Volatile constituents of Eupatorieae (Asteraceae). Compositional multivariate analysis of volatile oils from Southern Brazilian species in the subtribe Disynaphiinae Author de Souza, Tiago J. T. * & Faculdade de Farm´acia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, 90610 - 000, Porto Alegre, Brazil Author S Author Bordignon, ergio A. L. Programa de P´os-Graduaç ˜ ao em Avaliaç ˜ ao de Impactos Ambientais, Centro Universit´ario La Salle, Canoas, Brazil Author Apel, Miriam A. Author Henriques, Amelia T. text Phytochemistry 2021 112734 2021-06-30 186 1 23 http://dx.doi.org/10.1016/j.phytochem.2021.112734 journal article 10.1016/j.phytochem.2021.112734 1873-3700 8258534 2.2. Genus Raulinoreitzia Raulinoreitzia tremula (Hook. & Arn.) R.M.King & H.Rob. and Raulinoreitzia crenulata (Sprengel) R.M.King & H.Rob. (sampled in this study) are, together with R. leptophlebia , the only three species recognized in the genus Raulinoreitzia ( Koiti and Hattori, 2013 ) . The chemical composition of VOs obtained from both the leaves and inflorescences of R. tremula (syn. Eupatorium tremulum - common name: “chirca”, “vassour˜ao-do-brejo”), a 2–3 m tall, densely branched shrub, native to southern Brazil , Uruguay , and Northeastern Argentina ( King and Robinson, 1987 ; Matzenbacher, 1979 ) are quite similar with the predominance of sesquiterpenes (97.2 and 84.0%). Among the hydrocarbon sesquiterpenes (46.0 and 49.7%), compounds bearing a bisabolane nucleus were predominant: β- bisabolene (15.5 and 17.1%), β- sesquiphellandrene (7.9 and 7.1%); alongside the cadinane amorpha-4,7 (11)-diene (11.7 and 10.5%). Among the oxygenated sesquiterpenes, furanocadinanes verboccidentafuran (16.1 and 11.6%) and 3-oxo-verboccidentafuran (3.6 and 14.7%), and alcohols epi-α- bisabolol (9.6 and 10.7%) and amorpha-4-en-7-ol (7.5 and 6.6%) were the most abundant. The presence of sesquiterpene compounds with a bisabolane nucleus is not common in this subtribe, nor are furan compounds. However, other samples of R. tremula collected from different populations in RS have been reported to have qualitatively similar compositions ( de Souza et al., 2017 ). This species occurs in swampy humid fields and edges of floodable galleries ( Koiti and Hattori, 2013 ). Together with Hatschbachiella tweediena (Eupatoriinae subtribe), it is important in the reproductive biology of the rusty-collared seedeater Sporophila collaris ( Rosoni, 2017 ; Rosoni et al., 2019 ). This species has been implicated in cattle intoxication ( Lucioli et al., 2007 ) and its extracts exhibit cytotoxicity in vitro against tumor cells ( Monks et al., 2002 ). A direct link between these activities and a particular chemical compound has not been established to date, but the participation of their characteristic furanocadinenes cannot be ruled out. The chemical composition of VOs obtained from R. crenulata , a 2 m tall, white-flowered shrub native to Central, Southern, and Northeastern Brazil , Peru , Bolivia , and Northern Argentina ( King and Robinson, 1987 ; Matzenbacher, 1979 ) was quite similar to another sample of this species reported by our group and collected from the same area ( Souza et al., 2007 ), with a slight predominance of hydrocarbon monoterpenes over sesquiterpenes: β- pinene (19.1%) and α- pinene (14.6%) were the main monoterpenes, and β- caryophyllene (7.3%), germacrene D (11.4%), and Table 2 ( continued ) ˆes Cachoeiras
Genus Acanthostyles Raulinoreitzia Campovassouria Symphyopappus
Species A. buniifolius R. crenulata R . tremula C . bupleurifolia S. casarettoi S . itatiayensis S . reticulatus
Sampling site Guaíba Canela Canela Guaíba Morro Reuter S˜ ao Francisco Paula Imbe´Tr Gravataí Gravataí
Sampling time Mai /05 Apr / 05 Apr / 05 Apr / 05 Oct / 05 Oct / 05 Apr / 05 Jan /11 Apr / 05 Oct / 05
Analyzed organs RI a i b ap c I l d l i l i l i l i ap l l i
OM g HS h OS i Total – – – – – 78.0 – 96.4 0.2 33.4 4.7 98.0 – 47.0 0.7 99.5 0.2 32.0 1.2 99.6 – 49.7 34.4 91.5 – 46.0 47.7 94.8 1.8 27.4 19.5 98.2 0.8 37.1 30.4 95.6 – 9.6 67.2 91.2 2.1 5.6 74.7 94.1 0.3 27.3 0.8 99.9 0.7 45.8 4.4 94.5 – 62.5 22.2 85.0 – 63.1 2.3 99.3 0.1 63.1 11.3 97.6 – 78.0 – 96.4
Legend a Retention Index in a DB5 column b inflorescences c aerial parts d leaves e Aliphatics f Hydrocarbon Monoterpenes g Oxygenated Monoterpenes h Hydrocarbon Sesquiterpenes i Oxygenated Sesquiterpenes j traces. Table 3 Chemical composition of Volatile Oils from species in the Sutribe Disysnaphiinae of Eupatorieae (Asteraceae) from Southern Brazil. Grazielia and Disynaphia .
