Add updates up until 2025-02-24 09:05:44

This commit is contained in:
ggserver 2025-02-24 09:11:48 +00:00
parent 27be4e4b25
commit acbff20840

View file

@ -0,0 +1,983 @@
<document id="0A4C86785361C0C507C3F67A6553B5FD" ID-DOI="10.1080/00222933.2025.2451806" ID-ISSN="1464-5262" ID-Zenodo-Dep="14798915" IM.bibliography_approvedBy="carolina" IM.illustrations_approvedBy="felipe" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="carolina" IM.taxonomicNames_approvedBy="felipe" IM.treatments_approvedBy="carolina" checkinTime="1738625544533" checkinUser="plazi" docAuthor="Gidó, Zsolt" docDate="2025" docId="B96187DA591F935A46D6FA20914AE409" docLanguage="en" docName="JNATHIST.59.5-8.475-496.pdf" docOrigin="Journal of Natural History 59 (5 - 8)" docStyle="DocumentStyle:3C762F9783B768A90048B82ACD135A62.3:JNatHist.2017-.journal_article.0cover" docStyleId="3C762F9783B768A90048B82ACD135A62" docStyleName="JNatHist.2017-.journal_article.0cover" docStyleVersion="3" docTitle="Ischnodemus sabuleti" docType="treatment" docVersion="2" lastPageNumber="493" masterDocId="4558FFA2591B93484676FF829307E046" masterDocTitle="Seasonal de-alation of the macropterous morph of the wing-dimorphic bug Ischnodemus sabuleti (Hemiptera: Heteroptera: Blissidae): accumulation of injuries or active autotomy?" masterLastPageNumber="496" masterPageNumber="475" pageNumber="479" updateTime="1740387942968" updateUser="carolina" zenodo-license-document="CLOSED">
<mods:mods id="E905BBDFB3814B38DD384799BD41454F" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="1DB636A8E7C7B1C211ED0B10A647FF41">
<mods:title id="F7CE145D52B7240B939A50963A919B16">Seasonal de-alation of the macropterous morph of the wing-dimorphic bug Ischnodemus sabuleti (Hemiptera: Heteroptera: Blissidae): accumulation of injuries or active autotomy?</mods:title>
</mods:titleInfo>
<mods:name id="EBE3B8A78446AB85C65DD32DABDE22FA" type="personal">
<mods:role id="63B6DBC2C9C9C15189AF2DD12AD97971">
<mods:roleTerm id="510F2980754A09D38C1EF4D538370199">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="FD633642B47A3AE55C214794ED57EF0B">Gidó, Zsolt</mods:namePart>
</mods:name>
<mods:typeOfResource id="08B36253925592DFDD4D766C83DE59C0">text</mods:typeOfResource>
<mods:relatedItem id="463D942ED9CCE00B851CC0380E201534" type="host">
<mods:titleInfo id="2D643BDBB6A37906E9B81E485F096A98">
<mods:title id="140A8FBF4D123E9CF4123953EE05255D">Journal of Natural History</mods:title>
</mods:titleInfo>
<mods:part id="80D7F796463A0393FE715431061149F0">
<mods:date id="3C5C5D8A595A35B16F2DB4DD9EEDF79B">2025</mods:date>
<mods:detail id="45F90C72307ACC79DD9E13DFDDECC7DE" type="pubDate">
<mods:number id="81CE7D4EEE77889B058543FF6FBDD69D">2025-02-03</mods:number>
</mods:detail>
<mods:detail id="309B34C6F8866DA95C23082F703D963B" type="volume">
<mods:number id="074220008B201150BEC1D4555C9F8F77">59</mods:number>
</mods:detail>
<mods:detail id="1DF70A789FC6599BCE5739F5C9E090DF" type="issue">
<mods:number id="35F257BCDE1195DA801D7FE42DCA7123">5 - 8</mods:number>
</mods:detail>
<mods:extent id="60AF1659DF9DB7E30EAC06796EFFFDA0" unit="page">
<mods:start id="776AADE23144B7409984E5B480593A42">475</mods:start>
<mods:end id="9A5BA9B987A9678BE7CAA2EB7155FAD1">496</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:classification id="830F4D7A210ED1C98A6D0F226A39D4A2">journal article</mods:classification>
<mods:identifier id="F3F7C727B961996367543377BF45BE4B" type="DOI">10.1080/00222933.2025.2451806</mods:identifier>
<mods:identifier id="67A7848A5173AD93274A35056FED1BEA" type="ISSN">1464-5262</mods:identifier>
<mods:identifier id="489BE7EA192831EF8B3DB1461D07508C" type="Zenodo-Dep">14798915</mods:identifier>
</mods:mods>
<treatment id="B96187DA591F935A46D6FA20914AE409" LSID="urn:lsid:plazi:treatment:B96187DA591F935A46D6FA20914AE409" httpUri="http://treatment.plazi.org/id/B96187DA591F935A46D6FA20914AE409" lastPageId="18" lastPageNumber="493" pageId="4" pageNumber="479">
<subSubSection id="79D26547591F934C46D6FA2091CAE5FA" box="[160,717,1442,1468]" pageId="4" pageNumber="479" type="nomenclature">
<paragraph id="317736CC591F934C46D6FA2091CAE5FA" blockId="4.[160,717,1442,1468]" box="[160,717,1442,1468]" pageId="4" pageNumber="479">
<heading id="6A3F81A0591F934C46D6FA2091CAE5FA" bold="true" box="[160,717,1442,1468]" centered="true" fontSize="11" level="2" pageId="4" pageNumber="479" reason="3">
<emphasis id="03BCEADE591F934C46D6FA2091CAE5FA" bold="true" box="[160,717,1442,1468]" pageId="4" pageNumber="479">
<emphasis id="03BCEADE591F934C46D6FA2092BEE5FA" bold="true" box="[160,441,1442,1468]" italics="true" pageId="4" pageNumber="479">Reproductive period of</emphasis>
<taxonomicName id="F6C84D4F591F934C47B6FA20913BE5FA" ID-CoL="3Q4YZ" box="[448,572,1442,1468]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="4" pageNumber="479" phylum="Arthropoda" rank="species" species="sabuleti">I. sabuleti</taxonomicName>
<emphasis id="03BCEADE591F934C4432FA2091CAE5FA" bold="true" box="[580,717,1442,1468]" italics="true" pageId="4" pageNumber="479">
in
<collectingCountry id="49DF765C591F934C4415FA2091CAE5FA" box="[611,717,1442,1468]" name="Hungary" pageId="4" pageNumber="479">Hungary</collectingCountry>
</emphasis>
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="79D26547591F934D46D6FA5591E4E22C" lastPageId="5" lastPageNumber="480" pageId="4" pageNumber="479" type="description">
<paragraph id="317736CC591F934C46D6FA55975DE61E" blockId="4.[160,1156,1495,1728]" pageId="4" pageNumber="479">
According to the results of the dissections and field observations, the reproductive period of
<taxonomicName id="F6C84D4F591F934C46C8FA789220E655" box="[190,295,1530,1555]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="4" pageNumber="479" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591F934C46C8FA789220E655" box="[190,295,1530,1555]" italics="true" pageId="4" pageNumber="479">I. sabuleti</emphasis>
</taxonomicName>
in
<collectingCountry id="49DF765C591F934C473AFA7892ABE655" box="[332,428,1530,1555]" name="Hungary" pageId="4" pageNumber="479">Hungary</collectingCountry>
starts in April and lasts until mid-summer (early July), when the last members of the old generation pass away. The new adult generation starts to emerge in late Julyearly August. Usually, the old and new adult generations do not overlap.
</paragraph>
<paragraph id="317736CC591F934D46B6F9E0900EE0AB" blockId="4.[160,1156,1495,1728]" lastBlockId="5.[160,1156,142,618]" lastPageId="5" lastPageNumber="480" pageId="4" pageNumber="479">
None of the 15 macropterous and 15 brachypterous females collected
<date id="4576100C591F934C45ABF9E09784E63D" box="[989,1155,1634,1659]" pageId="4" pageNumber="479" value="2024-03-15">15 March 2024</date>
contained mature eggs. There is no dissection data from April, but intensive courtship and copulation was observed on
<date id="4576100C591F934C478CF925919AE686" box="[506,669,1703,1728]" pageId="4" pageNumber="479" value="2024-04-16">16 April 2024</date>
. The majority of both macropterous and brachypterous females contained mature eggs from May to July, while no female collected from August to November contained any mature eggs. Also, no mating behaviour was observed during the late summerautumn period.
</paragraph>
<paragraph id="317736CC591E934D46B6FF7491E4E22C" blockId="5.[160,1156,142,618]" pageId="5" pageNumber="480">
This means that the majority of Hungarian
<taxonomicName id="F6C84D4F591E934D44D4FF74900EE149" box="[674,777,246,271]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="5" pageNumber="480" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591E934D44D4FF74900EE149" box="[674,777,246,271]" italics="true" pageId="5" pageNumber="480">I. sabuleti</emphasis>
</taxonomicName>
individuals that emerge as adults in AugustSeptember enter a long reproductive diapause until the next spring (both wing forms). In most years, a smaller part of most of the populations overwinters as late-instar nymphs (third, fourth, and fifth stages). This is a logical consequence of the prolonged egg-laying period of the species, from late April until mid-July. The latest cohorts emerging from the eggs laid in mid-summer cannot reach the adult stage before the decreasing temperature slows their development and they enter the winter diapause as nymphs. The adults that develop from overwintered nymphs have a much shorter reproductive diapause, if any. Usually, they emerge as adults until the end of May, and presumably reproduce in JuneJuly. The latest date on which the author observed young, immature adults in early summer was 12 June (2022: Darány).
</paragraph>
</subSubSection>
<subSubSection id="79D26547591E934146D6FD2A910CE6DB" lastPageId="9" lastPageNumber="484" pageId="5" pageNumber="480" type="biology_ecology">
<paragraph id="317736CC591E934D46D6FD2A973EE284" blockId="5.[160,1081,680,706]" box="[160,1081,680,706]" pageId="5" pageNumber="480">
<heading id="6A3F81A0591E934D46D6FD2A973EE284" bold="true" box="[160,1081,680,706]" centered="true" fontSize="11" level="2" pageId="5" pageNumber="480" reason="3">
<emphasis id="03BCEADE591E934D46D6FD2A973EE284" bold="true" box="[160,1081,680,706]" italics="true" pageId="5" pageNumber="480">The seasonal occurrence of the full-winged and wing-mutilated macropters</emphasis>
</heading>
</paragraph>
<paragraph id="317736CC591E934D46D6FD5E92B4E3C6" blockId="5.[160,1156,732,1728]" pageId="5" pageNumber="480">
The seasonal occurrence of the full-winged and broken-winged macropters is shown in
<figureCitation id="A9F32A49591E934D46D6FD7D9225E35E" box="[160,290,767,792]" captionStart-0="Figure 4" captionStart-1="Figure 5" captionStart-2="Figure 6" captionStartId-0="6.[160,225,1482,1505]" captionStartId-1="7.[160,225,1386,1409]" captionStartId-2="8.[160,225,1460,1483]" captionTargetBox-0="[166,1150,144,1447]" captionTargetBox-1="[166,1149,145,1351]" captionTargetBox-2="[166,1149,145,1425]" captionTargetId-0="figure-3@6.[163,1153,142,1450]" captionTargetId-1="figure-63@7.[163,1153,142,1355]" captionTargetId-2="figure-3@8.[163,1153,142,1428]" captionTargetPageId-0="6" captionTargetPageId-1="7" captionTargetPageId-2="8" captionText-0="Figure 4. Seasonal change in the percentage of broken-winged male and female macropters at Darány in 2021. Numbers on the tops of the columns indicate the number of individuals examined. (All samples also contained a considerable percentage of brachypters which are not included in the figures)." captionText-1="Figure 5. Seasonal change in the percentage of broken-winged male and female macropters at Baranyahidvég in 2022. Numbers on the tops of the columns indicate the number of individuals examined. (All samples also contained a considerable percentage of brachypters which are not included in the figures)." captionText-2="Figure 6. Seasonal change in the percentage of broken-winged male and female macropters at Csörötnek in 20222. Numbers on the tops of the columns indicate the number of individuals examined. (All samples also contained a considerable percentage of brachypters which are not included in the figures)." figureDoi-0="http://doi.org/10.5281/zenodo.14798923" figureDoi-1="http://doi.org/10.5281/zenodo.14798925" figureDoi-2="http://doi.org/10.5281/zenodo.14798929" httpUri-0="https://zenodo.org/record/14798923/files/figure.png" httpUri-1="https://zenodo.org/record/14798925/files/figure.png" httpUri-2="https://zenodo.org/record/14798929/files/figure.png" pageId="5" pageNumber="480">Figures 46</figureCitation>
for the three best-sampled sites and years (
<figureCitation id="A9F32A49591E934D4560FD7D9074E35E" box="[790,883,767,792]" captionStart="Figure 4" captionStartId="6.[160,225,1482,1505]" captionTargetBox="[166,1150,144,1447]" captionTargetId="figure-3@6.[163,1153,142,1450]" captionTargetPageId="6" captionText="Figure 4. Seasonal change in the percentage of broken-winged male and female macropters at Darány in 2021. Numbers on the tops of the columns indicate the number of individuals examined. (All samples also contained a considerable percentage of brachypters which are not included in the figures)." figureDoi="http://doi.org/10.5281/zenodo.14798923" httpUri="https://zenodo.org/record/14798923/files/figure.png" pageId="5" pageNumber="480">Figure 4</figureCitation>
: Darány, 2021;
<figureCitation id="A9F32A49591E934D4257FD7D9779E35E" box="[1057,1150,767,792]" captionStart="Figure 5" captionStartId="7.[160,225,1386,1409]" captionTargetBox="[166,1149,145,1351]" captionTargetId="figure-63@7.[163,1153,142,1355]" captionTargetPageId="7" captionText="Figure 5. Seasonal change in the percentage of broken-winged male and female macropters at Baranyahidvég in 2022. Numbers on the tops of the columns indicate the number of individuals examined. (All samples also contained a considerable percentage of brachypters which are not included in the figures)." figureDoi="http://doi.org/10.5281/zenodo.14798925" httpUri="https://zenodo.org/record/14798925/files/figure.png" pageId="5" pageNumber="480">Figure 5</figureCitation>
: Baranyahidvég, 2022;
<figureCitation id="A9F32A49591E934D47E5FCA092EAE37D" box="[403,493,802,827]" captionStart="Figure 6" captionStartId="8.[160,225,1460,1483]" captionTargetBox="[166,1149,145,1425]" captionTargetId="figure-3@8.[163,1153,142,1428]" captionTargetPageId="8" captionText="Figure 6. Seasonal change in the percentage of broken-winged male and female macropters at Csörötnek in 20222. Numbers on the tops of the columns indicate the number of individuals examined. (All samples also contained a considerable percentage of brachypters which are not included in the figures)." figureDoi="http://doi.org/10.5281/zenodo.14798929" httpUri="https://zenodo.org/record/14798929/files/figure.png" pageId="5" pageNumber="480">Figure 6</figureCitation>
: Csörötnek, 2022). All populations contained a considerable number of brachypters, which are not shown on these diagrams. A very clear pattern can be seen in these figures.
</paragraph>
<paragraph id="317736CC591E934D46B6FC08901EE416" blockId="5.[160,1156,732,1728]" pageId="5" pageNumber="480">All macropterous adults keep their wings intact during the autumn and during hibernation. The very occasional occurrence of some broken-winged adults in autumn is probably due to accidents rather than autotomy. Apparently broken-winged adults start to appear in April, and from May to July almost all macropterous adults are broken winged. Broken-winged adults of the old generation disappear in July, and the full-winged new generation emerges in AugustSeptember.</paragraph>
<paragraph id="317736CC591E934D46B6FBD892BAE49D" blockId="5.[160,1156,732,1728]" pageId="5" pageNumber="480">No differences between sexes can be seen in these diagrams. However, the occasional full-winged individuals found in early and mid-summer are more likely to be males than females. As they represent only a small fraction of the observed populations, this fact might be non-significant.</paragraph>
<paragraph id="317736CC591E934D46B6FB6792D9E655" blockId="5.[160,1156,732,1728]" pageId="5" pageNumber="480">
Sporadic data from other, less systematically monitored populations (not presented here) corroborate the pattern seen in these diagrams. However, there is a remarkable exception: on
<date id="4576100C591E934D4737FAA892DEE505" box="[321,473,1322,1347]" pageId="5" pageNumber="480" value="2022-06-12">12 June 2022</date>
, a large percentage of full-winged macropters was observed in two populations: in Felsőszentmárton 5 of the 11 macropterous males (45%) and 7 of the 16 macropterous females (44%) collected were full winged. On the same day in a small, isolated
<taxonomicName id="F6C84D4F591E934D472AFA1092B5E5ED" baseAuthorityName="Gido and Lehoczky" baseAuthorityYear="2023" box="[348,434,1426,1451]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="5" pageNumber="480" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE591E934D472AFA1092B5E5ED" box="[348,434,1426,1451]" italics="true" pageId="5" pageNumber="480">Glyceria</emphasis>
</taxonomicName>
spot in Darány, 12 of the 21 macropterous males (57%) and 16 of the 36 macropterous females (44%) collected were full winged. These individuals probably were freshly emerged adults. In Darány one of them was visibly immature, with soft, yellowish cuticule.
