treatments-xml/data/03/B1/0B/03B10B21FFAEFFB0FCC88720E2B1F950.xml
2024-06-21 12:22:17 +02:00

367 lines
49 KiB
XML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="9CE8B39C0E418F4CA1639CF91BA6CF6D" ID-DOI="10.1016/j.phytochem.2018.09.011" ID-ISSN="1873-3700" ID-Zenodo-Dep="10484507" IM.bibliography_approvedBy="juliana" IM.illustrations_approvedBy="juliana" IM.materialsCitations_approvedBy="juliana" IM.metadata_approvedBy="juliana" IM.tables_approvedBy="juliana" IM.taxonomicNames_approvedBy="juliana" IM.treatments_approvedBy="juliana" checkinTime="1704941214527" checkinUser="felipe" docAuthor="Elshobary, Mostafa E., Becker, Michael G., Kalichuk, Jenna L., Chan, Ainsley C., Belmonte, Mark F. &amp; Piercey-Normore, Michele D." docDate="2018" docId="03B10B21FFAEFFB0FCC88720E2B1F950" docLanguage="en" docName="Phytochemistry.156.142-150.pdf" docOrigin="Phytochemistry 156" docSource="http://dx.doi.org/10.1016/j.phytochem.2018.09.011" docStyle="DocumentStyle:9E596C34F4E94307D29315B03ACE1007.6:Phytochemistry.2014-2019.journal_article" docStyleId="9E596C34F4E94307D29315B03ACE1007" docStyleName="Phytochemistry.2014-2019.journal_article" docStyleVersion="6" docTitle="Cladonia rangiferina F. H. Wigg" docType="treatment" docVersion="1" lastPageNumber="147" masterDocId="FF887359FFADFFB5FFFA824BE645FF9B" masterDocTitle="Tissue-specific localization of polyketide synthase and other associated genes in the lichen, Cladonia rangiferina, using laser microdissection" masterLastPageNumber="150" masterPageNumber="142" pageNumber="145" updateTime="1705342363837" updateUser="juliana">
<mods:mods id="31E775405E7D2468B240751A61F18A02" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="ACEAA1D0E6F1D9E9AB8B73E9685D8070">
<mods:title id="B834A21CB2A9C4C0B1522C0A5C258685">Tissue-specific localization of polyketide synthase and other associated genes in the lichen, Cladonia rangiferina, using laser microdissection</mods:title>
</mods:titleInfo>
<mods:name id="7904B84D7159CD4E1C2FE1127AD55EA6" type="personal">
<mods:role id="5E2B24CB03129CA4EFCFD4B9B8B31848">
<mods:roleTerm id="CC02B4B51E71C7305511AD49BC5F7BB3">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="75404720E843BEF60E6EEB1F52903704">Elshobary, Mostafa E.</mods:namePart>
<mods:affiliation id="D090917C8DA364F5419892461B556174">Department of Botany, University of Tanta, Egypt</mods:affiliation>
<mods:nameIdentifier id="82E64ED43409C6549D8A0475583CB349" type="email">mostafa_elshobary@science.tanta.edu.eg</mods:nameIdentifier>
</mods:name>
<mods:name id="C70110CEDCE2AF59D87086F6712D820E" type="personal">
<mods:role id="D28F1C8D2C97436CBD251749FC0829D9">
<mods:roleTerm id="F9DA18F25F1FB69D842E0082D12A0DD5">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="DB01D6D3168C9A5A006D1AB8FD7DC354">Becker, Michael G.</mods:namePart>
<mods:affiliation id="2A1F271C1A20EC5F3BF7BD0330B94C06">Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R 3 T 2 N 2, Canada</mods:affiliation>
</mods:name>
<mods:name id="CFE186038EE13C1B7DC531DE9CE97D3E" type="personal">
<mods:role id="EC685DB4ACBEC7F0552CECF01A6FD34E">
<mods:roleTerm id="F889C62B75B3691E3454D883CA0DF956">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="AFB4F3127E85824B571AD0405CAD3F31">Kalichuk, Jenna L.</mods:namePart>
<mods:affiliation id="A521F3E46AFCE9DC3015C5ED9EF4103D">Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R 3 T 2 N 2, Canada</mods:affiliation>
</mods:name>
<mods:name id="670805AD59BDF6A159AC1C3CE4E03F3B" type="personal">
<mods:role id="DAFE79181E256A8C156E7AF677E9A479">
<mods:roleTerm id="0ECA1ABCD0CCF46DB823BF0938731D0B">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="113D1EC0F18566E8FD47B049399272C5">Chan, Ainsley C.</mods:namePart>
<mods:affiliation id="86E6CC54100B902A20D6D5E33C571630">Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R 3 T 2 N 2, Canada</mods:affiliation>
</mods:name>
<mods:name id="96AC8897B2BCD309CAAD19DA9634DCBA" type="personal">
<mods:role id="7AB16BEAFCF23F954AE8EB0D3C3726D5">
<mods:roleTerm id="79F13FBD68F9EE5062EB34926314EAC7">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="4F989E5CC3ACCE83DB15D077624F224F">Belmonte, Mark F.</mods:namePart>
<mods:affiliation id="0CF7F1527A22ED6E713A132B4EFE0283">Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R 3 T 2 N 2, Canada</mods:affiliation>
</mods:name>
<mods:name id="538D365B3416794F4074AC1710E5366C" type="personal">
<mods:role id="5C9DC601A7DC68759EE05F428AF50E4E">
<mods:roleTerm id="A437D25A8F16B9DA92470AF1CE6736A6">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="35AEF786A57CBA0468E703A136001347">Piercey-Normore, Michele D.</mods:namePart>
<mods:affiliation id="87EC02E5A560941DB7C50FDBB52F4C22">Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R 3 T 2 N 2, Canada &amp; &amp; School of Science and the Environment, Memorial University of Newfoundland (Grenfell Campus), Corner Brook, NL, A 2 H 5 G 4, Canada</mods:affiliation>
</mods:name>
<mods:typeOfResource id="9016091E47D8BC85FC4634B49D1E729A">text</mods:typeOfResource>
<mods:relatedItem id="316BFE7268996F5362F112F297E4E784" type="host">
<mods:titleInfo id="796147F39002927EC19ECC3CA061531C">
<mods:title id="275827A24FE0C8B1A77346BF4B8B119B">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="D778787A11DF66F581702D2ECE27F03D">
<mods:date id="C882EAFC30BC4CBA366F3814C83177D8">2018</mods:date>
<mods:detail id="9CACD5C177A852EE49D824CC057ACB52" type="pubDate">
<mods:number id="A5E5B9156D6E242388693DA1113BD1A5">2018-12-31</mods:number>
</mods:detail>
<mods:detail id="45F8C7B9234DD4F77ED67DEDB098FC2E" type="volume">
<mods:number id="AB7C223499A281467E272C3216627B85">156</mods:number>
</mods:detail>
<mods:extent id="BC91F56B2EBD87C8BE0B3B7DE8951E11" unit="page">
<mods:start id="50C7585CF68FBB324195E4A9FE496512">142</mods:start>
<mods:end id="F3B698294C0E04FA7F09AF2F132C95EA">150</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="4A249CDF676C834A6FB990AE8BBAAEC4">
<mods:url id="DBC434AB468E20D2991DE160CBAF2EF0">http://dx.doi.org/10.1016/j.phytochem.2018.09.011</mods:url>
</mods:location>
<mods:classification id="73E15E51BF570278D499A30B8E8B9495">journal article</mods:classification>
<mods:identifier id="838E1F2A25B8EC1E17A2FF3928154A8A" type="DOI">10.1016/j.phytochem.2018.09.011</mods:identifier>
<mods:identifier id="F01C0BFB8998EAF64235F0C391248277" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="80FE6F633307292605D6C3F4AB3B2091" type="Zenodo-Dep">10484507</mods:identifier>
</mods:mods>
