treatments-xml/data/03/86/07/038607610E010A439AA2FEEC1E46929A.xml
2024-06-21 12:22:17 +02:00

149 lines
20 KiB
XML

<document id="9FC553C7BBC0FF760D87A69A86B0CA4B" ID-CLB-Dataset="280654" ID-DOI="10.3161/15081109ACC2023.25.1.002" ID-GBIF-Dataset="78082210-95c4-4565-8b3f-734a661e613d" ID-ISSN="1733-5329" ID-Zenodo-Dep="10265140" IM.bibliography_approvedBy="jonas" IM.illustrations_approvedBy="jonas" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="jonas" IM.tables_approvedBy="jonas" IM.taxonomicNames_approvedBy="jonas" IM.treatments_approvedBy="jonas" checkinTime="1701773713024" checkinUser="felipe" docAuthor="Volleth, Marianne, Mayer, Frieder, Heller, Klaus-Gerhard, Müller, Stefan &amp; Fahr, Jakob" docDate="2023" docId="038607610E010A439AA2FEEC1E46929A" docLanguage="en" docName="ActaChiropterol.25.1.35-52.pdf" docOrigin="Acta Chiropterologica 25 (1)" docStyle="DocumentStyle:D17EC282BABB8B0847763DCC9F0C3514.3:ActaChiropterol.2016-.journal_article" docStyleId="D17EC282BABB8B0847763DCC9F0C3514" docStyleName="ActaChiropterol.2016-.journal_article" docStyleVersion="3" docTitle="Neoromicia guineensis" docType="treatment" docVersion="6" lastPageNumber="40" masterDocId="FFBF7F190E040A459A46FFF21C5A9405" masterDocTitle="Karyotype comparison of five African Vespertilionini species with comments on phylogenetic relationships and proposal of a new subtribe" masterLastPageNumber="52" masterPageNumber="35" pageNumber="40" updateTime="1701801424038" updateUser="jonas">
<mods:mods id="1DA640DB686F9894FB6E806912BC71DC" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="A20907B3A99A8102B0548496F9738D39">
<mods:title id="99DD6B6A40CB3A9589479F48BE41E3F0">Karyotype comparison of five African Vespertilionini species with comments on phylogenetic relationships and proposal of a new subtribe</mods:title>
</mods:titleInfo>
<mods:name id="A6353F9BF403A9475950A4704A4B15DC" type="personal">
<mods:role id="402E65A44999AA6D711F40858CB49698">
<mods:roleTerm id="6058E2F5312F0A499CF75D9D7C922263">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="E926FFE393797B681D661B12106BAFA0">Volleth, Marianne</mods:namePart>
<mods:affiliation id="500B05D578DC4CCBDFA3511B99624D81">Department of Human Genetics, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany &amp; Present address: Triesdorf Bahnhof 8, 91732 Merkendorf, Germany &amp; Corresponding author: E-mail: mvolleth 19 @ gmail. com</mods:affiliation>
<mods:nameIdentifier id="053282D4B5259CDE42999D04D2793588" type="email">mvolleth19@gmail.com</mods:nameIdentifier>
</mods:name>
<mods:name id="6618EFC4CCDAB09E85FC1DE9DE8792D7" type="personal">
<mods:role id="9B6035D016E8E78D98F25D2861BB279B">
<mods:roleTerm id="9EA5D6DAF3B27E445E2758ECDDE405F1">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="C9326BEC50BDF2C6A35D4A7F7AC60719">Mayer, Frieder</mods:namePart>
<mods:affiliation id="B8DCC403967E66E8FAC28D4C6E3088DD">Leibnitz Institute for Evolution and Biodiversity Science, Museum für Naturkunde, Invalidenstr. 43, 10115 Berlin, Germany</mods:affiliation>
</mods:name>
<mods:name id="0C672CB38C11CE6C5CB0FEB849B63E74" type="personal">
<mods:role id="75255574B2D50FA7F8984A428E1B8F51">
<mods:roleTerm id="DFD3CD9E1A2C7ECBE42AD89306EC13A2">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="02D15460B1EB45316823835D9AD73B6A">Heller, Klaus-Gerhard</mods:namePart>
<mods:affiliation id="7435113CB036573E822FC3456FA61283">Triesdorf Bahnhof 8, 91732 Merkendorf, Germany</mods:affiliation>