Genus Grazielia Disynaphia
Species G. gaudichaudeana G. intermedia G. nummularia G. serrata D. ericoides D. ligulifolia D. spathulata
Sampling site Canela Paraíso do Sul Guaíba Guaíba Sapiranga Caxias do Sul Gravataí Sapiranga Viam˜ ao Canela Viam˜ ao
Sampling time Abr/05 Mar/06 Apr/05 Oct/05 Jan/06 Apr/05 Oct/05 Mar/06 Mar/06 Apr/05 Oct/05
Analyzed organs -RI a ap b l c i d ap l i ap t e ap l i l l i l i l
(Z)-3-hexenol 858 – –
N-hexanol 866 – –
santolinatriene 880 – tr tr tr
tricyclene 911 tr k tr tr tr tr tr – –
α- thujene 916 10.1 0.1 0.2 0.1 0.1 0.2 0.2 tr 0.1 0.2 0.2 tr 0.5 0.2 0.4 0.3 tr
α- pinene 922 12.4 14.4 15.5 15.9 15.1 19.9 8.5 2.8 16.8 30.2 31.5 tr 2.6 1 11.6 7 2.3
α- fenchene 935 tr tr tr – – tr
thuja-2,4(10)-diene 941 – – tr
verbenene 947 tr tr – –
camphene 966 tr 0.1 tr tr tr 0.1 tr 0.1 tr –
sabinene 966 2.8 4.9 5.7 2.6 2.5 2.7 6 2.9 1 2.5 3.6 0.1 0.8 0.3 1.9 1.3 0.6
β- pinene 969 9.2 22.6 28.9 17.3 24.2 23.9 20.5 10 17 17 13.8 0.3 9.4 5.2 24.1 14.9 10.8
β- myrcene 979 1.9 1.7 2.6 10.8 3.6 4 2.5 1.2 8.1 3.6 5.4 tr 0.4 2.2 5.1 6.5 0.2
δ-2-carene 994 0.1 0.2 0.2 0.7 tr tr 0.2 tr 0.1
α- phellandrene 995 0.3 tr 0.1 tr tr 0.1 0.4 tr 0.1 tr – tr tr
α- terpinene 1007 0.2 tr 0.1 tr tr 0.1 0.1 0.1 – tr 0.2
p-cymene 1015 1.6 1.4 3.7 0.4 0.6 0.9 1.8 5.5 0.9 0.1 0.2 1.2 0.1 0.1 0.3 0.2 0.7
limonene 1020 37.2 18.3 18.3 19.7 21.6 25.2 36.5 31.5 10.4 19.4 20.9 0.2 1.2 0.7 13.1 12.2 2.3
β- phellandrene 1021 – –
(Z)-β- ocimene 1031 tr 0.1 tr 0.1 0.1 0.2 tr 0.3 0.2 0.1 0.1 – tr 0.1 0.5
(E)-β- ocimene 1042 0.7 0.2 0.3 2.4 2.6 2.9 1.6 0.2 1.8 2.7 1.9 3.2 – 4.2 2.3 13.3
γ- terpinene 1051 0.3 0.1 0.1 tr tr 0.1 0.2 tr 0.1 0.1 – tr 0.4
terpinolene 1080 0.1 tr tr tr 0.1 0.2 tr tr 0.1 tr tr – tr 0.2
linalool 1092 1.1 0.1 tr tr 0.1 tr tr – 1.3 0.3 0.3
1,3,8-p-menthatriene 1096 tr tr – – tr
α- campholenal 1118 tr tr – – tr
nopinone 1121 0.1 tr – 0.2
trans-sabinol 1128 – – tr
trans-pinocarveol 1130 0.5 0.7 tr tr 0.2 – tr tr 0.9
trans-verbenol 1134 0.3 0.3 tr tr tr – tr tr
p-mentha-1,5-dien-8-ol 1150 tr tr – –
pinocarvone 1151 0.3 0.3 tr – tr tr
n-heptanoic acid 1170 – –
terpinen-4-ol 1172 0.3 0.4 0.5 tr 0.3 0.5 0.5 0.2 0.3 0.3 0.3 tr tr tr 0.3 0.8 tr
cryptone 1178 0.3 0.4 tr tr – – 0.4
α- terpineol 1183 tr 0.2 0.2 tr 0.5 0.2 0.1 tr 0.1 0.3 0.3 tr tr tr 0.7 0.6 0.4
myrtenal 1188 0.4 0.6 tr tr tr tr tr – 0.5
myrtenol 1189 0.4 0.6 tr tr tr tr tr tr – 0.4
neral 1200 – –
nerol 1211 – –
verbenone 1216 – – tr
carvone 1224 – – tr
thymol methyl ether 1225 – – tr
geraniol 1238 – –
cis-chrysanthemyl acetate 1245 – –
isobornyl acetate 1272 – –
bornyl acetate 1273 – – tr
n-tridecane 1284 – –
( continued on next page )
Genus Grazielia Disynaphia
