFFB4FD25F942269FF956" author="Simirgiotis, M. &amp; Schmeda-Hirschmann, G. &amp; Borquez, J. &amp; Kennelly, E." pageId="3" pageNumber="4" pagination="1672 - 1692" refId="ref13411" refString="Simirgiotis, M., Schmeda-Hirschmann, G., Borquez, J., Kennelly, E., 2013. The Passiflora tripartita (banana passion) fruit: a source of bioactive flavonoid C-glycosides isolated by HSCCC and characterized by HPLC - DAD - ESI / MS / MS. Molecules 18, 1672 - 1692. https: // doi. org / 10.3390 / molecules 18021672." type="journal article" year="2013">Simirgiotis et al., 2013</bibRefCitation>
;
<bibRefCitation id="E57F77ADFFBBFFB4FF60F92627F0F956" author="Zucolotto, S. M. &amp; Fagundes, C. &amp; Reginatto, F. H. &amp; Ramos, F. A. &amp; Castellanos, L. &amp; Duque, C. &amp; Schenkel, E. P." box="[217,417,1755,1774]" pageId="3" pageNumber="4" pagination="232 - 239" refId="ref14337" refString="Zucolotto, S. M., Fagundes, C., Reginatto, F. H., Ramos, F. A., Castellanos, L., Duque, C., Schenkel, E. P., 2012. Analysis of C-glycosyl flavonoids from south American Passiflora species by HPLC-DAD and HPLC-MS. Phytochem. Anal. 23, 232 - 239. https: // doi. org / 10.1002 / pca. 1348." type="journal article" year="2012">Zucolotto et al., 2012</bibRefCitation>
) In all the studied samples, the BuOH fractions were analyzed by reversed-phase UHPLC-DAD/ESI-2 QToF-MS. Peaks were identified by comparison of retention times with those of external standards, mass spectra and UV analysis. The presence of
<emphasis id="B39AD64EFFBBFFB4FD55F8D224AAF8FA" bold="true" box="[748,763,1839,1858]" italics="true" pageId="3" pageNumber="4">O</emphasis>
- or
<emphasis id="B39AD64EFFBBFFB4FFC7F8B626DAF8E6" bold="true" box="[126,139,1867,1886]" italics="true" pageId="3" pageNumber="4">C</emphasis>
- glycosylation, hexoses, pentoses, and acetyl groups were assigned by the MS/MS data analysis of well-established fragmentation patterns such as [M-162]
<superScript id="769BA714FFBBFFB4FEBBF883277BF833" attach="left" box="[258,298,1918,1931]" fontSize="5" pageId="3" pageNumber="4">+/</superScript>
(hexoses), [M-132]
<superScript id="769BA714FFBBFFB4FE49F8832449F833" attach="none" box="[496,536,1918,1931]" fontSize="5" pageId="3" pageNumber="4">+/</superScript>
(pentoses), [M-18]
<superScript id="769BA714FFBBFFB4FD63F8832553F833" attach="right" box="[730,770,1918,1931]" fontSize="5" pageId="3" pageNumber="4">+/</superScript>
and [M-120/90]
<superScript id="769BA714FFBBFFB4FEA9F8672769F81E" attach="right" box="[272,312,1946,1959]" fontSize="5" pageId="3" pageNumber="4">+/</superScript>
cross-ring cleavages [(OC1 and C2C3)]
<superScript id="769BA714FFBBFFB4FD67F86724B3F81F" attach="left" box="[734,738,1946,1959]" fontSize="5" pageId="3" pageNumber="4">.</superScript>
or [(OC1 and C3C4)] for
<emphasis id="B39AD64EFFBBFFB4FBA2F9422279F96A" bold="true" box="[1051,1064,1727,1746]" italics="true" pageId="3" pageNumber="4">C</emphasis>
-hexosides, [M-90/60]
<superScript id="769BA714FFBBFFB4FABAF946237AF97F" attach="right" box="[1283,1323,1723,1736]" fontSize="5" pageId="3" pageNumber="4">+/</superScript>
for
<emphasis id="B39AD64EFFBBFFB4FAEBF942230EF96A" bold="true" box="[1362,1375,1727,1746]" italics="true" pageId="3" pageNumber="4">C</emphasis>
-pentosides, and [M-104/74] for
<emphasis id="B39AD64EFFBBFFB4FBBDF9262240F956" bold="true" box="[1028,1041,1755,1774]" italics="true" pageId="3" pageNumber="4">C</emphasis>
-deoxyhexosides, among other ions, used for flavonoid characterization (
<bibRefCitation id="E57F77ADFFBBFFB4FBF9F90A237BF8B2" author="Figueirinha, A. &amp; Paranhos, A. &amp; Perez-Alonso, J. J. &amp; Santos-Buelga, C. &amp; Batista, M. T." box="[1088,1322,1783,1802]" pageId="3" pageNumber="4" pagination="718 - 728" refId="ref11730" refString="Figueirinha, A., Paranhos, A., Perez-Alonso, J. J., Santos-Buelga, C., Batista, M. T., 2008. Cymbopogon citratus leaves: characterization of flavonoids by HPLC - PDA - ESI / MS / MS and an approach to their potential as a source of bioactive polyphenols. Food Chem. 110, 718 - 728. https: // doi. org / 10.1016 / j. foodchem. 2008.02.045." type="journal article" year="2008">Figueirinha et al., 2008</bibRefCitation>
). This MS-based approach is useful for positional isomer identification. For example, the differentiation between luteolin-6-
<emphasis id="B39AD64EFFBBFFB4FB3DF8D222C0F8FA" bold="true" box="[1156,1169,1839,1858]" italics="true" pageId="3" pageNumber="4">C</emphasis>
-glucoside (isoorientin,
<emphasis id="B39AD64EFFBBFFB4FAC7F8D223C6F8FA" bold="true" box="[1406,1431,1839,1858]" pageId="3" pageNumber="4">14</emphasis>
) and luteolin-8-
<emphasis id="B39AD64EFFBBFFB4FC2DF8B625F0F8E6" bold="true" box="[916,929,1867,1886]" italics="true" pageId="3" pageNumber="4">C</emphasis>
-glucoside (orientin,
<emphasis id="B39AD64EFFBBFFB4FBDCF8B6222FF8E6" bold="true" box="[1125,1150,1867,1886]" pageId="3" pageNumber="4">16</emphasis>
) is based on the high abundance of the product ion at
<emphasis id="B39AD64EFFBBFFB4FC50F89A225FF8C2" bold="true" box="[1001,1038,1895,1914]" italics="true" pageId="3" pageNumber="4">m/z</emphasis>
429 [M-18-H]
<superScript id="769BA714FFBBFFB4FB22F89E22FAF8D7" attach="left" box="[1179,1195,1891,1903]" fontSize="5" pageId="3" pageNumber="4"></superScript>
in 6-
<emphasis id="B39AD64EFFBBFFB4FB59F89A22BCF8C2" bold="true" box="[1248,1261,1895,1914]" italics="true" pageId="3" pageNumber="4">C</emphasis>
-hexoside, which is less intense in 8-
<emphasis id="B39AD64EFFBBFFB4FC11F87E25E4F82E" bold="true" box="[936,949,1923,1942]" italics="true" pageId="3" pageNumber="4">C</emphasis>
-glucoside (
<bibRefCitation id="E57F77ADFFBBFFB4FB9DF87E229DF82E" author="Farag, M. A. &amp; Otify, A. &amp; Porzel, A. &amp; Michel, C. G. &amp; Elsayed, A. &amp; Wessjohann, L. A." box="[1060,1228,1923,1942]" pageId="3" pageNumber="4" refId="ref11619" refString="Farag, M. A., Otify, A., Porzel, A., Michel, C. G., Elsayed, A., Wessjohann, L. A., 2016." type="book" year="2016">Farag et al., 2016</bibRefCitation>
).