</mods:name>
<mods:name id="865F52D6B5C794B9D3D1C8367B0760F6" type="personal">
<mods:role id="8E12A10FF9E890AF9E51CFC5DB7A1C5D">
<mods:roleTerm id="E130C6D8EDA4473F9C06189E9F0D3C5D">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="D196F71A73DFB8E67F940512EFC18963">Müller, Stefan</mods:namePart>
<mods:affiliation id="23CD57A90278FC29A1E75A3EF7C3EA18">Institute of Human Genetics, Munich University Hospital, Ludwig-Maximilian University, Goethestr. 29, 80336 Munich, Germany</mods:affiliation>
</mods:name>
<mods:name id="05760C27BE90D7AEF0010C6E31D7095F" type="personal">
<mods:role id="53AE5244EC9A602F79EDB4A74491EBBA">
<mods:roleTerm id="15D95FBFDAE166CD1C709E88F94A3064">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="6D807A17C38DBDA69F3458DE59EA4792">Fahr, Jakob</mods:namePart>
<mods:affiliation id="E0412ED7016B79D249A0D6A382E9DC97">Department of Experimental Ecology and Conservation Genomics, University of Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany &amp; Present address: Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz, Göttinger Chaussee 76 a, 30453 Hannover, Germany</mods:affiliation>
</mods:name>
<mods:typeOfResource id="CCF4AAE158F4630D60907951412F0FE0">text</mods:typeOfResource>
<mods:relatedItem id="1180EE2E055AB2B83790D0A625B3E20E" type="host">
<mods:titleInfo id="631200D4AFA01D00806C774E52F35E99">
<mods:title id="9EA45D6473F2E0544C1A3725EAB4A9C1">Acta Chiropterologica</mods:title>
</mods:titleInfo>
<mods:part id="640B7BDD9FCE4070C0658ADFACA412C6">
<mods:date id="A1F6C7C2E1B963A6DDD3A66308BDB094">2023</mods:date>
<mods:detail id="559853283980023BD1AE6A26A298DC74" type="pubDate">
<mods:number id="A4EF47B31649B8EF3831094105011368">2023-08-03</mods:number>
</mods:detail>
<mods:detail id="A6D16DDBB5FD19106337B5270F7E6435" type="volume">
<mods:number id="A03D21FA07BDC1A831F55522799C9552">25</mods:number>
</mods:detail>
<mods:detail id="3A95B5F80977E6AD46982B07A2349B3A" type="issue">
<mods:number id="3AC38D91D6CAAC426ED449C5C2F9CCD7">1</mods:number>
</mods:detail>
<mods:extent id="8D6A3A8465CFA568E4BBEDBF8B008100" unit="page">
<mods:start id="10A27D433C7796BEA5691A14151B6546">35</mods:start>
<mods:end id="5FEB55D33F8857187B565945292BEB8B">52</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:classification id="0B463FFC1A7E4921826B22E2B9CEA11C">journal article</mods:classification>
<mods:identifier id="0EB24D0FA5CF7248DC1B33249A051F41" type="CLB-Dataset">280654</mods:identifier>
<mods:identifier id="13700CC21F4CA4AC022314A478B98A89" type="DOI">10.3161/15081109ACC2023.25.1.002</mods:identifier>
<mods:identifier id="00CD1DF6FEB58AC3A6B637904A454349" type="GBIF-Dataset">78082210-95c4-4565-8b3f-734a661e613d</mods:identifier>
<mods:identifier id="A653CF70AEA7A4F6592D35186A577EFC" type="ISSN">1733-5329</mods:identifier>
<mods:identifier id="D5B06FC678847272368C48E6EADBFF90" type="Zenodo-Dep">10265140</mods:identifier>
</mods:mods>
<treatment id="038607610E010A439AA2FEEC1E46929A" ID-DOI="http://doi.org/10.5281/zenodo.10261407" ID-Zenodo-Dep="10261407" LSID="urn:lsid:plazi:treatment:038607610E010A439AA2FEEC1E46929A" httpUri="http://treatment.plazi.org/id/038607610E010A439AA2FEEC1E46929A" lastPageId="6" lastPageNumber="40" pageId="5" pageNumber="40">
<subSubSection id="C335E5FC0E010A409AA2FEEC1EF4953D" box="[228,686,286,312]" pageId="5" pageNumber="40" type="nomenclature">
<paragraph id="8B90B6770E010A409AA2FEEC1EF4953D" blockId="5.[228,686,286,312]" box="[228,686,286,312]" pageId="5" pageNumber="40">