</paragraph>
<paragraph id="317736CC591E934F46B6F99F91FFE61E" blockId="5.[160,1156,732,1728]" lastBlockId="7.[160,1155,1565,1728]" lastPageId="7" lastPageNumber="482" pageId="5" pageNumber="480">
The numbers of full-winged and broken-winged macropters available in the collection of the Hungarian Natural History Museum are shown in
<figureCitation id="A9F32A49591E934D4543F9BD9093E61E" box="[821,916,1599,1624]" captionStart="Figure 7" captionStartId="9.[160,225,926,949]" captionTargetBox="[165,1148,144,891]" captionTargetId="figure-195@9.[162,1152,142,894]" captionTargetPageId="9" captionText="Figure 7. Seasonal distribution of the full-winged and broken-winged macropters in the collection of the Hungarian Natural History Museum." figureDoi="http://doi.org/10.5281/zenodo.14798931" httpUri="https://zenodo.org/record/14798931/files/figure.png" pageId="5" pageNumber="480">Figure 7</figureCitation>
. They exhibit a very similar pattern, with one remarkable difference: both the appearance and the disappearance of the broken-winged macropters is delayed by approximately one month. It is very tempting to attribute this difference to climate change; however, caution is advisable as the sampling method was very different: random collections from all over the country rather than continuous monitoring of particular sites.
</paragraph>
<caption id="65B76644591D934E46D6FA4893F7E67F" ID-DOI="http://doi.org/10.5281/zenodo.14798923" ID-Zenodo-Dep="14798923" httpUri="https://zenodo.org/record/14798923/files/figure.png" pageId="6" pageNumber="481" startId="6.[160,225,1482,1505]" targetBox="[166,1150,144,1447]" targetPageId="6" targetType="figure">
<paragraph id="317736CC591D934E46D6FA4893F7E67F" blockId="6.[160,1156,1482,1593]" pageId="6" pageNumber="481">
<emphasis id="03BCEADE591D934E46D6FA4893F9E5A7" bold="true" box="[160,254,1482,1505]" pageId="6" pageNumber="481">Figure 4.</emphasis>
Seasonal change in the percentage of broken-winged male and female macropters at Darány in 2021. Numbers on the tops of the columns indicate the number of individuals examined. (All samples also contained a considerable percentage of brachypters which are not included in the figures).
</paragraph>
</caption>
<caption id="65B76644591C934F46D6FAE8928AE59F" ID-DOI="http://doi.org/10.5281/zenodo.14798925" ID-Zenodo-Dep="14798925" httpUri="https://zenodo.org/record/14798925/files/figure.png" pageId="7" pageNumber="482" startId="7.[160,225,1386,1409]" targetBox="[166,1149,145,1351]" targetPageId="7" targetType="figure">
<paragraph id="317736CC591C934F46D6FAE8928AE59F" blockId="7.[160,1156,1386,1497]" pageId="7" pageNumber="482">
<emphasis id="03BCEADE591C934F46D6FAE893F9E5C7" bold="true" box="[160,254,1386,1409]" pageId="7" pageNumber="482">Figure 5.</emphasis>
Seasonal change in the percentage of broken-winged male and female macropters at Baranyahidvég in 2022. Numbers on the tops of the columns indicate the number of individuals examined. (All samples also contained a considerable percentage of brachypters which are not included in the figures).
</paragraph>
</caption>
<paragraph id="317736CC591C934F46B6F9E0976EE686" blockId="7.[160,1155,1565,1728]" pageId="7" pageNumber="482">
Considering the photos of
<taxonomicName id="F6C84D4F591C934F4787F9E0915EE63D" box="[497,601,1634,1659]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="7" pageNumber="482" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591C934F4787F9E0915EE63D" box="[497,601,1634,1659]" italics="true" pageId="7" pageNumber="482">I. sabuleti</emphasis>
</taxonomicName>
uploaded to the iNaturalist website (www.inatur alist.org, date of the investigation:
<date id="4576100C591C934F4459F90791B9E6D8" box="[559,702,1669,1694]" pageId="7" pageNumber="482" value="2024-04-08">8 April 2024</date>
), broken-winged macropters have been captured between April and July, which is fully consistent with the authors own data.
</paragraph>
<caption id="65B766445913934046D6FA36928AE665" ID-DOI="http://doi.org/10.5281/zenodo.14798929" ID-Zenodo-Dep="14798929" httpUri="https://zenodo.org/record/14798929/files/figure.png" pageId="8" pageNumber="483" startId="8.[160,225,1460,1483]" targetBox="[166,1149,145,1425]" targetPageId="8" targetType="figure">
<paragraph id="317736CC5913934046D6FA36928AE665" blockId="8.[160,1156,1460,1571]" pageId="8" pageNumber="483">
<emphasis id="03BCEADE5913934046D6FA3693F9E58D" bold="true" box="[160,254,1460,1483]" pageId="8" pageNumber="483">Figure 6.</emphasis>
Seasonal change in the percentage of broken-winged male and female macropters at Csörötnek in 20222. Numbers on the tops of the columns indicate the number of individuals examined. (All samples also contained a considerable percentage of brachypters which are not included in the figures).
</paragraph>
</caption>
<caption id="65B766445912934146D6FC1C912CE394" ID-DOI="http://doi.org/10.5281/zenodo.14798931" ID-Zenodo-Dep="14798931" httpUri="https://zenodo.org/record/14798931/files/figure.png" pageId="9" pageNumber="484" startId="9.[160,225,926,949]" targetBox="[165,1148,144,891]" targetPageId="9" targetType="figure">
<paragraph id="317736CC5912934146D6FC1C912CE394" blockId="9.[160,1156,926,978]" pageId="9" pageNumber="484">
<emphasis id="03BCEADE5912934146D6FC1C93FDE3F3" bold="true" box="[160,250,926,949]" pageId="9" pageNumber="484">Figure 7.</emphasis>
Seasonal distribution of the full-winged and broken-winged macropters in the collection of the Hungarian Natural History Museum.
</paragraph>
</caption>
<paragraph id="317736CC5912934146D6FB8E9003E460" blockId="9.[160,772,1036,1062]" box="[160,772,1036,1062]" pageId="9" pageNumber="484">
<heading id="6A3F81A05912934146D6FB8E9003E460" bold="true" box="[160,772,1036,1062]" centered="true" fontSize="11" level="2" pageId="9" pageNumber="484" reason="3">
<emphasis id="03BCEADE5912934146D6FB8E9003E460" bold="true" box="[160,772,1036,1062]" pageId="9" pageNumber="484">
<emphasis id="03BCEADE5912934146D6FB8E9185E460" bold="true" box="[160,642,1036,1062]" italics="true" pageId="9" pageNumber="484">Direct observation of the mass flight of</emphasis>
<taxonomicName id="F6C84D4F5912934144FFFB8E9003E460" box="[649,772,1036,1062]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="9" pageNumber="484" phylum="Arthropoda" rank="species" species="sabuleti">I. sabuleti</taxonomicName>
</emphasis>
</heading>
</paragraph>
<paragraph id="317736CC5912934146D6FBC391D5E5D4" blockId="9.[160,1157,1089,1426]" pageId="9" pageNumber="484">
Mass flight of thousands of
<taxonomicName id="F6C84D4F591293414470FBC3917EE41C" box="[518,633,1089,1114]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="9" pageNumber="484" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591293414470FBC3917EE41C" box="[518,633,1089,1114]" italics="true" pageId="9" pageNumber="484">I. sabuleti</emphasis>
</taxonomicName>
macropters was observed directly by the author on
<date id="4576100C591293414769FBE69134E43B" box="[287,563,1124,1149]" pageId="9" pageNumber="484" value="2024-08-30" valueMax="2024-08-31" valueMin="2024-08-30">30 and 31 August 2024</date>
at Darány. The bugs migrated from the dried-out
<taxonomicName id="F6C84D4F5912934146D6FB0593FDE4E6" baseAuthorityName="Gido and Lehoczky" baseAuthorityYear="2023" box="[160,250,1159,1184]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="9" pageNumber="484" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE5912934146D6FB0593FDE4E6" box="[160,250,1159,1184]" italics="true" pageId="9" pageNumber="484">Glyceria</emphasis>
</taxonomicName>
stands to the persisting
<taxonomicName id="F6C84D4F591293414459FB05918EE4E6" baseAuthorityName="Gido and Lehoczky" baseAuthorityYear="2023" box="[559,649,1159,1184]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="9" pageNumber="484" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE591293414459FB05918EE4E6" box="[559,649,1159,1184]" italics="true" pageId="9" pageNumber="484">Glyceria</emphasis>
</taxonomicName>
stands on the northern part of the same dry lakebed. The mass flight started in the late afternoon around 4pm and lasted until around 6pm, when the shade of the nearby forest reached the
<taxonomicName id="F6C84D4F5912934145ACFB4E9733E4A3" baseAuthorityName="Gido and Lehoczky" baseAuthorityYear="2023" box="[986,1076,1228,1253]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="9" pageNumber="484" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE5912934145ACFB4E9733E4A3" box="[986,1076,1228,1253]" italics="true" pageId="9" pageNumber="484">Glyceria</emphasis>
</taxonomicName>
stand. The day experienced hot, sunny weather with temperatures well above 30°C, and without wind. The bugs kept flying low (not higher than
<quantity id="F6309B2959129341451FFA93909EE56C" box="[873,921,1297,1322]" metricMagnitude="0" metricUnit="m" metricValue="1.0" pageId="9" pageNumber="484" unit="m" value="1.0">1 m</quantity>
above the vegetation) and landed frequently on plants after flying several metres. The flight direction seemed to be orientated from south to north, according to the location of the already dry and still persisting
<taxonomicName id="F6C84D4F59129341446CFAFB9173E5D4" baseAuthorityName="Gido and Lehoczky" baseAuthorityYear="2023" box="[538,628,1401,1426]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="9" pageNumber="484" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE59129341446CFAFB9173E5D4" box="[538,628,1401,1426]" italics="true" pageId="9" pageNumber="484">Glyceria</emphasis>
</taxonomicName>
stands.
</paragraph>
<paragraph id="317736CC5912934146D6FA6590F0E647" blockId="9.[160,1015,1511,1537]" box="[160,1015,1511,1537]" pageId="9" pageNumber="484">
<heading id="6A3F81A05912934146D6FA6590F0E647" bold="true" box="[160,1015,1511,1537]" centered="true" fontSize="11" level="2" pageId="9" pageNumber="484" reason="3">
<emphasis id="03BCEADE5912934146D6FA6590F0E647" bold="true" box="[160,1015,1511,1537]" italics="true" pageId="9" pageNumber="484">Lack of a direct relationship between sexual behaviour and autotomy</emphasis>
</heading>
</paragraph>
<paragraph id="317736CC5912934146D6F99E910CE6DB" blockId="9.[160,1156,1564,1693]" pageId="9" pageNumber="484">Both brachypterous and macropterous individuals have been observed to copulate, so wing autotomy can either precede or follow the first copulation. According to the authors sporadic observations, macropters do not necessarily engage in autotomy behaviour directly after ending copulation.</paragraph>
</subSubSection>
<subSubSection id="79D265475911935A46D6FF0C914AE409" lastPageId="18" lastPageNumber="493" pageId="10" pageNumber="485" type="discussion">
<paragraph id="317736CC5911934246D6FF0C922CE0EF" blockId="10.[160,299,142,169]" box="[160,299,142,169]" pageId="10" pageNumber="485">
<heading id="6A3F81A05911934246D6FF0C922CE0EF" box="[160,299,142,169]" centered="true" fontSize="11" level="1" pageId="10" pageNumber="485" reason="1">
<emphasis id="03BCEADE5911934246D6FF0C922CE0EF" bold="true" box="[160,299,142,169]" pageId="10" pageNumber="485">Discussion</emphasis>
</heading>
</paragraph>
<paragraph id="317736CC5911934246D6FF4093E2E0B9" blockId="10.[160,1134,194,255]" pageId="10" pageNumber="485">
<emphasis id="03BCEADE5911934246D6FF4093E2E0B9" bold="true" italics="true" pageId="10" pageNumber="485">
<heading id="6A3F81A05911934246D6FF409769E09A" bold="true" box="[160,1134,194,220]" centered="true" fontSize="11" level="2" pageId="10" pageNumber="485" reason="3">
<taxonomicName id="F6C84D4F5911934246D6FF4092AEE09A" ID-CoL="3Q4YZ" box="[160,425,194,220]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="species" species="sabuleti">Ischnodemus sabuleti</taxonomicName>
: age-related accumulation of injuries, active autotomy or
</heading>
both?
</emphasis>
</paragraph>
<paragraph id="317736CC5911934246D6FE9890DCE175" blockId="10.[160,987,282,307]" box="[160,987,282,307]" pageId="10" pageNumber="485">At the present state of knowledge three possibilities must be considered:</paragraph>
<paragraph id="317736CC5911934246B6FEDD9751E1A6" blockId="10.[192,1155,351,480]" pageId="10" pageNumber="485">
(1) Most
<taxonomicName id="F6C84D4F59119342475BFEDD9119E13E" box="[301,542,351,376]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE59119342475BFEDD9119E13E" box="[301,542,351,376]" italics="true" pageId="10" pageNumber="485">Ischnodemus sabuleti</emphasis>
</taxonomicName>
individuals entering the reproductive age undergo partial de-alation simply due to the accumulation of natural wing injuries. Wing-cleaning behaviour is not exaggerated during the spring, but normal wing-cleaning behaviour may result in breaking off pieces from the already damaged wings.
</paragraph>
<paragraph id="317736CC5911934246D6FD8F926FE295" blockId="10.[160,1156,525,1382]" pageId="10" pageNumber="485">
According to
<bibRefCitation id="55594B3D59119342474DFD8F92D3E260" author="Honek A" box="[315,468,525,550]" pageId="10" pageNumber="485" pagination="1 - 22" refId="ref9601" refString="Honek A. 1976. Factors influencing the wing polymorphism in Pyrrhocoris apterus (Heteroptera: Phyrrhocoridae). Zool Jahrb Abt Syst Okol Geogr Tier. 103: 1-22." type="journal article" year="1976">Honêk (1976)</bibRefCitation>
, regarding macropters of the red firebug
<taxonomicName id="F6C84D4F5911934245C4FD8F924FE20E" authority="Linnaeus, 1758" authorityName="Linnaeus" authorityYear="1758" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE5911934245C4FD8F9784E260" box="[946,1155,525,550]" italics="true" pageId="10" pageNumber="485">Pyrrhocoris apterus</emphasis>
Linnaeus, 1758
</taxonomicName>
(
<taxonomicName id="F6C84D4F591193424720FDAD92FFE20E" authorityName="Amyot &amp; Audinet-Serville" authorityYear="1843" box="[342,504,559,584]" class="Insecta" family="Pyrrhocoridae" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="family">Pyrrhocoridae</taxonomicName>
), the membrane tends to break off after the gonads have become active. Interestingly enough, this is the only record of the natural, partial de-alation in the vast literature of the
<taxonomicName id="F6C84D4F591193424431FDF791B8E2C8" authorityName="Fallén" authorityYear="1814" box="[583,703,629,654]" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="genus">
<emphasis id="03BCEADE591193424431FDF791B8E2C8" box="[583,703,629,654]" italics="true" pageId="10" pageNumber="485">Pyrrhocoris</emphasis>
</taxonomicName>
wing dimorphism possibly a similar strange neglect as in the case of
<taxonomicName id="F6C84D4F59119342445CFD159192E2F6" box="[554,661,663,688]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE59119342445CFD159192E2F6" box="[554,661,663,688]" italics="true" pageId="10" pageNumber="485">I. sabuleti</emphasis>
</taxonomicName>
. Active autotomy is not mentioned in the case of
<taxonomicName id="F6C84D4F591193424680FD389265E295" authorityName="Linnaeus" authorityYear="1758" box="[246,354,698,723]" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE591193424680FD389265E295" box="[246,354,698,723]" italics="true" pageId="10" pageNumber="485">P. apterus</emphasis>
</taxonomicName>
.
</paragraph>
<paragraph id="317736CC5911934246B6FD5F93FCE318" blockId="10.[160,1156,525,1382]" pageId="10" pageNumber="485">To the authors knowledge, no similar phenomenon has been described in Heteroptera. It is certainly not common that the vast majority of a heteropteran population becomes de-alated and flightless simply due to ageing and natural injuries.</paragraph>
<paragraph id="317736CC5911934246B6FCE590C8E4FE" blockId="10.[160,1156,525,1382]" pageId="10" pageNumber="485">
<taxonomicName id="F6C84D4F5911934246B6FCE592ABE3C6" box="[192,428,871,896]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5911934246B6FCE592ABE3C6" box="[192,428,871,896]" italics="true" pageId="10" pageNumber="485">Ischnodemus sabuleti</emphasis>
</taxonomicName>
is not a keen and strong flyer (see above), so wing overuse by flying is not very likely. However,
<taxonomicName id="F6C84D4F59119342446CFC089003E3E5" box="[538,772,906,931]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE59119342446CFC089003E3E5" box="[538,772,906,931]" italics="true" pageId="10" pageNumber="485">Ischnodemus sabuleti</emphasis>
</taxonomicName>
lives and moves frequently in the restricted space of
<taxonomicName id="F6C84D4F591193424705FC2F92CEE380" baseAuthorityName="Gido and Lehoczky" baseAuthorityYear="2023" box="[371,457,941,966]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="10" pageNumber="485" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE591193424705FC2F92CEE380" box="[371,457,941,966]" italics="true" pageId="10" pageNumber="485">Glyceria</emphasis>
</taxonomicName>
leaf sheets, where natural wing injuries may be quite possible. It is even possible that the very high incidence of brachyptery in the
<taxonomicName id="F6C84D4F5911934245CBFC4D971AE3AE" authorityName="Stal" authorityYear="1862" box="[957,1053,975,1000]" class="Insecta" family="Blissidae" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="family">Blissidae</taxonomicName>
family is partly related to their adaptation to avoid unnecessary wing injuries when moving inside the leaf sheets. The low resilience of the forewing membranes of
<taxonomicName id="F6C84D4F5911934245EEFB979783E468" box="[920,1156,1045,1070]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5911934245EEFB979783E468" box="[920,1156,1045,1070]" italics="true" pageId="10" pageNumber="485">Ischnodemus sabuleti</emphasis>
</taxonomicName>
compared with the majority of heteropterans might be simply explained by the lack of selection pressure on keeping the flight ability during the reproductive phase (see the discussion of oogenesis-flight syndrome below). This is more likely to be the case for
<taxonomicName id="F6C84D4F5911934246D6FB1D9276E4FE" authorityName="Linnaeus" authorityYear="1758" box="[160,369,1183,1208]" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE5911934246D6FB1D9276E4FE" box="[160,369,1183,1208]" italics="true" pageId="10" pageNumber="485">Pyrrhocoris apterus</emphasis>
</taxonomicName>
, where macropters are non-fliers from the beginning.