</paragraph>
<caption id="D5915AD4FFBBFFB4FFDDF9C9269FF929" ID-DOI="http://doi.org/10.5281/zenodo.8294127" ID-Zenodo-Dep="8294127" httpUri="https://zenodo.org/record/8294127/files/figure.png" pageId="3" pageNumber="4" startId="3.[100,130,1588,1605]" targetBox="[197,1390,153,1554]" targetPageId="3" targetType="figure">
<paragraph id="81510A5CFFBBFFB4FFDDF9C9269FF929" blockId="3.[100,1488,1584,1681]" pageId="3" pageNumber="4">
<emphasis id="B39AD64EFFBBFFB4FFDDF9C926CDF9FD" bold="true" box="[100,156,1588,1605]" pageId="3" pageNumber="4">Fig. 1.</emphasis>
<superScript id="769BA714FFBBFFB4FF1BF9CD26FBF983" attach="right" box="[162,170,1584,1595]" fontSize="5" pageId="3" pageNumber="4">1</superScript>
H NMR spectrum of
<taxonomicName id="46EE71DFFFBBFFB4FEECF9C927F2F9FD" box="[341,419,1587,1605]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="3" pageNumber="4" phylum="Tracheophyta" rank="genus">
<emphasis id="B39AD64EFFBBFFB4FEECF9C927F2F9FD" bold="true" box="[341,419,1587,1605]" italics="true" pageId="3" pageNumber="4">Passiflora</emphasis>
</taxonomicName>
leave extract showing aliphatic, sugar and aromatic region and some assignments: ascorbic acid (I), proline (II), threonine (III), ethanol (IV), leucine (V) pipecolic acid (VI) and acetic acid (VIII) (A and B). Sugar region ascorbic acid (I) and glucose (X) (B and C). Phenolic region glucose (X), tyrosine (IX), 5-carboxymethyl-2,5-dihydrofuran-2-one (XI) shikimic acid (XII) (D). The whole NMR signals assignation can be consulted at Table 1 supporting information.
</paragraph>
</caption>
<paragraph id="81510A5CFFBBFFB3FCEAF8622477FB6A" blockId="3.[818,1487,1723,1970]" lastBlockId="4.[100,771,1131,1987]" lastPageId="4" lastPageNumber="5" pageId="3" pageNumber="4">
In total, 34 phenolics were identified. Supp
<tableCitation id="CC6C3FE7FFBBFFB4FABEF8622300F80A" box="[1287,1361,1951,1970]" captionStart="Table 2" captionStartId="7.[100,150,161,178]" captionTargetPageId="7" captionText="Table 2 1H and13C NMR data for Apigenin-4-O-glucopyranosyl, 8-C-(6″acetyl)- β-glucopyranoside (1) and Apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside (2) (Methanol-d4, δ in ppm, J in Hz)." pageId="3" pageNumber="4">Table 2</tableCitation>
includes the NMR data (
<collectingCountry id="F9F94ACCFFBCFFB3FF68FB9626A1FBC6" box="[209,240,1131,1150]" name="Switzerland" pageId="4" pageNumber="5">CH</collectingCountry>
<subScript id="1D6A0819FFBCFFB3FF49FB8E26A8FB38" attach="both" box="[240,249,1139,1152]" fontSize="5" pageId="4" pageNumber="5">3</subScript>
OH
<emphasis id="B39AD64EFFBCFFB3FEA0FB96277AFBC6" bold="true" box="[281,299,1131,1150]" italics="true" pageId="4" pageNumber="5">-d</emphasis>
<quantity id="4616A7B9FFBCFFB3FE92FB8E271CFBC6" box="[299,333,1131,1152]" metricMagnitude="-1" metricUnit="m" metricValue="1.016" pageId="4" pageNumber="5" unit="in" value="4.0">
<emphasis id="B39AD64EFFBCFFB3FE92FB8E2765FB38" bold="true" box="[299,308,1139,1152]" italics="true" pageId="4" pageNumber="5">
<subScript id="1D6A0819FFBCFFB3FE92FB8E2765FB38" attach="left" box="[299,308,1139,1152]" fontSize="5" pageId="4" pageNumber="5">4</subScript>
</emphasis>
in
</quantity>
buffer 90 mM KH
<subScript id="1D6A0819FFBCFFB3FE44FB8E2457FB38" attach="right" box="[509,518,1139,1152]" fontSize="5" pageId="4" pageNumber="5">2</subScript>
PO
<quantity id="4616A7B9FFBCFFB3FD98FB8E2415FBC6" box="[545,580,1131,1152]" metricMagnitude="-1" metricUnit="m" metricValue="1.016" pageId="4" pageNumber="5" unit="in" value="4.0">
<subScript id="1D6A0819FFBCFFB3FD98FB8E247BFB38" attach="left" box="[545,554,1139,1152]" fontSize="5" pageId="4" pageNumber="5">4</subScript>
in
</quantity>
D
<subScript id="1D6A0819FFBCFFB3FDE3FB8E2432FB38" attach="both" box="[602,611,1139,1152]" fontSize="5" pageId="4" pageNumber="5">2</subScript>
O) and retention times,
<subScript id="1D6A0819FFBCFFB3FF1AFB7A2699FB24" attach="left" box="[163,200,1159,1180]" fontSize="5" pageId="4" pageNumber="5">Imax</subScript>
, and experimental
<emphasis id="B39AD64EFFBCFFB3FEC4FB7A27F3FB22" bold="true" box="[381,418,1159,1178]" italics="true" pageId="4" pageNumber="5">m/z</emphasis>
and MS/MS data obtained by HRMS-ESI(). Information on NMR data measured in other solvents such as MeOD and DMSO is recorded in Supp. Table 3.
</paragraph>
<caption id="D5915AD4FFBCFFB3FFDDFBEF270BFB85" ID-DOI="http://doi.org/10.5281/zenodo.8294129" ID-Zenodo-Dep="8294129" httpUri="https://zenodo.org/record/8294129/files/figure.png" pageId="4" pageNumber="5" startId="4.[100,130,1042,1059]" targetBox="[163,1436,154,1018]" targetPageId="4" targetType="figure">
<paragraph id="81510A5CFFBCFFB3FFDDFBEF270BFB85" blockId="4.[100,1487,1042,1085]" pageId="4" pageNumber="5">
<emphasis id="B39AD64EFFBCFFB3FFDDFBEF26CCFB9B" bold="true" box="[100,157,1042,1059]" pageId="4" pageNumber="5">Fig. 2.</emphasis>
The main differences for
<taxonomicName id="46EE71DFFFBCFFB3FEC0FBEF2796FB9B" box="[377,455,1042,1059]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="genus">
<emphasis id="B39AD64EFFBCFFB3FEC0FBEF2796FB9B" bold="true" box="[377,455,1042,1059]" italics="true" pageId="4" pageNumber="5">Passiflora</emphasis>
</taxonomicName>
samples can be observed in the aromatic region, suggesting a different composition of flavonoids and other polyphenolic compounds for each species.