<heading id="D0D8011B0E010A409AA2FEEC1EF4953D" box="[228,686,286,312]" centered="true" fontSize="11" level="2" pageId="5" pageNumber="40" reason="2">
<taxonomicName id="4C2FCDF40E010A409AA2FEEC1EF4953D" ID-CoL="46S2N" authority="(Bocage, 1889)" baseAuthorityName="Bocage" baseAuthorityYear="1889" box="[228,686,286,312]" class="Mammalia" family="Vespertilionidae" genus="Neoromicia" kingdom="Animalia" order="Chiroptera" pageId="5" pageNumber="40" phylum="Chordata" rank="species" species="guineensis">
<emphasis id="B95B6A650E010A409AA2FEEC1DAB953D" box="[228,497,286,312]" italics="true" pageId="5" pageNumber="40">Neoromicia guineensis</emphasis>
(Bocage, 1889)
</taxonomicName>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="C335E5FC0E010A439AFBFE901E46929A" lastPageId="6" lastPageNumber="41" pageId="5" pageNumber="40" type="biology_ecology">
<paragraph id="8B90B6770E010A409AFBFE9018669682" blockId="5.[151,764,354,784]" lastBlockId="5.[809,1422,177,784]" pageId="5" pageNumber="40">
The single female studied showed a karyotype with a diploid chromosome number of 26 (
<figureCitation id="1314AAF20E010A4098E4FE711EB79598" box="[674,749,387,413]" captionStart="FIG" captionStartId="5.[151,164,1922,1943]" captionTargetBox="[425,1127,858,1903]" captionTargetId="figure-278@5.[366,1213,821,1908]" captionTargetPageId="5" captionText="FIG. 2. G-banded karyotype of a female N. guineensis, 2n = 26. Bold numbers for chromosomal arms indicate homology validated with painting probes from Myotis (MMY) or tree shrew (TBE30)" figureDoi="http://doi.org/10.5281/zenodo.10265146" httpUri="https://zenodo.org/record/10265146/files/figure.png" pageId="5" pageNumber="40">Fig. 2</figureCitation>
), including 12 pairs of autosomes: 10 large to medium-sized metacentric pairs, one small metacentric and one small acrocentric pair. The X chromosome was a medium-sized subtelocentric chromosome, bearing
<taxonomicName id="4C2FCDF40E010A409B0EFDDE1DC29643" box="[328,408,556,582]" class="Mammalia" family="Vespertilionidae" genus="Myotis" kingdom="Animalia" order="Chiroptera" pageId="5" pageNumber="40" phylum="Chordata" rank="genus">
<emphasis id="B95B6A650E010A409B0EFDDE1DC29643" box="[328,408,556,582]" italics="true" pageId="5" pageNumber="40">Myotis</emphasis>
</taxonomicName>
X homologous chromosomal material in the long arm only. The short arm of the
<taxonomicName id="4C2FCDF40E010A409AD1FD9D1D64968C" baseAuthorityName="Bocage" baseAuthorityYear="1889" box="[151,318,623,649]" class="Mammalia" family="Vespertilionidae" genus="Neoromicia" kingdom="Animalia" order="Chiroptera" pageId="5" pageNumber="40" phylum="Chordata" rank="species" species="guineensis">
<emphasis id="B95B6A650E010A409AD1FD9D1D64968C" box="[151,318,623,649]" italics="true" pageId="5" pageNumber="40">N. guineensis</emphasis>
</taxonomicName>
X chromosome consisted of early replicating autosomal material (see below). The fundamental number of autosomal arms (FNa) of this species was therefore calculated as 46 arms arranged in 12 autosomal pairs plus two autosomal arms translocated to the X chromosomes, resulting in a total number of autosomal arms FNa = 48. The composition of the metacentric chromosomes revealed by G-banding was 1/2, 3/4, 5/6 and 16/17, as present in the vespertilionid basic karyotype, and 7/11, 8/9, 10/12, 13/18, 14/21, 15/19 and 20/22, resulting from Robertsonian fusions. The chromosomes 1/2, 11, 12, and 15, which exist in two different states in the
