treatments-xml/data/03/8E/87/038E87B0CA4DFFE0FCCAFB11FEEC0C23.xml
2024-06-21 12:22:17 +02:00

185 lines
22 KiB
XML
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<document id="EB9B6E961BCB00C00F673A8190760255" ID-DOI="10.1016/j.phytochem.2020.112590" ID-ISSN="1873-3700" ID-Zenodo-Dep="8290677" IM.bibliography_approvedBy="juliana" IM.illustrations_approvedBy="juliana" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="juliana" IM.tables_approvedBy="juliana" IM.taxonomicNames_approvedBy="juliana" IM.treatments_approvedBy="juliana" checkinTime="1693243682909" checkinUser="felipe" docAuthor="Mehmood, Nasir, Yuan, Yuan, Ali, Mohammed, Ali, Muhammad, Iftikhar, Junaid, Cheng, Chunzhen, Lyu, Meiling &amp; Wu, Binghua" docDate="2021" docId="038E87B0CA4DFFE0FCCAFB11FEEC0C23" docLanguage="en" docName="Phytochemistry.181.112590.pdf" docOrigin="Phytochemistry (112590) 181" docSource="http://dx.doi.org/10.1016/j.phytochem.2020.112590" docStyle="DocumentStyle:F36D69FC8B198FBE91029DF9C24697D3.5:Phytochemistry.2020-.journal_article" docStyleId="F36D69FC8B198FBE91029DF9C24697D3" docStyleName="Phytochemistry.2020-.journal_article" docStyleVersion="5" docTitle="Colletotrichum gloeosporioides subsp. treatment" docType="treatment" docVersion="4" lastPageNumber="7" masterDocId="FFB7FFC8CA48FFE6FFF8FFE0FFCC0B64" masterDocTitle="Early transcriptional response of terpenoid metabolism to Colletotrichum gloeosporioides in a resistant wild strawberry Fragaria nilgerrensis" masterLastPageNumber="12" masterPageNumber="1" pageNumber="6" updateTime="1693400242790" updateUser="juliana">
<mods:mods id="D4796546E01F3BA7D2722B43DF91EFE1" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="EF88A1E63B636CD039355B935EB04209">
<mods:title id="F4540CC74E3616334989FCE54A9C96D2">Early transcriptional response of terpenoid metabolism to Colletotrichum gloeosporioides in a resistant wild strawberry Fragaria nilgerrensis</mods:title>
</mods:titleInfo>
<mods:name id="61E0BC24B146439C1299F603849C7DAD" type="personal">
<mods:role id="4157193E8FAF4442B876DCFF0D558EFE">
<mods:roleTerm id="2185A41AAD29E0E6970D33B158DBD19D">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="A9F5C82316C62C3CA79802B233AC5ECD">Mehmood, Nasir</mods:namePart>
<mods:affiliation id="5ED7811BA11C3AB2F1AECFDD58CA1845">* &amp; College of Horticulture and the Fujian provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China</mods:affiliation>
</mods:name>
<mods:name id="710D4525032DE5D2F797B6BB091A4F32" type="personal">
<mods:role id="C008C5DE51613ED8BB891A72ECCB6E6D">
<mods:roleTerm id="854D9FB3D8507B3E31E2020C476A1542">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="7BCEFBFEDB56F545B295B1320FD3936E">Yuan, Yuan</mods:namePart>
<mods:affiliation id="B7777F9E871451CA425A78BDCD47624F">* &amp; College of Horticulture and the Fujian provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China</mods:affiliation>
</mods:name>
<mods:name id="CB819CFF7C5AFBF45A4D0BA833360A5F" type="personal">
<mods:role id="509085D3B428EE7C2B1DDE4D5591DF6C">
<mods:roleTerm id="559285F221B9319F36EB36F9F7BF2139">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="C8EB861F63CD8C018377A03AE8735969">Ali, Mohammed</mods:namePart>
<mods:affiliation id="7170D2A60A9BA417944D5E82950A42E9">Egyptian Deserts Gene Bank, Department of Genetic Resources, Desert Research Center, Egypt</mods:affiliation>
</mods:name>
<mods:name id="A1210712742A36C5D2F563EDFF39223F" type="personal">
