A new species of Zygophylax (Quelch, 1885) (Cnidaria, Hydrozoa) from South Africa, with taxonomic notes on the southern African species of the genus
Author
Campos, Felipe Ferreira
Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco. Av. Professor Moraes Rego, 1235, Recife, Pernambuco, Brazil. CEP: 50670 - 420
Author
Pérez, Carlos Daniel
Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Centro de Biociências, Universidade Federal de Pernambuco. Av. Professor Moraes Rego, 1235, Recife, Pernambuco, Brazil. CEP: 50670 - 420 & Núcleo de Biologia, Centro Acadêmico de Vitória, Universidade Federal de Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil. jazintheking @ gmail. com; https: // orcid. org / 0000 - 0002 - 0866 - 1183
Author
Puce, Stefania
Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche. Via Brecce Bianche, 60131 Ancona, Italy s. puce @ staff. univpm. it; https: // orcid. org / 0000 - 0002 - 8163 - 1554
Author
Marques, Antonio Carlos
Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
text
Zootaxa
2020
2020-05-21
4779
4
535
552
journal article
21923
10.11646/zootaxa.4779.4.5
5f00bbf3-a878-48ca-a795-3f7ef876f299
1175-5326
3839510
186C1834-BD6C-4AAE-A8D9-BF64790C6CDF
Zygophylax infundibulum
Millard, 1958
Plate 4
A–F
Zygophylax infundibulum
Millard, 1958: 180–181
, fig. 4b–c;
Millard, 1968: 266
;
Millard, 1973: 32
;
Millard, 1975: 197–198
, fig. 65d–e;
Millard, 1978: 200
;
Millard, 1979: 140
;
Millard, 1980: 131
, 143–144, fig. 4d;
Rees & Vervoort, 1987: 84
;
Calder & Vervoort, 1998: 28
;
Vervoort & Watson, 2003: 69
;
Miranda
et al.,
2015: 506
.
Type
Series.
Holotype—Several stems and two whole mounts, without gonophores (
SAM
H36
) (
Millard, 1979
)
.
Type
Locality.
Coll. Pieter Faure
, St. 10781, Natal coast, Durban,
South Africa
,
29°53’S
31°11’E
,
155 m
,
17 December 1900
.
Material examined.
Coll.
T
. Mortensen Exp. 1929, St. 24, near Durban coast,
South Africa
,
29°48’30’’S
31°18’E
,
219 m
,
22 August 1929
, det. N.H.A. Millard, small colonial fragments, without gonophores (
ZMUC-HYD
271); Coll. Benthedi, St. S
93,
Indian Ocean
, off northern
Madagascar
,
11°32.3’S
47°16’E
,
400–556 m
,
07 April 1977
, without gonophores (RMNH-Coel. slide 253)
; Coll. Marion Dufresne, St. FA
117, as
Z.
cf.
infundibulum,
La
Réunion,
20°57’S
54°08’E
,
470–540 m
,
31 August 1982
, without gonophores (RMNH-Coel. slide 261)
.
Description of additional material.
(ZMUC-HYD 271) Stem rectilineous, mostly polysiphonic with only distamost part monosiphonic, not divided into nodes; hydrothecae facing one side of the colony. Hydrocladia polysiphonic proximally and monosiphonic distally (Pl. 4A), divided into transversal nodes, each internode with three hydrothecae; hydrocladia with axillary hydrotheca on axial apophyses, with subopposite arrangement, planar; hydrothecal apophyses developed, separated from hydrocladia by septum and constricton of perisarc. Hydrothecae tubular, slightly sigmoid, adcauline wall concave under rim, abcauline wall convex (Pl. 4C–D), pedicel long, rectilineous, slightly wrinkled (Pl. 4B), diaphragm thick, convex. Nematothecae tubular on hydrothecal apophysis (Pl. 4E–F).
Measurements.
