A new flatworm species of Temnocephala (Rhabdocoela, Temnocephalidae) ectosymbiont on the freshwater crab Valdivia serrata (Decapoda, Trichodactylidae) from Amazonas, Colombia
Author
Lenis, Carolina
Author
Ruiz, Freddy
Author
Muskus, Carlos
Author
Marcilla, Antonio
Author
Velez, Imelda
text
ZooKeys
2020
918
1
14
http://dx.doi.org/10.3897/zookeys.918.38201
journal article
http://dx.doi.org/10.3897/zookeys.918.38201
1313-2970-918-1
712C2648725543918DECDC875E8EA237
F218AB91564356C3A5931DC26E1715B8
Temnocephala ivandarioi
sp. nov.
Figs 1A -C
, 2A -C
Type host.
Valdivia serrata
White, 1847 (Fig.
1D-F
).
Site of infection.
Branchial chambers.
Prevalence.
36% of the eleven hosts were infected.
Type locality.
Kilometro
11, Reserva Natural Tanimboca, Leticia, Amazonas (
4°07'39.8"S
,
69°57'13.0"W
), Colombia.
Type specimens.
Holotype: CCH.116 (159); Paratypes: CCH.116 (160).
Examined material.
10 whole mounted specimens; 5 stained in
Meyer's
paracarmine; 5 stained in Borax carmine; 6 dissected cirrus; 2 samples observed by SEM, 5 unhatched eggs observed by SEM.
Description.
External characteristics.
Body (without tentacles) 1.36-2.26 mm (1.75
+/-
0.25) long by 1.18-1.56 mm (1.36
+/-
0.11) wide; adhesive disk ventral, subterminal 280-520 (370
+/-
82) long by 320-520 (400
+/-
40) wide (Figs
1A-C
,
2A
); eyespots with red pigmentation (observations made on live specimens; Fig.
3E
). DLSPs small, elliptical-shaped (Fig.
3A, B
), 167 long by 141 wide (
N
= 2); excretory pore
"subcentral"
in the DSLP, displaced towards the internal limit (Fig.
3A
); length ratio of DLSPs:total body length, without tentacles, 1.0:10.7.
Alimentary system.
Mouth surrounded by a large muscular sphincter 200-280 (220
+/-
26) long by 210-310 (248
+/-
32) wide; pharynx 330-620 (417
+/-
56) long by 450-620 (511
+/-
52) wide; intestine saccular, without septations (Fig.
2A
).
Glands.
Rhabditogenic glands forming bunches in the lateral fields of the body extending from the pharynx to the middle level of the adhesive disk. Haswell cells in
front
of the eyespots and the brain. Disk glands between the adhesive disk and the genital complex (Fig.
2A
).
Female.
Ovary ventral to the resorbens vesicle 57-100 (83
+/-
13;
N
= 7), long by 60-145 (105
+/-
26;
N
= 7) wide. Vagina elongated with strong muscular wall, connects to the genital atrium dorsally, 75-180 (125
+/-
37;
N
= 4) long by 16-30 (23
+/-
4;
N
= 6) wide with a widening of the distal portion; proximal vaginal sphincter symmetrical 16-34 (23
+/-
6;
N
= 6) and distal vaginal sphincter symmetrical (16-20;
N
= 2) (Figs
2B
,
4A, B
). Resorbens vesicle ovoid 110-180 (134
+/-
24,
N
= 9) long by 172-212 (194
+/-
16;
N
= 9) wide. Vitellarium arborescent and thin (Fig.
2A
). Eggs 557-638 (585
+/-
37;
N
= 4) long by 302-331 (312
+/-
13;
N
= 4) wide; filament small, subapical or apical (Fig.
3C, D, F
); peduncles 146-243 (341
+/-
97); the plane of fracture is oblique with respect to the longitudinal axis of the egg (Fig.
3C, D
). Eggs deposited on branchial chambers of host (Fig.
3G, H
).
Male
.
Two pairs of testes, medium-sized, usually rounded, slightly oblique, anterior testes 180-310 (231
+/-
34) long by 120-320 (220
+/-
48) wide; posterior testes 200-400 (260
+/-
60) long by 110-360 (254
+/-
65) wide (Fig.