</paragraph>
</caption>
<paragraph id="81510A5CFFBCFFB3FF3CFB262729FA09" blockId="4.[100,771,1131,1987]" pageId="4" pageNumber="5">
The LC-MS analysis of the BuOH fraction of
<taxonomicName id="46EE71DFFFBCFFB3FDE5FB262553FB56" box="[604,770,1242,1262]" pageId="4" pageNumber="5">
<emphasis id="B39AD64EFFBCFFB3FDE5FB2624E2FB56" bold="true" box="[604,691,1242,1262]" italics="true" pageId="4" pageNumber="5">Passiflora</emphasis>
species
</taxonomicName>
(
<figureCitation id="19D516D9FFBCFFB3FFD5FB0B26F2FAB1" box="[108,163,1270,1289]" captionStart="Fig" captionStartId="6.[100,130,705,722]" captionTargetBox="[113,1475,153,682]" captionTargetId="figure-706@6.[112,1476,152,683]" captionTargetPageId="6" captionText="Fig. 4. UHPLC chromatograms (340 nm) of the butanolic extract of Passiflora species. Bold numbers correspond to identified compounds, and numbers in italics to the m/z of unidentified compounds." figureDoi="http://doi.org/10.5281/zenodo.8294133" httpUri="https://zenodo.org/record/8294133/files/figure.png" pageId="4" pageNumber="5">Fig. 4</figureCitation>
) revealed a wide metabolic diversity in some of the species as shown by the profiles of
<taxonomicName id="46EE71DFFFBCFFB3FED8FAEF278EFA9D" box="[353,479,1298,1317]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="tarminiana">
<emphasis id="B39AD64EFFBCFFB3FED8FAEF278EFA9D" bold="true" box="[353,479,1298,1317]" italics="true" pageId="4" pageNumber="5">P. tarminiana</emphasis>
</taxonomicName>
,
<emphasis id="B39AD64EFFBCFFB3FE56FAEF24E8FA9D" bold="true" box="[495,697,1298,1317]" italics="true" pageId="4" pageNumber="5">
<taxonomicName id="46EE71DFFFBCFFB3FE56FAEF246EFA9D" box="[495,575,1298,1317]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="mixta">P. mixta</taxonomicName>
,
<taxonomicName id="46EE71DFFFBCFFB3FDF7FAEF24E8FA9D" box="[590,697,1298,1317]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="tripartita">P. tripartita</taxonomicName>
</emphasis>
and
<emphasis id="B39AD64EFFBCFFB3FD49FAEF2696FAF9" bold="true" italics="true" pageId="4" pageNumber="5">
<taxonomicName id="46EE71DFFFBCFFB3FD49FAEF2692FAF9" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="mollissima">P. mollissima</taxonomicName>
,
</emphasis>
as well as some less complex profiles such as those of
<taxonomicName id="46EE71DFFFBCFFB3FD49FAD326C7FAE5" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="uribei">
<emphasis id="B39AD64EFFBCFFB3FD49FAD326C7FAE5" bold="true" italics="true" pageId="4" pageNumber="5">P. uribei</emphasis>
</taxonomicName>
and
<taxonomicName id="46EE71DFFFBCFFB3FF71FAB72769FAE5" box="[200,312,1354,1373]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="lehmannii">
<emphasis id="B39AD64EFFBCFFB3FF71FAB72769FAE5" bold="true" box="[200,312,1354,1373]" italics="true" pageId="4" pageNumber="5">P. lehmannii</emphasis>
</taxonomicName>
extracts, in agreement with their NMR profiles. Interestingly, the profiles of
<taxonomicName id="46EE71DFFFBCFFB3FEC8FA9B2789FAC1" box="[369,472,1382,1401]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="tripartita">
<emphasis id="B39AD64EFFBCFFB3FEC8FA9B2789FAC1" bold="true" box="[369,472,1382,1401]" italics="true" pageId="4" pageNumber="5">P. tripartita</emphasis>
</taxonomicName>
and
<taxonomicName id="46EE71DFFFBCFFB3FDB1FA9B242CFAC1" box="[520,637,1382,1401]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="mollissima">
<emphasis id="B39AD64EFFBCFFB3FDB1FA9B242CFAC1" bold="true" box="[520,637,1382,1401]" italics="true" pageId="4" pageNumber="5">P. mollissima</emphasis>
</taxonomicName>
showed some significant differences while the profile of
<taxonomicName id="46EE71DFFFBCFFB3FDB8FA7F2420FA2D" box="[513,625,1410,1429]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="mollisima">
<emphasis id="B39AD64EFFBCFFB3FDB8FA7F2420FA2D" bold="true" box="[513,625,1410,1429]" italics="true" pageId="4" pageNumber="5">P. mollisima</emphasis>
</taxonomicName>
was similar to that of
<taxonomicName id="46EE71DFFFBCFFB3FF13FA632774FA09" box="[170,293,1438,1457]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="tarminiana">
<emphasis id="B39AD64EFFBCFFB3FF13FA632774FA09" bold="true" box="[170,293,1438,1457]" italics="true" pageId="4" pageNumber="5">P. tarminiana</emphasis>
</taxonomicName>
(
<figureCitation id="19D516D9FFBCFFB3FE8DFA63273AFA09" box="[308,363,1438,1457]" captionStart="Fig" captionStartId="6.[100,130,705,722]" captionTargetBox="[113,1475,153,682]" captionTargetId="figure-706@6.[112,1476,152,683]" captionTargetPageId="6" captionText="Fig. 4. UHPLC chromatograms (340 nm) of the butanolic extract of Passiflora species. Bold numbers correspond to identified compounds, and numbers in italics to the m/z of unidentified compounds." figureDoi="http://doi.org/10.5281/zenodo.8294133" httpUri="https://zenodo.org/record/8294133/files/figure.png" pageId="4" pageNumber="5">Fig. 4</figureCitation>
).
</paragraph>
<paragraph id="81510A5CFFBCFFB3FF3CFA47242CF970" blockId="4.[100,771,1131,1987]" pageId="4" pageNumber="5">
The flavonoids identified in the studied samples (Supp.
<tableCitation id="CC6C3FE7FFBCFFB3FD09FA4724ABFA75" box="[688,762,1466,1485]" captionStart="Table 2" captionStartId="7.[100,150,161,178]" captionTargetPageId="7" captionText="Table 2 1H and13C NMR data for Apigenin-4-O-glucopyranosyl, 8-C-(6″acetyl)- β-glucopyranoside (1) and Apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside (2) (Methanol-d4, δ in ppm, J in Hz)." pageId="4" pageNumber="5">Table 2</tableCitation>
) included luteolin-derivatives (
<emphasis id="B39AD64EFFBCFFB3FE3AFA2B249FFA51" bold="true" box="[387,718,1493,1513]" pageId="4" pageNumber="5">10, 1416, 20, 2224, 28, 30, 34</emphasis>
) apigenin-derivatives (
<emphasis id="B39AD64EFFBCFFB3FEADFA0F2463F9BD" bold="true" box="[276,562,1521,1541]" pageId="4" pageNumber="5">1, 2, 9, 1113, 1719, 21, 31</emphasis>
) and chrysin
<emphasis id="B39AD64EFFBCFFB3FD0DFA0F262CF998" bold="true" pageId="4" pageNumber="5">(25, 27, 33</emphasis>
) aglycones, along with some catechins (
<emphasis id="B39AD64EFFBCFFB3FE4FF9F02463F998" bold="true" box="[502,562,1549,1568]" pageId="4" pageNumber="5">35, 8</emphasis>
) and procyanidins (
<emphasis id="B39AD64EFFBCFFB3FD56F9F02621F984" bold="true" pageId="4" pageNumber="5">6, 7</emphasis>
). Luteolin derivatives were found to be dominant in
<emphasis id="B39AD64EFFBCFFB3FDDBF9D4248DF984" bold="true" box="[610,732,1577,1596]" italics="true" pageId="4" pageNumber="5">
<taxonomicName id="46EE71DFFFBCFFB3FDDBF9D42488F984" box="[610,729,1577,1596]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="mollissima">P. mollissima</taxonomicName>
,
</emphasis>
but less abundant in
<taxonomicName id="46EE71DFFFBCFFB3FEA9F9B8270EF9E0" box="[272,351,1605,1624]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="uribei">
<emphasis id="B39AD64EFFBCFFB3FEA9F9B8270EF9E0" bold="true" box="[272,351,1605,1624]" italics="true" pageId="4" pageNumber="5">P. uribei</emphasis>
</taxonomicName>
and
<taxonomicName id="46EE71DFFFBCFFB3FE2EF9B827B7F9E0" box="[407,486,1605,1624]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="mixta">
<emphasis id="B39AD64EFFBCFFB3FE2EF9B827B7F9E0" bold="true" box="[407,486,1605,1624]" italics="true" pageId="4" pageNumber="5">P. mixta</emphasis>
</taxonomicName>
. The compound 4-methoxyluteolin-8-
<emphasis id="B39AD64EFFBCFFB3FF7FF99C2682F9CC" bold="true" box="[198,211,1633,1652]" italics="true" pageId="4" pageNumber="5">C</emphasis>
-6″acetylglucopyranoside (
<emphasis id="B39AD64EFFBCFFB3FE6AF99C27BDF9CC" bold="true" box="[467,492,1633,1652]" pageId="4" pageNumber="5">34</emphasis>
) described previously by us (