<mods:role id="65CC2D7404F717600978FE52081B395E">
<mods:roleTerm id="9DE2B4EF8F22643F199E24F493F6ECFB">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="0242E0950E8EBA7529C7DC6B62464480">Ali, Muhammad</mods:namePart>
<mods:affiliation id="E7B5B4B07CAD3A79164DA09C95E2A90D">College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China</mods:affiliation>
</mods:name>
<mods:name id="3567361762E2DEC614B425E5D14D2B28" type="personal">
<mods:role id="CF950422FEB4FCC11C340BD07B812217">
<mods:roleTerm id="8038F35E3F39C768D54D4CDD39CBAAFE">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="397354139F765298887E5059EB8C692F">Iftikhar, Junaid</mods:namePart>
<mods:affiliation id="67F2FD3CE59EE4F8C24984397CE3EC5B">* &amp; College of Horticulture and the Fujian provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China</mods:affiliation>
</mods:name>
<mods:name id="ED9F09901B695DCB29194E6EB5A64C8D" type="personal">
<mods:role id="4748719FA7EB13374FC3F641C22CDF0F">
<mods:roleTerm id="521553414FA8D4CA25A0DF9193C662B5">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="2001C3CC03D2AD500394130D5EE9A524">Cheng, Chunzhen</mods:namePart>
<mods:affiliation id="4CA47FCED5DF962C3B6B97CA6D736E12">* &amp; College of Horticulture and the Fujian provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China</mods:affiliation>
</mods:name>
<mods:name id="4DFBA83B18F08DDF7D5E93C533817098" type="personal">
<mods:role id="4F0D025EB6BA6A695DC5823315BE1E08">
<mods:roleTerm id="3C8FDCF401DC4FA2C3280FB6983878FE">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="CDEED22BDBDFE8CA0B4255D1BD007272">Lyu, Meiling</mods:namePart>
<mods:affiliation id="7F561B94D94363E143AD40393238EE23">* &amp; College of Horticulture and the Fujian provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China</mods:affiliation>
</mods:name>
<mods:name id="A3A512252A63B48AE93EDFCF8F5A469D" type="personal">
<mods:role id="EF5FC1DA7401D38B3F4D507349CA0C9C">
<mods:roleTerm id="200F2DAB6ECD872C76799FFC3901C8B2">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="ADB6FDC81941C0078897D5E67AEAB94B">Wu, Binghua</mods:namePart>
<mods:affiliation id="C624D75E8391BD08E5DED4AD4943E296">* &amp; College of Horticulture and the Fujian provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China</mods:affiliation>
</mods:name>
<mods:typeOfResource id="2C618A5DC1A0F8B7CD874ED0D90A48D9">text</mods:typeOfResource>
<mods:relatedItem id="F88796FC5B1D5905726B72E8AD58D93D" type="host">
<mods:titleInfo id="9EB449E4A6563A31DA5C436BDF2A5822">
<mods:title id="15EBD35BD65AB48FBD3CC7E9BBF8A772">Phytochemistry</mods:title>
</mods:titleInfo>
<mods:part id="72114ACD2962EC2D871666F5C527DA99">
<mods:date id="C663857390C150BB06B9C0F68AA9D910">2021</mods:date>
<mods:detail id="B00704255FB77321409955941358C39C" type="series">
<mods:title id="7A9901750AEB7DA453F0168C85E4EBB5">112590</mods:title>
</mods:detail>
<mods:detail id="6ADAD6A0C6726A995E74CC098D67EFBB" type="pubDate">
<mods:number id="5DE08307DCA1CCF5D108D7DE84EA79E1">2021-01-31</mods:number>
</mods:detail>
<mods:detail id="95681F30EC0E5D3EB6497638CD7332FA" type="volume">
<mods:number id="3C316980D77D84B001DD13A6D26DB592">181</mods:number>
</mods:detail>
<mods:extent id="E77A683616A6CF941DDDB1882877B0FF" unit="page">
<mods:start id="1D0B514A4305872191C59B4DE2F4F74C">1</mods:start>
<mods:end id="AF708648302DB266CCC8E00FB4ECE436">12</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="943677489B49650BD36D1D67B2066697">