<treatment id="03B10B21FFAEFFB0FCC88720E2B1F950" LSID="urn:lsid:plazi:treatment:03B10B21FFAEFFB0FCC88720E2B1F950" httpUri="http://treatment.plazi.org/id/03B10B21FFAEFFB0FCC88720E2B1F950" lastPageId="5" lastPageNumber="147" pageId="3" pageNumber="145">
<subSubSection id="C302E9BCFFAEFFB6FCC88720E378FAE5" box="[818,1341,1387,1406]" pageId="3" pageNumber="145" type="nomenclature">
<paragraph id="8BA7BA37FFAEFFB6FCC88720E378FAE5" blockId="3.[818,1341,1387,1406]" box="[818,1341,1387,1406]" pageId="3" pageNumber="145">
<heading id="D0EF0D5BFFAEFFB6FCC88720E378FAE5" bold="true" box="[818,1341,1387,1406]" fontSize="36" level="1" pageId="3" pageNumber="145" reason="1">
<emphasis id="B96C6625FFAEFFB6FCC88720E378FAE5" bold="true" box="[818,1341,1387,1406]" italics="true" pageId="3" pageNumber="145">
3.3. Proposed polyketide synthesis in
<taxonomicName id="4C18C1B4FFAEFFB6FB7F8720E378FAE5" ID-CoL="VPKZ" authority="(L.) F. H. Wigg" authorityName="F. H. Wigg" baseAuthorityName="L." box="[1157,1341,1387,1406]" class="Lecanoromycetes" family="Cladoniaceae" genus="Cladonia" kingdom="Fungi" order="Lecanorales" pageId="3" pageNumber="145" phylum="Ascomycota" rank="species" species="rangiferina">Cladonia rangiferina</taxonomicName>
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="C302E9BCFFAEFFB0FCA987E8E4FEFA0C" lastPageId="5" lastPageNumber="147" pageId="3" pageNumber="145" type="description">
<paragraph id="8BA7BA37FFAEFFB6FCA987E8E3D8F8EF" blockId="3.[818,1488,1443,1992]" pageId="3" pageNumber="145">
A pervious study (
<bibRefCitation id="EF89C7C6FFAEFFB6FBF987E8E291FA2D" author="Elshobary, M. E. &amp; Osman, M. E. &amp; Abo-Shady, A. M. &amp; Komatsu, E. &amp; Perreault, H. &amp; Sorensen, J. &amp; Piercey-Normore, M. D." box="[1027,1236,1443,1462]" pageId="3" pageNumber="145" refId="ref8774" refString="Elshobary, M. E., Osman, M. E., Abo-Shady, A. M., Komatsu, E., Perreault, H., Sorensen, J., Piercey-Normore, M. D., 2016. Algal carbohydrates affect polyketide synthesis of the lichen-forming fungus Cladonia rangiferina. Mycologia 108. https: // doi. org / 10.3852 / 15 - 263." type="journal volume" year="2016">Elshobary et al., 2016</bibRefCitation>
) showed that
<emphasis id="B96C6625FFAEFFB6FAA587E8E3E0FA2D" bold="true" box="[1375,1445,1443,1462]" italics="true" pageId="3" pageNumber="145">CrPKS1</emphasis>
and
<emphasis id="B96C6625FFAEFFB6FCC887F4E5C1FA49" bold="true" box="[818,900,1471,1490]" italics="true" pageId="3" pageNumber="145">CrPKS16</emphasis>
may be genes that encode non-reducing enzymes and
<emphasis id="B96C6625FFAEFFB6FA7387F4E38AFA49" bold="true" box="[1417,1487,1471,1490]" italics="true" pageId="3" pageNumber="145">CrPKS3</emphasis>
may encode a reducing enzyme. Furthermore,
<emphasis id="B96C6625FFAEFFB6FB1C8791E369FA76" bold="true" box="[1254,1324,1498,1517]" italics="true" pageId="3" pageNumber="145">CrPKS1</emphasis>
was most closely related to the putative
<emphasis id="B96C6625FFAEFFB6FBEB87BDE273F992" bold="true" box="[1041,1078,1526,1545]" italics="true" pageId="3" pageNumber="145">PKS</emphasis>
from
<taxonomicName id="4C18C1B4FFAEFFB6FB8987BDE5CEF9BE" authority="(Diedicke) Drechsler" authorityName="Drechsler" baseAuthorityName="Diedicke" class="Dothideomycetes" family="Pleosporaceae" genus="Pyrenophora" kingdom="Fungi" order="Pleosporales" pageId="3" pageNumber="145" phylum="Ascomycota" rank="species" species="tritici-repentis">
<emphasis id="B96C6625FFAEFFB6FB8987BDE323F992" bold="true" box="[1139,1382,1526,1545]" italics="true" pageId="3" pageNumber="145">Pyrenophora tritici-repentis</emphasis>
(Diedicke) Drechsler
</taxonomicName>
and
<taxonomicName id="4C18C1B4FFAEFFB6FC3A8459E31AF9BE" authority="(Tassi) Goidanich" authorityName="Goidanich" baseAuthorityName="Tassi" box="[960,1375,1554,1573]" class="Dothideomycetes" family="Botryosphaeriaceae" genus="Macrophomina" kingdom="Fungi" order="Botryosphaeriales" pageId="3" pageNumber="145" phylum="Ascomycota" rank="species" species="phaseolina">
<emphasis id="B96C6625FFAEFFB6FC3A8459E2E8F9BE" bold="true" box="[960,1197,1554,1573]" italics="true" pageId="3" pageNumber="145">Macrophomina phaseolina</emphasis>
(Tassi) Goidanich
</taxonomicName>
(both with maximum identity of 78 and 79%, respectively), which were responsible for production of 6-methylsalicylic acid synthase. The 6-methylsalicylic acid is considered the first cyclic compound in the polyketide pathway and a common precursor for the cyclic polyketide compounds (
<bibRefCitation id="EF89C7C6FFAEFFB6FC4984D5E22AF92A" author="Legaz, M. E. &amp; De Armas, R. &amp; Vicente, C. &amp; Armas, R. &amp; De &amp; Vicente, C. &amp; De Armas, R. &amp; Vicente, C. &amp; Armas, R. &amp; De &amp; Vicente, C. &amp; De Armas, R. &amp; Vicente, C. &amp; Armas, R. &amp; De &amp; Vicente, C. &amp; De Armas, R. &amp; Vicente, C. &amp; Armas, R. &amp; De &amp; Vicente, C." box="[947,1135,1694,1713]" pageId="3" pageNumber="145" refId="ref9534" refString="Legaz, M. E., De Armas, R., Vicente, C., Armas, R., De, Vicente, C., De Armas, R., Vicente, C., Armas, R., De, Vicente, C., De Armas, R., Vicente, C., Armas, R., De, Vicente, C., De Armas, R., Vicente, C., Armas, R., De, Vicente, C., 2011. Bioproduction of depsidones for pharmaceutical purposes. In: Drug Development-a Case Study Based Insight into Modern Strategies. InTech." type="book" year="2011">Legaz et al., 2011</bibRefCitation>
). Alternatively, the
<emphasis id="B96C6625FFAEFFB6FAB984D5E38AF92A" bold="true" box="[1347,1487,1694,1713]" italics="true" pageId="3" pageNumber="145">
<taxonomicName id="4C18C1B4FFAEFFB6FAB984D5E3D4F92A" authority="PKS" authorityName="PKS" box="[1347,1425,1694,1713]" class="Lecanoromycetes" family="Cladoniaceae" genus="Cladonia" kingdom="Fungi" order="Lecanorales" pageId="3" pageNumber="145" phylum="Ascomycota" rank="species" species="grayi">C. grayi</taxonomicName>
PKS1
</emphasis>
(
<emphasis id="B96C6625FFAEFFB6FCC084F2E5C4F957" bold="true" box="[826,897,1721,1740]" italics="true" pageId="3" pageNumber="145">CgPKS1</emphasis>
) (similarity with
<emphasis id="B96C6625FFAEFFB6FBD384F2E22AF957" bold="true" box="[1065,1135,1721,1740]" italics="true" pageId="3" pageNumber="145">CrPKS1</emphasis>
was 99% identity) was shown to fall within a phylogenetic clade that had a methyltransferase domain (
<bibRefCitation id="EF89C7C6FFAEFFB6FCC084BAE5BAF89F" author="Armaleo, D. &amp; Sun, X. &amp; Culberson, C. &amp; Sun, X. &amp; Culberson, C." box="[826,1023,1777,1796]" pageId="3" pageNumber="145" pagination="741 - 754" refId="ref7707" refString="Armaleo, D., Sun, X., Culberson, C., Sun, X., Culberson, C., 2011. Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. Mycologia 103, 741 - 754. https: // doi. org / 10.3852 / 10 - 335." type="journal article" year="2011">Armaleo et al., 2011</bibRefCitation>