2A
). Seminal vesicle dorsal and anterolateral to the prostatic bulb (Figs
2B
,
4D
), 52-137 (92
+/-
27) long by 82-237 (168
+/-
47) wide, wall 8.6 thick. Prostatic bulb 70-107 (91
+/-
14) long by 155-240 (191
+/-
30) wide (Figs
2B
,
4C
). Cirrus small-sized, 120-147 (129
+/-
8) long; shaft cone-shaped, slightly curved up, with maximum width at base 40-47 (44
+/-
2); introvert cone-shaped, not oblique, not curved, with a circle of sclerites (range 18-20) in the distal portion followed by a smooth portion without spines or ridges, 7.5-15 (10
+/-
3;
N
= 8) long, with maximum width 15-22 (18
+/-
3;
N
= 10) at level of the distal portion (Figs
2C
,
4C, E, F
,
6A
). Ratio between total body length, without tentacles:total length of cirrus 14:1; ratio between total length of cirrus:width of
shaft's
base 3:1; ratio between total length of cirrus:total length of introvert 13:1.
Etymology.
The new species is dedicated to Dr.
Ivan
Dario
Velez
Bernal for his outstanding contributions to the study of helminthology and the understanding of tropical diseases in Colombia.
Discussion
.
Temnocephalida
is a monophyletic group within the
Platyhelminthes
included in Lymnotyphloplanida, which is part of the
Dalytyphloplanida
clade, a major group of
Rhabdocoela
(
Van Steenkiste et al. 2013
).
Temnocephalidae
Monticelli, 1899 is the most diverse family of the
Temnocephalida
. Its members are distributed around Australia and the Neotropics (
Martinez-Aquino
et al. 2014
); the type genus of
Temnocephalidae
,
Temnocephala
Blanchard, 1849, is exclusive to the Neotropics. Autapomorphies of the
Temnocephala
include red-pigmented eyespots, four epidermal syncytial plates, and excretory pores enclosed within the boundaries of the DLSPs (
Damborenea and Cannon 2001
). Major hosts to the members of the
Temnocephala
are chelonians, molluscs, insects, and
crustaceans
, each hosting a particular assemblage of
Temnocephala
species. Particular host families are also specific for particular
Temnocephala
species (
Martinez-Aquino
et al. 2014
).
Taxonomy of temnocephalans is based on morphology of adult specimens with emphasis on the reproductive system. The structure of the cirrus is the trait of greatest taxonomic value (
Damborenea 1991
,
Damborenea and Cannon 2001
,
Sewell et al. 2007
,
Garces
et al. 2013
). Other traits important for species differentiation include composition of the female reproductive complex, eggs deposit areas in the host, and the shape of the DLSPs (
Damborenea and Brusa 2008
,
Amato et al. 2010
,
Volonterio 2010
,
Seixas et al. 2011
, 2015,
2018
).
Nine species of
Temnocephala
are known for their association with crabs of the
Trichodactylidae
family. Of these,
T. ivandarioi
sp. nov.,
T. longivaginata
Seixas, Amato & Amato, 2011, and
T. lutzi
Monticelli, 1913 (
Amato et al. 2005
) present a similar-sized cirri and have the Amazon River basin as a biogeographical connection.
Temnocephala longivaginata
and
T. ivandarioi
sp. nov. are most similar to each other in the length of the vagina and the presence of sclerites in the distal portion of the cirrus.
Temnocephala ivandarioi
sp. nov. can be distinguished by the combination of the following features: cirrus with a circle of small sclerites (range 18-20) in the distal portion of the introvert, without spines or ridges in the inner wall of the introvert (Fig.
2C
). The ovary lies ventral to vesicle resorbens followed by an elongated vagina with two vaginal sphincters similar in size, one symmetric and proximal, and one symmetric and distal; the vagina connects to the genital atrium dorsally. The seminal vesicle is located anterolateral to the prostatic bulb. The DLSPs are small and
'elliptical-shape'
, with a partially sinuous contour.
On an ecological-level
T. ivandarioi
sp. nov.,
T. longivaginata
, and
T. lutzi
inhabit the branchial chambers of trichodactylid crabs from the middle basin and lower basin of the Amazon River (Leticia, Amazonas, Colombia; Peixe-Boi,
Para
State; Rio
Amapa
,
Amapa
State, northern Brazil, respectively).
Temnocephala ivandarioi
sp. nov. is the third species described from Colombia, and therefore
V. serrata
is registered as a new trichodactylid host for neotropical temnocephalans.