Species G. gaudichaudeana G. intermedia G. nummularia G. serrata D. ericoides D. ligulifolia D. spathulata
Sampling site Canela Paraíso do Sul Guaíba Guaíba Sapiranga Caxias do Sul Gravataí Sapiranga Viam˜ ao Canela Viam˜ ao
Sampling time Abr/05 Mar/06 Apr/05 Oct/05 Jan/06 Apr/05 Oct/05 Mar/06 Mar/06 Apr/05 Oct/05
Analyzed organs -RI a ap b l c i d ap l i ap t e ap l i l l i l i l
trans-sabinyl hydrate 1285 – – tr
trans-pinocarvyl acetate 1289 – –
silphiperfol-5-ene B 1308 – –
δ- elemene 1326 tr tr tr tr tr tr tr tr tr
verbenyl acetate 1327 – –
7-epi-silphiperfol-5-ene 1328 – –
α- cubebene 1336 tr tr tr tr tr tr tr
neryl acetate 1351 tr – tr tr 2.4
cyclosativene 1352 – –
α- ylanguene 1357 – –
α- copaene 1362 tr 0.2 0.1 0.4 0.3 0.2 0.2 0.4 0.4 0.5 0.4 0.5 0.4 0.3 0.5 0.4 0.6
β- maaliene 1365 – –
trans-myrtenyl acetate 1368 – – tr
geranyl acetate 1369 tr – 1.7
β- bourbonene 1370 tr tr tr tr tr tr 0.1 tr 0.7 tr – tr
β- cubebene 1376 tr tr tr tr tr tr 0.1 0.1 0.1 0.2 0.1 tr tr 0.1 0.1 tr tr
β- elemene 1378 tr tr tr 0.2 tr tr tr 0.4 0.1 tr 9 1.4 1 0.6 0.4 2.4
isocaryophyllene 1390 tr – –
cyperene 1394 – –
α- cedrene 1397 – tr
α- gurjunene 1400 tr – – tr
(E)-β- caryophyllene 1408 1.5 3.6 2.7 8.1 7.2 7.3 3.6 5.7 7.6 4.8 5.5 21.3 2.8 6.6 7 7.5 0.6
β- gurjunene 1414 – –
γ- elemene 1414 – –
α- trans-bergamotene 1420 – –
aromadendrene 1422 0.1 0.2 0.3 0.1 0.1 tr tr tr 0.1 0.5
α- guaiene 1423 – –
(Z)-β- farnesene 1432 – –
α- himachalene 1433 – –
α- humulene 1437 0.2 0.2 0.1 0.4 0.4 0.3 0.3 0.6 0.5 0.2 0.3 3 1 1.5 0.8 0.7 tr
sesquisabinene 1438 – –
(E)-β- farnesene 1442 – –
allo-aromadendrene 1442 tr tr 0.1 tr 0.3 0.1 tr 0.3 0.4 0.3 0.3 tr
dehydroaromadendrene 1443 tr – –
β- santalene 1446 – –
9-epi-(E)-caryophyllene 1451 – –
drima-7,9(11)-diene 1453 – –
cadina-1(6),4-diene 1456 – – tr
amorpha-4,7(11)-diene 1457 – –
β- chamigrene 1459 – –
cis-cadina-1(6),4-diene 1462 – –
γ- muurolene 1463 0.1 0.1 tr 0.1 tr tr 0.7 0.3 0.2 0.7
germacrene D 1467 11.3 1.6 1 4.9 3.5 2.3 10.1 26.3 7 8.6 tr 18.8 5.6 6.5 tr
amorpha-4,7(11)-diene 1468 – –
ar-curcumene 1468 – – tr
β- selinene 1470 0.2 tr tr tr tr tr
cis-β- guaiene 1472 – –
epi-bicyclosesquiphellandrene 1476 tr 0.3 0.1 – – tr tr
α- selinene 1478 – – tr
( continued on next page )
Genus Grazielia Disynaphia
Species G. gaudichaudeana G. intermedia G. nummularia G. serrata D. ericoides D. ligulifolia D. spathulata
Sampling site Canela Paraíso do Sul Guaíba Guaíba Sapiranga Caxias do Sul Gravataí Sapiranga Viam˜ ao Canela Viam˜ ao
Sampling time Abr/05 Mar/06 Apr/05 Oct/05 Jan/06 Apr/05 Oct/05 Mar/06 Mar/06 Apr/05 Oct/05
Analyzed organs -RI a ap b l c i d ap l i ap t e ap l i l l i l i l
viridiflorene 1478 – –