Stem: distance between two subsequent hydrothecae
156–390 µm
; diameter
182–442 µm
; distance between subsequent hydrocladia at the same side
1.7–1.8 mm
. Hydrocladia: lenght
5.1–7.4 mm
; diameter at base
130–156 µm
. Hydrothecae: length of adcauline wall from rim to diaphragm
350–370 µm
; lenght from base budding of the axis to rim
540–610 µm
; diameter at rim
130–150 µm
; diameter at diaphragm
70 µm
; diameter of pedicel on adcauline side
240–270 µm
; diameter at apophysis
50 µm
. Nematothecae: lenght
40–160 µm
; diameter at rim
20–30 µm
.
Diagnosis of reproductive structures.
“Gonothecae not adpressed, narrow at base and widening distally, then divided into two outwardly curved necks bearing the terminal apertures. Protective tubular structures numerous, arising amongst the gonothecae and rising above them, completely obscuring them and forming a bristly coat to the coppinia; each branching irregularly and bearing many nematothecae similar to those to the trophosome. Each gonothecae apparently arising from the base of one of the tubular structures” (
Millard, 1980: 143–144
).
Geographical distribution.
southern
Brazil
(
Miranda
et al.,
2015
); off Natal,
South Africa
,
115–219 m
(
Millard, 1975
); off northern
Madagascar
,
400–556 m
(present study).
Remarks.
Zygophylax infundibulum
Millard, 1958
is known from the Indian coast of
South Africa
(
Millard, 1958
,
1975
,
1979
,
1980
), recently also recorded for
Brazil
by (
Miranda
et al.
, 2015
) and now for
Madagascar
(this study). The gonosome of the species was subsequently described (
Millard, 1980
). We did not have access to any of the materials deposited in the South African Museum (SAM). The species may be diagnosed by the triangular shape of gonothecae with two short projections with apertures, the coppinia with numerous protective tubes, the hydrothecae curved at the distamost third and facing one side of the colony, and the long pedicels on well-demarcated apophyses.
Zygophylax infundibulum
has similarities with
Z. unilateralis
, such as the sigmoid hydrothecae, hydrothecae oriented towards one side of the colony, distinct apophyses, non-adnate elongated gonothecae widening basally, and the many protective tubes in the coppinia. However,
Z. unilateralis
differs by the larger and thicker hydrothecae, globular to bi or trilobate nematothecae on hydrothecal apophyses, hydrocladia and secondary axial tubes, pedicel varying from totally smooth to slightly wrinkled or even segmented throughout its extension (
e.g.
, in the
holotype
BMNH 29.10.28.77), and the 2–3 processes in the gonothecae of
Z. unilateralis
.
Millard (1980)
also reported trophosomal and gonosomal similarities between
Z.
infundibulum
and
Zygophylax sibogae
Billard, 1918
, like the curved hydrothecae resembles of
Z. infundibulum
similar to those of young colonies of
Z. sibogae
(
e.g.
, RMNH-Coel. slide 258), the shape of the gonothecae, and of the high density of protective tubes in the coppinia, although
Z. sibogae
has more elongated projections facing to opposite directions. Other characters listed above also help to differentiate between the species.
PLATE 4.
Zygophylax infundibulum
Millard, 1958
. (A, C) hydrothecae of hydrocladia; (B) detail of a wrinkled part of pedicel hydrothecal; (D) detail of the sigmoid shape of hydrotheca; (E–F) detail of nematothecae on secondary axial tubes. Scale: (A, C, E) 100 µm; (B) 50 µm; (D) 200 µm. (ZMUC-HYD 271)
Colonies of
Z. infundibulum
undertake regeneration processes leading to the segmentation of the apophyses, the pedicels or even the hydrothecae, by the duplication of the diaphragms (
Millard, 1958
). We observed pedicels slightly segmented or wrinkled in some specimens (ZMUC-HYD 271,
South Africa
; RMNH-Coel. slide 253,
Madagascar
). This regeneration process and the resulted pedicelar annulations differ from those of
Z. naomiae
sp. nov.
(see above). In the same specimen, regeneration processes also alter the number of renovations on rim (up to 11), increasing significantly the length, as well as the nematothecae of the secondary axial tubes of the stem vary from tubular to extremely thin and elongated, with a widened apex with one aperture.