<bibRefCitation id="E57F77ADFFBCFFB3FFD5F9802774F928" author="Ramos, F. A. &amp; Castellanos, L. &amp; Lopez, C. &amp; Palacios, L. &amp; Duque, C. &amp; Pacheco, R. &amp; Guzman, A." box="[108,293,1661,1680]" pageId="4" pageNumber="5" pagination="141 - 143" refId="ref13219" refString="Ramos, F. A., Castellanos, L., Lopez, C., Palacios, L., Duque, C., Pacheco, R., Guzman, A., 2010. An orientin derivative isolated from Passiflora tripartita var. mollissima. Lat. Am. J. Pharm. 29, 141 - 143." type="journal article" year="2010">Ramos et al., 2010</bibRefCitation>
) has been proposed as a chemical marker for
<taxonomicName id="46EE71DFFFBCFFB3FD49F98027E7F914" authority="(Simirgiotis et al., 2013)" baseAuthorityName="Simirgiotis" baseAuthorityYear="2013" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="mollissima">
<emphasis id="B39AD64EFFBCFFB3FD49F9802690F914" bold="true" italics="true" pageId="4" pageNumber="5">P. mollissima</emphasis>
(
<bibRefCitation id="E57F77ADFFBCFFB3FF6BF96427FFF914" author="Simirgiotis, M. &amp; Schmeda-Hirschmann, G. &amp; Borquez, J. &amp; Kennelly, E." box="[210,430,1689,1708]" pageId="4" pageNumber="5" pagination="1672 - 1692" refId="ref13411" refString="Simirgiotis, M., Schmeda-Hirschmann, G., Borquez, J., Kennelly, E., 2013. The Passiflora tripartita (banana passion) fruit: a source of bioactive flavonoid C-glycosides isolated by HSCCC and characterized by HPLC - DAD - ESI / MS / MS. Molecules 18, 1672 - 1692. https: // doi. org / 10.3390 / molecules 18021672." type="journal article" year="2013">Simirgiotis et al., 2013</bibRefCitation>
)
</taxonomicName>
. However, it was found also in
<emphasis id="B39AD64EFFBCFFB3FD49F964274EF970" bold="true" italics="true" pageId="4" pageNumber="5">
<taxonomicName id="46EE71DFFFBCFFB3FD49F96426C9F970" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="mixta">P. mixta</taxonomicName>
,
<taxonomicName id="46EE71DFFFBCFFB3FF1DF948274EF970" box="[164,287,1717,1736]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="tarminiana">P. tarminiana</taxonomicName>
</emphasis>
and
<taxonomicName id="46EE71DFFFBCFFB3FEE9F94827CAF970" box="[336,411,1717,1736]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="uribei">
<emphasis id="B39AD64EFFBCFFB3FEE9F94827CAF970" bold="true" box="[336,411,1717,1736]" italics="true" pageId="4" pageNumber="5">P. uribei</emphasis>
</taxonomicName>
. But not in
<taxonomicName id="46EE71DFFFBCFFB3FDB6F9482426F970" box="[527,631,1717,1736]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="tripartita">
<emphasis id="B39AD64EFFBCFFB3FDB6F9482426F970" bold="true" box="[527,631,1717,1736]" italics="true" pageId="4" pageNumber="5">P. tripartita</emphasis>
</taxonomicName>
.
</paragraph>
<paragraph id="81510A5CFFBCFFB3FF3CF92C2590FB6A" blockId="4.[100,771,1131,1987]" lastBlockId="4.[818,1488,1131,1987]" pageId="4" pageNumber="5">
Apigenin-related flavonoids have been selected as chemical markers for
<taxonomicName id="46EE71DFFFBCFFB3FF35F9102686F8B8" box="[140,215,1773,1792]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="alata">
<emphasis id="B39AD64EFFBCFFB3FF35F9102686F8B8" bold="true" box="[140,215,1773,1792]" italics="true" pageId="4" pageNumber="5">P. alata</emphasis>
</taxonomicName>
by the Brazilian Pharmacopoeia (
<bibRefCitation id="E57F77ADFFBCFFB3FD80F91024A5F8B8" author="Farmacopeia" box="[569,756,1773,1792]" pageId="4" pageNumber="5" refId="ref11709" refString="Farmacopeia, 2010. Agencia Nacional De Vigilancia Sanitaria. Farmacopeia Brasileira, 5 a edicao. 1 Farmacopeia Brasileira." type="book" year="2010">Farmacopéia, 2010</bibRefCitation>
). However, in the studied
<taxonomicName id="46EE71DFFFBCFFB3FEEAF8F427FBF8A4" box="[339,426,1800,1820]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="genus">
<emphasis id="B39AD64EFFBCFFB3FEEAF8F427FBF8A4" bold="true" box="[339,426,1800,1820]" italics="true" pageId="4" pageNumber="5">Passiflora</emphasis>
</taxonomicName>
samples, these were detected in all species, except in
<taxonomicName id="46EE71DFFFBCFFB3FEB7F8D927C1F88F" box="[270,400,1828,1847]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="cumbalensis">
<emphasis id="B39AD64EFFBCFFB3FEB7F8D927C1F88F" bold="true" box="[270,400,1828,1847]" italics="true" pageId="4" pageNumber="5">P. cumbalensis</emphasis>
</taxonomicName>
extracts, in which chrysin
<emphasis id="B39AD64EFFBCFFB3FD37F8D924CAF88F" bold="true" box="[654,667,1828,1847]" italics="true" pageId="4" pageNumber="5">C</emphasis>
-glycosides were found instead as highly abundant compounds. These chrysin derivatives were also found in
<emphasis id="B39AD64EFFBCFFB3FEC3F8A127B9F8D7" bold="true" box="[378,488,1884,1903]" italics="true" pageId="4" pageNumber="5">
<taxonomicName id="46EE71DFFFBCFFB3FEC3F8A127B5F8D7" box="[378,484,1884,1903]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="tripartita">P. tripartita</taxonomicName>
,
</emphasis>
and
<taxonomicName id="46EE71DFFFBCFFB3FDA5F8A12438F8D7" box="[540,617,1884,1903]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="mixta">
<emphasis id="B39AD64EFFBCFFB3FDA5F8A12438F8D7" bold="true" box="[540,617,1884,1903]" italics="true" pageId="4" pageNumber="5">P. mixta</emphasis>
</taxonomicName>
extracts, but in small quantities. Chrysin had been previously isolated from
<taxonomicName id="46EE71DFFFBCFFB3FD27F8852553F833" box="[670,770,1912,1931]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="caerulea">
<emphasis id="B39AD64EFFBCFFB3FD27F8852553F833" bold="true" box="[670,770,1912,1931]" italics="true" pageId="4" pageNumber="5">P. caerulea</emphasis>
</taxonomicName>
and proposed as an anxiolytic compound (
<bibRefCitation id="E57F77ADFFBCFFB3FDB9F869249CF81F" author="Wolfman, C. &amp; Viola, H. &amp; Paladini, A. &amp; Dajas, F. &amp; Medina, J. H." box="[512,717,1940,1959]" pageId="4" pageNumber="5" pagination="1 - 4" refId="ref14011" refString="Wolfman, C., Viola, H., Paladini, A., Dajas, F., Medina, J. H., 1994. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol. Biochem. Behav. 47, 1 - 4. https: // doi. org / 10.1016 / 0091 - 3057 (94) 90103 - 1." type="journal article" year="1994">Wolfman et al., 1994</bibRefCitation>
). Catechin derivatives were detected in large amounts in
<taxonomicName id="46EE71DFFFBCFFB3FDE4F84D2489F87B" box="[605,728,1968,1987]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="tarminiana">
<emphasis id="B39AD64EFFBCFFB3FDE4F84D2489F87B" bold="true" box="[605,728,1968,1987]" italics="true" pageId="4" pageNumber="5">P. tarminiana</emphasis>
</taxonomicName>
and in the two varieties of
<taxonomicName id="46EE71DFFFBCFFB3FBACFB96222EFBC6" box="[1045,1151,1131,1150]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="tripartita">
<emphasis id="B39AD64EFFBCFFB3FBACFB96222EFBC6" bold="true" box="[1045,1151,1131,1150]" italics="true" pageId="4" pageNumber="5">P. tripartita</emphasis>
</taxonomicName>
. Interestingly, catechins have also been reported to induce anxiolytic activity (
<bibRefCitation id="E57F77ADFFBCFFB3FB45FB7A2390FB22" author="Vignes, M. &amp; Maurice, T. &amp; Lante, F. &amp; Nedjar, M. &amp; Thethi, K. &amp; Guiramand, J. &amp; Recasens, M." box="[1276,1473,1159,1178]" pageId="4" pageNumber="5" pagination="102 - 115" refId="ref13934" refString="Vignes, M., Maurice, T., Lante, F., Nedjar, M., Thethi, K., Guiramand, J., Recasens, M., 2006. Anxiolytic properties of green tea polyphenol (-) - epigallocatechin gallate (EGCG). Brain Res. 1110, 102 - 115. https: // doi. org / 10.1016 / j. brainres. 2006.06.062." type="journal article" year="2006">Vignes et al., 2006</bibRefCitation>
). However, the biological activity of these particular catechins still has to be determined.
