Untargeted metabolite profiling of petal blight in field-grown Rhododendron agastum using GC-TOF-MS and UHPLC-QTOF-MS / MS
Author
Duan, Sheng-Guang
* & ** & Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Key Laboratory of
Author
Hong, Kun
Author
Tang, Ming
Author
Tang, Jing
Author
Liu, Lun-Xian
Author
Gao, Gui-Feng
Author
Shen, Zhi-Jun
Author
Zhang, Xi-Min
Author
Yi, Yin
text
Phytochemistry
2021
112655
2021-04-30
184
1
12
http://dx.doi.org/10.1016/j.phytochem.2021.112655
journal article
10.1016/j.phytochem.2021.112655
1873-3700
8292249
2.1. Metabolite identification in
R. agastum
flowers
The GC-TOF-MS and UHPLC-QTOF-MS/MS platforms, combined with annotation software and databases, were used to identify metabolites from healthy and petal blight flowers of
R. agastum
. GC-TOF-MS platform has advantages for the analysis of small volatile or semivolatile compounds, whereas UHPLC-QTOF-MS/MS platform is more suitable for phenolic compounds, flavonoids, and triterpenic acids (
Olmo-Garcia et al., 2018
). To our knowledge, there have been no previous large-scale untargeted metabolomics studies of
R. agastum
that combined GC-TOF-MS and UHPLC-QTOF-MS/MS, especially for petal blight of
Rhododendron
species.
Differences in metabolites between healthy and petal blight flowers were evaluated by measuring six biological replicates. The GC-TOF-MS chromatograms of 12 samples from healthy and petal blight flowers showed good reproducibility, indicating that the run conditions were stable and reliable (
Fig. 2
). The retention times and peak areas of six quality control samples also showed good repeatability during the experiment (Supplementary
Fig. 1
), indicating that the instrument itself was very stable. The relative deviation of the internal standard (saturated fatty acid methyl ester) added in the quality control sample was 8.21%, further verifying the system’ s stability. A total of 571 peaks were extracted, and 189 metabolites were tentatively identified based on mass spectrum match and retention index match.
Samples from healthy and petal blight flowers were also analyzed using the UHPLC-QTOF-MS/MS platform, and total ion chromatograms (TICs) were obtained in positive and negative ion mode (Supplementary
Fig. 2
). Four quality control samples also showed good repetitiveness during the experiment (Supplementary
Fig. 3
). The relative deviations of the internal standard (l-2-chlorophenylalanine) in the quality control samples were 6.66% and 2.37% in the positive and negative ion mode, respectively, indicating that the system was very stable. A total of 1731 and 1994 peaks were extracted, and 364 and 277 metabolites were tentatively identified in the positive and negative ion mode.