) suggesting it may produce the first cyclic compound (methyl-3-orsellinate) in the atranorin and fumarprotocetraric acid pathway (
<figureCitation id="1323A6B2FFAEFFB6FC3E8562E5B9F8A7" box="[964,1020,1833,1852]" captionStart="Fig" captionStartId="4.[100,130,745,762]" captionTargetBox="[271,1179,189,722]" captionTargetId="graphics-320@4.[682,892,444,458]" captionTargetPageId="4" captionText="Fig. 4. Methyl-3-orsellinate and 6-methylsalicylic acid biosynthesis pathway according to Legaz et al. (2011). Cyclisation is catalyzed by the cyclase subunit of two different PKS with or without a methyl transferase subunit." figureDoi="http://doi.org/10.5281/zenodo.10484515" httpUri="https://zenodo.org/record/10484515/files/figure.png" pageId="3" pageNumber="145">Fig. 4</figureCitation>
). Accordingly,
<emphasis id="B96C6625FFAEFFB6FB6E8562E29FF8A7" bold="true" box="[1172,1242,1833,1852]" italics="true" pageId="3" pageNumber="145">CrPKS1</emphasis>
is expected to be highly expressed in the thallus outer layer where the acetate/malonate and cyclisation presumably occur after transportation of algal sugars.
</paragraph>
<paragraph id="8BA7BA37FFAEFFB0FCA98536E72CFBFF" blockId="3.[818,1488,1443,1992]" lastBlockId="5.[100,771,994,1431]" lastPageId="5" lastPageNumber="147" pageId="3" pageNumber="145">
<emphasis id="B96C6625FFAEFFB6FCA98536E5E0F80B" bold="true" box="[851,933,1917,1936]" italics="true" pageId="3" pageNumber="145">CrPKS16</emphasis>
was most closely related to the putative
<emphasis id="B96C6625FFAEFFB6FAD08536E30AF80B" bold="true" box="[1322,1359,1917,1936]" italics="true" pageId="3" pageNumber="145">PKS</emphasis>
from
<taxonomicName id="4C18C1B4FFAEFFB6FA738536E395F80B" box="[1417,1488,1917,1936]" class="Lecanoromycetes" family="Cladoniaceae" genus="Cladonia" kingdom="Fungi" order="Lecanorales" pageId="3" pageNumber="145" phylum="Ascomycota" rank="species" species="grayi">
<emphasis id="B96C6625FFAEFFB6FA738536E395F80B" bold="true" box="[1417,1488,1917,1936]" italics="true" pageId="3" pageNumber="145">C. grayi</emphasis>
</taxonomicName>
(
<emphasis id="B96C6625FFAEFFB6FCC085D2E5C8F837" bold="true" box="[826,909,1945,1964]" italics="true" pageId="3" pageNumber="145">CgPKS16</emphasis>
; maximum identity of 100%) which was hypothesized to be responsible for the synthesis and linking of two cyclic compounds
<emphasis id="B96C6625FFA9FFB1FF9E810AE629FCCF" bold="true" box="[100,108,833,852]" pageId="4" pageNumber="146">(</emphasis>
Methyl-3-orsellinate and sphaerophorolcarboxylic acid) to produce the grayanic acid precursor (4-O-demethylsphaerophorin;
<figureCitation id="1323A6B2FFA9FFB1FD5C8116E4BEFCEB" box="[678,763,861,880]" captionStart="Fig" captionStartId="4.[100,130,1914,1931]" captionTargetBox="[265,1323,1269,1892]" captionTargetPageId="4" captionText="Fig. 5. Proposed biosynthetic pathways for A) atranorin according to Armaleo et al. (2008), and B) Grayanic acid according to Culberson and Armaleo (1992) and Armaleo et al. (2011). The reactions begin with esterification of the two cyclic compounds by PKS16 followed by methylation for production of atranorin and production of grayanic acid by a cytochrome P450. The dashed arrows and brackets connect each enzyme to its reaction." figureDoi="http://doi.org/10.5281/zenodo.10484517" httpUri="https://zenodo.org/record/10484517/files/figure.png" pageId="4" pageNumber="146">Fig. 5A</figureCitation>
) (
<bibRefCitation id="EF89C7C6FFA9FFB1FF968132E768FC17" author="Armaleo, D. &amp; Sun, X. &amp; Culberson, C. &amp; Sun, X. &amp; Culberson, C." box="[108,301,889,908]" pageId="4" pageNumber="146" pagination="741 - 754" refId="ref7707" refString="Armaleo, D., Sun, X., Culberson, C., Sun, X., Culberson, C., 2011. Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. Mycologia 103, 741 - 754. https: // doi. org / 10.3852 / 10 - 335." type="journal article" year="2011">Armaleo et al., 2011</bibRefCitation>
). Both 4-O-demethylsphaerophorin and atranorin are similar depsides except in the side chain at C
<subScript id="179CB872FFA9FFB1FDC881D6E401FC31" attach="left" box="[562,580,925,938]" fontSize="5" pageId="4" pageNumber="146">16</subScript>
and the methylated carboxyl group (
<figureCitation id="1323A6B2FFA9FFB1FEF881FAE77CFC5F" box="[258,313,945,964]" captionStart="Fig" captionStartId="4.[100,130,1914,1931]" captionTargetBox="[265,1323,1269,1892]" captionTargetPageId="4" captionText="Fig. 5. Proposed biosynthetic pathways for A) atranorin according to Armaleo et al. (2008), and B) Grayanic acid according to Culberson and Armaleo (1992) and Armaleo et al. (2011). The reactions begin with esterification of the two cyclic compounds by PKS16 followed by methylation for production of atranorin and production of grayanic acid by a cytochrome P450. The dashed arrows and brackets connect each enzyme to its reaction." figureDoi="http://doi.org/10.5281/zenodo.10484517" httpUri="https://zenodo.org/record/10484517/files/figure.png" pageId="4" pageNumber="146">Fig. 5</figureCitation>
). Accordingly,
<emphasis id="B96C6625FFA9FFB1FE3681FAE45BFC5F" bold="true" box="[460,542,945,964]" italics="true" pageId="4" pageNumber="146">CrPKS16</emphasis>
may be involved in the linkage of two cyclic compounds (Methyl-3-orsellinate and Haemmatomoyl alcohol) to
<taxonomicName id="4C18C1B4FFA9FFB1FEE381A2E7E1FC67" box="[281,420,1001,1020]" form="atranorin" pageId="4" pageNumber="146" rank="form">form atranorin</taxonomicName>
(
<figureCitation id="1323A6B2FFA9FFB1FE4981A2E7BCFC67" box="[435,505,1001,1020]" captionStart="Fig" captionStartId="4.[100,130,1914,1931]" captionTargetBox="[265,1323,1269,1892]" captionTargetPageId="4" captionText="Fig. 5. Proposed biosynthetic pathways for A) atranorin according to Armaleo et al. (2008), and B) Grayanic acid according to Culberson and Armaleo (1992) and Armaleo et al. (2011). The reactions begin with esterification of the two cyclic compounds by PKS16 followed by methylation for production of atranorin and production of grayanic acid by a cytochrome P450. The dashed arrows and brackets connect each enzyme to its reaction." figureDoi="http://doi.org/10.5281/zenodo.10484517" httpUri="https://zenodo.org/record/10484517/files/figure.png" pageId="4" pageNumber="146">Fig. 5B</figureCitation>
).