</paragraph>
<paragraph id="317736CC5911934246B6FB40922AE520" blockId="10.[160,1156,525,1382]" pageId="10" pageNumber="485">
However, if the membranes of
<taxonomicName id="F6C84D4F59119342444CFB4091AEE49D" box="[570,681,1218,1243]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE59119342444CFB4091AEE49D" box="[570,681,1218,1243]" italics="true" pageId="10" pageNumber="485">I. sabuleti</emphasis>
</taxonomicName>
are so fragile, it is not easy to explain why the damage of wings is so rare during the late summer/autumn period when the bugs are very active, sometimes even taking flight. The only possible alternative to active autotomy is that the membranes lose their mechanical resilience during hibernation.
</paragraph>
<paragraph id="317736CC5911934346C9FA1091E1E0AB" blockId="10.[191,1156,1426,1694]" lastBlockId="11.[191,1156,143,411]" lastPageId="11" lastPageNumber="486" pageId="10" pageNumber="485">
(2) Most
<taxonomicName id="F6C84D4F591193424755FA10910AE5ED" box="[291,525,1426,1451]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="10" pageNumber="485" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591193424755FA10910AE5ED" box="[291,525,1426,1451]" italics="true" pageId="10" pageNumber="485">Ischnodemus sabuleti</emphasis>
</taxonomicName>
individuals become de-alated by active wing autotomy (practiced with the hind legs) during the spring, but the autotomy is triggered mainly by the irritation caused by natural wing injuries. Once initiated, the autotomy behaviour becomes self-triggering, due to the continuous irritation caused by new injuries, and so rapidly leads to the total destruction of the hemielytral membranes and hindwings. Without initial injuries the wing autotomy is not triggered, which might explain why not all individuals undergo wing autotomy. Other key factors (eg photoperiod or hormonal changes) might play a mediating role: it is possible that the autotomy behaviour is blocked prior to hibernation even if natural injuries do occur. Otherwise, it is hard to explain the absence of wing autotomy in the late summer/autumn period.
</paragraph>
<paragraph id="317736CC5910934346C9FF7591E5E1DD" blockId="11.[191,1156,143,411]" pageId="11" pageNumber="486">
(3) Most
<taxonomicName id="F6C84D4F591093434754FF75910CE156" box="[290,523,247,272]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591093434754FF75910CE156" box="[290,523,247,272]" italics="true" pageId="11" pageNumber="486">Ischnodemus sabuleti</emphasis>
</taxonomicName>
individuals become de-alated due to active wing autotomy (practiced with the hind legs) during the spring, even if their wings have no natural injuries. Wing autotomy is triggered by other factors such as photoperiod, host plant chemicals, hormonal changes, sex pheromones, etc.; the effect of natural wing injuries on wing autotomy is negligible.
</paragraph>
<paragraph id="317736CC5910934346D6FE459132E2F6" blockId="11.[160,1156,455,688]" pageId="11" pageNumber="486">
Although de-alation without autotomy is unlikely for several reasons, at the present state of knowledge it cannot be excluded without further targeted observations. The question whether initial natural wing injuries do or do not play a key role in the induction of the wing autotomy of
<taxonomicName id="F6C84D4F591093434703FDAD9167E20E" box="[373,608,559,584]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591093434703FDAD9167E20E" box="[373,608,559,584]" italics="true" pageId="11" pageNumber="486">Ischnodemus sabuleti</emphasis>
</taxonomicName>
is entirely open. From an evolutionary perspective, injury-induced wing autotomy might be the initial phase from which injury-independent wing autotomy might evolve. Targeted observations and experiments are required to answer these questions.
</paragraph>
<paragraph id="317736CC5910934346D6FD6F9097E36C" blockId="11.[160,1032,749,810]" pageId="11" pageNumber="486">
<emphasis id="03BCEADE5910934346D6FD6F9097E36C" bold="true" pageId="11" pageNumber="486">
<heading id="6A3F81A05910934346D6FD6F970FE341" bold="true" box="[160,1032,749,775]" centered="true" fontSize="11" level="2" pageId="11" pageNumber="486" reason="3">
<emphasis id="03BCEADE5910934346D6FD6F9131E341" bold="true" box="[160,566,749,775]" italics="true" pageId="11" pageNumber="486">The de-alation/wing autotomy of</emphasis>
<taxonomicName id="F6C84D4F591093434448FD6F9057E341" box="[574,848,749,775]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="species" species="sabuleti">Ischnodemus sabuleti</taxonomicName>
<emphasis id="03BCEADE59109343452EFD6F970FE341" bold="true" box="[856,1032,749,775]" italics="true" pageId="11" pageNumber="486">is probably an</emphasis>
</heading>
apomorphic, evolutionary primitive phenomenon/behaviour
</emphasis>
</paragraph>
<paragraph id="317736CC5910934346D6FCC791CBE468" blockId="11.[160,1156,837,1728]" pageId="11" pageNumber="486">
Wing autotomy is sporadically documented among true bugs (Heteroptera). According to the monograph of
<bibRefCitation id="55594B3D5910934347F4FCE5919EE3C6" author="Schuh RT &amp; Slater JA" box="[386,665,871,896]" pageId="11" pageNumber="486" refId="ref10164" refString="Schuh RT, Slater JA. 1995. True bugs of the World (Hemiptera, Heteroptera). Classification and natural history. Itacha &amp; London: Cornell University Press;." type="book" year="1995">Schuh and Slater (1995)</bibRefCitation>
, shedding of the wings is reported to be common in Enicocephalomorpha,
<taxonomicName id="F6C84D4F59109343444FFC0891C9E3E5" authorityName="Douglas &amp; Scott" authorityYear="1867" box="[569,718,906,931]" class="Insecta" family="Mesoveliidae" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="family">Mesoveliidae</taxonomicName>
and
<taxonomicName id="F6C84D4F591093434564FC089068E3E5" authorityName="Amyot &amp; Serville" authorityYear="1843" box="[786,879,906,931]" class="Insecta" family="Veliidae" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="family">Veliidae</taxonomicName>
, and to occur in some
<taxonomicName id="F6C84D4F5910934346D6FC2F9200E380" authorityName="Brullé" authorityYear="1836" box="[160,263,941,966]" class="Insecta" family="Aradidae" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="family">Aradidae</taxonomicName>
.
<bibRefCitation id="55594B3D591093434762FC2F92E9E380" author="Torre-Bueno JR" box="[276,494,941,966]" pageId="11" pageNumber="486" pagination="389 - 392" refId="ref10729" refString="Torre-Bueno JR. 1908. The broken hemelytra in certain Halobatinae. Ohio Naturalist. 9: 389-392." type="journal article" year="1908">Torre-Bueno (1908)</bibRefCitation>
describes the wing autotomy of some gerrid genera formerly grouped together as
<taxonomicName id="F6C84D4F59109343479AFC4D917FE3AE" box="[492,632,975,1000]" class="Insecta" family="Gerridae" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="subFamily" subFamily="Halobatinae">Halobatinae</taxonomicName>
:
<emphasis id="03BCEADE5910934344F1FC4D974BE3AE" box="[647,1100,975,1000]" italics="true" pageId="11" pageNumber="486">
<taxonomicName id="F6C84D4F5910934344F1FC4D9031E3AE" authorityName="Bergroth" authorityYear="1892" box="[647,822,975,1000]" class="Insecta" family="Gerridae" genus="Rheumatobates" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="genus">Rheumatobates</taxonomicName>
,
<taxonomicName id="F6C84D4F591093434530FC4D90C3E3AE" authorityName="Uhler" authorityYear="1871" box="[838,964,975,1000]" class="Insecta" family="Gerridae" genus="Metrobates" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="genus">Metrobates</taxonomicName>
,
<taxonomicName id="F6C84D4F5910934345A5FC4D974BE3AE" authorityName="Uhler" authorityYear="1883" box="[979,1100,975,1000]" class="Insecta" family="Gerridae" genus="Trepobates" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="genus">Trepobates</taxonomicName>
</emphasis>
and
<taxonomicName id="F6C84D4F5910934346D6FC709230E44D" box="[160,311,1010,1035]" class="Insecta" family="Gerridae" genus="Trepobatopsis" higherTaxonomySource="GBIF,CoL" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="genus">
<emphasis id="03BCEADE5910934346D6FC709230E44D" box="[160,311,1010,1035]" italics="true" pageId="11" pageNumber="486">Trepobatopsis</emphasis>
</taxonomicName>
. To the authors knowledge, no comprehensive work mentions any case of wing autotomy in the superfamily
<taxonomicName id="F6C84D4F591093434433FB9791CFE468" authorityName="Henry &amp; Froeschner" authorityYear="1988" box="[581,712,1045,1070]" pageId="11" pageNumber="486" rank="superFamily" superFamily="Lygaeoidea">Lygaeoidea</taxonomicName>
.
</paragraph>
<paragraph id="317736CC5910934346B6FBB59237E520" blockId="11.[160,1156,837,1728]" pageId="11" pageNumber="486">
The above-mentioned families represent distant heteropteran lineages (
<bibRefCitation id="55594B3D591093434250FBB593D0E435" author="Li M &amp; Tian Y &amp; Zhao Y &amp; Bu W" pageId="11" pageNumber="486" refId="ref9837" refString="Li M, Tian Y, Zhao Y, Bu W. 2012. Higher level phylogeny and the first divergence time estimation of Heteroptera (Insecta: Hemiptera) based on multiple genes. PLOS ONE. 7 (2): e 32152. doi: 10.1371 / journal. pone. 0032152." type="journal volume" year="2012">
Li
<emphasis id="03BCEADE591093434231FBB5977AE416" box="[1095,1149,1079,1104]" italics="true" pageId="11" pageNumber="486">et al</emphasis>
. 2012
</bibRefCitation>
;
<bibRefCitation id="55594B3D59109343469FFBD892AAE435" author="Song N &amp; Wang MM &amp; Huang WC &amp; Wu ZY &amp; Shao R &amp; Yin XM" box="[233,429,1114,1139]" pageId="11" pageNumber="486" refId="ref10544" refString="Song N, Wang MM, Huang WC, Wu ZY, Shao R, Yin XM. 2024. Phylogeny and evolution of hemipteran insects based on expanded genomic and transcriptomic data. BMC Biol. 22: 190. doi: 10. 1186 / s 12915 - 024 - 01991 - 1." type="journal volume" year="2024">
Song
<emphasis id="03BCEADE591093434759FBD89263E435" box="[303,356,1114,1139]" italics="true" pageId="11" pageNumber="486">et al</emphasis>
. 2024
</bibRefCitation>
). Enicocephalomorpha is a separate infraorder although it is related to the infraorder
<taxonomicName id="F6C84D4F5910934347BCFBFF9030E4D0" authority="(Song et al. 2024)" baseAuthorityName="Song" baseAuthorityYear="2024" box="[458,823,1149,1174]" class="Insecta" infraOrder="Gerromopha" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="infraOrder">
Gerromopha (
<bibRefCitation id="55594B3D59109343441DFBFF9029E4D0" author="Song N &amp; Wang MM &amp; Huang WC &amp; Wu ZY &amp; Shao R &amp; Yin XM" box="[619,814,1149,1174]" pageId="11" pageNumber="486" refId="ref10544" refString="Song N, Wang MM, Huang WC, Wu ZY, Shao R, Yin XM. 2024. Phylogeny and evolution of hemipteran insects based on expanded genomic and transcriptomic data. BMC Biol. 22: 190. doi: 10. 1186 / s 12915 - 024 - 01991 - 1." type="journal volume" year="2024">
Song
<emphasis id="03BCEADE5910934344C4FBFF91E1E4D0" box="[690,742,1149,1174]" italics="true" pageId="11" pageNumber="486">et al</emphasis>
. 2024
</bibRefCitation>
)
</taxonomicName>
.
<taxonomicName id="F6C84D4F591093434531FBFF90D9E4D0" authorityName="Douglas &amp; Scott" authorityYear="1867" box="[839,990,1149,1174]" class="Insecta" family="Mesoveliidae" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="family">Mesoveliidae</taxonomicName>
,
<taxonomicName id="F6C84D4F59109343459AFBFF974AE4D0" authorityName="Leach" authorityYear="1815" box="[1004,1101,1149,1174]" class="Insecta" family="Gerridae" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="family">Gerridae</taxonomicName>
and Veliidae belong to infraorder
<taxonomicName id="F6C84D4F59109343478DFB1D918CE4FE" box="[507,651,1183,1208]" class="Insecta" infraOrder="Gerromopha" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="infraOrder">Gerromopha</taxonomicName>
while
<taxonomicName id="F6C84D4F5910934344A1FB1D9047E4FE" authorityName="Brullé" authorityYear="1836" box="[727,832,1183,1208]" class="Insecta" family="Aradidae" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="family">Aradidae</taxonomicName>
,
<taxonomicName id="F6C84D4F59109343453CFB1D90ACE4FE" authorityName="Stal" authorityYear="1862" box="[842,939,1183,1208]" class="Insecta" family="Blissidae" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="family">Blissidae</taxonomicName>
and
<taxonomicName id="F6C84D4F591093434592FB1D9784E4FE" authorityName="Amyot &amp; Audinet-Serville" authorityYear="1843" box="[996,1155,1183,1208]" class="Insecta" family="Pyrrhocoridae" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="family">Pyrrhocoridae</taxonomicName>
belong to three separate superfamilies within the infraorder
<taxonomicName id="F6C84D4F591093434503FB40972DE49D" box="[885,1066,1218,1243]" class="Insecta" infraOrder="Pentatomorpha" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="infraOrder">Pentatomorpha</taxonomicName>
. Within the Gerromorpha,
<taxonomicName id="F6C84D4F59109343470DFB6792DBE4B8" authorityName="Leach" authorityYear="1815" box="[379,476,1253,1278]" class="Insecta" family="Gerridae" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="family">Gerridae</taxonomicName>
and Veliidae are closely related (Veliidae is not monophyletic) while
<taxonomicName id="F6C84D4F591093434723FA8592EDE566" authorityName="Douglas &amp; Scott" authorityYear="1867" box="[341,490,1287,1312]" class="Insecta" family="Mesoveliidae" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="family">Mesoveliidae</taxonomicName>
represents a more distant lineage (
<bibRefCitation id="55594B3D5910934345E7FA859772E566" author="Armisen D &amp; Viala S &amp; Cordeiro IDRS &amp; Crumiere AJJ &amp; Hendaoui E &amp; Le Bouquin A &amp; Duchemin W &amp; Santos E &amp; Toubiana W &amp; Vargas-Lowman A" box="[913,1141,1287,1312]" pageId="11" pageNumber="486" refId="ref8745" refString="Armisen D, Viala S, Cordeiro IDRS, Crumiere AJJ, Hendaoui E, Le Bouquin A, Duchemin W, Santos E, Toubiana W, Vargas-Lowman A, et al. 2022. Transcriptome-based phylogeny of the semi-aquatic bugs (Hemiptera: Heteroptera: Gerromorpha) reveals patterns of lineage expansion in a series of new adaptive zones. Mol Biol Evol. 39 (11): msac 229. doi:10.1093/molbev/msac229." type="journal volume" year="2022">
Armisén
<emphasis id="03BCEADE59109343458DFA859729E566" box="[1019,1070,1287,1312]" italics="true" pageId="11" pageNumber="486">et al</emphasis>
. 2022
</bibRefCitation>
). These facts indicate that wing autotomy appeared several times independently among Heteroptera.
</paragraph>
<paragraph id="317736CC5910934346B6FAED9145E670" blockId="11.[160,1156,837,1728]" pageId="11" pageNumber="486">
Wherever the autotomy process has been directly observed
<taxonomicName id="F6C84D4F5910934345CCFAED92B9E5ED" authority="(Herrich-Schaeffer, 1847)" baseAuthorityName="Herrich-Schaeffer" baseAuthorityYear="1847" class="Insecta" family="Gerridae" genus="Trepobates" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="species" species="pictus">
<emphasis id="03BCEADE5910934345CCFAED9783E5CE" box="[954,1156,1391,1416]" italics="true" pageId="11" pageNumber="486">Trepobates pictus</emphasis>
(Herrich-Schaeffer, 1847)
</taxonomicName>
:
<bibRefCitation id="55594B3D5910934347BBFA1091AAE5ED" author="Torre-Bueno JR" box="[461,685,1426,1451]" pageId="11" pageNumber="486" pagination="389 - 392" refId="ref10729" refString="Torre-Bueno JR. 1908. The broken hemelytra in certain Halobatinae. Ohio Naturalist. 9: 389-392." type="journal article" year="1908">Torre-Bueno (1908)</bibRefCitation>
;
<taxonomicName id="F6C84D4F5910934344CBFA10906FE5ED" box="[701,872,1426,1451]" class="Insecta" family="Mesoveliidae" genus="Mesovelia" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="species" species="undetermined">
<emphasis id="03BCEADE5910934344CBFA10902EE5ED" box="[701,809,1426,1451]" italics="true" pageId="11" pageNumber="486">Mesovelia</emphasis>
spp.