</paragraph>
<paragraph id="81510A5CFFBCFFB3FCEAFB26252EF87B" blockId="4.[818,1488,1131,1987]" pageId="4" pageNumber="5">
Quorum quenching active butanolic extracts of
<taxonomicName id="46EE71DFFFBCFFB3FAA2FB2623DAFB56" box="[1307,1419,1243,1262]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="lehmannii">
<emphasis id="B39AD64EFFBCFFB3FAA2FB2623DAFB56" bold="true" box="[1307,1419,1243,1262]" italics="true" pageId="4" pageNumber="5">P. lehmannii</emphasis>
</taxonomicName>
and
<taxonomicName id="46EE71DFFFBCFFB3FA04FB262535FAB1" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="uribei">
<emphasis id="B39AD64EFFBCFFB3FA04FB262535FAB1" bold="true" italics="true" pageId="4" pageNumber="5">P. uribei</emphasis>
</taxonomicName>
yielded two previously unreported flavonoids,
<emphasis id="B39AD64EFFBCFFB3FA8CFB0B2310FAB1" bold="true" box="[1333,1345,1270,1289]" pageId="4" pageNumber="5">1</emphasis>
and
<emphasis id="B39AD64EFFBCFFB3FACEFB0B23D2FAB1" bold="true" box="[1399,1411,1270,1289]" pageId="4" pageNumber="5">2</emphasis>
respectively, as the major compounds. The ()-HRESIMS spectra of flavonoid
<emphasis id="B39AD64EFFBCFFB3FC8BFAD3256FFAF9" bold="true" box="[818,830,1326,1345]" pageId="4" pageNumber="5">1</emphasis>
of the
<taxonomicName id="46EE71DFFFBCFFB3FC30FAD325AAFAF9" box="[905,1019,1326,1345]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="4" pageNumber="5" phylum="Tracheophyta" rank="species" species="lehmannii">
<emphasis id="B39AD64EFFBCFFB3FC30FAD325AAFAF9" bold="true" box="[905,1019,1326,1345]" italics="true" pageId="4" pageNumber="5">P. lehmannii</emphasis>
</taxonomicName>
extract showed an ion at
<emphasis id="B39AD64EFFBCFFB3FB46FAD32375FAF9" bold="true" box="[1279,1316,1326,1345]" italics="true" pageId="4" pageNumber="5">m/z</emphasis>
635.1624 [M-H]
<superScript id="769BA714FFBCFFB3FA73FAD7239EFA8F" attach="none" box="[1482,1487,1322,1335]" fontSize="5" pageId="4" pageNumber="5">-</superScript>
suggesting a molecular formula of C
<subScript id="1D6A0819FFBCFFB3FB31FAAF22CBFAE7" attach="right" box="[1160,1178,1362,1375]" fontSize="5" pageId="4" pageNumber="5">29</subScript>
H
<subScript id="1D6A0819FFBCFFB3FB10FAAF22EAFAE7" attach="both" box="[1193,1211,1362,1375]" fontSize="5" pageId="4" pageNumber="5">32</subScript>
O
<subScript id="1D6A0819FFBCFFB3FB72FAAF228CFAE7" attach="left" box="[1227,1245,1362,1375]" fontSize="5" pageId="4" pageNumber="5">16</subScript>
. The MS/MS spectrum of the parent ion at
<emphasis id="B39AD64EFFBCFFB3FC6DFA9B25A8FAC1" bold="true" box="[980,1017,1382,1401]" italics="true" pageId="4" pageNumber="5">m/z</emphasis>
635 yielded ions at
<emphasis id="B39AD64EFFBCFFB3FB01FA9B228CFAC1" bold="true" box="[1208,1245,1382,1401]" italics="true" pageId="4" pageNumber="5">m/z</emphasis>
473 [M-hexose]
<superScript id="769BA714FFBCFFB3FACEFA9C232DFAD6" attach="left" box="[1399,1404,1377,1390]" fontSize="5" pageId="4" pageNumber="5">-</superScript>
and 413 [M-H-hexose-CH
<subScript id="1D6A0819FFBCFFB3FC77FA772586FA2F" attach="both" box="[974,983,1418,1431]" fontSize="5" pageId="4" pageNumber="5">3</subScript>
COO]
<superScript id="769BA714FFBCFFB3FBB4FA802243FA32" attach="none" box="[1037,1042,1405,1418]" fontSize="5" pageId="4" pageNumber="5">-</superScript>
. The
<superScript id="769BA714FFBCFFB3FBF2FA802205FA32" attach="right" box="[1099,1108,1405,1418]" fontSize="5" pageId="4" pageNumber="5">1</superScript>
H-NMR spectrum (400 MHz, Methanol-d
<subScript id="1D6A0819FFBCFFB3FC87FA5B2516FA0B" attach="left" box="[830,839,1446,1459]" fontSize="5" pageId="4" pageNumber="5">4</subScript>
) (Supp
<figureCitation id="19D516D9FFBCFFB3FC22FA63259FFA09" box="[923,974,1438,1457]" captionStart="Fig" captionStartId="8.[100,130,902,919]" captionTargetBox="[204,1246,169,873]" captionTargetId="figure-839@8.[187,1400,152,880]" captionTargetPageId="8" captionText="Fig. 6. PCA plot: The score plot of the principal component analysis (PCA) of 8 different species of banana passion fruits species shows a separation into four main groups." figureDoi="http://doi.org/10.5281/zenodo.8294137" httpUri="https://zenodo.org/record/8294137/files/figure.png" pageId="4" pageNumber="5">Fig 6</figureCitation>
) of this compound showed characteristic signals of apigenin with a monohydroxilated aromatic B ring (
<subScript id="1D6A0819FFBCFFB3FA8EFA44231FFA77" attach="left" box="[1335,1358,1465,1487]" fontSize="5" pageId="4" pageNumber="5">δH</subScript>
8.03, 2H, d,
<emphasis id="B39AD64EFFBCFFB3FC8BFA2B256DFA51" bold="true" box="[818,828,1494,1513]" italics="true" pageId="4" pageNumber="5">J</emphasis>
= 8.4 Hz;
<subScript id="1D6A0819FFBCFFB3FC1EFA2825EFFA53" attach="left" box="[935,958,1493,1515]" fontSize="5" pageId="4" pageNumber="5">δH</subScript>
7.26, 2H, d,
<emphasis id="B39AD64EFFBCFFB3FB80FA2B2212FA51" bold="true" box="[1081,1091,1494,1513]" italics="true" pageId="4" pageNumber="5">J</emphasis>
= 8.4 Hz), a penta-substituted A ring (
<subScript id="1D6A0819FFBCFFB3FA01FA28239EFA53" attach="left" box="[1464,1487,1493,1515]" fontSize="5" pageId="4" pageNumber="5">δH</subScript>
6.28, 1H, bs) and the characteristic H-3 proton of the C ring (
<subScript id="1D6A0819FFBCFFB3FA38FA0C23C9F9BF" attach="left" box="[1409,1432,1521,1543]" fontSize="5" pageId="4" pageNumber="5">δH</subScript>
6.68, 1H, bs), along with two
<emphasis id="B39AD64EFFBCFFB3FBAAF9F02274F998" box="[1043,1061,1549,1568]" italics="true" pageId="4" pageNumber="5">
β
<emphasis id="B39AD64EFFBCFFB3FBA7F9F02274F998" bold="true" box="[1054,1061,1549,1568]" italics="true" pageId="4" pageNumber="5">-</emphasis>
</emphasis>
anomeric protons (
<subScript id="1D6A0819FFBCFFB3FB6EF9F022BFF99B" attach="left" box="[1239,1262,1549,1571]" fontSize="5" pageId="4" pageNumber="5">δH</subScript>
5.04, 1H, d,
<emphasis id="B39AD64EFFBCFFB3FAD1F9F02323F998" bold="true" box="[1384,1394,1549,1568]" italics="true" pageId="4" pageNumber="5">J</emphasis>
= 7.4 Hz and 4.99, 1H, d,