<emphasis id="B96C6625FFA9FFB1FDF081A2E419FC67" bold="true" box="[522,604,1001,1020]" italics="true" pageId="4" pageNumber="146">CrPKS16</emphasis>
was expressed in both the outer and inner thallus tissue, which was consistent with the TLC data showing atranorin in both layers. However, the transformation of depsides to depsidones requires cytochrome P450 to
<taxonomicName id="4C18C1B4FFA9FFB1FD2F8677E6F0FBF0" form="grayanic" pageId="4" pageNumber="146" rank="form">form grayanic</taxonomicName>
acid from depside precursors (
<bibRefCitation id="EF89C7C6FFA9FFB1FE1F8613E4E8FBF0" author="Armaleo, D. &amp; Sun, X. &amp; Culberson, C. &amp; Sun, X. &amp; Culberson, C." box="[485,685,1112,1131]" pageId="4" pageNumber="146" pagination="741 - 754" refId="ref7707" refString="Armaleo, D., Sun, X., Culberson, C., Sun, X., Culberson, C., 2011. Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. Mycologia 103, 741 - 754. https: // doi. org / 10.3852 / 10 - 335." type="journal article" year="2011">Armaleo et al., 2011</bibRefCitation>
). In this context,
<bibRefCitation id="EF89C7C6FFA9FFB1FF40863FE44EFB1C" author="Elix, J. A. &amp; Stocker-Worgotter, E." box="[186,523,1140,1159]" pageId="4" pageNumber="146" pagination="104 - 133" refId="ref8715" refString="Elix, J. A., Stocker-Worgotter, E., 2008. Biochemistry and secondary metabolites. In: Nash, T. H. (Ed.), Lichen Biology. Cambridge University Press, Cambridge, pp. 104 - 133. https: // doi. org / 10.1017 / CBO 9780511790478.008." type="book chapter" year="2008">Elix and Stocker-Wörgötter (2008)</bibRefCitation>
and
<bibRefCitation id="EF89C7C6FFA9FFB1FDB8863FE547FB1C" author="Millot, M. &amp; Tomasi, S. &amp; Studzinska, E. &amp; Rouaud, I. &amp; Boustie, J." box="[578,770,1140,1159]" pageId="4" pageNumber="146" pagination="2177 - 2180" refId="ref9795" refString="Millot, M., Tomasi, S., Studzinska, E., Rouaud, I., Boustie, J., 2009. Cytotoxic constituents of the lichen Diploicia canescens. J. Nat. Prod. 72, 2177 - 2180. https: // doi. org / 10. 1021 / np 9003728." type="journal article" year="2009">Millot et al. (2009)</bibRefCitation>
suggested that a depsidone could be formed from the oxidation of a para-depside by dioxygenase. If depsides can be converted to depsidones (
<bibRefCitation id="EF89C7C6FFA9FFB1FC51810AE27EFCCF" author="Seshadri, T. R." box="[939,1083,833,852]" pageId="4" pageNumber="146" pagination="1 - 14" refId="ref10399" refString="Seshadri, T. R., 1944. A theory of biogenesis of lichen depsides and depsidones. Proc. Math. Sci. 20, 1 - 14." type="journal article" year="1944">Seshadri, 1944</bibRefCitation>
;
<bibRefCitation id="EF89C7C6FFA9FFB1FBB0810AE2ACFCCF" author="Culberson, C." box="[1098,1257,833,852]" pageId="4" pageNumber="146" refId="ref8312" refString="Culberson, C., 1964. Joint occurrence of a lichen depsidone and its probable depside precursor. Science. https: // doi. org / 10.1126 / science. 143.3603.255." type="book" year="1964">Culberson, 1964</bibRefCitation>
), the production of fumarprotocetraric acid in
<taxonomicName id="4C18C1B4FFA9FFB1FBDD8116E2E0FCEB" box="[1063,1189,861,880]" class="Lecanoromycetes" family="Cladoniaceae" genus="Cladonia" kingdom="Fungi" order="Lecanorales" pageId="4" pageNumber="146" phylum="Ascomycota" rank="species" species="rangiferina">
<emphasis id="B96C6625FFA9FFB1FBDD8116E2E0FCEB" bold="true" box="[1063,1189,861,880]" italics="true" pageId="4" pageNumber="146">C. rangiferina</emphasis>
</taxonomicName>
may initially require the production of atranorin (
<figureCitation id="1323A6B2FFA9FFB1FBF38132E207FC17" box="[1033,1090,889,908]" captionStart="Fig" captionStartId="5.[187,217,931,948]" captionTargetBox="[265,1323,152,908]" captionTargetPageId="5" captionText="Fig. 6. Biosynthetic pathway showing the putative conversion of fumarprotocetraric acid from atranorin according to de Armas et al. (2016)." figureDoi="http://doi.org/10.5281/zenodo.10484519" httpUri="https://zenodo.org/record/10484519/files/figure.png" pageId="4" pageNumber="146">Fig. 6</figureCitation>
) (
<bibRefCitation id="EF89C7C6FFA9FFB1FBA68132E370FC17" author="de Armas, R. &amp; de Oliveira, A. K. &amp; de Vasconcelos, T. L. &amp; Vicente, C. &amp; Santiago, R. &amp; Pereira, E. C. &amp; Legaz, M. E." box="[1116,1333,889,908]" pageId="4" pageNumber="146" pagination="243 - 251" refId="ref8498" refString="de Armas, R., de Oliveira, A. K., de Vasconcelos, T. L., Vicente, C., Santiago, R., Pereira, E. C., Legaz, M. E., 2016. Effect of soil moisture on the percolation of lichen substances from Cladonia verticillaris (Raddi) Fr. in a quarzarenic neosol from Brazil. Environ. Sci. 12, 243 - 251." type="journal article" year="2016">de Armas et al., 2016</bibRefCitation>
). In this study, grayanic acid was not produced by
<taxonomicName id="4C18C1B4FFA9FFB1FB6E81DEE357FC33" box="[1172,1298,917,936]" class="Lecanoromycetes" family="Cladoniaceae" genus="Cladonia" kingdom="Fungi" order="Lecanorales" pageId="4" pageNumber="146" phylum="Ascomycota" rank="species" species="rangiferina">
<emphasis id="B96C6625FFA9FFB1FB6E81DEE357FC33" bold="true" box="[1172,1298,917,936]" italics="true" pageId="4" pageNumber="146">C. rangiferina</emphasis>
</taxonomicName>
, so
<emphasis id="B96C6625FFA9FFB1FABA81DEE3D7FC33" bold="true" box="[1344,1426,917,936]" italics="true" pageId="4" pageNumber="146">CrPKS16</emphasis>
likely does not have a role in grayanic acid production. It may, instead, contribute to the biosynthesis of the depside, atranorin. This agreed, in part, with our TLC results which showed fumarprotocetraric acid present in the inner thallus layer with atranorin. If atranorin was formed in the outer layer and then transformed to fumarprotocetraric acid in the inner layer by dioxygenase (YQE1), which was upregulated in this layer, atranorin would appear to be present in both layers, and only fumarprotocetraric acid would appear to be present in the inner layer. However, the absence of
<emphasis id="B96C6625FFA9FFB1FBE786DBE214FB38" bold="true" box="[1053,1105,1168,1187]" italics="true" pageId="4" pageNumber="146">YQE1</emphasis>
expression in the apical inner layer does not support this hypothesis.
