Benthic Foraminifera from the Capricorn Group, Great Barrier Reef, Australia
Author
Mamo, Briony L.
text
Zootaxa
2016
4215
1
1
123
journal article
37169
10.11646/zootaxa.4215.1.1
0087fa4c-a4f0-45d9-a2de-d433d7885753
1175-5326
272923
B91D1782-C11A-4CDC-96B6-76104FEE51BD
Neorotalia
Bermúdez 1952
Neorotalia calcar
(
d'Orbigny 1839
)
(
Fig. 23
:18–21)
1839
Calcarina calcar
d’Orbigny
, p. 81, pl. 5, figs 22–24.
1965
Calcarina calcar
d’Orbigny
; Jell
et al
., p. 277, pl. 44, fig. 5.
1978
Pararotalia calcar
(d’Orbigny)
; Cheng & Xheng, p. 221, pl. 25, figs
2–7. 1991
b
Neorotalia calcar
(d’Orbigny)
; Hottinger
et al
., p. 23, figs 4–7.
1993
Neorotalia calcar
(d’Orbigny)
; Hottinger
et al
., p. 140, pl. 199, figs
1–10. 1997
Neorotalia calcar
(d’Orbigny)
; Haig, p. 278, fig. 7: 13–14.
1999
Neorotalia calcar
(d’Orbigny)
; Hohenegger
et al
., p. 146, fig. 21. 2002
Neorotalia calcar
(d’Orbigny)
; Yordanova & Hohenegger, p. 194, pl. 33, figs
1–3. 2003
Neorotalia calcar
(d’Orbigny)
; Langer & Lipps, p. 52, fig. 7De.
2009
Neorotalia calcar
(d’Orbigny)
; Parker, p. 668, figs 472a–f, 473a–
i. 2012
Neorotalia calcar
(d’Orbigny)
; Debenay, p. 204–5, pl. 18.
Description.
See
Hohenegger
et al
. (1999
, p. 146, fig. 21),
Hottinger
et al
. (1991b
, p. 23, figs 4–7; 1993, p. 140, pl. 199, figs 1–10) and
Yordanova & Hohengger (2002, p. 194, pl. 33, figs 1–3)
.
Remarks.
Neorotalia calcar
(
d’Orbigny 1839
)
is characterised by a low, trochospiral, biconvex test with inflated, diamond shaped chambers, pustulose ornament on spiral side, multiple umbilical plugs, thickened peripheral spines and an angular periphery (
Fig. 23
:18–21). Most specimens from the CG are damaged, but the main diagnostic features are present enabling confident identification.
The most prominent morphological variation shown by this taxon is the development of the peripheral spines (
Hottinger
et al.
1991b
;
Parker 2009
). In some examples the spines form produced points of the chambers (e.g.
Cheng & Zheng 1978
, pl. 25, fig. 9;
Debenay 2012
, pl. 18 form B;
Haig 1997
, fig. 7;12–13; Hottinger
et al
. 1991, figs 4: 2;
Parker 2009
, fig. 473) or are distinctly spiked extensions that emerge from the chamber and taper to a sharpened point (e.g.
Debenay 2012
, pl. 18, form A; Hottinger
et al
. 1991, fig. 4: 1;
Jell 1965
, pl. 44, fig. 5;
Langer & Lipps 2003
; fig. 7De;
Parker 2009
fig. 472). Capricorn Group specimens were represented by both spine
types
(
Fig. 23
:18, 21)
D’Orbigny’s (1826)
type
specimens of
N
.
calcar
were collected from the
Caribbean
,
Mauritius
and
Madagascar
and has a global distribution (Southern GBR—Jell
et al
. 1965;
Xisha Island
,
Guandong—Cheng
&
Zheng
1978
;
Gulf
of Aqaba and Red Sea—Hottinger
et al.
1991b, 1993;
Exmouth Gulf—Haig
1997;
Papua New Guinea
to 45 m—Langer &
Lipps
2003
;
Sesoko Island
,
Okinawa
to
20 m
preferring hard reef substrates—
Hohenegger
et al
. 1999
,
Yordanova
&
Hohenegger
2002
;
Ningaloo Reef—Parker
2009;
New Caledonia
living on algal thalli to 2 m—Debenay 2012).
Distribution within study area.
Similar to the distribution discussed by
Hohenegger
et al
. (1999)
and
Yordanova & Hohengger (2002)
,
N
.
calcar
is predominantly in shallow water environments with a hard substrate such as reef flats. The two sites with the greatest abundance were samples 6 and 8 along transect 3 on Heron Reef flat. Indeed, five of the seven sites with comparatively high numbers of specimens (in excess of ten specimens) were located here.
Neorotalia calcar
was absent from the channel sample. Live specimens of
N
.
calcar
were collected from Heron Reef flat along transects 1 and 3 with one to two specimens at four sites.