</taxonomicName>
:
<bibRefCitation id="55594B3D591093434500FA1093E1E588" author="Kanyukova EV &amp; Egorov AB" pageId="11" pageNumber="486" pagination="458 - 468" refId="ref9791" refString="Kanyukova EV, Egorov AB. 2022. New data on Mesovelia egorovi Kanyukova, 1981 (Hemiptera, Heteroptera: Mesoveliidae) from the Far Eastern Estuaries. Entmol Rev. 102: 458-468. doi: 10. 1134 / S 0013873822040042" type="journal article" year="2022">Kanyukova and Egorov (2022)</bibRefCitation>
the wings are shredded with the hind legs, as described here for
<taxonomicName id="F6C84D4F591093434593FA37974AE588" box="[997,1101,1461,1486]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591093434593FA37974AE588" box="[997,1101,1461,1486]" italics="true" pageId="11" pageNumber="486">I. sabuleti</emphasis>
</taxonomicName>
. The author suggests that the autotomy behaviour of the true bugs evolved several times independently, but that in each case it developed from the normal, widespread wing-cleaning behaviour of heteropterans.
</paragraph>
<paragraph id="317736CC5910934346B6F9BD911AE686" blockId="11.[160,1156,837,1728]" pageId="11" pageNumber="486">
Wing autotomy is fairly frequent in Gerromorpha (
<bibRefCitation id="55594B3D59109343449CF9BD90B3E61E" author="Torre-Bueno JR" box="[746,948,1599,1624]" pageId="11" pageNumber="486" pagination="389 - 392" refId="ref10729" refString="Torre-Bueno JR. 1908. The broken hemelytra in certain Halobatinae. Ohio Naturalist. 9: 389-392." type="journal article" year="1908">Torre-Bueno 1908</bibRefCitation>
;
<bibRefCitation id="55594B3D5910934345C9F9BD9779E61E" author="Hungerford HB" box="[959,1150,1599,1624]" pageId="11" pageNumber="486" pagination="3 - 328" refId="ref9634" refString="Hungerford HB. 1919. The biology and ecology of aquatic and semiaquatic Hemiptera. Bull. 11: 3-328." type="journal article" year="1919">Hungerford 1919</bibRefCitation>
;
<bibRefCitation id="55594B3D5910934346D6F9E0922CE63D" author="Jordan KHC" box="[160,299,1634,1659]" pageId="11" pageNumber="486" pagination="205 - 209" refId="ref9674" refString="Jordan KHC. 1951. Autotomie bei Mesovelia furcata Mls. R. (Hem. Het. Mesoveliidae). Zool Anz. 147: 205-209." type="journal article" year="1951">
<collectingCountry id="49DF765C5910934346D6F9E093EBE63D" box="[160,236,1634,1659]" name="Jordan" pageId="11" pageNumber="486">Jordan</collectingCountry>
1951
</bibRefCitation>
;
<bibRefCitation id="55594B3D59109343474FF9E092BDE63D" author="Zettel H" box="[313,442,1634,1659]" pageId="11" pageNumber="486" pagination="83 - 86" refId="ref10830" refString="Zettel H. 2008. The unknown brachypterous morph of Polhemovelia Zettel &amp; Sehnal, 2000 (Insecta: Heteroptera: Veliidae). Ann Naturhist Mus Wien. 109 B: 83-86." type="journal article" year="2008">Zettel 2008</bibRefCitation>
;
<bibRefCitation id="55594B3D5910934347B1F9E0900CE63D" author="Kanyukova EV &amp; Egorov AB" box="[455,779,1634,1659]" pageId="11" pageNumber="486" pagination="458 - 468" refId="ref9791" refString="Kanyukova EV, Egorov AB. 2022. New data on Mesovelia egorovi Kanyukova, 1981 (Hemiptera, Heteroptera: Mesoveliidae) from the Far Eastern Estuaries. Entmol Rev. 102: 458-468. doi: 10. 1134 / S 0013873822040042" type="journal article" year="2022">Kanyukova and Egorov 2022</bibRefCitation>
). Within the
<taxonomicName id="F6C84D4F5910934345D6F9E09707E63D" authorityName="Leach" authorityYear="1815" box="[928,1024,1634,1659]" class="Insecta" family="Gerridae" kingdom="Animalia" order="Hemiptera" pageId="11" pageNumber="486" phylum="Arthropoda" rank="family">Gerridae</taxonomicName>
+ Veliidae lineage the degree of the autotomy (the place where the wings are broken off) is known to be group specific (
<bibRefCitation id="55594B3D5910934347F9F9259116E686" author="Zettel H" box="[399,529,1703,1728]" pageId="11" pageNumber="486" pagination="83 - 86" refId="ref10830" refString="Zettel H. 2008. The unknown brachypterous morph of Polhemovelia Zettel &amp; Sehnal, 2000 (Insecta: Heteroptera: Veliidae). Ann Naturhist Mus Wien. 109 B: 83-86." type="journal article" year="2008">Zettel 2008</bibRefCitation>
).
</paragraph>
<paragraph id="317736CC5917934446B6FF0C905AE0AB" blockId="12.[160,1156,142,1207]" pageId="12" pageNumber="487">
Less is known about the wing autotomy of the Enicocephalomorpha (
<bibRefCitation id="55594B3D5917934445ACFF0C9241E08C" author="Fernandes JAM &amp; Weirauch C" pageId="12" pageNumber="487" pagination="91 - 98" refId="ref9254" refString="Fernandes JAM, Weirauch C. 2015. The unique-headed bugs (Enicocephalomorpha). In: Panizzi AR, Grazia J, editors. True bugs (Heteroptera) of the neotropics, Entomology in focus 2. Dordrecht: Springer Science + Business Media Dordrecht; p. 91-98. doi:10.1007/978-94-017-9861-7." type="book chapter" year="2015">Fernandes and Weirauch 2015</bibRefCitation>
) and
<taxonomicName id="F6C84D4F5917934447F5FF3392EDE08C" authorityName="Brullé" authorityYear="1836" box="[387,490,177,202]" class="Insecta" family="Aradidae" kingdom="Animalia" order="Hemiptera" pageId="12" pageNumber="487" phylum="Arthropoda" rank="family">Aradidae</taxonomicName>
, and the author could not find any relevant articles; they are probably hidden in the sea of specific taxonomic descriptions.
</paragraph>
<paragraph id="317736CC5917934446B6FF749140E199" blockId="12.[160,1156,142,1207]" pageId="12" pageNumber="487">
Further research is desperately needed to assess how often de-alation/wing autotomy occurs among other
<taxonomicName id="F6C84D4F5917934447F0FE9B914DE174" box="[390,586,281,306]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="12" pageNumber="487" phylum="Arthropoda" rank="species" species="undetermined">
<emphasis id="03BCEADE5917934447F0FE9B9114E174" box="[390,531,281,306]" italics="true" pageId="12" pageNumber="487">Ischnodemus</emphasis>
spp.
</taxonomicName>
and among other blissid genera. As the de-alation/ wing autotomy of
<taxonomicName id="F6C84D4F591793444707FEBE92DFE113" box="[369,472,316,341]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="12" pageNumber="487" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591793444707FEBE92DFE113" box="[369,472,316,341]" italics="true" pageId="12" pageNumber="487">I. sabuleti</emphasis>
</taxonomicName>
has been overlooked for so long, even great surprises might occur. If this behaviour is indeed restricted to a single or only to a few species within
<taxonomicName id="F6C84D4F5917934446D6FE039205E1DC" authorityName="Stal" authorityYear="1862" box="[160,258,385,410]" class="Insecta" family="Blissidae" kingdom="Animalia" order="Hemiptera" pageId="12" pageNumber="487" phylum="Arthropoda" rank="family">Blissidae</taxonomicName>
, that would mean it is very probably an apomorphic, evolutionarily novel character. It would be also interesting to know whether wing autotomy occurs in any other family of the superfamily
<taxonomicName id="F6C84D4F5917934447B6FE449144E199" authorityName="Henry &amp; Froeschner" authorityYear="1988" box="[448,579,454,479]" pageId="12" pageNumber="487" rank="superFamily" superFamily="Lygaeoidea">Lygaeoidea</taxonomicName>
.
</paragraph>
<paragraph id="317736CC5917934446B6FE6B9265E294" blockId="12.[160,1156,142,1207]" pageId="12" pageNumber="487">
Also, further research is needed to determine whether there is any difference among the
<taxonomicName id="F6C84D4F5917934446BAFD8E9234E263" box="[204,307,524,549]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="12" pageNumber="487" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5917934446BAFD8E9234E263" box="[204,307,524,549]" italics="true" pageId="12" pageNumber="487">I. sabuleti</emphasis>
</taxonomicName>
populations in the ratio of the macropters practicing wing autotomy. As no wide-ranging investigations have been carried out, it is possible that in some populations wing autotomy is not as universal as in the studied Hungarian populations. Some photos on the Internet taken in mid-summer showing full-winged
<taxonomicName id="F6C84D4F591793444530FDF690B7E2CB" box="[838,944,628,653]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="12" pageNumber="487" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591793444530FDF690B7E2CB" box="[838,944,628,653]" italics="true" pageId="12" pageNumber="487">I. sabuleti</emphasis>
</taxonomicName>
macropters corroborate this possibility. Populations on the borders of the species distribution area merit special attention.
</paragraph>
<paragraph id="317736CC5917934446B6FD5E9230E3E4" blockId="12.[160,1156,142,1207]" pageId="12" pageNumber="487">
The primitive characters of the
<taxonomicName id="F6C84D4F59179344445AFD5E9192E2B3" box="[556,661,732,757]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="12" pageNumber="487" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE59179344445AFD5E9192E2B3" box="[556,661,732,757]" italics="true" pageId="12" pageNumber="487">I. sabuleti</emphasis>
</taxonomicName>
autotomy also indicate that it is a relatively new, perhaps still evolving behaviour. The timing of the autotomy is not fixed in relation to the first copulation or oviposition. The irregular breaking line of the membrane and the similarly irregular hindwing damage is also a primitive character, as opposed to the preformed breaking line present on the membrane of
<taxonomicName id="F6C84D4F591793444551FCE4970BE339" box="[807,1036,870,895]" class="Insecta" family="Gerridae" genus="Rheumatobates" kingdom="Animalia" order="Hemiptera" pageId="12" pageNumber="487" phylum="Arthropoda" rank="species" species="undetermined">
<emphasis id="03BCEADE591793444551FCE490D6E339" box="[807,977,870,895]" italics="true" pageId="12" pageNumber="487">Rheumatobates</emphasis>
spp.
</taxonomicName>
(
<taxonomicName id="F6C84D4F59179344426AFCE49787E339" authorityName="Leach" authorityYear="1815" box="[1052,1152,870,895]" class="Insecta" family="Gerridae" kingdom="Animalia" order="Hemiptera" pageId="12" pageNumber="487" phylum="Arthropoda" rank="family">Gerridae</taxonomicName>
,
<bibRefCitation id="55594B3D5917934446D6FC0B922DE3E4" author="Jordan KHC" box="[160,298,905,930]" pageId="12" pageNumber="487" pagination="205 - 209" refId="ref9674" refString="Jordan KHC. 1951. Autotomie bei Mesovelia furcata Mls. R. (Hem. Het. Mesoveliidae). Zool Anz. 147: 205-209." type="journal article" year="1951">
<collectingCountry id="49DF765C5917934446D6FC0B93EBE3E4" box="[160,236,905,930]" name="Jordan" pageId="12" pageNumber="487">Jordan</collectingCountry>
1951
</bibRefCitation>
).
</paragraph>
<paragraph id="317736CC5917934446B6FC2E9239E4F1" blockId="12.[160,1156,142,1207]" pageId="12" pageNumber="487">
<taxonomicName id="F6C84D4F5917934446B6FC2E92A8E383" box="[192,431,940,965]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="12" pageNumber="487" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5917934446B6FC2E92A8E383" box="[192,431,940,965]" italics="true" pageId="12" pageNumber="487">Ischnodemus sabuleti</emphasis>
</taxonomicName>
may be a good model species to study the mechanism and evolution of heteropteran wing autotomy. It is a common species and has a large geographical distribution, and in many populations macropters are fairly abundant. Only its feeding and hiding habits present some inconvenience for observers and experimenters in both the field and the laboratory. In captivity, fresh
<taxonomicName id="F6C84D4F591793444501FBB490CAE409" baseAuthorityName="Gido and Lehoczky" baseAuthorityYear="2023" box="[887,973,1078,1103]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="12" pageNumber="487" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE591793444501FBB490CAE409" box="[887,973,1078,1103]" italics="true" pageId="12" pageNumber="487">Glyceria</emphasis>
</taxonomicName>
pieces must be given to the bugs every 34 days, and their propensity to hide complicates direct observation. However, these inconveniences can be solved with proper equipment and methodology.
</paragraph>
<paragraph id="317736CC5917934446D6FB7792D0E574" blockId="12.[160,1137,1269,1330]" pageId="12" pageNumber="487">
<emphasis id="03BCEADE5917934446D6FB7792D0E574" bold="true" italics="true" pageId="12" pageNumber="487">
<heading id="6A3F81A05917934446D6FB779776E549" bold="true" box="[160,1137,1269,1295]" centered="true" fontSize="11" level="2" pageId="12" pageNumber="487" reason="3">Heteropteran de-alation/wing autotomy and wing dimorphism: a new aspect of</heading>
the migratory syndrome
</emphasis>
</paragraph>
<paragraph id="317736CC5917934446D6FACF9129E686" blockId="12.[160,1156,1357,1728]" pageId="12" pageNumber="487">
Most (if not all!) known cases of heteropteran wing autotomy (with the possible exception of the Enicocephalomorha and
<taxonomicName id="F6C84D4F591793444464FAED917FE5CE" authorityName="Brullé" authorityYear="1836" box="[530,632,1391,1416]" class="Insecta" family="Aradidae" kingdom="Animalia" order="Hemiptera" pageId="12" pageNumber="487" phylum="Arthropoda" rank="family">Aradidae</taxonomicName>
) are shown by macropterous morphs of the wing-dimorphic species. For the wing autotomy in the infraorder
<taxonomicName id="F6C84D4F5917934445ECFA10970FE5ED" box="[922,1032,1426,1451]" infraOrder="Gerroidea" pageId="12" pageNumber="487" rank="infraOrder">Gerroidea</taxonomicName>
this statement has been confirmed by H. Zettel (pers. comm.). D. Fairbairn formulated the so-called migratory syndrome hypothesis for the gerrid bugs, which states that different aspects of the dispersal ability are strongly correlated with each other (
<bibRefCitation id="55594B3D59179344452FFA789779E655" author="Fairbairn DJ &amp; Butler TC" box="[857,1150,1530,1555]" pageId="12" pageNumber="487" pagination="131 - 142" refId="ref9155" refString="Fairbairn DJ, Butler TC. 1990. Correlated traits for migration in the Gerridae (Hemiptera, Heteroptera): a field test. Ecol Entomol. 15: 131-142. doi:10.1111/j.1365-2311.1990.tb00794.x" type="journal article" year="1990">Fairbairn and Butler 1990</bibRefCitation>
;
<bibRefCitation id="55594B3D5917934446D6F99F9245E670" author="Fairbairn DJ" box="[160,322,1565,1590]" pageId="12" pageNumber="487" pagination="157 - 163" refId="ref9113" refString="Fairbairn DJ. 1994. Wing dimorphism and the migratory syndrome: correlated traits for migratory tendency in wing dimorphic insects. Res Popul Ecol. 36 (2): 157-163. doi:10.1007/BF02514931." type="journal article" year="1994">Fairbairn 1994</bibRefCitation>
;
<bibRefCitation id="55594B3D591793444739F99F91AFE670" author="Fairbairn DJ &amp; Desranleau L" box="[335,680,1565,1590]" pageId="12" pageNumber="487" pagination="13 - 24" refId="ref9203" refString="Fairbairn DJ, Desranleau L. 2008. Flight threshold, wing muscle histolysis, and alary polymorphism: correlated traits for dispersal tendency in the Gerridae. Ecol Entomol. 12: 13-24. doi:10.1111/j. 1365 - 2311.1987. tb 00980. x" type="journal article" year="2008">Fairbairn and Desranleau 2008</bibRefCitation>
). Monomorphic macropterous gerrid species are more willing to take flight than macropters of the wing-dimorphic species and less often histolyse their flight muscles.
<bibRefCitation id="55594B3D591793444416F9E09005E63D" author="Matalin AV" box="[608,770,1634,1659]" pageId="12" pageNumber="487" pagination="311 - 319" refId="ref9893" refString="Matalin AV. 2003. Variations in flight ability with sex and age in ground beetles (Coleoptera, Carabidae) of south-western Moldova. Pedobiologia. 47: 311-319. doi:10.1078/0031-4056-00195" type="journal article" year="2003">Matalin (2003)</bibRefCitation>
demonstrated that monomorphic macropterous species of the ground beetles (
<taxonomicName id="F6C84D4F5917934444ECF9079009E6D8" authorityName="Latreille" authorityYear="1802" box="[666,782,1669,1694]" class="Insecta" family="Carabidae" kingdom="Animalia" order="Coleoptera" pageId="12" pageNumber="487" phylum="Arthropoda" rank="family">Carabidae</taxonomicName>
) are stronger flyers than macropters of the wing-dimorphic species.
</paragraph>
<paragraph id="317736CC5916934546B6FF0C921FE174" blockId="13.[160,1156,142,445]" pageId="13" pageNumber="488">
A new aspect of the migratory syndrome is presented here as a hypothesis: macropters of the wing-dimorphic heteropterans are much more likely to practice wing autotomy than monomorphic macropterous species. However, more detailed study is needed (including of the Enicocephalomorpha and
<taxonomicName id="F6C84D4F5916934544D1FF749008E149" authorityName="Brullé" authorityYear="1836" box="[679,783,246,271]" class="Insecta" family="Aradidae" kingdom="Animalia" order="Hemiptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="family">Aradidae</taxonomicName>
) to confirm the validity of this statement.