<emphasis id="B96C6625FFA9FFB1FBBE86E7E2CFFB24" bold="true" box="[1092,1162,1196,1215]" italics="true" pageId="4" pageNumber="146">CrPKS3</emphasis>
was closely related to a reducing PKS gene from
<taxonomicName id="4C18C1B4FFA8FFB0FF0881A9E7FEFC6E" authority="Ach." authorityName="Ach." box="[242,443,994,1013]" class="Lecanoromycetes" family="Parmeliaceae" genus="Usnea" kingdom="Fungi" order="Lecanorales" pageId="5" pageNumber="147" phylum="Ascomycota" rank="species" species="longissima">
<emphasis id="B96C6625FFA8FFB0FF0881A9E7CCFC6E" bold="true" box="[242,393,994,1013]" italics="true" pageId="5" pageNumber="147">Usnea longissima</emphasis>
Ach.
</taxonomicName>
(maximum identity of 74%) which may be responsible for the biosynthesis of depside side chains (
<bibRefCitation id="EF89C7C6FFA8FFB0FD3681B5E696FBB6" author="Wang, Y. &amp; Kim, J. A. &amp; Cheong, Y. H. &amp; Joshi, Y. &amp; Koh, Y. J. &amp; Hur, J. - S." pageId="5" pageNumber="147" pagination="473 - 480" refId="ref10767" refString="Wang, Y., Kim, J. A., Cheong, Y. H., Joshi, Y., Koh, Y. J., Hur, J. - S., 2011. Isolation and characterization of a reducing polyketide synthase gene from the lichen-forming fungus Usnea longissima. J. Microbiol. 49, 473 - 480." type="journal article" year="2011">Wang et al., 2011</bibRefCitation>
). This agreed with our results which showed that
<emphasis id="B96C6625FFA8FFB0FD468651E547FBB6" bold="true" box="[700,770,1050,1069]" italics="true" pageId="5" pageNumber="147">CrPKS3</emphasis>
was more highly expressed in the outer than inner thallus layers where depside synthesis occurred.
</paragraph>
<caption id="DF67EABFFFA9FFB1FF9E80A2E427FC88" ID-DOI="http://doi.org/10.5281/zenodo.10484515" ID-Zenodo-Dep="10484515" httpUri="https://zenodo.org/record/10484515/files/figure.png" pageId="4" pageNumber="146" startId="4.[100,130,745,762]" targetBox="[271,1179,189,722]" targetPageId="4" targetType="figure">
<paragraph id="8BA7BA37FFA9FFB1FF9E80A2E427FC88" blockId="4.[100,1487,745,787]" pageId="4" pageNumber="146">
<emphasis id="B96C6625FFA9FFB1FF9E80A2E6D8FD61" bold="true" box="[100,157,745,762]" pageId="4" pageNumber="146">Fig. 4.</emphasis>
Methyl-3-orsellinate and 6-methylsalicylic acid biosynthesis pathway according to
<bibRefCitation id="EF89C7C6FFA9FFB1FC9880A2E244FD61" author="Legaz" box="[866,1025,745,762]" etAl="et al." firstAuthor="Legaz" pageId="4" pageNumber="146" refId="ref9534" refString="Legaz, M. E., De Armas, R., Vicente, C., Armas, R., De, Vicente, C., De Armas, R., Vicente, C., Armas, R., De, Vicente, C., De Armas, R., Vicente, C., Armas, R., De, Vicente, C., De Armas, R., Vicente, C., Armas, R., De, Vicente, C., 2011. Bioproduction of depsidones for pharmaceutical purposes. In: Drug Development-a Case Study Based Insight into Modern Strategies. InTech." type="book" year="2011">Legaz et al. (2011)</bibRefCitation>
. Cyclisation is catalyzed by the cyclase subunit of two different PKS with or without a methyl transferase subunit.
</paragraph>
</caption>
<caption id="DF67EABFFFA9FFB1FF9E8531E23DF825" ID-DOI="http://doi.org/10.5281/zenodo.10484517" ID-Zenodo-Dep="10484517" httpUri="https://zenodo.org/record/10484517/files/figure.png" pageId="4" pageNumber="146" startId="4.[100,130,1914,1931]" targetBox="[265,1323,1269,1892]" targetPageId="4" targetType="figure">
<paragraph id="8BA7BA37FFA9FFB1FF9E8531E23DF825" blockId="4.[100,1487,1914,1982]" pageId="4" pageNumber="146">
<emphasis id="B96C6625FFA9FFB1FF9E8531E6DBF810" bold="true" box="[100,158,1914,1931]" pageId="4" pageNumber="146">Fig. 5.</emphasis>
Proposed biosynthetic pathways for A) atranorin according to
<bibRefCitation id="EF89C7C6FFA9FFB1FD4D8531E52AF810" author="Armaleo" box="[695,879,1914,1931]" etAl="et al." firstAuthor="Armaleo" pageId="4" pageNumber="146" pagination="565 - 576" refId="ref7648" refString="Armaleo, D., Zhang, Y., Cheung, S., 2008. Light might regulate divergently depside and depsidone accumulation in the lichen Parmotrema hypotropum by affecting thallus temperature and water potential. Mycologia 100, 565 - 576. https: // doi. org / 10.3852 / 07 - 162 R." type="journal article" year="2008">Armaleo et al. (2008)</bibRefCitation>
, and B) Grayanic acid according to
<bibRefCitation id="EF89C7C6FFA9FFB1FB598531E3EFF810" author="Culberson, C. F. &amp; Armaleo, D." box="[1187,1450,1914,1931]" pageId="4" pageNumber="146" pagination="52 - 63" refId="ref8346" refString="Culberson, C. F., Armaleo, D., 1992. Induction of a complete secondary-product pathway in a cultured lichen fungus. Exp. Mycol. 16, 52 - 63. https: // doi. org / 10.1016 / 0147 - 5975 (92) 90041 - O." type="journal article" year="1992">Culberson and Armaleo (1992)</bibRefCitation>
and
<bibRefCitation id="EF89C7C6FFA9FFB1FF9E85DFE764F83E" author="Armaleo, D. &amp; Sun, X. &amp; Culberson, C. &amp; Sun, X. &amp; Culberson, C." box="[100,289,1940,1957]" pageId="4" pageNumber="146" pagination="741 - 754" refId="ref7707" refString="Armaleo, D., Sun, X., Culberson, C., Sun, X., Culberson, C., 2011. Insights from the first putative biosynthetic gene cluster for a lichen depside and depsidone. Mycologia 103, 741 - 754. https: // doi. org / 10.3852 / 10 - 335." type="journal article" year="2011">Armaleo et al. (2011)</bibRefCitation>
. The reactions begin with esterification of the two cyclic compounds by PKS16 followed by methylation for production of atranorin and production of grayanic acid by a cytochrome P450. The dashed arrows and brackets connect each enzyme to its reaction.