valencene 1479 tr – –
bicyclogermacrene 1482 7.6 0.9 0.3 9.4 4.7 2.3 2.7 4.8 16.9 15.1 – 11.6 3.4 6.7
α/β- chamigrene 1484 – –
α- muurolene 1486 tr tr tr 0.6 0.3 0.3 0.1 0.1 0.2 0.1 0.1 1.8 1.2 0.6 0.7 1.2
germacrene A 1489 0.1 tr tr 0.2 0.1 tr 0.1 0.2 0.2 0.1 tr 5.4 tr 1.3 0.8 0.5
(E,E)-α- farnesene 1490 tr 0.2
1,7-di-epi-β- cedrene 1494 – – tr
β- bisabolene 1494 – –
trans-β- guaiene 1494 – –
(Z)-α- bisabolene 1497 – –
(Z)-γ- bisabolene 1497 – –
γ- cadinene 1497 tr 0.1 0.1 tr tr 0.2 tr 0.1 0.3 1.4 0.9 0.3 0.5 1
δ- amorphene 1499 0.8 tr
cubebol 1500 – –
cis-cadina-1,4-diene 1502 – – 0.5
7-epi-α- selinene 1503 – –
germacrene C 1503 – –
calamenene 1504 – –
cis-calamenene 1505 tr tr tr tr tr
δ- cadinene 1506 0.5 0.2 0.1 1.9 1.2 0.9 0.4 0.5 1 0.8 0.6 1.1 0.8 6.7 1.9 3.2
β- cadinene 1506 tr tr – tr tr tr
cadina-1,4-diene 1514 tr tr tr tr tr – –
trans-cadina-1,4-diene 1514 tr 0.2 tr tr
β- sesquiphellandrene 1515 – –
α- cadinene 1520 tr tr tr tr tr tr tr 0.4 tr tr tr
liguloxide 1523 – –
α- calacorene 1526 tr tr tr tr tr tr tr
unknown 1529 – –
elemol 1534 tr – –
germacrene B 1542 tr 0.2 tr – tr
cis-muurola-4(14),5-diene 1547 – –
γ- calacorene 1549 – –
β- calacorene 1551 tr –
germacrene D-4-ol 1563 tr – 1.1
β- copaen-4-α- ol 1563 – –
(E)-nerolidol 1566 tr tr 0.2 0.5 0.7 0.2 0.5 0.5 1.3
ledol 1567 – –
spathulenol 1569 1.5 20.5 9.4 1.3 3.5 2.5 1.4 2.5 3.8 1.8 2.6 8.5 11.8 1.3 5.7 4.2 22.6
caryophyllene oxide 1579 2 4 0.6 1 1 0.3 0.4 0.6 0.5 0.5 1.8 4.1 – 1 0.4 7
epiglobulol 1581 1.4 0.8 1.7 0.7 1.1 1.1 – –
globulol 1581 1 0.7 0.5 0.8 0.4 0.2 0.4 0.6 0.2 0.3 2 1.6 – 0.7 1.1 4.5
epi-globulol 1587 2.9 8.8 4.3 5.9
humulene epoxide I 1588 1.6 1 0.6 0.2 1.1
5-epi-7-epi-α- eudesmol 1591 – –
( continued on next page )
Genus Grazielia Disynaphia
Species G. gaudichaudeana G. intermedia G. nummularia G. serrata D. ericoides D. ligulifolia D. spathulata
Sampling site Canela Paraíso do Sul Guaíba Guaíba Sapiranga Caxias do Sul Gravataí Sapiranga Viam˜ ao Canela Viam˜ ao
Sampling time Abr/05 Mar/06 Apr/05 Oct/05 Jan/06 Apr/05 Oct/05 Mar/06 Mar/06 Apr/05 Oct/05
Analyzed organs -RI a ap b l c i d ap l i ap t e ap l i l l i l i l
humulene epoxide II 1601 0.1 0.2 tr 0.8 – 1.3
cis-cadin-4-en-7-ol 1612 – –
1,10-di-epi-cubenol 1615 – tr
cadinol 1616 – –
eudesmol* 1619 0.1 – –
caryophylladienol II 1620 0.5 – –
unknown 1622 – –
amorpha-4-en-7-ol 1625 – –
1-epi-cubenol 1626 0.8 0.4 0.1 tr 0.5
cubenol 1631 0.2 – –
isospathulenol 1631 0.6 0.4 0.1 0.1 tr 0.1 0.2 1 – tr 0.7 0.3
τ- cadinol/τ- muurolol 1636 0.6 0.2 0.1 0.1 0.7 13.3 7.9 2 2.2 5.7
α- muurolol 1643 tr tr tr tr 2.6 1.4 0.4 0.4 1.5
β- eudesmol 1643 0.1 – 0.2 tr 0.7