</paragraph>
<paragraph id="317736CC5916934546B6FEBE971BE1FB" blockId="13.[160,1156,142,445]" pageId="13" pageNumber="488">
It is important to emphasise that the relationship between wing dimorphism and wing autotomy does not apply to all insect groups: for example, in crickets (
<taxonomicName id="F6C84D4F591693454591FEDC974AE131" authorityName="Laicharting" authorityYear="1781" box="[999,1101,350,375]" class="Insecta" family="Gryllidae" kingdom="Animalia" order="Orthoptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="family">Gryllidae</taxonomicName>
) the autotomy of the hindwings is also practiced by some monomorphic macropterous species such as
<taxonomicName id="F6C84D4F591693454725FE2691F8E1FB" authority="(Chopard, 1961)" baseAuthorityName="Chopard" baseAuthorityYear="1961" box="[339,767,420,445]" class="Insecta" family="Gryllidae" genus="Svercacheta" kingdom="Animalia" order="Orthoptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="siamensis">
<emphasis id="03BCEADE591693454725FE269142E1FB" box="[339,581,420,445]" italics="true" pageId="13" pageNumber="488">Svercacheta siamensis</emphasis>
(Chopard, 1961)
</taxonomicName>
(S. Tanaka, pers. comm.).
</paragraph>
<paragraph id="317736CC5916934546D6FE7890B0E252" blockId="13.[160,951,506,532]" box="[160,951,506,532]" pageId="13" pageNumber="488">
<heading id="6A3F81A05916934546D6FE7890B0E252" bold="true" box="[160,951,506,532]" centered="true" fontSize="11" level="2" pageId="13" pageNumber="488" reason="3">
<emphasis id="03BCEADE5916934546D6FE7890B0E252" bold="true" box="[160,951,506,532]" pageId="13" pageNumber="488">
<emphasis id="03BCEADE5916934546D6FE789170E252" bold="true" box="[160,631,506,532]" italics="true" pageId="13" pageNumber="488">Wing autotomy and the seasonality of</emphasis>
<taxonomicName id="F6C84D4F591693454409FE7891FDE252" box="[639,762,506,532]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="sabuleti">I. sabuleti</taxonomicName>
<emphasis id="03BCEADE591693454574FE7890B0E252" bold="true" box="[770,951,506,532]" italics="true" pageId="13" pageNumber="488">dispersal flight</emphasis>
</emphasis>
</heading>
</paragraph>
<paragraph id="317736CC5916934546D6FDAD90D1E3E5" blockId="13.[160,1156,559,1728]" pageId="13" pageNumber="488">
The seasonal aspect of
<taxonomicName id="F6C84D4F5916934547C5FDAD9119E20E" box="[435,542,559,584]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5916934547C5FDAD9119E20E" box="[435,542,559,584]" italics="true" pageId="13" pageNumber="488">I. sabuleti</emphasis>
</taxonomicName>
s de-alation/wing autotomy fits within a well-known tendency. In many insect species the adult life is divided into a pre-reproductive dispersing stage and a subsequent reproductive, non-dispersing stage (
<bibRefCitation id="55594B3D5916934545FDFDF7972DE2C8" author="Johnson CG" box="[907,1066,629,654]" pageId="13" pageNumber="488" refId="ref9657" refString="Johnson CG. 1969. Migration and dispersal of insects by flight. London: Methuen." type="book" year="1969">Johnson 1969</bibRefCitation>
). Older, reproductive adults often histolyse their flight muscles, becoming flightless, to obtain proteins for gonad development. Known heteropteran examples of this so-called oogenesis-flight syndrome include gerrids (
<bibRefCitation id="55594B3D591693454430FD5E905BE2B3" author="Kaitala A &amp; Hulden L" box="[582,860,732,757]" pageId="13" pageNumber="488" pagination="409 - 418" refId="ref9739" refString="Kaitala A, Hulden L. 1990. Significance of spring migration and flexibility in flight - muscle histolysis in waterstriders (Heteroptera, Gerridae). Ecol Entomol. 15: 409-418. doi:10.1111/j.1365-2311. 1990. tb 00824. x" type="journal article" year="1990">Kaitala and Huldén 1990</bibRefCitation>
;
<bibRefCitation id="55594B3D59169345451FFD5E93D0E35E" author="Fairbairn DJ &amp; Desranleau L" pageId="13" pageNumber="488" pagination="13 - 24" refId="ref9203" refString="Fairbairn DJ, Desranleau L. 2008. Flight threshold, wing muscle histolysis, and alary polymorphism: correlated traits for dispersal tendency in the Gerridae. Ecol Entomol. 12: 13-24. doi:10.1111/j. 1365 - 2311.1987. tb 00980. x" type="journal article" year="2008">Fairbairn and Desranleau 2008</bibRefCitation>
); pyrrhocorids:
<taxonomicName id="F6C84D4F5916934547E5FD7D916BE35E" authorityName="Linnaeus" authorityYear="1758" box="[403,620,767,792]" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE5916934547E5FD7D916BE35E" box="[403,620,767,792]" italics="true" pageId="13" pageNumber="488">Pyrrhocoris apterus</emphasis>
</taxonomicName>
(
<bibRefCitation id="55594B3D591693454408FD7D9087E35E" author="Socha R &amp; Sula J" box="[638,896,767,792]" pageId="13" pageNumber="488" pagination="231 - 239" refId="ref10397" refString="Socha R, Sula J. 2006. Flight muscles polymorphism in a flightless bug, Pyrrhocoris apterus (L.): developmental pattern, biochemical profile and endocrine control. J Insect Physiol. 52: 231-239. doi:10.1016/j.jinsphys.2005.10.009" type="journal article" year="2006">Socha and Sula, 2006</bibRefCitation>
, 2008) and
<taxonomicName id="F6C84D4F591693454263FD7D91ECE37D" authority="(Fabricius, 1775) (Nair and Prabhu 1985)" authorityName="Nair and Prabhu" authorityYear="1985" baseAuthorityName="Fabricius" baseAuthorityYear="1775" class="Insecta" family="Pyrrhocoridae" genus="Dysdercus" kingdom="Animalia" order="Hemiptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="cingulatus">
<emphasis id="03BCEADE591693454263FD7D9217E37D" italics="true" pageId="13" pageNumber="488">Dysdercus cingulatus</emphasis>
(Fabricius, 1775) (
<bibRefCitation id="55594B3D591693454795FCA091E5E37D" author="Nair CRM &amp; Prabhu VKK" box="[483,738,802,827]" pageId="13" pageNumber="488" pagination="383 - 388" refId="ref10062" refString="Nair CRM, Prabhu VKK. 1985. Entry of proteins from degenerating flight muscles into oocytes in Dystdercus cingulatus (Heteroptera: Pyrrhocoridae). J Insect Physiol. 31: 383-388. doi: 10.1016 / 0022 - 1910 (85) 90082 - 4" type="journal article" year="1985">Nair and Prabhu 1985</bibRefCitation>
)
</taxonomicName>
; the lygaeid
<taxonomicName id="F6C84D4F5916934545F2FCA09783E37D" baseAuthorityName="Solbreck" baseAuthorityYear="1986" box="[900,1156,802,827]" class="Insecta" family="Lygaeidae" genus="Horvathiolus" kingdom="Animalia" order="Hemiptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="gibbicollis">
<emphasis id="03BCEADE5916934545F2FCA09783E37D" box="[900,1156,802,827]" italics="true" pageId="13" pageNumber="488">Horvathiolus gibbicollis</emphasis>
</taxonomicName>
(Costa, 1882) (
<bibRefCitation id="55594B3D591693454732FCC792EFE318" author="Solbreck C" box="[324,488,837,862]" pageId="13" pageNumber="488" pagination="435 - 444" refId="ref10495" refString="Solbreck C. 1986. Wing and flight muscle polymorphism in a lygaeid bug, Horvathiolus gibbicollis: determinants and life history consequences. Ecol Entomol. 11: 435-444. doi:10.1111/j.1365-2311. 1986. tb 00322. x" type="journal article" year="1986">Solbreck 1986</bibRefCitation>
); and the rhopalid
<taxonomicName id="F6C84D4F5916934544BAFCC792B0E3C6" authority="(Herrich-Schaffer, 1847) (Carroll et al. 2003)" authorityName="Carroll et al." authorityYear="2003" baseAuthorityName="Herrich-Schaffer" baseAuthorityYear="1847" class="Insecta" family="Rhopalidae" genus="Jadera" kingdom="Animalia" order="Hemiptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="haematoloma">
<emphasis id="03BCEADE5916934544BAFCC790B0E318" box="[716,951,837,862]" italics="true" pageId="13" pageNumber="488">Jadera haematoloma</emphasis>
(Herrich-Schaffer, 1847) (
<bibRefCitation id="55594B3D59169345469DFCE592A8E3C6" author="Carroll S &amp; Marler M &amp; Winchell R &amp; Dingle H" box="[235,431,871,896]" pageId="13" pageNumber="488" pagination="135 - 143" refId="ref8919" refString="Carroll S, Marler M, Winchell R, Dingle H. 2003. Evolution of cryptic flight morph and life history differences during host race radiation in the soapberry bug, Jadera haematoloma Herrich-Schaeffer (Hemiptera: Rhopalidae). Ann Entomol Soc Am. 96: 135-143. doi:10.1603/0013-8746 (2003) 096 [0135: EOCFMA] 2.0. CO; 2" type="journal article" year="2003">
Carroll
<emphasis id="03BCEADE59169345474AFCE5926CE3C6" box="[316,363,871,896]" italics="true" pageId="13" pageNumber="488">et al</emphasis>
. 2003
</bibRefCitation>
)
</taxonomicName>
. Both macropters of wing-dimorphic species and monomorphic macropterous species are represented among the above-cited examples.
</paragraph>
<paragraph id="317736CC5916934546B6FC2F901AE566" blockId="13.[160,1156,559,1728]" pageId="13" pageNumber="488">
Like many other heteropterans, macropters of
<taxonomicName id="F6C84D4F59169345449BFC2F905CE380" box="[749,859,941,966]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE59169345449BFC2F905CE380" box="[749,859,941,966]" italics="true" pageId="13" pageNumber="488">I. sabuleti</emphasis>
</taxonomicName>
use flight only for long-distance dispersal. They fly to colonise distant host plant stands, while they frequently transfer from one individual host plant to the other by walking. The main host plants of
<taxonomicName id="F6C84D4F5916934546D6FB97920FE468" box="[160,264,1045,1070]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5916934546D6FB97920FE468" box="[160,264,1045,1070]" italics="true" pageId="13" pageNumber="488">I. sabuleti</emphasis>
</taxonomicName>
are the mannagrass species (
<taxonomicName id="F6C84D4F591693454426FB9791D9E468" box="[592,734,1045,1070]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="13" pageNumber="488" phylum="Tracheophyta" rank="species" species="undetermined">
<emphasis id="03BCEADE591693454426FB9791A1E468" box="[592,678,1045,1070]" italics="true" pageId="13" pageNumber="488">Glyceria</emphasis>
spp.
</taxonomicName>
) in inland marshlands and the
<taxonomicName id="F6C84D4F591693454241FB979784E468" box="[1079,1155,1045,1070]" class="Liliopsida" family="Poaceae" genus="Elymus" kingdom="Plantae" order="Poales" pageId="13" pageNumber="488" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE591693454241FB979784E468" box="[1079,1155,1045,1070]" italics="true" pageId="13" pageNumber="488">Elymus</emphasis>
</taxonomicName>
and
<taxonomicName id="F6C84D4F5916934546A5FBB5928DE416" box="[211,394,1079,1104]" class="Insecta" family="Sphecidae" genus="Ammophila" kingdom="Animalia" order="Hymenoptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="undetermined">
<emphasis id="03BCEADE5916934546A5FBB59255E416" box="[211,338,1079,1104]" italics="true" pageId="13" pageNumber="488">Ammophila</emphasis>
spp.
</taxonomicName>
on seaside dunes (
<bibRefCitation id="55594B3D591693454412FBB591FDE416" author="Tischler W" box="[612,762,1079,1104]" pageId="13" pageNumber="488" pagination="168 - 209" refId="ref10667" refString="Tischler W. 1960. Studien zur Bionomie und Okologie der Schmalwanze Ischnodemus sabuleti Fall. (Hem. Lygaeidae). Zeit Wiss Zool. 163: 168-209." type="journal article" year="1960">Tischler 1960</bibRefCitation>
). These plants usually form dense, homogeneous stands. Both adults (regardless of the wing form) and nymphs can walk easily from one plant to the other even in
<taxonomicName id="F6C84D4F591693454404FBFF91CFE4D0" baseAuthorityName="Gido and Lehoczky" baseAuthorityYear="2023" box="[626,712,1149,1174]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="13" pageNumber="488" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE591693454404FBFF91CFE4D0" box="[626,712,1149,1174]" italics="true" pageId="13" pageNumber="488">Glyceria</emphasis>
</taxonomicName>
stands occurring in water. They can use the criss-crossing, overlapping leaves as a transfer route, but they can also walk short distances on the surface of the water.
<taxonomicName id="F6C84D4F591693454439FB40903FE49D" box="[591,824,1218,1243]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591693454439FB40903FE49D" box="[591,824,1218,1243]" italics="true" pageId="13" pageNumber="488">Ischnodemus sabuleti</emphasis>
</taxonomicName>
bugs might cover fairly large distances by walking in herbaceous vegetation, and probably they can use also some nonhost plant species as occasional food and water sources.
</paragraph>
<paragraph id="317736CC5916934546B6FAA892CEE63D" blockId="13.[160,1156,559,1728]" pageId="13" pageNumber="488">
Long-distance dispersal becomes essential when the host plant patch dies out. At least in the case of
<taxonomicName id="F6C84D4F591693454748FACF9170E520" authority="(Hart) Holm" authorityName="Holm" baseAuthorityName="Hart" box="[318,631,1357,1382]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="13" pageNumber="488" phylum="Tracheophyta" rank="species" species="maxima">
<emphasis id="03BCEADE591693454748FACF92F3E520" box="[318,500,1357,1382]" italics="true" pageId="13" pageNumber="488">Glyceria maxima</emphasis>
(Hart)Holm
</taxonomicName>
stands, this is a rather common phenomenon.
<taxonomicName id="F6C84D4F5916934546D6FAED925AE5CE" box="[160,349,1391,1416]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="13" pageNumber="488" phylum="Tracheophyta" rank="species" species="maxima">
<emphasis id="03BCEADE5916934546D6FAED925AE5CE" box="[160,349,1391,1416]" italics="true" pageId="13" pageNumber="488">Glyceria maxima</emphasis>
</taxonomicName>
prefers habitats which are usually characterised by changing water levels. According to the authors observations, severe droughts often cause the dyingout of
<taxonomicName id="F6C84D4F59169345469DFA379246E588" baseAuthorityName="Gido and Lehoczky" baseAuthorityYear="2023" box="[235,321,1461,1486]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="13" pageNumber="488" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE59169345469DFA379246E588" box="[235,321,1461,1486]" italics="true" pageId="13" pageNumber="488">Glyceria</emphasis>
</taxonomicName>
stands. Less frequently, even long-lasting high water levels may eliminate mannagrass patches. In the case of drought, less-hygrophilous competitors such as
<taxonomicName id="F6C84D4F59169345424BFA55921CE655" authority=", Polygonum" authorityName="Polygonum" class="Magnoliopsida" family="Urticaceae" genus="Urtica" kingdom="Plantae" order="Rosales" pageId="13" pageNumber="488" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE59169345424BFA55921CE655" italics="true" pageId="13" pageNumber="488">Urtica, Polygonum</emphasis>
</taxonomicName>
and
<taxonomicName id="F6C84D4F59169345472EFA7892FFE655" box="[344,504,1530,1555]" pageId="13" pageNumber="488">
<emphasis id="03BCEADE59169345472EFA789299E655" box="[344,414,1530,1555]" italics="true" pageId="13" pageNumber="488">Bidens</emphasis>
species
</taxonomicName>
are involved in eliminating the mannagrass. Sometimes, the
<taxonomicName id="F6C84D4F5916934546BDF99F9226E670" baseAuthorityName="Gido and Lehoczky" baseAuthorityYear="2023" box="[203,289,1565,1590]" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="13" pageNumber="488" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE5916934546BDF99F9226E670" box="[203,289,1565,1590]" italics="true" pageId="13" pageNumber="488">Glyceria</emphasis>
</taxonomicName>
stands may be killed by large gradations of
<taxonomicName id="F6C84D4F591693454573F99F906CE670" box="[773,875,1565,1590]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591693454573F99F906CE670" box="[773,875,1565,1590]" italics="true" pageId="13" pageNumber="488">I. sabuleti</emphasis>
</taxonomicName>
itself, but more often the gradation of the bugs merely amplifies the devastating effect of the drought on
<taxonomicName id="F6C84D4F59169345425BF9BD92C2E63D" authority="(Gido and Lehoczky 2023)" baseAuthorityName="Gido and Lehoczky" baseAuthorityYear="2023" class="Liliopsida" family="Poaceae" genus="Glyceria" kingdom="Plantae" order="Poales" pageId="13" pageNumber="488" phylum="Tracheophyta" rank="genus">
<emphasis id="03BCEADE59169345425BF9BD9784E61E" box="[1069,1155,1599,1624]" italics="true" pageId="13" pageNumber="488">Glyceria</emphasis>
(
<bibRefCitation id="55594B3D5916934546D0F9E092BAE63D" author="Gido Z &amp; Lehoczky E" box="[166,445,1634,1659]" pageId="13" pageNumber="488" pagination="50 - 69" refId="ref9500" refString="Gido Z, Lehoczky E. 2023. Intraspecific facilitation through host plant quality improvement? Observations on the aggregation behaviour and population biology of the senescence inducing phloem feeder Ischnodemus sabuleti. JCGEI. 11 (3): 50-69. doi:10.33038/jcegi.4529." type="journal article" year="2023">Gidó and Lehoczky 2023</bibRefCitation>
)
</taxonomicName>
.