</paragraph>
</caption>
<caption id="DF67EABFFFA8FFB0FF4181E8E33DFC2F" ID-DOI="http://doi.org/10.5281/zenodo.10484519" ID-Zenodo-Dep="10484519" box="[187,1400,931,948]" httpUri="https://zenodo.org/record/10484519/files/figure.png" pageId="5" pageNumber="147" startId="5.[187,217,931,948]" targetBox="[265,1323,152,908]" targetPageId="5" targetType="figure">
<paragraph id="8BA7BA37FFA8FFB0FF4181E8E33DFC2F" blockId="5.[187,1400,931,948]" box="[187,1400,931,948]" pageId="5" pageNumber="147">
<emphasis id="B96C6625FFA8FFB0FF4181E8E6B0FC2F" bold="true" box="[187,245,931,948]" pageId="5" pageNumber="147">Fig. 6.</emphasis>
Biosynthetic pathway showing the putative conversion of fumarprotocetraric acid from atranorin according to
<bibRefCitation id="EF89C7C6FFA8FFB0FB4B81E8E336FC2F" author="de Armas, R. &amp; de Oliveira, A. K. &amp; de Vasconcelos, T. L. &amp; Vicente, C. &amp; Santiago, R. &amp; Pereira, E. C. &amp; Legaz, M. E." box="[1201,1395,931,948]" pageId="5" pageNumber="147" pagination="243 - 251" refId="ref8498" refString="de Armas, R., de Oliveira, A. K., de Vasconcelos, T. L., Vicente, C., Santiago, R., Pereira, E. C., Legaz, M. E., 2016. Effect of soil moisture on the percolation of lichen substances from Cladonia verticillaris (Raddi) Fr. in a quarzarenic neosol from Brazil. Environ. Sci. 12, 243 - 251." type="journal article" year="2016">de Armas et al. (2016)</bibRefCitation>
.
</paragraph>
</caption>
<paragraph id="8BA7BA37FFA8FFB0FF7F8626E4FEFA0C" blockId="5.[100,771,994,1431]" pageId="5" pageNumber="147">
The Mass Spectrum analysis of atranorin (pure and in the extract) was consistent with previous reports (
<bibRefCitation id="EF89C7C6FFA8FFB0FE3F86C2E4D1FB07" author="Musharraf, S. G. &amp; Kanwal, N. &amp; Thadhani, V. M. &amp; Choudhary, M. I." box="[453,660,1161,1180]" pageId="5" pageNumber="147" pagination="6066" refId="ref9856" refString="Musharraf, S. G., Kanwal, N., Thadhani, V. M., Choudhary, M. I., 2015. Rapid identification of lichen compounds based on the structure - fragmentation relationship using ESI- MS / MS analysis. Anal. Meth. 7, 6066." type="journal article" year="2015">Musharraf et al., 2015</bibRefCitation>
) displaying the deprotonated molecular ion [M H] at m/z 373 with daughter ions observed at m/z 195 and 177 (Supplementary
<figureCitation id="1323A6B2FFA8FFB0FD92868AE4EAFB4F" box="[616,687,1217,1236]" captionStart="Fig" captionStartId="2.[100,130,872,889]" captionTargetBox="[265,1323,155,847]" captionTargetId="figure-1@2.[263,1325,152,849]" captionTargetPageId="2" captionText="Fig. 1. Cross sections of thallus tissue of Cladonia rangiferina showing A) the basal older portion with both inner and outer layers, B) the apical younger portion with both inner and outer layers, C) apothecium at the tip of the thallus, D) the basal portion with the inner layer removed by LMD, E) the apical portion with the inner layer removed by LMD, and F) the apothecial tissues removed leaving only the thallus stalk. Each tissue type was removed by LMD to be used in RNA extraction." figureDoi="http://doi.org/10.5281/zenodo.10484509" httpUri="https://zenodo.org/record/10484509/files/figure.png" pageId="5" pageNumber="147">Fig. 1A</figureCitation>
, insert). Similarly, fumarprotocetraric acid had a [M H] precursor m/z 471 (both pure and in extract) in agreement with
<collectingRegion id="49DC74D5FFA8FFB0FDB186B2E4C2FA97" box="[587,647,1273,1292]" country="United Kingdom" name="Isle of Anglesey" pageId="5" pageNumber="147">MoNA</collectingRegion>
(
<collectingRegion id="49DC74D5FFA8FFB0FD6086B2E49DFA97" box="[666,728,1273,1292]" country="United Kingdom" name="Isle of Anglesey" pageId="5" pageNumber="147">MoNA</collectingRegion>
ID: NP_C1_297_p3_F03_NEG_iTree_11), with the daughter ion observed at m/z 355 (Splash: splash10-0a4i-0009000000-6d53e7820a534e1cad6a) (
<figureCitation id="1323A6B2FFA8FFB0FF968706E6F1FAFB" box="[108,180,1357,1376]" captionStart="Fig" captionStartId="2.[100,130,872,889]" captionTargetBox="[265,1323,155,847]" captionTargetId="figure-1@2.[263,1325,152,849]" captionTargetPageId="2" captionText="Fig. 1. Cross sections of thallus tissue of Cladonia rangiferina showing A) the basal older portion with both inner and outer layers, B) the apical younger portion with both inner and outer layers, C) apothecium at the tip of the thallus, D) the basal portion with the inner layer removed by LMD, E) the apical portion with the inner layer removed by LMD, and F) the apothecial tissues removed leaving only the thallus stalk. Each tissue type was removed by LMD to be used in RNA extraction." figureDoi="http://doi.org/10.5281/zenodo.10484509" httpUri="https://zenodo.org/record/10484509/files/figure.png" pageId="5" pageNumber="147">Fig. 1B</figureCitation>
, insert). The analysis of both standards and published data strongly suggest the presence of atranorin and fumarprotocetraric acid as the two major compounds produced by
<taxonomicName id="4C18C1B4FFA8FFB0FE0687CFE4F1FA0C" box="[508,692,1412,1431]" class="Lecanoromycetes" family="Cladoniaceae" genus="Cladonia" kingdom="Fungi" order="Lecanorales" pageId="5" pageNumber="147" phylum="Ascomycota" rank="species" species="rangiferina">
<emphasis id="B96C6625FFA8FFB0FE0687CFE4F1FA0C" bold="true" box="[508,692,1412,1431]" italics="true" pageId="5" pageNumber="147">Cladonia rangiferina</emphasis>
</taxonomicName>
.