α- cadinol 1655 1 0.5 0.5 0.4 1.9 23.9 14.6 3.2 3.3 12
verboccidentafuran 1662 – –
cadalene 1663 – –
α- bisabolol 1677 – –
epi-α- bisabolol 1680 – –
(2Z,6E)-farnesol 1687 – –
dodecanal 1700 – –
acetato de (E)-nerolidol 1710 – –
(E,E)-farnesol 1711 – –
laevigatin 1732 – –
Z-lanceol 1758 – –
n-octadecane 1795 – –
3-oxo-verboccidentafuran 1856 – –
hexa-hydrofarnesylacetone 1862 – –
methyl n-hexadecanoate 1914 – –
n-eicosane 1967 – –
n-heneicosane 2180 – –
n-docosane – –
n-tricosane – –
n-tetracosane – –
n-hexadecanoic acid 1982 – –
n-nonadecanal 2107 – –
trans-phytyl acetate 2208 – –
n-pentacosane 2469 – –
n-hexacosane – –
n-heptacosane 2638 – –
n-octacosane – –
n-nonacosane 2796 – –
AL f – –
HM g 76.8 63.8 75.9 69.2 70.4 80.1 78.9 54.8 56.8 76.2 77.7 5.1 15.0 14.1 58.9 57.1 16.9
( continued on next page ) Table 3 ( continued ) bicyclogermacrene (9.7%), the main sesquiterpenes. In the previously reported sample, there were higher amounts of β- myrcene (15.3%) and limonene (22.8%), while the percentage of α- pinene (14.6%) and α- thujene (7.1%) were higher. This is an important species in the reproductive biology of black-bellied seedeaters ( Sporophila melanogaster ) (in the same way as Gyptidinae Barrosoa betoniciiformis ) ( Rovedder, 2011 ; Rovedder and Fontana, 2012 ), red-eyed Vireo ( Vireo olivaceus ), and Long-tailed Reed-Finch ( Donacospiza albifrons ) (similarly to Grazielia intermedia ) ( Maurício et al., 2013 ). The VOs were previously analyzed, yielding 0.54–0.68% (dry and fresh inflorescences, respectively), but the chemical composition was not reported ( Souza, 2015 ). Another report from Paran´a, Brazil , described limonene (39%) and δ- cadinene (8%) as the major compounds and their activity against the strawberry aphid Aphis forbesi ( Maleski et al., 2019 ) . Despite sharing the same origin, the chemical composition reported here shows qualitative differences regarding our previous report on this species, reflecting the known variability of volatile chemistry. The composition described for the Parana´samples was even more deviant in their values for limonene, to which the anti-aphid activity of R. crenulata oil was credited ( Maleski et al., 2019 ). To the best of our knowledge, the only known reports on the VOs of R. tremula are from RS ( de Souza et al., 2017 ) and no description has ever been given for the chemical composition of the other species in the genus R. leptophlebia . To date, the volatile chemistry of the genus Raulinoreitzia is very basal for R. crenulata in both Parana´and RS, and extremely atypical for R. tremula in RS. In this way, more samples of R. tremula and R. leptophlebia are needed to better describe this genus.