</paragraph>
<paragraph id="317736CC5916934646B6F9079708E1DC" blockId="13.[160,1156,559,1728]" lastBlockId="14.[160,1157,142,410]" lastPageId="14" lastPageNumber="489" pageId="13" pageNumber="488">
To the authors knowledge, there is no detailed information on the flight period of
<taxonomicName id="F6C84D4F5916934546D6F9259201E686" box="[160,262,1703,1728]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="13" pageNumber="488" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5916934546D6F9259201E686" box="[160,262,1703,1728]" italics="true" pageId="13" pageNumber="488">I. sabuleti</emphasis>
</taxonomicName>
. The seasonality of the wing autotomy (together with the suitable temperatures) allows a long dispersal period during late summerautumn and another, shorter one in early spring. During late springearly summer the overwhelming majority of
<taxonomicName id="F6C84D4F59159346426FFF339783E08C" box="[1049,1156,177,202]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="14" pageNumber="489" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE59159346426FFF339783E08C" box="[1049,1156,177,202]" italics="true" pageId="14" pageNumber="489">I. sabuleti</emphasis>
</taxonomicName>
individuals are no longer able to fly, due to the de-alation of the macropters. While migration during late summer has been directly observed (see above), to the authors knowledge there are no direct observations of migration by flight in early spring.
<taxonomicName id="F6C84D4F5915934646D6FEBE928BE113" box="[160,396,316,341]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="14" pageNumber="489" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5915934646D6FEBE928BE113" box="[160,396,316,341]" italics="true" pageId="14" pageNumber="489">Ischnodemus sabuleti</emphasis>
</taxonomicName>
seems to require high temperatures to fly, and unlike in August September, hot days are not common during Marchearly April in
<collectingCountry id="49DF765C5915934645F0FEDC90EEE131" box="[902,1001,350,375]" name="Hungary" pageId="14" pageNumber="489">Hungary</collectingCountry>
. More empirical data is needed to clarify the seasonality of the dispersal flight of
<taxonomicName id="F6C84D4F5915934645D7FE03970DE1DC" box="[929,1034,385,410]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="14" pageNumber="489" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5915934645D7FE03970DE1DC" box="[929,1034,385,410]" italics="true" pageId="14" pageNumber="489">I. sabuleti</emphasis>
</taxonomicName>
.
</paragraph>
<paragraph id="317736CC5915934646D6FE5A91E2E252" blockId="14.[160,1140,472,532]" pageId="14" pageNumber="489">
<emphasis id="03BCEADE5915934646D6FE5A91E2E252" bold="true" pageId="14" pageNumber="489">
<heading id="6A3F81A05915934646D6FE5A9773E1B4" bold="true" box="[160,1140,472,498]" centered="true" fontSize="11" level="2" pageId="14" pageNumber="489" reason="3">
<emphasis id="03BCEADE5915934646D6FE5A90F6E1B4" bold="true" box="[160,1009,472,498]" italics="true" pageId="14" pageNumber="489">Hypotheses on the supposed adaptive value of the wing autotomy of</emphasis>
<taxonomicName id="F6C84D4F59159346458FFE5A9773E1B4" box="[1017,1140,472,498]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="14" pageNumber="489" phylum="Arthropoda" rank="species" species="sabuleti">I. sabuleti</taxonomicName>
</heading>
<emphasis id="03BCEADE5915934646D6FE7891E2E252" bold="true" box="[160,741,506,532]" italics="true" pageId="14" pageNumber="489">and possibly also of other heteropteran species</emphasis>
</emphasis>
</paragraph>
<paragraph id="317736CC5915934646D6FDAD9109E35E" blockId="14.[160,1156,559,1728]" pageId="14" pageNumber="489">
It is unknown whether the supposed wing autotomy of
<taxonomicName id="F6C84D4F591593464566FDAD907FE20E" box="[784,888,559,584]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="14" pageNumber="489" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591593464566FDAD907FE20E" box="[784,888,559,584]" italics="true" pageId="14" pageNumber="489">I. sabuleti</emphasis>
</taxonomicName>
has any adaptive value. The simplest explanation is that the forewing membranes and the hindwings become dysfunctional as the insect enters the reproductive phase, and the removal of these mechanically vulnerable parts by cleaning movements is neutral or, rather, slightly advantageous from the perspective of adaptation. However, other (secondary?) adaptive functions are still possible, especially in the cases of more advanced wing autotomy practiced by some gerroid bugs.
</paragraph>
<paragraph id="317736CC5915934646B6FCA09749E3AE" blockId="14.[160,1156,559,1728]" pageId="14" pageNumber="489">
<bibRefCitation id="55594B3D5915934646B6FCA092A6E37D" author="Torre-Bueno JR" box="[192,417,802,827]" pageId="14" pageNumber="489" pagination="389 - 392" refId="ref10729" refString="Torre-Bueno JR. 1908. The broken hemelytra in certain Halobatinae. Ohio Naturalist. 9: 389-392." type="journal article" year="1908">Torre-Bueno (1908)</bibRefCitation>
argues, discussing the wing autotomy of
<taxonomicName id="F6C84D4F5915934645E9FCA0974BE37D" authorityName="Bergroth" authorityYear="1892" box="[927,1100,802,827]" class="Insecta" family="Gerridae" genus="Rheumatobates" kingdom="Animalia" order="Hemiptera" pageId="14" pageNumber="489" phylum="Arthropoda" rank="genus">
<emphasis id="03BCEADE5915934645E9FCA0974BE37D" box="[927,1100,802,827]" italics="true" pageId="14" pageNumber="489">Rheumatobates</emphasis>
</taxonomicName>
and
<taxonomicName id="F6C84D4F5915934646D6FCC79254E318" box="[160,339,837,862]" class="Insecta" family="Gerridae" genus="Trepobates" kingdom="Animalia" order="Hemiptera" pageId="14" pageNumber="489" phylum="Arthropoda" rank="species" species="undetermined">
<emphasis id="03BCEADE5915934646D6FCC79210E318" box="[160,279,837,862]" italics="true" pageId="14" pageNumber="489">Trepobates</emphasis>
spp.
</taxonomicName>
, that the membranes of macropterous females represent a mechanical obstacle to copulation, while those of the males hinder the locomotion of the copulating pair on the water surface. The present author finds these explanations rather unconvincing, and they certainly do not apply to
<emphasis id="03BCEADE591593464413FC2F90C4E380" box="[613,963,941,966]" italics="true" pageId="14" pageNumber="489">
<taxonomicName id="F6C84D4F591593464413FC2F91C8E380" box="[613,719,941,966]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="14" pageNumber="489" phylum="Arthropoda" rank="species" species="sabuleti">I. sabuleti</taxonomicName>
.
<taxonomicName id="F6C84D4F5915934644AFFC2F90C4E380" box="[729,963,941,966]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="14" pageNumber="489" phylum="Arthropoda" rank="species" species="sabuleti">Ischnodemus sabuleti</taxonomicName>
</emphasis>
does not inhabit the water surface, and even two macropters often copulate without any difficulties.
</paragraph>
<paragraph id="317736CC5915934646B6FC70920BE468" blockId="14.[160,1156,559,1728]" pageId="14" pageNumber="489">Some other testable hypotheses are presented below in detail; they are mutually non-exclusive.</paragraph>
<paragraph id="317736CC5915934646B6FBB5903FE566" blockId="14.[160,1156,559,1728]" pageId="14" pageNumber="489">
One might speculate that if some insect predators or parasitoid wasps frequently grab the forewing membranes of
<taxonomicName id="F6C84D4F59159346479BFBD89150E435" box="[493,599,1114,1139]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="14" pageNumber="489" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE59159346479BFBD89150E435" box="[493,599,1114,1139]" italics="true" pageId="14" pageNumber="489">I. sabuleti</emphasis>
</taxonomicName>
when attacking, then the removal of the membranes might help the bugs to escape some predatory attacks, as it is harder for the predator to grab the de-alated bug with the mandibles. At the present state of knowledge nothing more can be said about this possibility. To the authors knowledge there are no parasites that attach themselves to the forewing membranes or to the hindwings, so it is unlikely that the autotomy serves the removal of parasites.
</paragraph>
<paragraph id="317736CC5915934646B6FAA89151E655" blockId="14.[160,1156,559,1728]" pageId="14" pageNumber="489">
Another possibility is that the the brachypters and de-alated macropters, with their exposed black abdominal tergites, can absorb the solar radiation more effectively than the full-winged macropters.
<taxonomicName id="F6C84D4F591593464797FAED91CCE5CE" box="[481,715,1391,1416]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="14" pageNumber="489" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE591593464797FAED91CCE5CE" box="[481,715,1391,1416]" italics="true" pageId="14" pageNumber="489">Ischnodemus sabuleti</emphasis>
</taxonomicName>
is known to be a heat-loving bug. It is possible that full-winged macropters need to spend a longer time sunbathing, during which they are more exposed to predators/parasitoids, while brachypters and de-alated macropters might be able to spend more time hiding inside the leaf sheets. This possibility certainly merits empirical testing.
</paragraph>
<paragraph id="317736CC5915934746B6F99F93E3E113" blockId="14.[160,1156,559,1728]" lastBlockId="15.[160,1156,142,1554]" lastPageId="15" lastPageNumber="490" pageId="14" pageNumber="489">
The wing muscle hypothesis has been tested on several other insect species, including the heteropteran red firebug
<taxonomicName id="F6C84D4F59159346479DF9BD91BCE61E" authorityName="Linnaeus" authorityYear="1758" box="[491,699,1599,1624]" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="14" pageNumber="489" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE59159346479DF9BD91BCE61E" box="[491,699,1599,1624]" italics="true" pageId="14" pageNumber="489">Pyrrhocoris apterus</emphasis>
</taxonomicName>
. If autotomy/de-alation is the key stimulus for the flight muscle histolysis, which enhances the gonad development (oogenesis-flight syndrome), then it is easy to attribute an adaptive advantage to the wing autotomy. However, there is no convincing evidence regarding a causal relationship between the de-alation and wing muscle histolysis. One (not decisive) counter-argument is that flight muscle histolysis is fairly common in many species, even in the absence of any de-alation. Some heteropteran examples of this:
<taxonomicName id="F6C84D4F591493474424FF5691B5E0AB" authorityName="Leach" authorityYear="1815" box="[594,690,212,237]" class="Insecta" family="Gerridae" kingdom="Animalia" order="Hemiptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="family">Gerridae</taxonomicName>
(
<bibRefCitation id="55594B3D5914934744B7FF5690DAE0AB" author="Kaitala A &amp; Hulden L" box="[705,989,212,237]" pageId="15" pageNumber="490" pagination="409 - 418" refId="ref9739" refString="Kaitala A, Hulden L. 1990. Significance of spring migration and flexibility in flight - muscle histolysis in waterstriders (Heteroptera, Gerridae). Ecol Entomol. 15: 409-418. doi:10.1111/j.1365-2311. 1990. tb 00824. x" type="journal article" year="1990">Kaitala and Huldén 1990</bibRefCitation>
;
<bibRefCitation id="55594B3D59149347459AFF56925DE149" author="Fairbairn DJ &amp; Desranleau L" pageId="15" pageNumber="490" pagination="13 - 24" refId="ref9203" refString="Fairbairn DJ, Desranleau L. 2008. Flight threshold, wing muscle histolysis, and alary polymorphism: correlated traits for dispersal tendency in the Gerridae. Ecol Entomol. 12: 13-24. doi:10.1111/j. 1365 - 2311.1987. tb 00980. x" type="journal article" year="2008">Fairbairn and Desranleau 2008</bibRefCitation>
);
<taxonomicName id="F6C84D4F591493474718FF74910AE149" authorityName="Amyot &amp; Audinet-Serville" authorityYear="1843" box="[366,525,246,271]" class="Insecta" family="Pyrrhocoridae" kingdom="Animalia" order="Hemiptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="family">Pyrrhocoridae</taxonomicName>
:
<taxonomicName id="F6C84D4F591493474460FF749705E149" authority="(Nair and Prabhu 1985)" baseAuthorityName="Nair and Prabhu" baseAuthorityYear="1985" box="[534,1026,246,271]" class="Insecta" family="Pyrrhocoridae" genus="Dysdercus" kingdom="Animalia" order="Hemiptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="species" species="cingulatus">
<emphasis id="03BCEADE591493474460FF7491FEE149" box="[534,761,246,271]" italics="true" pageId="15" pageNumber="490">Dysdercus cingulatus</emphasis>
(
<bibRefCitation id="55594B3D591493474573FF7490FEE149" author="Nair CRM &amp; Prabhu VKK" box="[773,1017,246,271]" pageId="15" pageNumber="490" pagination="383 - 388" refId="ref10062" refString="Nair CRM, Prabhu VKK. 1985. Entry of proteins from degenerating flight muscles into oocytes in Dystdercus cingulatus (Heteroptera: Pyrrhocoridae). J Insect Physiol. 31: 383-388. doi: 10.1016 / 0022 - 1910 (85) 90082 - 4" type="journal article" year="1985">Nair and Prabhu 1985</bibRefCitation>
)
</taxonomicName>
;
<taxonomicName id="F6C84D4F59149347427AFF749786E149" authorityName="Schilling" authorityYear="1829" box="[1036,1153,246,271]" class="Insecta" family="Lygaeidae" kingdom="Animalia" order="Hemiptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="family">Lygaeidae</taxonomicName>
:
<taxonomicName id="F6C84D4F5914934746D6FE9B915AE174" authority="(Solbreck 1986)" baseAuthorityName="Solbreck" baseAuthorityYear="1986" box="[160,605,281,306]" class="Insecta" family="Lygaeidae" genus="Horvathiolus" kingdom="Animalia" order="Hemiptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="species" species="gibbicollis">
<emphasis id="03BCEADE5914934746D6FE9B92A6E174" box="[160,417,281,306]" italics="true" pageId="15" pageNumber="490">Horvathiolus gibbicollis</emphasis>
(
<bibRefCitation id="55594B3D5914934747C7FE9B9152E174" author="Solbreck C" box="[433,597,281,306]" pageId="15" pageNumber="490" pagination="435 - 444" refId="ref10495" refString="Solbreck C. 1986. Wing and flight muscle polymorphism in a lygaeid bug, Horvathiolus gibbicollis: determinants and life history consequences. Ecol Entomol. 11: 435-444. doi:10.1111/j.1365-2311. 1986. tb 00322. x" type="journal article" year="1986">Solbreck 1986</bibRefCitation>
)
</taxonomicName>
<taxonomicName id="F6C84D4F59149347441EFE9B91EFE174" authorityName="Amyot &amp; Serville" authorityYear="1843" box="[616,744,281,306]" class="Insecta" family="Rhopalidae" kingdom="Animalia" order="Hemiptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="family">Rhopalidae</taxonomicName>
:
<taxonomicName id="F6C84D4F591493474480FE9B93E7E113" authority="(Carroll et al. 2003)" baseAuthorityName="Carroll" baseAuthorityYear="2003" class="Insecta" family="Rhopalidae" genus="Jadera" kingdom="Animalia" order="Hemiptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="species" species="haematoloma">
<emphasis id="03BCEADE591493474480FE9B90E4E174" box="[758,995,281,306]" italics="true" pageId="15" pageNumber="490">Jadera haematoloma</emphasis>
(
<bibRefCitation id="55594B3D591493474582FE9B93D0E113" author="Carroll S &amp; Marler M &amp; Winchell R &amp; Dingle H" pageId="15" pageNumber="490" pagination="135 - 143" refId="ref8919" refString="Carroll S, Marler M, Winchell R, Dingle H. 2003. Evolution of cryptic flight morph and life history differences during host race radiation in the soapberry bug, Jadera haematoloma Herrich-Schaeffer (Hemiptera: Rhopalidae). Ann Entomol Soc Am. 96: 135-143. doi:10.1603/0013-8746 (2003) 096 [0135: EOCFMA] 2.0. CO; 2" type="journal article" year="2003">
Carroll
<emphasis id="03BCEADE59149347423CFE9B9779E174" box="[1098,1150,281,306]" italics="true" pageId="15" pageNumber="490">et al</emphasis>
. 2003
</bibRefCitation>
)
</taxonomicName>
.
</paragraph>
<paragraph id="317736CC5914934746B6FEDC90C2E2B3" blockId="15.[160,1156,142,1554]" pageId="15" pageNumber="490">
The effects of natural and artificial de-alation have mostly been studied in crickets (
<taxonomicName id="F6C84D4F5914934746D0FE039221E1DC" authorityName="Latreille" authorityYear="1810" box="[166,294,385,410]" class="Insecta" kingdom="Animalia" order="Orthoptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="order">Orthoptera</taxonomicName>
:
<taxonomicName id="F6C84D4F591493474746FE039293E1DC" authorityName="Laicharting" authorityYear="1781" box="[304,404,385,410]" class="Insecta" family="Gryllidae" kingdom="Animalia" order="Orthoptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="family">Gryllidae</taxonomicName>
) and the main results are reviewed by
<bibRefCitation id="55594B3D591493474532FE0390E6E1DC" author="Tanaka S" box="[836,993,385,410]" pageId="15" pageNumber="490" pagination="137 - 143" refId="ref10637" refString="Tanaka S. 1994. Evolution and physiological consequences of de-alation in crickets. Res Popul Ecol. 36: 137-143. doi:10.1007/BF02514928" type="journal article" year="1994">Tanaka (1994)</bibRefCitation>
. Some species of crickets usually shed their hindwings after an initial period, but other cricket species do not. Natural wing autotomy of the crickets usually occurs somewhat after they start ovipositing, in some cases even after the peak oviposition period. In some crickets including even species in which natural de-alation is unknown artificial de-alation induces flight muscle histolysis and rapid egg production. However, different injuries (other than de-alation) are known to produce a similar effect in some other insect species: for example, the amputation of some legs induces precocious sexual maturity in the migratory locust
<taxonomicName id="F6C84D4F591493474712FD1491FFE2E9" authority="Forsskal, 1775" authorityName="Forsskal" authorityYear="1775" box="[356,760,662,687]" class="Insecta" family="Acrididae" genus="Schistocerca" kingdom="Animalia" order="Orthoptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="species" species="gregaria">
<emphasis id="03BCEADE591493474712FD14914AE2E9" box="[356,589,662,687]" italics="true" pageId="15" pageNumber="490">Schistocerca gregaria</emphasis>
Forsskål, 1775
</taxonomicName>
.