</paragraph>
</subSubSection>
<subSubSection id="C302E9BCFFA8FFB0FF9E87F4E26FFBD3" pageId="5" pageNumber="147" type="discussion">
<paragraph id="8BA7BA37FFA8FFB0FF9E87F4E6B7FA49" blockId="5.[100,242,1471,1490]" box="[100,242,1471,1490]" pageId="5" pageNumber="147">
<emphasis id="B96C6625FFA8FFB0FF9E87F4E6B7FA49" bold="true" box="[100,242,1471,1490]" pageId="5" pageNumber="147">4. Conclusion</emphasis>
</paragraph>
<paragraph id="8BA7BA37FFA8FFB0FF7F87BDE26FFBD3" blockId="5.[100,771,1526,1992]" lastBlockId="5.[818,1487,994,1096]" pageId="5" pageNumber="147">
In conclusion, the three PKS genes (
<emphasis id="B96C6625FFA8FFB0FE0987BDE47CF992" bold="true" box="[499,569,1526,1545]" italics="true" pageId="5" pageNumber="147">CrPKS1</emphasis>
,
<emphasis id="B96C6625FFA8FFB0FDB087BDE4B9F992" bold="true" box="[586,764,1526,1545]" italics="true" pageId="5" pageNumber="147">CrPKS3, CrPKS16)</emphasis>
,
<emphasis id="B96C6625FFA8FFB0FF9E8459E6F3F9BE" bold="true" box="[100,182,1554,1573]" italics="true" pageId="5" pageNumber="147">MFSUG2</emphasis>
, and C
<subScript id="179CB872FFA8FFB0FF038451E747F9BC" attach="both" box="[249,258,1562,1575]" fontSize="5" pageId="5" pageNumber="147">2</subScript>
H
<subScript id="179CB872FFA8FFB0FEE88451E75EF9BC" attach="left" box="[274,283,1562,1575]" fontSize="5" pageId="5" pageNumber="147">2</subScript>
transcription factors were upregulated in the outer apical portion more than the other thallus portions. These findings are consistent with more metabolic activity where the ribitol sugar from the alga (
<taxonomicName id="4C18C1B4FFA8FFB0FF61842DE777F9E2" box="[155,306,1638,1657]" class="Trebouxiophyceae" family="Trebouxiaceae" genus="Asterochloris" kingdom="Plantae" order="Trebouxiales" pageId="5" pageNumber="147" phylum="Chlorophyta" rank="species" species="undetermined">
<emphasis id="B96C6625FFA8FFB0FF61842DE74BF9E2" bold="true" box="[155,270,1638,1657]" italics="true" pageId="5" pageNumber="147">Asterochloris</emphasis>
sp.
</taxonomicName>
) is transferred to the fungus for polyketide production. However, the C
<subScript id="179CB872FFA8FFB0FEAC84C1E71AF90C" attach="both" box="[342,351,1674,1687]" fontSize="5" pageId="5" pageNumber="147">2</subScript>
H
<subScript id="179CB872FFA8FFB0FE9584C1E73DF90C" attach="left" box="[367,376,1674,1687]" fontSize="5" pageId="5" pageNumber="147">2</subScript>
transcription factor was upregulated in both apical portions where polyketides were synthesized. In contrast,
<emphasis id="B96C6625FFA8FFB0FF9E84F2E6D7F957" bold="true" box="[100,146,1721,1740]" italics="true" pageId="5" pageNumber="147">PacC</emphasis>
was upregulated in the basal portion distal from polyketide synthesis.
<emphasis id="B96C6625FFA8FFB0FF33849EE6B8F973" bold="true" box="[201,253,1749,1768]" italics="true" pageId="5" pageNumber="147">YQE1</emphasis>
was upregulated in the basal inner layer where fumarprotocetraric acid biosynthesis may occur by oxidation of depsides.
<emphasis id="B96C6625FFA8FFB0FF9E8546E6C9F8BB" bold="true" box="[100,140,1805,1824]" italics="true" pageId="5" pageNumber="147">CAT</emphasis>
was expressed in the outer layers of the thallus where polyketide biosynthesis initiated, which was thought to reduce the oxidative stress from polyketide biosynthesis. In contrast, the apothecia showed low expression levels of all genes. The results in this study are validated by current knowledge of sugar transport in lichens and the location of polyketide production consistent with known function. The utility of performing the LMD technique on sections of
<taxonomicName id="4C18C1B4FFA8FFB0FDAA85FEE496F853" box="[592,723,1973,1992]" class="Lecanoromycetes" family="Cladoniaceae" genus="Cladonia" kingdom="Fungi" order="Lecanorales" pageId="5" pageNumber="147" phylum="Ascomycota" rank="species" species="rangiferina">
<emphasis id="B96C6625FFA8FFB0FDAA85FEE496F853" bold="true" box="[592,723,1973,1992]" italics="true" pageId="5" pageNumber="147">C. rangiferina</emphasis>
</taxonomicName>
has implications for further tissue-specific expression studies such as nitrogen mobilization in cyanobacterial lichens and it illustrates a different approach for examining activity of hydrophobins or other proteins in the lichen thallus.
</paragraph>
</subSubSection>
<subSubSection id="C302E9BCFFA8FFB0FCC88624E2B1F950" pageId="5" pageNumber="147" type="materials_examined">
<paragraph id="8BA7BA37FFA8FFB0FCC88624E27DFB19" blockId="5.[818,1080,1135,1154]" box="[818,1080,1135,1154]" pageId="5" pageNumber="147">
<heading id="D0EF0D5BFFA8FFB0FCC88624E27DFB19" bold="true" box="[818,1080,1135,1154]" fontSize="36" level="1" pageId="5" pageNumber="147" reason="1">
<emphasis id="B96C6625FFA8FFB0FCC88624E27DFB19" bold="true" box="[818,1080,1135,1154]" pageId="5" pageNumber="147">5. Materials and methods</emphasis>
</heading>
</paragraph>
<paragraph id="8BA7BA37FFA8FFB0FCC886EDE5ACFB22" blockId="5.[818,1001,1190,1209]" box="[818,1001,1190,1209]" pageId="5" pageNumber="147">
<emphasis id="B96C6625FFA8FFB0FCC886EDE5ACFB22" bold="true" box="[818,1001,1190,1209]" italics="true" pageId="5" pageNumber="147">5.1. Lichen material</emphasis>
</paragraph>
<paragraph id="8BA7BA37FFA8FFB0FCA98695E2B1F950" blockId="5.[818,1488,1246,1739]" pageId="5" pageNumber="147">
<materialsCitation id="3B70B06AFFA8FFB0FCA98695E3E7FA77" pageId="5" pageNumber="147">
The mat-forming lichen,
<taxonomicName id="4C18C1B4FFA8FFB0FBBA8695E2A1FB6A" authority="(L.)" baseAuthorityName="L." box="[1088,1252,1246,1265]" class="Lecanoromycetes" family="Cladoniaceae" genus="Cladonia" kingdom="Fungi" order="Lecanorales" pageId="5" pageNumber="147" phylum="Ascomycota" rank="species" species="rangiferina">
<emphasis id="B96C6625FFA8FFB0FBBA8695E2FEFB6A" bold="true" box="[1088,1211,1246,1265]" italics="true" pageId="5" pageNumber="147">C. rangiferina</emphasis>
(L.)