<emphasis id="B39AD64EFFBCFFB3FC6CF9D4258EF984" bold="true" box="[981,991,1577,1596]" italics="true" pageId="4" pageNumber="5">J</emphasis>
= 10.2 Hz). The analysis of the coupling constants showed that both sugar moieties correspond to β- glucose residues. Assignment of the glucose residues was supported by the HMBC correlation from the glucose protons H-1″ (
<subScript id="1D6A0819FFBCFFB3FB01F980229EF92A" attach="left" box="[1208,1231,1661,1682]" fontSize="5" pageId="4" pageNumber="5">δH</subScript>
4.96) and H-2″ (
<subScript id="1D6A0819FFBCFFB3FAC1F98023DEF92A" attach="left" box="[1400,1423,1661,1682]" fontSize="5" pageId="4" pageNumber="5">δH</subScript>
4.12), with the aromatic C-8 carbon at
<subScript id="1D6A0819FFBCFFB3FBC0F96422DFF916" attach="left" box="[1145,1166,1689,1710]" fontSize="5" pageId="4" pageNumber="5">δC</subScript>
104.6, suggesting a
<emphasis id="B39AD64EFFBCFFB3FAE4F964233BF914" bold="true" box="[1373,1386,1689,1708]" italics="true" pageId="4" pageNumber="5">C</emphasis>
-glycosidic bond in the A ring (Supp Fig 8). A similar analysis showed the HMBC correlation from the anomeric proton H-1‴ (
<subScript id="1D6A0819FFBCFFB3FB69F92D22B6F95E" attach="left" box="[1232,1255,1744,1766]" fontSize="5" pageId="4" pageNumber="5">δH</subScript>
5.03), with the aromatic carbon C-4 at
<subScript id="1D6A0819FFBCFFB3FC00F910259FF8BA" attach="left" box="[953,974,1773,1794]" fontSize="5" pageId="4" pageNumber="5">äC</subScript>
157.4, suggesting an
<emphasis id="B39AD64EFFBCFFB3FB21F91022F6F8B8" bold="true" box="[1176,1191,1773,1792]" italics="true" pageId="4" pageNumber="5">O</emphasis>
-glycosidic bond to the B ring of the flavonoid moiety. The correlation from both H-6″ protons at
<subScript id="1D6A0819FFBCFFB3FA30F8F523F1F8A6" attach="left" box="[1417,1440,1800,1822]" fontSize="5" pageId="4" pageNumber="5">δH</subScript>
4.47 and 4.28, to the carbon assigned to the acetate carboxyl at
<subScript id="1D6A0819FFBCFFB3FAC5F8D923C0F882" attach="left" box="[1404,1425,1828,1850]" fontSize="5" pageId="4" pageNumber="5">δC</subScript>
173.1 suggested the presence of an acetyl group on 6″ of the
<emphasis id="B39AD64EFFBCFFB3FADBF8BD233EF8EB" bold="true" box="[1378,1391,1856,1875]" italics="true" pageId="4" pageNumber="5">C</emphasis>
-glucopyranoside residue (
<figureCitation id="19D516D9FFBCFFB3FC62F8A12276F8D7" box="[987,1063,1884,1903]" captionStart="Fig" captionStartId="6.[100,130,1940,1957]" captionTargetBox="[302,1286,1600,1916]" captionTargetId="figure-743@6.[301,1287,1599,1917]" captionTargetPageId="6" captionText="Fig. 5. Unreported flavonoids identified as major components from Passiflora lehmannii Apigenin-4-O-β-glucopyranosyl, 8-C-β-(6″acetyl)-glucopyranoside (1) (A) and Passiflora uribei Apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside (2) (B). Arrows represent key HMBC correlations." figureDoi="http://doi.org/10.5281/zenodo.8294135" httpUri="https://zenodo.org/record/8294135/files/figure.png" pageId="4" pageNumber="5">Fig. 5A</figureCitation>
). Thus, compound
<emphasis id="B39AD64EFFBCFFB3FB51F8A122A5F8D7" bold="true" box="[1256,1268,1884,1903]" pageId="4" pageNumber="5">1</emphasis>
was identified as the previously undescribed flavonoid apigenin-4
<emphasis id="B39AD64EFFBCFFB3FB5CF885235CF833" box="[1253,1293,1912,1931]" italics="true" pageId="4" pageNumber="5">
<emphasis id="B39AD64EFFBCFFB3FB5CF8852350F833" bold="true" box="[1253,1281,1912,1931]" italics="true" pageId="4" pageNumber="5">-O-</emphasis>
β
</emphasis>
-glucopyranosyl,8-
<emphasis id="B39AD64EFFBCFFB3FA02F885256CF81F" italics="true" pageId="4" pageNumber="5">
<emphasis id="B39AD64EFFBCFFB3FA02F8852399F833" bold="true" box="[1467,1480,1912,1931]" italics="true" pageId="4" pageNumber="5">C</emphasis>
- β
</emphasis>
-(6″acetyl)-glucopyranoside. The NMR data are summarized in
<tableCitation id="CC6C3FE7FFBCFFB3FC8BF84D2528F87B" box="[818,889,1968,1987]" captionStart="Table 2" captionStartId="7.[100,150,161,178]" captionTargetPageId="7" captionText="Table 2 1H and13C NMR data for Apigenin-4-O-glucopyranosyl, 8-C-(6″acetyl)- β-glucopyranoside (1) and Apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside (2) (Methanol-d4, δ in ppm, J in Hz)." pageId="4" pageNumber="5">Table 2</tableCitation>
.
</paragraph>
<caption id="D5915AD4FFBDFFB2FE64F86A2206F810" ID-DOI="http://doi.org/10.5281/zenodo.8294131" ID-Zenodo-Dep="8294131" box="[477,1111,1943,1960]" httpUri="https://zenodo.org/record/8294131/files/figure.png" pageId="5" pageNumber="6" startId="5.[477,507,1943,1960]" targetBox="[188,1399,154,1919]" targetPageId="5" targetType="figure">
<paragraph id="81510A5CFFBDFFB2FE64F86A2206F810" blockId="5.[477,1111,1943,1960]" box="[477,1111,1943,1960]" pageId="5" pageNumber="6">
<emphasis id="B39AD64EFFBDFFB2FE64F86A2446F810" bold="true" box="[477,535,1943,1960]" pageId="5" pageNumber="6">Fig. 3.</emphasis>
Barcoding of primary metabolites for banana passion fruit species.
</paragraph>
</caption>
<caption id="D5915AD4FFBEFFB1FFDDFD3C27C8FD54" ID-DOI="http://doi.org/10.5281/zenodo.8294133" ID-Zenodo-Dep="8294133" httpUri="https://zenodo.org/record/8294133/files/figure.png" pageId="6" pageNumber="7" startId="6.[100,130,705,722]" targetBox="[113,1475,153,682]" targetPageId="6" targetType="figure">
<paragraph id="81510A5CFFBEFFB1FFDDFD3C27C8FD54" blockId="6.[100,1487,705,748]" pageId="6" pageNumber="7">
<emphasis id="B39AD64EFFBEFFB1FFDDFD3C26CCFD6A" bold="true" box="[100,157,705,722]" pageId="6" pageNumber="7">Fig. 4.</emphasis>
UHPLC chromatograms (340 nm) of the butanolic extract of
<taxonomicName id="46EE71DFFFBEFFB1FD11FD3C256EFD6A" box="[680,831,705,722]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="6" pageNumber="7" phylum="Tracheophyta" rank="species" species="undetermined">
<emphasis id="B39AD64EFFBEFFB1FD11FD3C24A6FD6A" bold="true" box="[680,759,705,722]" italics="true" pageId="6" pageNumber="7">Passiflora</emphasis>
species.