<bibRefCitation id="55594B3D591493474573FD1490A3E2E9" author="Tanaka S" box="[773,932,662,687]" pageId="15" pageNumber="490" pagination="137 - 143" refId="ref10637" refString="Tanaka S. 1994. Evolution and physiological consequences of de-alation in crickets. Res Popul Ecol. 36: 137-143. doi:10.1007/BF02514928" type="journal article" year="1994">Tanaka (1994)</bibRefCitation>
concludes that the natural de-alation in the crickets is a consequence rather than a causative factor of the transition from the migrating life period to the reproductive life period.
</paragraph>
<paragraph id="317736CC5914934746B6FD7C903AE4BB" blockId="15.[160,1156,142,1554]" pageId="15" pageNumber="490">
Some relevant research has been conducted on the heteropteran
<taxonomicName id="F6C84D4F5914934745DBFD7C9779E351" authorityName="Linnaeus" authorityYear="1758" box="[941,1150,766,791]" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE5914934745DBFD7C9779E351" box="[941,1150,766,791]" italics="true" pageId="15" pageNumber="490">Pyrrhocoris apterus</emphasis>
</taxonomicName>
, but the results are not conclusive. Artificial de-alation of macropterous
<taxonomicName id="F6C84D4F5914934745C9FCA3972DE37C" authorityName="Linnaeus" authorityYear="1758" box="[959,1066,801,826]" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE5914934745C9FCA3972DE37C" box="[959,1066,801,826]" italics="true" pageId="15" pageNumber="490">P. apterus</emphasis>
</taxonomicName>
right at the beginning of the adult stage causes the significant shortening of the pre-oviposition period (
<bibRefCitation id="55594B3D591493474683FCE49270E339" author="Socha R" box="[245,375,870,895]" pageId="15" pageNumber="490" pagination="15 - 22" refId="ref10309" refString="Socha R. 2007. Factors terminating ovarian arrest in long-winged females of a flightless bug, Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Eur J Entomol. 104: 15-22. doi:10.14411/eje. 2007.003" type="journal article" year="2007">Socha 2007</bibRefCitation>
). Simultaneously, de-alation also accelerates the histolysis of the flight muscles (
<bibRefCitation id="55594B3D59149347477EFC0B92FEE3E4" author="Socha R &amp; Sula J" box="[264,505,905,930]" pageId="15" pageNumber="490" pagination="575 - 583" refId="ref10448" refString="Socha R, Sula J. 2008. Regulation of the development of flight muscles in long-winged adults of the flightless bug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Eur J Entomol. 105: 575-583. doi:10.14411/eje.2008.077" type="journal article" year="2008">Socha and Šula 2008</bibRefCitation>
). However as is known in some other insects as well other, different injuries, including sham operations, have a similar effect on
<taxonomicName id="F6C84D4F591493474263FC2E9784E383" authorityName="Linnaeus" authorityYear="1758" box="[1045,1155,940,965]" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE591493474263FC2E9784E383" box="[1045,1155,940,965]" italics="true" pageId="15" pageNumber="490">P. apterus</emphasis>
</taxonomicName>
macropters (
<bibRefCitation id="55594B3D591493474758FC4C9154E3A1" author="Hodkova M &amp; Socha R" box="[302,595,974,999]" pageId="15" pageNumber="490" pagination="523 - 529" refId="ref9552" refString="Hodkova M, Socha R. 2006. Endocrine regulation of the reproductive arrest in the long-winged females of a flightless bug, Pyrrhocoris apterus. (Heteroptera, Pyrrhocoridae). Eur J Entomol. 103: 523-529. doi:10.14411/eje.2006.068" type="journal article" year="2006">Hodková and Socha 2006</bibRefCitation>
;
<bibRefCitation id="55594B3D591493474417FC4C9048E3A1" author="Socha R &amp; Sula J" box="[609,847,974,999]" pageId="15" pageNumber="490" pagination="575 - 583" refId="ref10448" refString="Socha R, Sula J. 2008. Regulation of the development of flight muscles in long-winged adults of the flightless bug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Eur J Entomol. 105: 575-583. doi:10.14411/eje.2008.077" type="journal article" year="2008">Socha and Šula 2008</bibRefCitation>
). The injury signal is transmitted to the neuroendocrine complex via the nervous system. It induces the higher food intake necessary for repairing and healing of the injured tissues, and subsequently removes the inhibition of the corpus allatus, which was temporarily suppressed in spontaneously fasting macropterous adults via the nervous connections from the brain (
<bibRefCitation id="55594B3D5914934746D0FBFE92C6E4D3" author="Hodkova M &amp; Socha R" box="[166,449,1148,1173]" pageId="15" pageNumber="490" pagination="523 - 529" refId="ref9552" refString="Hodkova M, Socha R. 2006. Endocrine regulation of the reproductive arrest in the long-winged females of a flightless bug, Pyrrhocoris apterus. (Heteroptera, Pyrrhocoridae). Eur J Entomol. 103: 523-529. doi:10.14411/eje.2006.068" type="journal article" year="2006">Hodková and Socha 2006</bibRefCitation>
;
<bibRefCitation id="55594B3D5914934747BAFBFE914BE4D3" author="Socha R" box="[460,588,1148,1173]" pageId="15" pageNumber="490" pagination="15 - 22" refId="ref10309" refString="Socha R. 2007. Factors terminating ovarian arrest in long-winged females of a flightless bug, Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Eur J Entomol. 104: 15-22. doi:10.14411/eje. 2007.003" type="journal article" year="2007">Socha 2007</bibRefCitation>
). It is important to note that in
<taxonomicName id="F6C84D4F5914934745D5FBFE970AE4D3" authorityName="Linnaeus" authorityYear="1758" box="[931,1037,1148,1173]" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE5914934745D5FBFE970AE4D3" box="[931,1037,1148,1173]" italics="true" pageId="15" pageNumber="490">P. apterus</emphasis>
</taxonomicName>
de-alation has a much stronger effect on flight muscle histolysis than do sham operations (
<bibRefCitation id="55594B3D591493474278FB1C920AE49C" author="Socha R &amp; Sula J" pageId="15" pageNumber="490" pagination="575 - 583" refId="ref10448" refString="Socha R, Sula J. 2008. Regulation of the development of flight muscles in long-winged adults of the flightless bug Pyrrhocoris apterus (Heteroptera: Pyrrhocoridae). Eur J Entomol. 105: 575-583. doi:10.14411/eje.2008.077" type="journal article" year="2008">Socha and Šula 2008</bibRefCitation>
). It would be interesting to learn how specific the physiological effect is of de-alation on flight muscle histolysis and gonad development.
</paragraph>
<paragraph id="317736CC5914934746B6FA8491ACE5C1" blockId="15.[160,1156,142,1554]" pageId="15" pageNumber="490">
The author suggests that in the case of
<taxonomicName id="F6C84D4F5914934744F6FA8491EEE559" box="[640,745,1286,1311]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="15" pageNumber="490" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5914934744F6FA8491EEE559" box="[640,745,1286,1311]" italics="true" pageId="15" pageNumber="490">I. sabuleti</emphasis>
</taxonomicName>
(and perhaps also in the case of the other heteropterans) it is unlikely that the wing muscle histolysis is the single or the most important adaptive function of the wing autotomy behaviour. However, it is definitely interesting enough to call for further research.
</paragraph>
<paragraph id="317736CC5914934746B6FA1390AFE654" blockId="15.[160,1156,142,1554]" pageId="15" pageNumber="490">The plastic surgery hypothesis of heteropteran wing autotomy is formulated here for the first time. It states that the de-alated macropters mimic the sexually more attractive brachypters to improve their reproductive fitness. The plastic surgery hypothesis relies on the sexual selection theory and includes three basic assumptions:</paragraph>
<paragraph id="317736CC5914934746B4F9BC926DE63C" blockId="15.[192,1156,1598,1727]" pageId="15" pageNumber="490">(a) Brachypterous individuals are sexually more attractive than macropterous individuals.</paragraph>
<paragraph id="317736CC5914934746B6F906917DE6F9" blockId="15.[192,1156,1598,1727]" pageId="15" pageNumber="490">(b) Greater sexual attractiveness results in higher offspring number and/or quality and thus in greater evolutionary fitness.</paragraph>
<paragraph id="317736CC590B935846B5FF0D90FCE0EE" blockId="16.[195,1019,143,168]" box="[195,1019,143,168]" pageId="16" pageNumber="491">(c) Courting bugs often misidentify de-alated macropters as brachypters.</paragraph>
<paragraph id="317736CC590B935846D6FF569207E113" blockId="16.[160,1155,212,411]" pageId="16" pageNumber="491">All three assumptions should be tested separately for both sexes, but might be sufficient if they are true for only for one of the sexes. (Characters which are functional only in one of the sexes might be expressed in another sex as well, due to rules of inheritance, eg mens nipples).</paragraph>
<paragraph id="317736CC590B935846B6FEDD9101E1DD" blockId="16.[160,1155,212,411]" pageId="16" pageNumber="491">The probability of these assumptions is briefly discussed below, using the sporadic facts published on these topics.</paragraph>
<paragraph id="317736CC590B935846B6FE45976FE44D" blockId="16.[192,1156,455,1035]" pageId="16" pageNumber="491">
(a) It is generally held that among the wing-dimorphic insects the brachypterous form has a reproductive advantage over the macropterous form. Considering only the Heteroptera, this topic has been recently reviewed by
<bibRefCitation id="55594B3D590B93584514FD8E90EAE263" author="Gido Z" box="[866,1005,524,549]" pageId="16" pageNumber="491" pagination="39 - 54" refId="ref9408" refString="Gido Z. 2023 a. Wing dimorphism / polymorphism in true bugs (Heteroptera) from a functional viewpoint: a review. part I: non-phytophagous species. JCEGI. 11: 39-54. doi:10.33038/jcegi.4491" type="journal article" year="2023">Gidó (2023a</bibRefCitation>
,
<bibRefCitation id="55594B3D590B9358458AFD8E9745E263" author="Gido Z" box="[1020,1090,524,549]" pageId="16" pageNumber="491" pagination="68 - 85" refId="ref9453" refString="Gido Z. 2023 b. Wing dimorphism / polymorphism in true bugs (Hemiptera: Heteroptera) from a functional viewpoint: a review. Part II: phytophagous species. JCEGI. 11: 68-85. doi: 10.33038 / jcegi. 4854" type="journal article" year="2023">2023b</bibRefCitation>
). It is important to note that the reproductive advantage of the brachypters in Heteroptera almost always manifests in the earlier sexual maturation of both sexes, but the lifelong fecundity of the brachypters is not always greater than those of the macropters. In the
<taxonomicName id="F6C84D4F590B9358440CFD1591DAE2F6" authorityName="Stal" authorityYear="1862" box="[634,733,663,688]" class="Insecta" family="Blissidae" kingdom="Animalia" order="Hemiptera" pageId="16" pageNumber="491" phylum="Arthropoda" rank="family">Blissidae</taxonomicName>
family, much data is available on
<taxonomicName id="F6C84D4F590B9358469EFD3891A8E295" authority="(Okajima, 1922)" baseAuthorityName="Okajima" baseAuthorityYear="1922" box="[232,687,698,723]" class="Insecta" family="Blissidae" genus="Cavelerius" kingdom="Animalia" order="Hemiptera" pageId="16" pageNumber="491" phylum="Arthropoda" rank="species" species="saccharivorus">
<emphasis id="03BCEADE590B9358469EFD3892F4E295" box="[232,499,698,723]" italics="true" pageId="16" pageNumber="491">Cavelerius saccharivorus</emphasis>
(Okajima, 1922)
</taxonomicName>
. Both female and male brachypters start reproducing earlier than the macropters (
<bibRefCitation id="55594B3D590B935844C6FD5E9046E2B3" author="Fujisaki K" box="[688,833,732,757]" pageId="16" pageNumber="491" pagination="43 - 52" refId="ref9322" refString="Fujisaki K. 1986. Reproductive properties of the oriental chinch bug, Cavelerius saccharivorus Okajima (Heteroptera: Lygaeidae), in relation to its wing polymorphism. Popul Ecol. 28: 43-52. doi:10.1007/BF02515534" type="journal article" year="1986">Fujisaki 1986</bibRefCitation>
,
<bibRefCitation id="55594B3D590B9358453AFD5E9084E2B3" author="Fujisaki K" box="[844,899,732,757]" pageId="16" pageNumber="491" pagination="173 - 183" refId="ref9366" refString="Fujisaki K. 1992. A male fitness advantage to wing reduction in the oriental chinch bug, Cavelerius saccharivorus Okajima (Heteroptera: Lygaeidae). Popul Ecol. 34: 173-183. doi: 10.1007 / BF 02513529" type="journal article" year="1992">1992</bibRefCitation>
). However, the lifelong fecundity is a more complex matter in
<taxonomicName id="F6C84D4F590B935844D5FD7D9054E35E" baseAuthorityName="Okajima" baseAuthorityYear="1922" box="[675,851,767,792]" class="Insecta" family="Blissidae" genus="Cavelerius" kingdom="Animalia" order="Hemiptera" pageId="16" pageNumber="491" phylum="Arthropoda" rank="species" species="saccharivorus">
<emphasis id="03BCEADE590B935844D5FD7D9054E35E" box="[675,851,767,792]" italics="true" pageId="16" pageNumber="491">C. saccharivorus</emphasis>
</taxonomicName>
. This species is trimorphic, with
<specimenCount id="27CEFD45590B93584753FCA0929EE37D" box="[293,409,802,827]" count="2" pageId="16" pageNumber="491" type="generic" typeStatus="types">two types</specimenCount>
of brachypters: normal and extreme brachypters. Macropters produce fewer eggs than the extreme brachypters, but more than the normal brachypters (
<bibRefCitation id="55594B3D590B9358470EFCE5910EE3C6" author="Fujisaki K" box="[376,521,871,896]" pageId="16" pageNumber="491" pagination="43 - 52" refId="ref9322" refString="Fujisaki K. 1986. Reproductive properties of the oriental chinch bug, Cavelerius saccharivorus Okajima (Heteroptera: Lygaeidae), in relation to its wing polymorphism. Popul Ecol. 28: 43-52. doi:10.1007/BF02515534" type="journal article" year="1986">Fujisaki 1986</bibRefCitation>
). Not much data is available for
<taxonomicName id="F6C84D4F590B9358451AFCE590D4E3C6" box="[876,979,871,896]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="16" pageNumber="491" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE590B9358451AFCE590D4E3C6" box="[876,979,871,896]" italics="true" pageId="16" pageNumber="491">I. sabuleti</emphasis>
</taxonomicName>
specifically, but
<bibRefCitation id="55594B3D590B9358469EFC08928AE3E5" author="Tischler W" box="[232,397,906,931]" pageId="16" pageNumber="491" pagination="339 - 349" refId="ref10699" refString="Tischler W. 1963. Weitere Untersuchungen zur Okologie der Schmalwanze Ischnodemus sabuleti Fall. (Hem. Lygaeidae). Zool Anz. 171: 339-349." type="journal article" year="1963">Tischler (1963)</bibRefCitation>
states that brachypterous females contained mature eggs in May (North
<collectingCountry id="49DF765C590B93584743FC2E9298E383" box="[309,415,940,965]" name="Germany" pageId="16" pageNumber="491">Germany</collectingCountry>
), unlike the macropterous females collected at the same time. So, it is very likely that
<taxonomicName id="F6C84D4F590B935847C2FC4D9119E3AE" box="[436,542,975,1000]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="16" pageNumber="491" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE590B935847C2FC4D9119E3AE" box="[436,542,975,1000]" italics="true" pageId="16" pageNumber="491">I. sabuleti</emphasis>
</taxonomicName>
brachypters also mature earlier than the macropters, while nothing is known yet about the lifelong fecundity of the two wing forms.