</taxonomicName>
F. H. Wigg. (
<specimenCode id="DBBE124CFFA8FFB0FA9E8695E38CFB6A" box="[1380,1481,1246,1265]" pageId="5" pageNumber="147">KP001201</specimenCode>
) was collected
<date id="FFA69CF7FFA8FFB0FC4286B1E25EFA96" box="[952,1051,1274,1293]" pageId="5" pageNumber="147" value="2014-06">June 2014</date>
from Sandilands Provincial Forest,
<collectingRegion id="49DC74D5FFA8FFB0FA8A86B1E389FA96" box="[1392,1484,1274,1293]" country="Canada" name="Manitoba" pageId="5" pageNumber="147">Manitoba</collectingRegion>
,
<collectingCountry id="F30FFAA7FFA8FFB0FCC8875DE53DFAB2" box="[818,888,1302,1321]" name="Canada" pageId="5" pageNumber="147">Canada</collectingCountry>
(N49̊ 22
<emphasis id="B96C6625FFA8FFB0FC2A875DE592FAB2" box="[976,983,1302,1321]" italics="true" pageId="5" pageNumber="147"></emphasis>
37
<emphasis id="B96C6625FFA8FFB0FC0E875DE5BAFAB2" box="[1012,1023,1302,1321]" italics="true" pageId="5" pageNumber="147"></emphasis>
, W96̊ 6
<emphasis id="B96C6625FFA8FFB0FBB4875DE210FAB2" box="[1102,1109,1302,1321]" italics="true" pageId="5" pageNumber="147"></emphasis>
31
<emphasis id="B96C6625FFA8FFB0FB88875DE238FAB2" box="[1138,1149,1302,1321]" italics="true" pageId="5" pageNumber="147"></emphasis>
), cleaned from debris, and stored in a plastic bag at 4 ̊C. The collection site was a Jack pine (
<taxonomicName id="4C18C1B4FFA8FFB0FAC58779E52BFAFA" authority="Lamb." authorityName="Lamb." class="Pinopsida" family="Pinaceae" genus="Pinus" kingdom="Plantae" order="Pinales" pageId="5" pageNumber="147" phylum="Tracheophyta" rank="species" species="banksiana">
<emphasis id="B96C6625FFA8FFB0FAC58779E38AFADE" bold="true" box="[1343,1487,1330,1349]" italics="true" pageId="5" pageNumber="147">Pinus banksiana</emphasis>
Lamb.
</taxonomicName>
) dominated ridge underlain by sandy glacial till on the Precambrian Shield. Other species present include black spruce (
<taxonomicName id="4C18C1B4FFA8FFB0FA5A8721E286FA02" authority="(Mill.) Britton, Sterns &amp; Poggenb." authorityName="Britton, Sterns &amp; Poggenb." baseAuthorityName="Mill." class="Pinopsida" family="Pinaceae" genus="Picea" kingdom="Plantae" order="Pinales" pageId="5" pageNumber="147" phylum="Tracheophyta" rank="species" species="mariana">
<emphasis id="B96C6625FFA8FFB0FA5A8721E539FA02" bold="true" italics="true" pageId="5" pageNumber="147">Picea mariana</emphasis>
(Mill.) Britton, Sterns &amp;Poggenb.
</taxonomicName>
),
<taxonomicName id="4C18C1B4FFA8FFB0FB2E87CDE36EFA02" box="[1236,1323,1414,1433]" class="Magnoliopsida" family="Betulaceae" genus="Alnus" kingdom="Plantae" order="Fagales" pageId="5" pageNumber="147" phylum="Tracheophyta" rank="species" species="undetermined">
<emphasis id="B96C6625FFA8FFB0FB2E87CDE343FA02" bold="true" box="[1236,1286,1414,1433]" italics="true" pageId="5" pageNumber="147">Alnus</emphasis>
sp.
</taxonomicName>
,
<taxonomicName id="4C18C1B4FFA8FFB0FACD87CDE53DFA2F" authority="L." authorityName="L." class="Magnoliopsida" family="Rosaceae" genus="Prunus" kingdom="Plantae" order="Rosales" pageId="5" pageNumber="147" phylum="Tracheophyta" rank="species" species="pensylvanica">
<emphasis id="B96C6625FFA8FFB0FACD87CDE512FA2F" bold="true" italics="true" pageId="5" pageNumber="147">Prunus pensylvanica</emphasis>
L.
</taxonomicName>
in open areas, mosses (
<taxonomicName id="4C18C1B4FFA8FFB0FB7A87EAE389FA2F" authority="(Brid.) Mitt." authorityName="Mitt." baseAuthorityName="Brid." box="[1152,1484,1441,1460]" class="Bryopsida" family="Hylocomiaceae" genus="Pleurozium" kingdom="Plantae" order="Hypnales" pageId="5" pageNumber="147" phylum="Bryophyta" rank="species" species="schreberi">
<emphasis id="B96C6625FFA8FFB0FB7A87EAE304FA2F" bold="true" box="[1152,1345,1441,1460]" italics="true" pageId="5" pageNumber="147">Pleurozium schreberi</emphasis>
(Brid.) Mitt.
</taxonomicName>
,
<taxonomicName id="4C18C1B4FFA8FFB0FCC887F6E2F4FA4B" authority="(Hedw.) Schimp." authorityName="Schimp." baseAuthorityName="Hedw." box="[818,1201,1469,1488]" class="Bryopsida" family="Hylocomiaceae" genus="Hylocomium" kingdom="Plantae" order="Hypnales" pageId="5" pageNumber="147" phylum="Bryophyta" rank="species" species="splendens">
<emphasis id="B96C6625FFA8FFB0FCC887F6E245FA4B" bold="true" box="[818,1024,1469,1488]" italics="true" pageId="5" pageNumber="147">Hylocomium splendens</emphasis>
(Hedw.) Schimp.
</taxonomicName>
,
<taxonomicName id="4C18C1B4FFA8FFB0FB4587F6E30DFA4B" box="[1215,1352,1469,1488]" class="Bryopsida" family="Dicranaceae" genus="Dicranum" kingdom="Plantae" order="Dicranales" pageId="5" pageNumber="147" phylum="Bryophyta" rank="species" species="undetermined">
<emphasis id="B96C6625FFA8FFB0FB4587F6E353FA4B" bold="true" box="[1215,1302,1469,1488]" italics="true" pageId="5" pageNumber="147">Dicranum</emphasis>
spp.
</taxonomicName>
) in protected depressions, and other lichens (
<taxonomicName id="4C18C1B4FFA8FFB0FB808792E344FA77" box="[1146,1281,1497,1516]" class="Lecanoromycetes" family="Cladoniaceae" genus="Cladonia" kingdom="Fungi" order="Lecanorales" pageId="5" pageNumber="147" phylum="Ascomycota" rank="species" species="undetermined">
<emphasis id="B96C6625FFA8FFB0FB808792E28FFA77" bold="true" box="[1146,1226,1497,1516]" italics="true" pageId="5" pageNumber="147">Cladonia</emphasis>
spp.
</taxonomicName>
,
<taxonomicName id="4C18C1B4FFA8FFB0FAE98792E3D2FA77" box="[1299,1431,1497,1516]" class="Lecanoromycetes" family="Peltigeraceae" genus="Peltigera" kingdom="Fungi" order="Peltigerales" pageId="5" pageNumber="147" phylum="Ascomycota" rank="species" species="undetermined">
<emphasis id="B96C6625FFA8FFB0FAE98792E31AFA77" bold="true" box="[1299,1375,1497,1516]" italics="true" pageId="5" pageNumber="147">Peltigera</emphasis>
spp.
</taxonomicName>
).
</materialsCitation>
See
<bibRefCitation id="EF89C7C6FFA8FFB0FCC887BEE5B6F993" author="Kotelko, R. &amp; Doering, M. &amp; Piercey-Normore, M. D." box="[818,1011,1525,1544]" pageId="5" pageNumber="147" pagination="594 - 606" refId="ref9360" refString="Kotelko, R., Doering, M., Piercey-Normore, M. D., 2008. Species diversity and genetic variation of terrestrial lichens and bryophytes in a boreal Jack pine forest of central Canada. Bryologist 111, 594 - 606." type="journal article" year="2008">Kotelko et al. (2008)</bibRefCitation>
for a more detailed list of the common lichens and bryophytes in the area. The area was moist to dry with moisture retention because of the forest cover. The upper apical and lower basal portions of the lichen thallus were cut in cross section and separated into two layers: the outer layer with loose fungal hyphae surrounding algal cells and the innermost layer with compact fungal hyphae with no algal cells. The apothecia, containing only fungal tissue, were separated from the thallus at the base of the apothecium.
</paragraph>
</subSubSection>
</treatment>
</document>