<mods:url id="B25FAD8881B991F1CECD299C8CBEF8EF">http://dx.doi.org/10.1016/j.phytochem.2020.112590</mods:url>
</mods:location>
<mods:classification id="096713617B0E8F0241E8147EFF1900F7">journal article</mods:classification>
<mods:identifier id="7B7ECC8F06C316B4F7D4C78CA3756167" type="DOI">10.1016/j.phytochem.2020.112590</mods:identifier>
<mods:identifier id="77D0970C9A73DB0393D5473BE3428452" type="ISSN">1873-3700</mods:identifier>
<mods:identifier id="BC0EB9ED6178AD040A86387AC9B0C7CD" type="Zenodo-Dep">8290677</mods:identifier>
</mods:mods>
<treatment id="038E87B0CA4DFFE0FCCAFB11FEEC0C23" LSID="urn:lsid:plazi:treatment:038E87B0CA4DFFE0FCCAFB11FEEC0C23" httpUri="http://treatment.plazi.org/id/038E87B0CA4DFFE0FCCAFB11FEEC0C23" lastPageId="6" lastPageNumber="7" pageId="5" pageNumber="6">
<subSubSection id="C33D652DCA4DFFE3FCCAFB11FC710E44" pageId="5" pageNumber="6" type="nomenclature">
<paragraph id="8B9836A6CA4DFFE3FCCAFB11FC710E44" blockId="5.[818,1472,1265,1312]" pageId="5" pageNumber="6">
<emphasis id="B953EAB4CA4DFFE3FCCAFB11FC710E44" bold="true" italics="true" pageId="5" pageNumber="6">
<heading id="D0D081CACA4DFFE3FCCAFB11FA0C0E60" bold="true" box="[818,1472,1265,1284]" centered="true" fontSize="36" level="1" pageId="5" pageNumber="6" reason="1">
4.1. Plant materials, growth conditions,
<taxonomicName id="4C274D25CA4DFFE3FB66FB11FAF00E60" authority="(Penz.) Penz. &amp; Sacc." box="[1182,1340,1265,1284]" class="Dothideomycetes" family="Botryosphaeriaceae" genus="Colletotrichum" kingdom="Fungi" order="Botryosphaeriales" pageId="5" pageNumber="6" phylum="Ascomycota" rank="species" species="gloeosporioides">C. gloeosporioides</taxonomicName>
treatment and
</heading>
<heading id="D0D081CACA4DFFE3FCCAFAEDFC710E44" box="[818,957,1293,1312]" fontSize="8" level="3" pageId="5" pageNumber="6" reason="8">tissue collection</heading>
</emphasis>
</paragraph>
</subSubSection>
<subSubSection id="C33D652DCA4DFFE0FCA9FAA5FEEC0C23" lastPageId="6" lastPageNumber="7" pageId="5" pageNumber="6" type="description">
<paragraph id="8B9836A6CA4DFFE3FCA9FAA5FB690EA3" blockId="5.[818,1488,1349,1982]" pageId="5" pageNumber="6">
The woodland strawberry accession
<taxonomicName id="4C274D25CA4DFFE3FB57FAA5FAE70E3C" authority="Schltdl. ex J.Gay" box="[1199,1323,1349,1368]" class="Magnoliopsida" family="Rosaceae" genus="Fragaria" kingdom="Plantae" order="Rosales" pageId="5" pageNumber="6" phylum="Tracheophyta" rank="species" species="nilgerrensis">
<emphasis id="B953EAB4CA4DFFE3FB57FAA5FAE70E3C" bold="true" box="[1199,1323,1349,1368]" italics="true" pageId="5" pageNumber="6">F. nilgerrensis</emphasis>
</taxonomicName>
was used in this study. Runners derived from healthy plants were rooted in pots and incubated in the growth room (16 h light/8 h dark, 2224
<superScript id="7C529BEECA4DFFE3FAACFA9AFA970EE3" attach="right" box="[1364,1371,1402,1415]" fontSize="6" pageId="5" pageNumber="6"></superScript>
C day/26
<superScript id="7C529BEECA4DFFE3FA41FA9AFA0C0EE3" attach="right" box="[1465,1472,1402,1415]" fontSize="6" pageId="5" pageNumber="6"></superScript>
C night cycle, 125 μmol m-
<superScript id="7C529BEECA4DFFE3FBD3FA73FBF80EC5" attach="left" box="[1067,1076,1427,1441]" fontSize="6" pageId="5" pageNumber="6">2</superScript>
s-
<superScript id="7C529BEECA4DFFE3FBB4FA73FB990EC5" attach="left" box="[1100,1109,1427,1441]" fontSize="6" pageId="5" pageNumber="6">1</superScript>
light intensity, and 70% humidity) to obtain the healthy and vigorous plants.
