Trends of karyotype evolution in the Neotropical long-legged crickets Phalangopsidae (Orthoptera, Grylloidea)
Author
Timm, Vítor Falchi
0000-0002-7372-6035
Programa de Pós-Graduação em Biologia Animal e Programa de Pós-Graduação em Entomologia, Universidade Federal de Pelotas, Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Campus Universitário Capão do Leão s / n, Capão do Leão, RS, Brazil & vitor. timm @ hotmail. com; https: // orcid. org / 0000 - 0002 - 7372 - 6035
vitor.timm@hotmail.com
Author
Martins, Luciano De Pinho
0000-0002-4943-1771
Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo, 2936, 69060 - 001, Manaus, Amazonas, Brazil. lucianodpm @ gmail. com; https: // orcid. org / 0000 - 0002 - 4943 - 1771
lucianodpm@gmail.com
Author
Acosta, Riuler Corrêa
0000-0003-3671-5414
Programa de Pós-Graduação em Biologia Animal e Programa de Pós-Graduação em Entomologia, Universidade Federal de Pelotas, Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Campus Universitário Capão do Leão s / n, Capão do Leão, RS, Brazil
Author
Szinwelski, Neucir
Programa de Pós-Graduação em Biologia Neotropical, Universidade Federal da Integração Latino-Americana, Av. Tarquínio Joslin dos Santos, nº. 1.000, Polo Universitário, CEP 85.870 - 901, Foz do Iguaçu, PR, Brasil
Author
Pereira, Marcelo Ribeiro
Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa, Campus Rio Paranaíba, Rodovia MG 230, KM 7, s / n, 38810 - 000, Rio Paranaíba, Minas Gerais, Brazil
Author
Costa, Maria Kátia Matiotti Da
0000-0003-1242-1403
Pontifícia Universidade Católica do Rio Grande do Sul, Faculdade de Biociências, Departamento de Biodiversidade e Ecologia, Laboratório de Entomologia. Av. Ipiranga, 6681, Partenon, Porto Alegre / RS, CEP: 90619 - 900 Porto Alegre, RS, Brazil katiamatiotti @ yahoo. com. br; https: // orcid. org / 0000 - 0003 - 1242 - 1403
katiamatiotti@yahoo.com.br
Author
Zefa, Edison
Programa de Pós-Graduação em Biologia Animal e Programa de Pós-Graduação em Entomologia, Universidade Federal de Pelotas, Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Campus Universitário Capão do Leão s / n, Capão do Leão, RS, Brazil
text
Zootaxa
2021
2021-02-25
4938
1
101
116
journal article
7822
10.11646/zootaxa.4938.1.5
f485f631-e223-460a-9e53-f7371e2abce9
1175-5326
4561426
518FE5C8-E47A-4773-8783-8F4841F33E64
Luzarinae
Luzarinae
includes 279 valid species and, although
Zefa
et al
. (2010)
reported this subfamily with the largest number of species chromosomally studied among the phalangopsids, the taxonomic reorganization presented by
Cigliano
et al
. (2020)
reduced this number from 21 to nine, four of them presented in this work. Up to now, the Luzarinae’s chromosome number ranges from 2n =
11 in
I. puri
and
Strinatia brevipennis
Chopard, 1970
to 2n =
17 in
L. lata
and
Aracamby picinguabensis
de Mello, 1992
(
de Mello 1992
;
Mesa
et al.
1999
).
The karyotype of
L. lata
is asymmetrical, with two small acrocentric pairs that have not been subjected to centric fusion. On the other hand,
M. ornata
and
I. puri
, as well as
Strinatia teresopolis
Mesa, 1999
and
S. brevipennis
(
Mesa
et al
. 1999
)
present symmetrical karyotypes, with all M/SM chromosomes, which show that their karyotype has reached the chromosomal derivation final stage by successive centric fusions. In
M. ornata
, the bivalent pair 4 has a CI close to the limit for acrocentric, showing that a pericentric inversion has occurred.
Luzaridella susurra
presents an irregular karyotype with a marked size difference between the bivalent pairs 1 and 2 (large), in relation to pairs 3, 4 and 5 (small). Although pairs 1 and 2 are M/SMs, the CI of the pair 1 (close to acrocentric) indicates a pericentric inversion. On the other hand, the bivalent pair 3 is metacentric, being expected to be acrocentric like the bivalent pairs 4 and 5, suggesting that they have become metacentrics by a pericentric inversion. We consider this karyotype to be irregular because, despite the difference in size of pairs 1 and
2 in
relation to the others, it is not possible to affirm that centric fusions are predominant in the chromosomal derivation process, but rather, pericentric inversions and fusions may be occurring concomitantly.
The chromosomal derivation in
Aracamby
(see
de Mello 1992
) included a reduction in the chromosome number by successive centric fusions, followed by pericentric inversions. In
Aracamby mucuriensis
de Mello, 1992
(2n = 13♁) there is only one pair of acrocentric, these being the smallest chromosomes of the complement.
Aracamby balneatorius
de Mello, 1992
(2n = 15♁) presents the acrocentric pairs 4 and 5, probably resulting from a pericentric inversion, as they present large size similar to the M/SM chromosome pairs 2, 3 and 6, and
A. picinguabensis
(2n = 17♁) has the largest amount of acrocentric chromosomes, with acrocentric pairs 3, 4 and 5 of similar size to the metacentric pair 2, suggesting that pericentric inversion occurred after the centric fusion process.