</taxonomicName>
Bold numbers correspond to identified compounds, and numbers in italics to the
<emphasis id="B39AD64EFFBEFFB1FF3CFD2626F6FD54" bold="true" box="[133,167,731,748]" italics="true" pageId="6" pageNumber="7">m/z</emphasis>
of unidentified compounds.
</paragraph>
</caption>
<paragraph id="81510A5CFFBEFFB1FF3CFCE725B6FBFC" blockId="6.[100,770,794,1566]" lastBlockId="6.[818,1487,794,1092]" pageId="6" pageNumber="7">
The ()-HRESIMS spectra of compound
<emphasis id="B39AD64EFFBEFFB1FDA8FCE7244CFC95" bold="true" box="[529,541,794,813]" pageId="6" pageNumber="7">2</emphasis>
yielded an ion at
<emphasis id="B39AD64EFFBEFFB1FD64FCE72553FC95" bold="true" box="[733,770,794,813]" italics="true" pageId="6" pageNumber="7">m/z</emphasis>
739.2091 [M-H]
<superScript id="769BA714FFBEFFB1FEBDFCCC2758FC86" attach="right" box="[260,265,817,830]" fontSize="5" pageId="6" pageNumber="7">-</superScript>
, corresponding to a possible molecular formula of C
<subScript id="1D6A0819FFBEFFB1FFCBFCA726D5FCDF" attach="right" box="[114,132,858,871]" fontSize="5" pageId="6" pageNumber="7">33</subScript>
H
<subScript id="1D6A0819FFBEFFB1FF2AFCA726F4FCDF" attach="both" box="[147,165,858,871]" fontSize="5" pageId="6" pageNumber="7">40</subScript>
O
<subScript id="1D6A0819FFBEFFB1FF0CFCA72696FCDF" attach="left" box="[181,199,858,871]" fontSize="5" pageId="6" pageNumber="7">19</subScript>
, that together with the ion at
<emphasis id="B39AD64EFFBEFFB1FDBEFCAF247AFCDD" bold="true" box="[519,555,850,869]" italics="true" pageId="6" pageNumber="7">m/z</emphasis>
413 [M-hexose-deoxyhexose-H]
<superScript id="769BA714FFBEFFB1FF76FC942685FCCE" attach="left" box="[207,212,873,886]" fontSize="5" pageId="6" pageNumber="7">-</superScript>
obtained with the MS/MS data of the parent ion, suggested the presence of a flavonoid bearing two hexoses and one deoxyhexose residue. The
<superScript id="769BA714FFBEFFB1FF5BFC5C26BAFC16" attach="right" box="[226,235,929,942]" fontSize="5" pageId="6" pageNumber="7">1</superScript>
H-NMR data (400 MHz, Methanol-
<emphasis id="B39AD64EFFBEFFB1FD8EFC582413FC00" bold="true" box="[567,578,933,952]" italics="true" pageId="6" pageNumber="7">d</emphasis>
<subScript id="1D6A0819FFBEFFB1FDFBFC53241AFC03" attach="left" box="[578,587,942,955]" fontSize="5" pageId="6" pageNumber="7">4</subScript>
) (Supp Fig 11) for this compound, revealed signals that are characteristic of apigenin showing two main conformers with paired signals at
<subScript id="1D6A0819FFBEFFB1FD37FC2024F4FC4A" attach="left" box="[654,677,989,1010]" fontSize="5" pageId="6" pageNumber="7">δH</subScript>
7.97 (d,
<emphasis id="B39AD64EFFBEFFB1FFDDFC04263FFBB4" bold="true" box="[100,110,1017,1036]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 8.7 Hz) [7.81 (d,
<emphasis id="B39AD64EFFBEFFB1FEFDFC04271FFBB4" bold="true" box="[324,334,1017,1036]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 8.5 Hz)]; 6.93 (d,
<emphasis id="B39AD64EFFBEFFB1FD93FC042465FBB4" bold="true" box="[554,564,1017,1036]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 8.7 Hz) [6.94 (d,
<emphasis id="B39AD64EFFBEFFB1FFDDFBE8263FFB90" bold="true" box="[100,110,1045,1064]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 8.5 Hz)]; 6.59 (s) [6.62]; 6.27 (s) [6.25 (s)], together with three anomeric protons (
<subScript id="1D6A0819FFBEFFB1FEAEFBCD277FFBFE" attach="left" box="[279,302,1072,1094]" fontSize="5" pageId="6" pageNumber="7">δH</subScript>
5.15 (d,
<emphasis id="B39AD64EFFBEFFB1FE3AFBCC27DCFBFC" bold="true" box="[387,397,1073,1092]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 1.3 Hz) [5.31 (d,
<emphasis id="B39AD64EFFBEFFB1FDEBFBCC240DFBFC" bold="true" box="[594,604,1073,1092]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 1.7 Hz)]; 5.03 (d,
<emphasis id="B39AD64EFFBEFFB1FF3CFBB026DEFBD8" bold="true" box="[133,143,1101,1120]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 9.9 Hz) [5.15 (d,
<emphasis id="B39AD64EFFBEFFB1FEE5FBB02737FBD8" bold="true" box="[348,358,1101,1120]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 9.8 Hz)]; 4.39 (d,
<emphasis id="B39AD64EFFBEFFB1FD80FBB02412FBD8" bold="true" box="[569,579,1101,1120]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 7.7 Hz) [4.27(d,
<emphasis id="B39AD64EFFBEFFB1FFDDFB94263FFBC4" bold="true" box="[100,110,1129,1148]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 7.9 Hz)] and a highly overlapping region for the carbinolic protons of the three sugar moieties. The presence of a neohesperidoside moiety was determined by the HMBC (Sup Fig. 11) correlation from the α-rhamnopyranosyl anomeric proton at
<subScript id="1D6A0819FFBEFFB1FE73FB4127B0FB6A" attach="left" box="[458,481,1212,1234]" fontSize="5" pageId="6" pageNumber="7">δH</subScript>
5.15 (d,
<emphasis id="B39AD64EFFBEFFB1FD8EFB412410FB77" bold="true" box="[567,577,1212,1231]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 1.8 Hz) [5.31 (d,
<emphasis id="B39AD64EFFBEFFB1FFDDFB25263FFB53" bold="true" box="[100,110,1240,1259]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 1.7) Hz]/
<subScript id="1D6A0819FFBEFFB1FF57FB252752FB55" attach="left" box="[238,259,1240,1261]" fontSize="5" pageId="6" pageNumber="7">δC</subScript>
102.0 [101.3] to the C-2” (
<subScript id="1D6A0819FFBEFFB1FDAAFB252479FB55" attach="left" box="[531,552,1240,1261]" fontSize="5" pageId="6" pageNumber="7">δC</subScript>
77.6 [76.7]) of glucopyranoside. The bonding of the neohesperidoside moiety to the carbon C-8 was revealed by the HMBC correlation of the β- anomeric glucoside proton at
<subScript id="1D6A0819FFBEFFB1FF06FAD12687FAF9" attach="left" box="[191,214,1324,1345]" fontSize="5" pageId="6" pageNumber="7">δH</subScript>
5.03 (d,
<emphasis id="B39AD64EFFBEFFB1FE93FAD12765FA87" bold="true" box="[298,308,1324,1343]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 9.9 Hz) [5.15 (d,
<emphasis id="B39AD64EFFBEFFB1FE4CFAD127AEFA87" bold="true" box="[501,511,1324,1343]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 9.8 Hz)]/
<subScript id="1D6A0819FFBEFFB1FDCEFAD124DDFAF9" attach="left" box="[631,652,1324,1345]" fontSize="5" pageId="6" pageNumber="7">δC</subScript>
73.7 [75.3], and H-2″ glucopyranose proton at
<subScript id="1D6A0819FFBEFFB1FE12FABA2793FAE5" attach="left" box="[427,450,1351,1373]" fontSize="5" pageId="6" pageNumber="7">δH</subScript>
4.26 (dd,