</paragraph>
<paragraph id="8B9836A6CA4DFFE3FCA9FA30FB600CDA" blockId="5.[818,1488,1349,1982]" pageId="5" pageNumber="6">
The selected pathogenic fungus
<taxonomicName id="4C274D25CA4DFFE3FB83FA30FAD40E87" authority="(Penz.) Penz. &amp; Sacc." box="[1147,1304,1488,1507]" class="Dothideomycetes" family="Botryosphaeriaceae" genus="Colletotrichum" kingdom="Fungi" order="Botryosphaeriales" pageId="5" pageNumber="6" phylum="Ascomycota" rank="species" species="gloeosporioides">
<emphasis id="B953EAB4CA4DFFE3FB83FA30FAD40E87" bold="true" box="[1147,1304,1488,1507]" italics="true" pageId="5" pageNumber="6">C. gloeosporioides</emphasis>
</taxonomicName>
was isolated by the Fruit Research Institute,
<collectingRegion id="49E3F844CA4DFFE3FBE0FA0CFB9F0E9B" box="[1048,1107,1516,1535]" country="China" name="Fujian" pageId="5" pageNumber="6">Fujian</collectingRegion>
Academy of Agriculture and maintained in Shaking Potato Dextrose (
<collectionCode id="ED36AE63CA4DFFE3FBBAF9E8FBA00D7F" box="[1090,1132,1544,1563]" pageId="5" pageNumber="6">SPD</collectionCode>
) media. Fungi culture was incubated for about two weeks (1014 days) in optimum temperature 28
<superScript id="7C529BEECA4DFFE3FA6BF9C1FA560D4A" attach="right" box="[1427,1434,1569,1582]" fontSize="6" pageId="5" pageNumber="6"></superScript>
C. To prepare conidiospores, the saturated cultures were passed out through double layer of cheese cloth. Conidial suspension was then transferred to centrifuge tubes (micro; 1.5) for centrifugation at 2500 rpm for 20 min. Supernatant of the centrifuged suspension was removed and discarded. The remaining pellet was further re-suspended and diluted to a final conidia concentration of 10
<superScript id="7C529BEECA4DFFE3FBCAF926FBF70DB0" attach="left" box="[1074,1083,1734,1748]" fontSize="6" pageId="5" pageNumber="6">6</superScript>
ml
<superScript id="7C529BEECA4DFFE3FB9CF926FBA10DB0" attach="right" box="[1124,1133,1734,1748]" fontSize="6" pageId="5" pageNumber="6">1</superScript>
with sterile distilled water containing 0.05% Tween-20 before using in plant spray treatment. The plants inoculated with the final conidia suspension of
<taxonomicName id="4C274D25CA4DFFE3FB02F8E3FA560C72" authority="(Penz.) Penz. &amp; Sacc." box="[1274,1434,1795,1814]" class="Dothideomycetes" family="Botryosphaeriaceae" genus="Colletotrichum" kingdom="Fungi" order="Botryosphaeriales" pageId="5" pageNumber="6" phylum="Ascomycota" rank="species" species="gloeosporioides">
<emphasis id="B953EAB4CA4DFFE3FB02F8E3FA560C72" bold="true" box="[1274,1434,1795,1814]" italics="true" pageId="5" pageNumber="6">C. gloeosporioides</emphasis>
</taxonomicName>
were placed in culture chamber at temperature (26
<superScript id="7C529BEECA4DFFE3FB03F8FCFACE0C4D" attach="right" box="[1275,1282,1820,1833]" fontSize="6" pageId="5" pageNumber="6"></superScript>
<collectionCode id="ED36AE63CA4DFFE3FAFCF8FFFADF0C56" box="[1284,1299,1823,1842]" country="Denmark" name="University of Copenhagen" pageId="5" pageNumber="6" type="Herbarium">C</collectionCode>
) up to 14 days for possible disease symptoms observation. Since the wild strawberry
<taxonomicName id="4C274D25CA4DFFE3FCCAF8B7FC620C0D" authority="Schltdl. ex J.Gay" box="[818,942,1878,1898]" class="Magnoliopsida" family="Rosaceae" genus="Fragaria" kingdom="Plantae" order="Rosales" pageId="5" pageNumber="6" phylum="Tracheophyta" rank="species" species="nilgerrensis">
<emphasis id="B953EAB4CA4DFFE3FCCAF8B7FC620C0D" bold="true" box="[818,942,1878,1898]" italics="true" pageId="5" pageNumber="6">F. nilgerrensis</emphasis>
</taxonomicName>
was resistant to the fungi, no obvious disease symptom could be seen during the experimental time (