<taxonomicName id="4C2FCDF40E010A409E46FE3118E595D8" authorityName="Gray" authorityYear="1821" box="[1024,1215,451,477]" class="Mammalia" family="Vespertilionidae" kingdom="Animalia" order="Chiroptera" pageId="5" pageNumber="40" phylum="Chordata" rank="family">Vespertilionidae</taxonomicName>
were present in state II. A SC was found in chromosomal arm 15 close to the centromere, comprising a NOR as shown by silver-staining. Distally to the SC, a small heterochromatic segment could be detected in C-banded preparations.
</paragraph>
<paragraph id="8B90B6770E010A439909FD621E46929A" blockId="5.[809,1422,177,784]" lastBlockId="6.[151,764,177,1695]" lastPageId="6" lastPageNumber="41" pageId="5" pageNumber="40">
In females of mammals, one of the two X chromosomes replicates early during S-phase, the second X replicates late, except for the very small pseudo-autosomal regions (the so-called inactive X, representing facultative heterochromatin). Therefore, by analysis of replication banding patterns, the X chromosomes in females can be distinguished from the autosomes. Analysis of the replication banding pattern in the female of
<taxonomicName id="4C2FCDF40E020A43981DFECB1EA69556" baseAuthorityName="Bocage" baseAuthorityYear="1889" box="[603,764,313,339]" class="Mammalia" family="Vespertilionidae" genus="Neoromicia" kingdom="Animalia" order="Chiroptera" pageId="6" pageNumber="41" phylum="Chordata" rank="species" species="guineensis">
<emphasis id="B95B6A650E020A43981DFECB1EA69556" box="[603,764,313,339]" italics="true" pageId="6" pageNumber="41">N. guineensis</emphasis>
</taxonomicName>
revealed that only the long arm of the presumed X chromosome was late replicating (
<figureCitation id="1314AAF20E020A439823FE8F1EEB9592" box="[613,689,381,407]" captionStart="FIG" captionStartId="6.[809,822,392,413]" captionTargetBox="[815,1421,179,363]" captionTargetId="figure-416@6.[808,1435,173,381]" captionTargetPageId="6" captionText="FIG. 3. X-autosome translocation in N. guineensis: The X chromosomes are shown after different staining procedures and FISH (G — G-banding, C — C-banding, R — replication banding procedure). Note the dark stained, early replicating distal part of the short arm in both X chromosomes, the early replicating (left homolog of the pair) and the late replicating (XL, right) long arms of the X chromosomes. FISH with the MMY X painting probe resulted in signals on the long arm of the N. guineensis X chromosome. FISH with a painting probe containing homologous sequences to Myotis chromosome 25 revealed signals on the short arm of the X" figureDoi="http://doi.org/10.5281/zenodo.10265150" httpUri="https://zenodo.org/record/10265150/files/figure.png" pageId="6" pageNumber="41">Fig. 3</figureCitation>
). The G-banding pattern of the long arm of the X chromosome resembled in the proximal part the long arm and in the distal part the short arm of the X chromosome of state II of the vespertilionid basic karyotype. Strikingly, the G-band negative short arm of the
<taxonomicName id="4C2FCDF40E020A439A85FDBA1D659667" baseAuthorityName="Bocage" baseAuthorityYear="1889" box="[195,319,584,610]" class="Mammalia" family="Vespertilionidae" genus="Neoromicia" kingdom="Animalia" order="Chiroptera" pageId="6" pageNumber="41" phylum="Chordata" rank="species" species="guineensis">