Valdivia serrata
is widely distributed throughout the Orinoco and Amazon River basins in Venezuela, the islands of Trinidad and Tobago, the Guianas, Colombia, Brazil, Peru and Bolivia (
Cumberlidge 2008
). In Colombia this species is found in the eastern region of the country (Amazonas, Arauca, Caqueta, Meta, Putumayo, and Vichada Departments) in the Putumayo and Maqueta rivers that drain into the Amazon River, and the Guaviare, Meta, and Arauca rivers that drain into the Orinoco River (
Campos 2005
,
2014
). It is likely that
T. ivandarioi
sp. nov.,
T. longivaginata
, and
T. lutzi
are closely related due to their morphological similarities and geographical proximity. The implementation of molecular studies will reveal the phylogenetic relationships between the different species of
Temnocephala
in the Neotropics.
In Colombia more than 132 species of decapod crustaceans have been recorded (
Campos 2014
), while only two associated species of temnocephalans have been reported to date:
T. icononcensis
(
Arias-Pineda et al. 2015
) and
T. ivandarioi
sp. nov. The great diversity of these potential hosts (
Campos 2014
) suggests that most temnocephalans remain undescribed.
Comparative
notes.
The cirrus is the only rigid structure and therefore of constant general morphology in juveniles and adults (except for small intraspecific variations) for each species. The morphology of the cirrus constitutes one of the few characters used and is the most valuable taxonomic character for species identification
(
Seixas et al. 2015b
). In the present study, terminology describing the temnocephalan cirrus is updated for neotropical species (Fig.
5
), according to
Sewell et al. (2007)
,
Seixas et al. (2011)
,
Garces
et al. (2013)
and Ponce de
Leon
et al. (2015). The cirrus of the species of
Temnocephala
described from trichodactylid crabs (Fig.
6
) are compared based on this terminology.
The cirrus is defined as the entire sclerotised male copulatory organ comprised of a
'shaft'
(rigid, tubular region tapering distally; Fig.
5A
) and an
'introvert'
(flexible distal eversible region armed with grooves, spines, sclerites or ridges, Fig.
5B
) (modified from
Sewell et al. 2007
). Furthermore, the degree of shaft curvature is a reliable taxonomic characteristic of neotropical temnocephalans (
Garces
et al. 2013
).
The shape of the shaft may be described as a
'funnel'
,
'goblet'
, or
'cone'
. Funnel- or goblet-shaped shafts have a wide proximal region which tapers rapidly into a narrow tubular distal region (
Sewell et al. 2007
). The cirrus may be more or less curved, and it may be described as 'curved
up'
,
'straight'
, or 'curved
down'
. Similarly, the position of the cirrus with respect to the body may be described as 'towards the
forebody'
,
'horizontal'
, or 'towards the
hindbody'
(modified from
Garces
et al. 2013
). The position of the cirrus can or may not depend on the cirrus curvature i.e. cirrus 'curved
up'
directed 'towards the
forebody'
, but cirrus
'straight'
are directed towards the
'forebody'
,
'horizontal'
or 'towards the
hindbody'
. The cirrus position can be examined only from a complete diagram of the temnocephalan.
The introvert shape can be described as
'cylindrical'
,
'cone'
;
'scoop'
, or
'goblet'
. Scoop- or goblet-shaped introvert have a wide middle region, which tapers into a narrow distal region. In addition, the introvert may be
'unarmed'
, armed with
'grooves'
in the proximal limit of the introvert, or armed with
'spines'
,
'sclerites'
, and
'ridges'
in the inner wall of the introvert. The distal opening of the introvert may be at right angles with respect to the proximal limit of the introvert i.e. 'not
oblique'
,
'oblique'
, or 'very
oblique'
(modified from
Sewell et al. 2007
). Additionally, the distal region of the introvert may be curved (with or without spines, sclerites, or ridges), and described as 'forward
curved'
,
'straight'
or 'backward
curved'
(described as with non-spined region or without non-spined region by
Sewell et al. 2007
).
The morphology of the cirrus is necessary for species identification and should be clearly described based on the terminology proposed in the present study. This new terminology can be applied to species of neotropical temnocephalans described to date.
Figure 1.
Temnocephala ivandarioi
sp. nov. and
Valdivia serrata
A
paratype of
Temnocephala ivandarioi
sp. nov. showing an egg, ventral view
B
adult paratype stained in
Meyer's
paracarmine
C
holotype stained in Borax carmine
D
male specimen of
V. serrata
E
abdomen
F
gonopods, lateral view. Scale bars: 200
µm
(
A-C
); 10 mm (
D-F
).
Figure 2.
Temnocephala ivandarioi
sp. nov.