<figureCitation id="131C2A23CA4DFFE3FB0EF893FA980CE2" box="[1270,1364,1907,1926]" captionStart="Fig" captionStartId="2.[100,130,1040,1057]" captionTargetBox="[302,1286,150,1011]" captionTargetId="figure-534@2.[301,1287,148,1012]" captionTargetPageId="2" captionText="Fig. 1. Determination of terpenoids in leaves challenged with C. gloeosporioides. (A) Total contents of monoterpenes and sesquiterpenes, (BC) The contents of individual monoterpene and sesquiterpene identified. Data are average of two independent experiments." figureDoi="http://doi.org/10.5281/zenodo.8290679" httpUri="https://zenodo.org/record/8290679/files/figure.png" pageId="5" pageNumber="6">Figure S1</figureCitation>
), the fungal challenge was monitored later by transcriptome analysis of fungispecific-transcript detection (
<figureCitation id="131C2A23CA4DFFE3FBBDF84BFB520CDA" box="[1093,1182,1963,1982]" captionStart="Fig" captionStartId="3.[1111,1141,149,166]" captionTargetBox="[102,1085,149,1344]" captionTargetId="figure-410@3.[100,1086,148,1346]" captionTargetPageId="3" captionText="Fig. 2. Global differentially-expressed-genes (DEG) in leaves of F. nilgerrensis after challenged by C. gloeosporioides. (A) DEG heatmap depicts clustering of the early upregulated genes (up to 18-h post challenge) and the late respondents (&gt;24 h) in the upper and lower parts, respectively, with top GO terms indicated. (B) Major GO term enrichment in an early responsive gene cluster 7 showing that terpenoid biosynthesis genes are co-expressed with antipathogen immune-responsive pathway genes. Each time-point contains 2 biological replications and the expression data was zero-normalized before hierarchical clustering is performed (Pearson uncentered metric, average linkage ordering) using Cluster 3.0 version 1.58. Heatmap was examined and generated using Java Tree- View version 1.1.6r4. Gene Ontology (GO) enrichment analysis of the DEGs is implemented by the topGO R package-based KolmogorovSmirnov test." figureDoi="http://doi.org/10.5281/zenodo.8290681" httpUri="https://zenodo.org/record/8290681/files/figure.png" pageId="5" pageNumber="6">Figure S2</figureCitation>
).
</paragraph>
<paragraph id="8B9836A6CA4DFFE3FF9CF9F1FEFB0D30" blockId="5.[100,770,1552,1621]" pageId="5" pageNumber="6">
<tableNote id="76C13728CA4DFFE3FF9CF9F1FEFB0D30" pageId="5" pageNumber="6" targetBox="[116,754,213,1531]" targetPageId="5">
* Enrichment analysis of the differentially expressed genes (DEGs) was performed using KolmogorovSmirnov test with the topGO R packages, only pvalue
<emphasis id="B953EAB4CA4DFFE3FF60F9A3FF6B0D30" box="[152,167,1603,1620]" italics="true" pageId="5" pageNumber="6">&lt;</emphasis>
0.001 are listed.
</tableNote>
</paragraph>
<caption id="DF58662ECA4EFFE0FF9CFBFEFB220E71" ID-DOI="http://doi.org/10.5281/zenodo.8290688" ID-Zenodo-Dep="8290688" httpUri="https://zenodo.org/record/8290688/files/figure.png" pageId="6" pageNumber="7" startId="6.[100,130,1054,1071]" targetBox="[264,1323,150,1025]" targetPageId="6" targetType="figure">
<paragraph id="8B9836A6CA4EFFE0FF9CFBFEFB220E71" blockId="6.[100,1487,1054,1301]" pageId="6" pageNumber="7">
<emphasis id="B953EAB4CA4EFFE0FF9CFBFEFF530F4B" bold="true" box="[100,159,1054,1071]" pageId="6" pageNumber="7">Fig. 4.</emphasis>
Schematic illustration of general terpenoid biosynthesis pathways showing identified unigenes from
<taxonomicName id="4C274D25CA4EFFE0FBE8FBFFFBB30F4B" authority="Schltdl. ex J.Gay" box="[1040,1151,1054,1071]" class="Magnoliopsida" family="Rosaceae" genus="Fragaria" kingdom="Plantae" order="Rosales" pageId="6" pageNumber="3" phylum="Tracheophyta" rank="species" species="nilgerrensis">
<emphasis id="B953EAB4CA4EFFE0FBE8FBFFFBB30F4B" bold="true" box="[1040,1151,1054,1071]" italics="true" pageId="6" pageNumber="7">F. nilgerrensis</emphasis>
</taxonomicName>