</paragraph>
<paragraph id="317736CC590B935846D6FBB59131E5B6" blockId="16.[160,1156,1079,1728]" pageId="16" pageNumber="491">
The reproductive advantage of the brachypters does not necessarily imply that they are preferred as sexual partners over the macropters. However, there is also some direct heteropteran evidence supporting the greater sexual attractiveness of the brachypters. Among the
<taxonomicName id="F6C84D4F590B93584758FB1D9289E4FE" authorityName="Leach" authorityYear="1815" box="[302,398,1183,1208]" class="Insecta" family="Gerridae" kingdom="Animalia" order="Hemiptera" pageId="16" pageNumber="491" phylum="Arthropoda" rank="family">Gerridae</taxonomicName>
+ Veliidae lineage, mating superiority of the non-macropterous males has been explicitly demonstrated in
<taxonomicName id="F6C84D4F590B9358440CFB4093D8E4BB" authority="(Say, 1832) (Kaitala and Dingle 1993)" authorityName="Kaitala and Dingle" authorityYear="1993" baseAuthorityName="Say" baseAuthorityYear="1832" class="Insecta" family="Gerridae" genus="Aquarius" kingdom="Animalia" order="Hemiptera" pageId="16" pageNumber="491" phylum="Arthropoda" rank="species" species="remigis">
<emphasis id="03BCEADE590B9358440CFB409029E49D" box="[634,814,1218,1243]" italics="true" pageId="16" pageNumber="491">Aquarius remigis</emphasis>
(Say, 1832) (
<bibRefCitation id="55594B3D590B935845C1FB4093D0E4BB" author="Kaitala A &amp; Dingle H" pageId="16" pageNumber="491" pagination="163 - 168" refId="ref9704" refString="Kaitala A, Dingle H. 1993. Wing dimorphism, territoriality and mating frequency of the water strider Aquarius remigis (Say). Ann Zool Fenn. 30: 163-168." type="journal article" year="1993">Kaitala and Dingle 1993</bibRefCitation>
)
</taxonomicName>
and
<taxonomicName id="F6C84D4F590B9358476EFB669198E4BB" authority="Lundblad, 1933" authorityName="Lundblad" authorityYear="1933" box="[280,671,1252,1277]" class="Insecta" family="Veliidae" genus="Microvelia" kingdom="Animalia" order="Hemiptera" pageId="16" pageNumber="491" phylum="Arthropoda" rank="species" species="horvathi">
<emphasis id="03BCEADE590B9358476EFB6692EEE4BB" box="[280,489,1252,1277]" italics="true" pageId="16" pageNumber="491">Microvelia horvathi</emphasis>
Lundblad, 1933
</taxonomicName>
(
<bibRefCitation id="55594B3D590B935844DAFB6690ECE4BB" author="Matsushima R &amp; Yokoi T" box="[684,1003,1252,1277]" pageId="16" pageNumber="491" pagination="153 - 158" refId="ref9935" refString="Matsushima R, Yokoi T. 2022. Behavioural patterns that determine the mating rates in a wing dimorphic riffle bug, Microvelia horvathi Lundblad, 1933 (Hemiptera: Heteroptera: Veliidae). Journ Ethol. 40: 153-158. doi:10.1007/s10164-022-00744-3" type="journal article" year="2022">Matsushima and Yokoi 2022</bibRefCitation>
). In the latter case, the mating success of the brachypterous males was only slightly higher, but the brachypterous females proved to be both more attractive and more receptive than their macropterous conspecifics. In the case of
<taxonomicName id="F6C84D4F590B9358440CFACE904CE523" authorityName="Linnaeus" authorityYear="1758" box="[634,843,1356,1381]" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="16" pageNumber="491" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE590B9358440CFACE904CE523" box="[634,843,1356,1381]" italics="true" pageId="16" pageNumber="491">Pyrrhocoris apterus</emphasis>
</taxonomicName>
, brachypterous females are also more receptive, and copulate more often than macropters do (
<bibRefCitation id="55594B3D590B935845E2FAED971FE5CE" author="Socha R" box="[916,1048,1391,1416]" pageId="16" pageNumber="491" pagination="539 - 545" refId="ref10228" refString="Socha R. 2004. Decreased mating propensity of macropterous morph in a flightless wing polymorphic insect, Pyrrhocoris apterus (Heteroptera). Eur J Entomol. 101: 539-545. doi:10.14411/eje. 2004.077" type="journal article" year="2004">Socha 2004</bibRefCitation>
). There is a more complex, highly interesting pattern among the males: young brachypterous males are more successful in mating than macropterous young males; however, the opposite is true among old males (Socha 2006).
</paragraph>
<paragraph id="317736CC590B935846B6FA789707E673" blockId="16.[160,1156,1079,1728]" pageId="16" pageNumber="491">
To the authors knowledge there is no data on the differences in the sexual attractiveness between the two wing forms of any blissid species, including
<taxonomicName id="F6C84D4F590B935845E4F99E90FDE673" box="[914,1018,1564,1589]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="16" pageNumber="491" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE590B935845E4F99E90FDE673" box="[914,1018,1564,1589]" italics="true" pageId="16" pageNumber="491">I. sabuleti</emphasis>
</taxonomicName>
.
</paragraph>
<paragraph id="317736CC590B935846C9F9BD9783E63D" blockId="16.[160,1156,1079,1728]" pageId="16" pageNumber="491">
(b) If there is no evidence, there are at least some hints that greater sexual attractiveness might result in greater offspring number/quality in
<taxonomicName id="F6C84D4F590B935845D7F9E0977AE63D" authorityName="Linnaeus" authorityYear="1758" box="[929,1149,1634,1659]" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="16" pageNumber="491" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE590B935845D7F9E0977AE63D" box="[929,1149,1634,1659]" italics="true" pageId="16" pageNumber="491">Pyrrhocoris apterus</emphasis>
</taxonomicName>
.
</paragraph>
<paragraph id="317736CC590B93594693F90692AFE245" blockId="16.[160,1156,1079,1728]" lastBlockId="17.[229,1156,143,515]" lastPageId="17" lastPageNumber="492" pageId="16" pageNumber="491">
(Although this is a plausible general assumption at least for the males, it shouldnt be treated as self-understanding, especially not in invertebrates!). According to data presented by Socha (2008), only 3.2176.46% (average 43.1%) of the eggs of receptive virgin females copulating with a single male for 120 min hatched, which the author considered fertilisation success. This means that a female can increase her fertility if she copulates more than one time. The choice among available male partners clearly influences both the fertilisation success and the offspring quality, and of course, a popular female can be much choosier. While the more attractive brachypterous females in fact are more receptive (see above), nothing is known about the possibility of cryptic female choice (
<bibRefCitation id="55594B3D590A935945B8FE009771E1DD" author="Eberhard WG" box="[974,1142,386,411]" pageId="17" pageNumber="492" refId="ref9077" refString="Eberhard WG. 1996. Female control: sexual selection by cryptic female choice. Vol. 69. Princeton: Princeton University Press. doi:10.2307/j.ctvs32rx1." type="book" year="1996">Eberhard 1996</bibRefCitation>
). Socha (2008) demonstrated that the sexual attractiveness of
<taxonomicName id="F6C84D4F590A935945DAFE26971BE1FB" authorityName="Linnaeus" authorityYear="1758" box="[940,1052,420,445]" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="17" pageNumber="492" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE590A935945DAFE26971BE1FB" box="[940,1052,420,445]" italics="true" pageId="17" pageNumber="492">P. apterus</emphasis>
</taxonomicName>
males is correlated with their fertility, and both are probably related to the size of their accessory glands.
</paragraph>
<paragraph id="317736CC590A935946D6FDAD90BBE35E" blockId="17.[160,1156,559,1208]" pageId="17" pageNumber="492">For the males in general it is very likely that their offspring number is strongly dependent on the females accessible to them, which is of course dependent on their sexual attractiveness. However, sometimes males can have a surplus of available females: this is the case if the sex ratio is strongly female biased or (a common case among insects!) a male is physiologically capable of only a limited, low number of copulations. In this case, it is advantageous for the males to choose the most fertile females available to them, and again, sexual attractiveness represents a clear reproductive advantage.</paragraph>
<paragraph id="317736CC590A935946B6FCA09209E3C6" blockId="17.[160,1156,559,1208]" pageId="17" pageNumber="492">
To the authors knowledge, no empirical data has been published on the relationship between sexual attractiveness and offspring number of any blissid species, including
<taxonomicName id="F6C84D4F590A935946D6FCE5920FE3C6" box="[160,264,871,896]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="17" pageNumber="492" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE590A935946D6FCE5920FE3C6" box="[160,264,871,896]" italics="true" pageId="17" pageNumber="492">I. sabuleti</emphasis>
</taxonomicName>
.
</paragraph>
<paragraph id="317736CC590A935946C9FC0890CAE4FE" blockId="17.[160,1156,559,1208]" pageId="17" pageNumber="492">
(c) Wing-mutilated macropters of
<taxonomicName id="F6C84D4F590A93594432FC0891A8E3E5" box="[580,687,906,931]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="17" pageNumber="492" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE590A93594432FC0891A8E3E5" box="[580,687,906,931]" italics="true" pageId="17" pageNumber="492">I. sabuleti</emphasis>
</taxonomicName>
can be quite easily misidentified as brachypters to the superficial human observer. However, humans rely solely on visual cues for distinguishing the two morphs, and this is almost certainly not the case for the bugs assessing their potential sexual partners. At the present state of knowledge there is no evidence that the bugs can even tell the difference between the genuine macropters and brachypters. In the best-known case of the red firebug (see above), it is more probable that both females and males assess their potential sexual partners using olfactory or behavioural cues which are somewhat correlated with the wing form, rather than observing the wing form directly at all.
</paragraph>
<paragraph id="317736CC590A935946D6FB669037E63D" blockId="17.[160,1156,1252,1728]" pageId="17" pageNumber="492">
This might be the case as well for
<taxonomicName id="F6C84D4F590A93594442FB669199E4BB" box="[564,670,1252,1277]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="17" pageNumber="492" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE590A93594442FB669199E4BB" box="[564,670,1252,1277]" italics="true" pageId="17" pageNumber="492">I. sabuleti</emphasis>
</taxonomicName>
, and if so, the plastic surgery hypothesis should be rejected. However, the large surface of the exposed abdominal tergites of the brachypters might serve as a tactile and/or olfactory and/or visual key stimulus, which might render both brachypters
<emphasis id="03BCEADE590A9359447CFACE9133E523" box="[522,564,1356,1381]" italics="true" pageId="17" pageNumber="492">and</emphasis>
de-alated macropters sexually more attractive than the full-winged macropters, where the membrane almost entirely covers the abdomen. In the closely related
<taxonomicName id="F6C84D4F590A935947F6FA10901DE5ED" authority="Jakovlev, 1871" authorityName="Jakovlev" authorityYear="1871" box="[384,794,1426,1451]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="17" pageNumber="492" phylum="Arthropoda" rank="species" species="caspius">
<emphasis id="03BCEADE590A935947F6FA109160E5ED" box="[384,615,1426,1451]" italics="true" pageId="17" pageNumber="492">Ischnodemus caspius</emphasis>
Jakovlev, 1871
</taxonomicName>
, the cuticular structures of the abdomen have been studied in detail by scanning electron microscopy (
<bibRefCitation id="55594B3D590A935945CCFA369771E58B" author="Xue HJ &amp; Bu W" box="[954,1142,1460,1485]" pageId="17" pageNumber="492" pagination="218 - 225" refId="ref10784" refString="Xue HJ, Bu W. 2007. Changes of cuticular structures of Ischnodemus caspius (Heteroptera: lygaeoidea: Blissidae) from the fifth instar to the adult. Entomol Fenn. 18: 218-225. doi:10.33338/ef. 84402" type="journal article" year="2007">Xue and Bu 2007</bibRefCitation>
). The abdominal scent gland is non-functional in the adults, and as is general in the
<taxonomicName id="F6C84D4F590A935946D6FA789207E655" authorityName="Stal" authorityYear="1862" box="[160,256,1530,1555]" class="Insecta" family="Blissidae" kingdom="Animalia" order="Hemiptera" pageId="17" pageNumber="492" phylum="Arthropoda" rank="family">Blissidae</taxonomicName>
family there are pairs of so called cell areas on the abdominal tergites. The function of these small, round, hairless spots showing a cell-like cuticular structure is unknown. They contain no visible pores, so they are unlikely to be pheromone glands, but perhaps might contain mechano- and/or chemoreceptors.
</paragraph>
<paragraph id="317736CC590A935A46B6F906975EE244" blockId="17.[160,1156,1252,1728]" lastBlockId="18.[160,1157,142,1103]" lastPageId="18" lastPageNumber="493" pageId="17" pageNumber="492">
Vibrational communication of insects, including heteropterans, that produce no audible voice has received increasing attention in the last several decades (
<bibRefCitation id="55594B3D590A935A4239F92592D3E0E1" author="Cokl A &amp; Virant-Doberlet M" lastPageId="18" lastPageNumber="493" pageId="17" pageNumber="492" pagination="29 - 50" refId="ref8992" refString="Cokl A, Virant-Doberlet M. 2003. Communication with substrate-borne signals in small plant-dwelling insects. Ann Rev Ent. 48: 29-50. doi:10.1146/annurev.ento.48.091801.112605" type="journal article" year="2003">Cokl and Virant-Doberlet 2003</bibRefCitation>
; Davranoglu
<emphasis id="03BCEADE5909935A440AFF0C91B3E0E1" box="[636,692,142,167]" italics="true" pageId="18" pageNumber="493">et al</emphasis>
. 2023). Unlike in some other heteropteran families, stridulatory (Aschlock
<emphasis id="03BCEADE5909935A441DFF3391A7E08C" box="[619,672,177,202]" italics="true" pageId="18" pageNumber="493">et al</emphasis>
. 1963) or tymbal (
<bibRefCitation id="55594B3D5909935A45F6FF33977CE08C" author="Minghetti E &amp; Braun H &amp; Matt F &amp; Dellape PM" box="[896,1147,177,202]" pageId="18" pageNumber="493" pagination="535 - 540" refId="ref9991" refString="Minghetti E, Braun H, Matt F, Dellape PM. 2020. Tympanoblissus ecuatorianus Dellape &amp; Minghetti, gen. et sp. nov, a new apterous genus of chinch bug (Hemiptera: Blissidae) from Ecuador: the only known blissid with an abdominal mechanism for sound production. Austr Entomol. 59: 535-540. doi:10.1111/aen.12486." type="journal article" year="2020">
Minghetti
<emphasis id="03BCEADE5909935A4588FF339734E08C" box="[1022,1075,177,202]" italics="true" pageId="18" pageNumber="493">et al</emphasis>
. 2020
</bibRefCitation>
) organs are rather exceptional in
<taxonomicName id="F6C84D4F5909935A4441FF56919DE0AB" authorityName="Stal" authorityYear="1862" box="[567,666,212,237]" class="Insecta" family="Blissidae" kingdom="Animalia" order="Hemiptera" pageId="18" pageNumber="493" phylum="Arthropoda" rank="family">Blissidae</taxonomicName>
and not known in
<taxonomicName id="F6C84D4F5909935A45E4FF569703E0AB" box="[914,1028,212,237]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="18" pageNumber="493" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5909935A45E4FF569703E0AB" box="[914,1028,212,237]" italics="true" pageId="18" pageNumber="493">I. sabuleti</emphasis>
</taxonomicName>
. However, surface-transmitted vibratory communication by tremulation is possible even in the absence of any specialised sound-producing organ, as is described in
<taxonomicName id="F6C84D4F5909935A4278FE9B9285E113" authority="(Benediktov 2007)" baseAuthorityName="Benediktov" baseAuthorityYear="2007" class="Insecta" family="Largidae" genus="Pyrrhocoris" kingdom="Animalia" order="Hemiptera" pageId="18" pageNumber="493" phylum="Arthropoda" rank="species" species="apterus">
<emphasis id="03BCEADE5909935A4278FE9B9783E174" box="[1038,1156,281,306]" italics="true" pageId="18" pageNumber="493">P. apterus</emphasis>
(
<bibRefCitation id="55594B3D5909935A46D1FEBE927EE113" author="Benediktov AA" box="[167,377,316,341]" pageId="18" pageNumber="493" pagination="186 - 187" refId="ref8879" refString="Benediktov AA. 2007. Tremulation of firebugs Pyrrhocoris apterus L. (Heteroptera, Pyrrhocoridae). Moscow Univ Biol Sci Bull. 62 (4): 186-187. doi:10.3103/S0096392507040098." type="journal article" year="2007">Benediktov 2007</bibRefCitation>
)
</taxonomicName>
. It is unknown whether
<taxonomicName id="F6C84D4F5909935A44BBFEBE9041E113" box="[717,838,316,341]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="18" pageNumber="493" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5909935A44BBFEBE9041E113" box="[717,838,316,341]" italics="true" pageId="18" pageNumber="493">I. sabuleti</emphasis>
</taxonomicName>
uses surface-transmitted vibratory signals during the courtship or in any other context; however, if it does, the character of the signal might be affected by the length of the hemielytra, and the signals of wing-mutilated macropters would probably resemble those of the brachypters. These considerations may apply also for wing-mutilating gerroids, as the water surface is a very efficient medium for vibrational communication.
</paragraph>
<paragraph id="317736CC5909935A46B6FD8E9264E3A1" blockId="18.[160,1157,142,1103]" pageId="18" pageNumber="493">
Courtship behaviour of
<taxonomicName id="F6C84D4F5909935A47AEFD8E9142E263" box="[472,581,524,549]" class="Insecta" family="Blissidae" genus="Ischnodemus" kingdom="Animalia" order="Hemiptera" pageId="18" pageNumber="493" phylum="Arthropoda" rank="species" species="sabuleti">
<emphasis id="03BCEADE5909935A47AEFD8E9142E263" box="[472,581,524,549]" italics="true" pageId="18" pageNumber="493">I. sabuleti</emphasis>
</taxonomicName>
must be studied in much more detail; however, according to the authors sporadic observations, males mounting the females often vigorously rub the top of their abdomens against the distal part of the females body, which is covered with the membrane on the full-winged macropters while it is free on both genuine brachypters and de-alated macropters. Even if this is not a vibrational signal (see above), then it is still possible that the males find the touch of the naked tergites more attractive, or that the females become more receptive when they receive the stimulus of the male abdomen directly on their free tergites instead of on their membrane. In this case, both genuine brachypterous
<emphasis id="03BCEADE5909935A4544FCA3905AE37C" box="[818,861,801,826]" italics="true" pageId="18" pageNumber="493">and</emphasis>
de-alated macropterous females might be engaged more often in copulation than full-winged macropterous females. In this case it is even less clear how the females would observe the wing status of their potential partners. The potential role of visual and vibrational cues and of the tactile and/or olfactory examination of the partner with the antennas should be studied in detail.
</paragraph>
<paragraph id="317736CC5909935A46B6FC73914AE409" blockId="18.[160,1157,142,1103]" pageId="18" pageNumber="493">In conclusion, the author suggests that the plastic surgery hypothesis is interesting enough to be tested empirically, although the simpler alternative hypotheses presented above might have greater probability.</paragraph>
</subSubSection>
</treatment>
</document>