A
adult specimen diagram, showing adhesive disk (ad), anterior testes (at), cyanophilous glands (cg), disk glands (dg), excretory vesicle (ev),
Haswell's
glands (hg), intestinal sac (i), mouth (m), pharynx (ph), posterior testes (pt), rhabditogenic glands (rg), tentacles (t), and vitellarium (v)
B
reproductive system, showing female reproductive complex: anterior portion of the distal vaginal sphincter (advs), anterior portion of the proximal vaginal sphincter (apvs), genital atrium (ga), genital pore (gp), posterior portion of the distal vaginal sphincter (pdvs), posterior portion of the proximal vaginal sphincter (ppvs), ovary (ov), vagina (va), and resorbens vesicle (vr); and male reproductive organs: cirrus (c), prostatic bulb (pb), prostatic vesicle (pv), seminal vesicle (sv), and vasa deferentia (vd)
C
line drawing of cirrus in different focusing planes, showing the sclerites portion of the introvert (sp), and proximal limit of the introvert (arrows). Scale bars: 200
µm
(
A
); 100
µm
(
B
); 20
μm
(
C
).
Figure 3.
Temnocephala ivandarioi
sp. nov. details of epidermal excretory syncytial plates (DLSPs) and eggs
A
antero-lateral area observed with SEM showing leftmost tentacle and left DLSP, arrow showing contour and position of excretory pores (n)
B
line drawing of entire specimen showing the DLSPs
C
egg observed with SEM showing the filament (fi), peduncle (pe), and plane of fracture of the operculum (pf)
D
line drawing of a whole egg showing the oblique fracture plane to the longitudinal axis of the egg
E
live adult specimen showing red eyespot pigment
F
unhatched egg showing the filament (fi)
G, H
live eggs deposited on branchial chambers of
V. serrata
. Scale bars: 100
μm
(
A-F
); 1mm (
G, H
).
Figure 4.
Details of the reproductive system of
Temnocephala ivandarioi
sp. nov.
A, B
partial female reproductive system, showing: anterior portion of the distal vaginal sphincter (advs), anterior portion of the proximal vaginal sphincter (apvs), distal vaginal sphincter (dvs), genital atrium (ga), posterior portion of the distal vaginal sphincter (pdvs), posterior portion of the proximal vaginal sphincter (ppvs), proximal vaginal sphincter (pvs), ovary (ov), vagina (va), and vesicula resorbens (vr)
C, D
partial male reproductive system, showing: cirrus (c), prostatic bulb (pb), seminal vesicle duct (svd), seminal vesicle (sv), and vasa deferentia (vd)
E, F
cirrus introvert observed in different focusing planes, view of the circle of sclerites (sp) in the distal portion of the introvert and the smooth portion (smp) in the proximal limit of the introvert (pli). Scale bars: 50
μm
(
A-D
); 20
μm
(
E, F)
.
Figure 5.
Diagrams showing the terminology used to describe the cirrus of the species of
Temnocephala
(terminology updated from
Sewell et al. (2007)
,
Seixas et al. (2011)
,
Garces
et al. (2013)
, and Ponce de
Leon
et al. (2015); diagrams modified from
Sewell et al. 2007
: 205, fig. 2).
Figure 6.
Diagrams of the cirrus of the species of
Temnocephala
associated with trichodactylid crabs. Terminology based on the cirrus structure (see comparative notes and Fig.
5
).
A
Temnocephala ivandarioi
sp. nov. (present study)
B
Temnocephala lanei
Pereira & Cuocolo, 1941
C
Temnocephala longivaginata
Seixas, Amato & Amato, 2011
D
Temnocephala lutzi
Monticelli, 1913 (
Amato et al. 2005
)
E
Temnocephala microdactyla
Monticelli, 1903
F
Temnocephala pignalberiae
Dioni, 1967 (
Amato et al. 2010
)
G
Temnocephala santafesina
Dioni, 1967
H
Temnocephala trapeziformis
Amato, Amato & Seixas, 2006
I
Temnocephala travassosfilhoi
Pereira & Cuocolo, 1941. Key:
Shaft
[
shape: CO
-cone;
FU
-funnel]; [
curvature: CU
-curved up;
ST
-straight;
CD
-curved down].
Introvert
[
shape: CY
-cylindrical;
CO
-cone;
SC
-scoop]; [
armed with: UN
-unarmed;
SP
-spines;
SL
-sclerites;
RI
-ridges;
ND
-not described]; [
angle: NO
-not oblique;
VO
-very oblique]; [
curvature: NC
-not curved;
FC
-forward curved;
BC
-backward curved].