<emphasis id="B39AD64EFFBEFFB1FD9CFAB5247EFAE3" bold="true" box="[549,559,1352,1371]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 9.9; 8.5) [4.07 (bt,
<emphasis id="B39AD64EFFBEFFB1FFDDFA99263FFACF" bold="true" box="[100,110,1380,1399]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 9,3)] to the C-8 carbon at
<subScript id="1D6A0819FFBEFFB1FE25FA9E27E0FAC1" attach="left" box="[412,433,1379,1401]" fontSize="5" pageId="6" pageNumber="7">δC</subScript>
104.7. The presence of a shielded methyl group at
<subScript id="1D6A0819FFBEFFB1FEA9FA822776FA2D" attach="left" box="[272,295,1407,1429]" fontSize="5" pageId="6" pageNumber="7">δH</subScript>
0.73 (d,
<emphasis id="B39AD64EFFBEFFB1FE34FA7D27C6FA2B" bold="true" box="[397,407,1408,1427]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 6.2) [0.88 (d,
<emphasis id="B39AD64EFFBEFFB1FDEEFA7D2430FA2B" bold="true" box="[599,609,1408,1427]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 6.2)] of the rhamnopyranosyl
<collectingCountry id="F9F94ACCFFBEFFB1FEA8FA66277FFA16" box="[273,302,1435,1454]" name="Switzerland" pageId="6" pageNumber="7">CH</collectingCountry>
<subScript id="1D6A0819FFBEFFB1FE96FA592769FA09" attach="right" box="[303,312,1444,1457]" fontSize="5" pageId="6" pageNumber="7">3</subScript>
-6‴in a C-8 linked neohesperidoside moiety (α-rhamnopyranosyl-(1 → 2)-β- glucopyranoside), due to the strong diamagnetical shift caused by the anisotropic effects of one of the aromatic rings of the apigenin moiety in the preferred conformation of the compound (
<bibRefCitation id="E57F77ADFFBEFFB1FF5DF9F6278EF9A6" author="Larionova, M. &amp; Spengler, I. &amp; Nogueiras, C. &amp; Quijano, L. &amp; Ramirez-Gualito, K. &amp; Guzman, F. &amp; Cuevas, G. &amp; Calderon, J. S." box="[228,479,1547,1566]" pageId="6" pageNumber="7" pagination="1623 - 1627" refId="ref12487" refString="Larionova, M., Spengler, I., Nogueiras, C., Quijano, L., Ramirez-Gualito, K., Cortes- Guzman, F., Cuevas, G., Calderon, J. S., 2010. A C-glycosylflavone from piper ossanum, a compound conformationally controlled by CH / π and other weak intramolecular interactions. J. Nat. Prod. 73, 1623 - 1627. https: // doi. org / 10.1021 / np 100004 v." type="journal article" year="2010">Larionova et al., 2010</bibRefCitation>
). Finally, the position of glycosylation was determined to be C-4 by the HMBC correlation between the anomeric proton at
<subScript id="1D6A0819FFBEFFB1FBE8FCCB2239FCF3" attach="left" box="[1105,1128,822,843]" fontSize="5" pageId="6" pageNumber="7">δH</subScript>
4.39 (d,
<emphasis id="B39AD64EFFBEFFB1FB07FCCB2299FCF1" bold="true" box="[1214,1224,822,841]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 7.44) [4.27 (d,
<emphasis id="B39AD64EFFBEFFB1FAC5FCCB23D7FCF1" bold="true" box="[1404,1414,822,841]" italics="true" pageId="6" pageNumber="7">J</emphasis>
= 7.9] and C-4 at
<subScript id="1D6A0819FFBEFFB1FC24FCAC25E3FCDF" attach="left" box="[925,946,849,871]" fontSize="5" pageId="6" pageNumber="7">δC</subScript>
162.7 as is shown in
<figureCitation id="19D516D9FFBEFFB1FBC5FCAF2290FCDD" box="[1148,1217,850,869]" captionStart="Fig" captionStartId="6.[100,130,1940,1957]" captionTargetBox="[302,1286,1600,1916]" captionTargetId="figure-743@6.[301,1287,1599,1917]" captionTargetPageId="6" captionText="Fig. 5. Unreported flavonoids identified as major components from Passiflora lehmannii Apigenin-4-O-β-glucopyranosyl, 8-C-β-(6″acetyl)-glucopyranoside (1) (A) and Passiflora uribei Apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside (2) (B). Arrows represent key HMBC correlations." figureDoi="http://doi.org/10.5281/zenodo.8294135" httpUri="https://zenodo.org/record/8294135/files/figure.png" pageId="6" pageNumber="7">Fig. 5B</figureCitation>
. The complete assignment of NMR signals was done using COSY, HSQC and
<emphasis id="B39AD64EFFBEFFB1FB43FC932355FC39" bold="true" box="[1274,1284,878,897]" italics="true" pageId="6" pageNumber="7">J</emphasis>
-resolved spectra and are summarized in
<tableCitation id="CC6C3FE7FFBEFFB1FC53FC742260FC24" box="[1002,1073,905,924]" captionStart="Table 2" captionStartId="7.[100,150,161,178]" captionTargetPageId="7" captionText="Table 2 1H and13C NMR data for Apigenin-4-O-glucopyranosyl, 8-C-(6″acetyl)- β-glucopyranoside (1) and Apigenin-4-O-β-glucopyranosyl-8-C-β-neohesperidoside (2) (Methanol-d4, δ in ppm, J in Hz)." pageId="6" pageNumber="7">Table 2</tableCitation>
(see supporting information). Compound
<emphasis id="B39AD64EFFBEFFB1FA7AFC74239EFC24" bold="true" box="[1475,1487,905,924]" pageId="6" pageNumber="7">2</emphasis>
was thus identified as apigenin-4-
<emphasis id="B39AD64EFFBEFFB1FBCAFC5822C2FC00" box="[1139,1171,933,952]" italics="true" pageId="6" pageNumber="7">
<emphasis id="B39AD64EFFBEFFB1FBCAFC5822D3FC00" bold="true" box="[1139,1154,933,952]" italics="true" pageId="6" pageNumber="7">O</emphasis>
</emphasis>
-glucopyranosyl-8-
<emphasis id="B39AD64EFFBEFFB1FAFAFC582333FC00" box="[1347,1378,933,952]" italics="true" pageId="6" pageNumber="7">
<emphasis id="B39AD64EFFBEFFB1FAFAFC582306FC00" bold="true" box="[1347,1367,933,952]" italics="true" pageId="6" pageNumber="7">C-</emphasis>
β
</emphasis>
-neohesperidoside. The presence of this compound in
<taxonomicName id="46EE71DFFFBEFFB1FB62FC3C236CFC6C" box="[1243,1341,961,980]" class="Magnoliopsida" family="Passifloraceae" genus="Passiflora" kingdom="Plantae" order="Malpighiales" pageId="6" pageNumber="7" phylum="Tracheophyta" rank="species" species="coactilis">
<emphasis id="B39AD64EFFBEFFB1FB62FC3C236CFC6C" bold="true" box="[1243,1341,961,980]" italics="true" pageId="6" pageNumber="7">P. coactilis</emphasis>
</taxonomicName>
had been proposed by Escobar et al., using enzymatic hydrolysis, TLC co-chromatography, 100 MHz NMR and UV analysis for its identification (
<bibRefCitation id="E57F77ADFFBEFFB1FA3FFC0425CDFB90" author="Escobar, L. K. &amp; Liu, Y. - L. &amp; Mabry, T. J." pageId="6" pageNumber="7" pagination="796 - 797" refId="ref11563" refString="Escobar, L. K., Liu, Y. - L., Mabry, T. J., 1983. C-glycosylflavonoids from Passiflora coactilis. Phytochemistry 22, 796 - 797. https: // doi. org / 10.1016 / S 0031 - 9422 (00) 86995 - 2." type="journal article" year="1983">Escobar et al., 1983</bibRefCitation>
). We have now completed this identification with complete NMR and MS data.
</paragraph>
</subSubSection>
</treatment>
</document>