leaf transcriptome data. The interconvertible precursors IPP and DMAPP, two phosphorylated C5 unites, are produced by the MVA and MEP pathways which are exchangeable from both compartmentations. The chloroplast is a major site for synthesis of hemiterpene (C5), monoterpenoids (C10), diterpenoids (C20) carotenoids (C40) and chlorophyll, while the cytosol and other organelle are responsible for synthesis of monoterpenoids (C10), sesquiterpene (C15) and triterpene (C30). But that is not strictly conclusive. Arrow with lines indicate reactions catalyzed by enzymes and the encoding genes, with unigenes identified in this experiment boxed. The color highlights are for better visualization. Abbreviations: AACT, acetoacetyl-CoA thiolase; CMK, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase; DXR, 1-deoxy-D-xylulose 5-phosphate reductase; DXS, 1-deoxy-D-xylulose 5-phosphate synthase; HDR, (E)-4-hydroxy-3-methyl-but-2-enyl diphosphate reductase; HDS, (E)-4-hydroxy-3- methyl-but-2-enyl diphosphate synthase; HMGR, 3-hydroxy-3-methylglutaryl-CoA reductase; HMGS, 3-hydroxy-3-methylglutaryl-CoA synthase; IDI, isopentenyl diphosphate isomerase; MCT, MEP cytidyltransferase; MDC, mevalonate-5-diphosphate decarboxylase; MDS, 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase; MVK, mevalonate kinase. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
</paragraph>
</caption>
<paragraph id="8B9836A6CA4EFFE0FF7CFADEFEEC0C23" blockId="6.[100,771,1342,1863]" pageId="6" pageNumber="7">
For sampling after the pathogen treatment, leaves from two-monthold runner-propagated healthy plants with unfolded green leaves at uniform size and color were inoculated with
<taxonomicName id="4C274D25CA4EFFE0FDEDFA96FD790EEC" authority="(Penz.) Penz. &amp; Sacc." box="[533,693,1397,1417]" class="Dothideomycetes" family="Botryosphaeriaceae" genus="Colletotrichum" kingdom="Fungi" order="Botryosphaeriales" pageId="6" pageNumber="7" phylum="Ascomycota" rank="species" species="gloeosporioides">
<emphasis id="B953EAB4CA4EFFE0FDEDFA96FD790EEC" bold="true" box="[533,693,1397,1417]" italics="true" pageId="6" pageNumber="7">C. gloeosporioides</emphasis>
</taxonomicName>
conidia suspension (10
<superScript id="7C529BEECA4EFFE0FF0CFA6CFF310EFE" attach="left" box="[244,253,1420,1434]" fontSize="6" pageId="6" pageNumber="7">6</superScript>
conidia per ml) in sterile distilled water containing 0.05% Tween-20. Three hours prior to pathogen treatment, the leaves were sprayed first with distilled water containing 0.05% of Tween-20, therefore, the time 0 h was considered as controls. The treated plants were incubated in the growth room at the same condition. All plants were watered daily by nutrition solution (1/4
<collectionCode id="ED36AE63CA4EFFE0FDD9F9FDFDF30D54" box="[545,575,1565,1584]" country="Italy" lsid="urn:lsid:biocol.org:col:14396" name="Herbarium Messanaensis, Università di Messina" pageId="6" pageNumber="7" type="Herbarium">MS</collectionCode>
medium). For RNASeq analysis, two biological replicates from treated leaves were sampled at 0 h, 3 h, 6 h, 12 h, 18 h, 24 h, 48 h and 72 h post infection (hpi) and handled. Each replicate consisted of nine tri-foliate leaves; each was collected from one individual plant. For qRT-PCR, three biological replicates were collected from the same time-points. Furthermore, another two biological replicates from fresh leaves at the indicated time points were collected for isolation of the phytochemical and volatile compounds. In total 60 plants were used for the treatments. All samples were immediately frozen in liquid nitrogen and then stored at 80
<superScript id="7C529BEECA4EFFE0FF53F8D1FF7E0C5A" attach="right" box="[171,178,1841,1854]" fontSize="6" pageId="6" pageNumber="7"></superScript>
C until use.
</paragraph>
</subSubSection>
</treatment>
</document>