<emphasis id="B95B6A650E020A439A85FDBA1D659667" box="[195,319,584,610]" italics="true" pageId="6" pageNumber="41">guineensis</emphasis>
</taxonomicName>
X was composed of a small proximal C-positive heterochromatic segment and a distal euchromatic segment which replicated early also in the inactivated X (
<figureCitation id="1314AAF20E020A439B3CFD5C1D9F96CD" box="[378,453,686,712]" captionStart="FIG" captionStartId="6.[809,822,392,413]" captionTargetBox="[815,1421,179,363]" captionTargetId="figure-416@6.[808,1435,173,381]" captionTargetPageId="6" captionText="FIG. 3. X-autosome translocation in N. guineensis: The X chromosomes are shown after different staining procedures and FISH (G — G-banding, C — C-banding, R — replication banding procedure). Note the dark stained, early replicating distal part of the short arm in both X chromosomes, the early replicating (left homolog of the pair) and the late replicating (XL, right) long arms of the X chromosomes. FISH with the MMY X painting probe resulted in signals on the long arm of the N. guineensis X chromosome. FISH with a painting probe containing homologous sequences to Myotis chromosome 25 revealed signals on the short arm of the X" figureDoi="http://doi.org/10.5281/zenodo.10265150" httpUri="https://zenodo.org/record/10265150/files/figure.png" pageId="6" pageNumber="41">Fig. 3</figureCitation>
). Therefore, this segment may be of autosomal origin. In order to clarify this issue and to search for homologous segments of the three smallest
<taxonomicName id="4C2FCDF40E020A439B14FCE11DF89728" box="[338,418,787,813]" class="Mammalia" family="Vespertilionidae" genus="Myotis" kingdom="Animalia" order="Chiroptera" pageId="6" pageNumber="41" phylum="Chordata" rank="genus">
<emphasis id="B95B6A650E020A439B14FCE11DF89728" box="[338,418,787,813]" italics="true" pageId="6" pageNumber="41">Myotis</emphasis>
</taxonomicName>
chromosomes (MMY23 to MMY25) in the karyotype of
<taxonomicName id="4C2FCDF40E020A439BB3FCC71ECE974A" baseAuthorityName="Bocage" baseAuthorityYear="1889" box="[501,660,821,847]" class="Mammalia" family="Vespertilionidae" genus="Neoromicia" kingdom="Animalia" order="Chiroptera" pageId="6" pageNumber="41" phylum="Chordata" rank="species" species="guineensis">
<emphasis id="B95B6A650E020A439BB3FCC71ECE974A" box="[501,660,821,847]" italics="true" pageId="6" pageNumber="41">N. guineensis</emphasis>
</taxonomicName>
, we performed fluorescence in-situ hybridization (FISH). From the set of whole chromosome painting probes derived from
<taxonomicName id="4C2FCDF40E020A439B04FC691E7F97B0" authority="(MMY)" baseAuthorityName="MMY" box="[322,549,923,949]" class="Mammalia" family="Vespertilionidae" genus="Myotis" kingdom="Animalia" order="Chiroptera" pageId="6" pageNumber="41" phylum="Chordata" rank="species" species="myotis">
<emphasis id="B95B6A650E020A439B04FC691DE697B0" box="[322,444,923,949]" italics="true" pageId="6" pageNumber="41">M. myotis</emphasis>
(MMY)
</taxonomicName>
the two smallest chromosomal pairs, number 24 and 25, could not be separated by flow sorting and were thus detected by one and the same painting probe. For this reason, an additional painting probe containing homologous sequences to the smallest chromosome of
<taxonomicName id="4C2FCDF40E020A4398D4FBB61D4B9085" authority=", TBE" authorityName="TBE" class="Mammalia" family="Tupaiidae" genus="Tupaia" kingdom="Animalia" order="Scandentia" pageId="6" pageNumber="41" phylum="Chordata" rank="species" species="belangeri">
<emphasis id="B95B6A650E020A4398D4FBB61C9C9085" italics="true" pageId="6" pageNumber="41">T. belangeri</emphasis>
, TBE
</taxonomicName>
30, for which homology to MMY24 was previously shown, was hybridized. The FISH results showed that the single acrocentric chromosome was composed of homologous sequences to MMY24 (and TBE30) in the proximal part and to MMY
<quantity id="4CD71B920E020A439884FB1C1EA6910D" box="[706,764,1262,1288]" metricMagnitude="-1" metricUnit="m" metricValue="5.842" pageId="6" pageNumber="41" unit="in" value="23.0">23 in</quantity>
the distal part. In addition, the painting probe for MMY chromosomes 24+25 resulted in signals on the short arm of the subtelocentric X chromosome which is therefore homologous to MMY25. Subsequent application of the
<taxonomicName id="4C2FCDF40E020A439B11FA651DFC91B4" box="[343,422,1431,1457]" class="Mammalia" family="Vespertilionidae" genus="Myotis" kingdom="Animalia" order="Chiroptera" pageId="6" pageNumber="41" phylum="Chordata" rank="genus">
<emphasis id="B95B6A650E020A439B11FA651DFC91B4" box="[343,422,1431,1457]" italics="true" pageId="6" pageNumber="41">Myotis</emphasis>
</taxonomicName>
X-specific probe resulted in signals on the long arm of the X only, confirming that the
<taxonomicName id="4C2FCDF40E020A439B43FA291DDA91F0" baseAuthorityName="Bocage" baseAuthorityYear="1889" box="[261,384,1499,1525]" class="Mammalia" family="Vespertilionidae" genus="Neoromicia" kingdom="Animalia" order="Chiroptera" pageId="6" pageNumber="41" phylum="Chordata" rank="species" species="guineensis">
<emphasis id="B95B6A650E020A439B43FA291DDA91F0" box="[261,384,1499,1525]" italics="true" pageId="6" pageNumber="41">guineensis</emphasis>
</taxonomicName>
X chromosome is indeed the product of an X-autosome translocation (
<figureCitation id="1314AAF20E020A4398D8FA0F1EB69212" box="[670,748,1533,1559]" captionStart="FIG" captionStartId="6.[809,822,392,413]" captionTargetBox="[815,1421,179,363]" captionTargetId="figure-416@6.[808,1435,173,381]" captionTargetPageId="6" captionText="FIG. 3. X-autosome translocation in N. guineensis: The X chromosomes are shown after different staining procedures and FISH (G — G-banding, C — C-banding, R — replication banding procedure). Note the dark stained, early replicating distal part of the short arm in both X chromosomes, the early replicating (left homolog of the pair) and the late replicating (XL, right) long arms of the X chromosomes. FISH with the MMY X painting probe resulted in signals on the long arm of the N. guineensis X chromosome. FISH with a painting probe containing homologous sequences to Myotis chromosome 25 revealed signals on the short arm of the X" figureDoi="http://doi.org/10.5281/zenodo.10265150" httpUri="https://zenodo.org/record/10265150/files/figure.png" pageId="6" pageNumber="41">Fig. 3</figureCitation>
). Further FISH experiments with whole chromosome probes for
<taxonomicName id="4C2FCDF40E020A439B55F9B31D38925E" box="[275,354,1601,1627]" class="Mammalia" family="Vespertilionidae" genus="Myotis" kingdom="Animalia" order="Chiroptera" pageId="6" pageNumber="41" phylum="Chordata" rank="genus">
<emphasis id="B95B6A650E020A439B55F9B31D38925E" box="[275,354,1601,1627]" italics="true" pageId="6" pageNumber="41">Myotis</emphasis>
</taxonomicName>
chromosomes 16/17, 20, 21 and 22 were also in full agreement with the results of our comparative G-banding analysis.
</paragraph>
</subSubSection>
</treatment>
</document>