treatments-xml/data/03/CA/3B/03CA3B6FF33EFFC5FCD4D5D6FDB8C1E3.xml

194 lines
31 KiB
XML
Raw Normal View History

2024-06-21 12:22:17 +02:00
<document id="3144E177CE23D727940C298EA5471F23" ID-DOI="10.1016/j.jcz.2023.05.003" ID-ISSN="1873-2674" IM.bibliography_approvedBy="felipe" IM.illustrations_approvedBy="felipe" IM.materialsCitations_approvedBy="felipe" IM.metadata_approvedBy="felipe" IM.taxonomicNames_approvedBy="felipe" IM.treatments_approvedBy="felipe" checkinTime="1702540870477" checkinUser="felipe" docAuthor="Poddubnaya, Larisa G., Hemmingsen, Willy &amp; MacKenzie, Ken" docDate="2023" docId="03CA3B6FF33EFFC5FCD4D5D6FDB8C1E3" docLanguage="en" docName="ZoolAnz.305.11-22.pdf" docOrigin="Zoologischer Anzeiger 305" docSource="http://dx.doi.org/10.1016/j.jcz.2023.05.003" docStyle="DocumentStyle:32483D6D135DE2FF927BA3F1400E0FFD.1:ZoolAnz.2022-.journal_article" docStyleId="32483D6D135DE2FF927BA3F1400E0FFD" docStyleName="ZoolAnz.2022-.journal_article" docStyleVersion="1" docTitle="Aporocotyle simplex" docType="treatment" docVersion="1" lastPageNumber="20" masterDocId="FFF34317F336FFCCFFE6D47AFFD2C425" masterDocTitle="Digestive system of the marine blood fluke, Aporocotyle simplex (Odhner, 1900) (Digenea: Aporocotylidae) with consideration of the digenean digestive morphology" masterLastPageNumber="22" masterPageNumber="11" pageNumber="19" updateTime="1702541034874" updateUser="GgImagineBatch">
<mods:mods id="A8654049A740476DB4D95070607A8905" xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo id="35FB969D7DFB132744F8B38A78EF29CA">
<mods:title id="6A30753D2B441A1FE4E893B6F00BD433">Digestive system of the marine blood fluke, Aporocotyle simplex (Odhner, 1900) (Digenea: Aporocotylidae) with consideration of the digenean digestive morphology</mods:title>
</mods:titleInfo>
<mods:name id="E18795AF0249CED3EECC3E3D456B9697" type="personal">
<mods:role id="2D309CB7EA1913CAA15967C902A38A26">
<mods:roleTerm id="F89472A6025F89FE23D03B28E4D44220">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="EFD43043CB33B5542FDBFD3BDA2A7361">Poddubnaya, Larisa G.</mods:namePart>
</mods:name>
<mods:name id="EF27EE5206455D1336602AC9EBB0420E" type="personal">
<mods:role id="4F52BD0A4DDB77DFA49320151613E053">
<mods:roleTerm id="B7A1A7F7AC77C3AF86E2AD690640CE71">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="BA17F2265615E3AC278E76FAA8F41994">Hemmingsen, Willy</mods:namePart>
</mods:name>
<mods:name id="A2CEA59302457F0F6EF5A1D97EAB6C2A" type="personal">
<mods:role id="4FAD282A4CB46551BBF61AC6AF879FBA">
<mods:roleTerm id="99F1C7E7EFCF2D51A2EAB72DED16C56B">Author</mods:roleTerm>
</mods:role>
<mods:namePart id="D73216DAA38E1E4482128B994A1447C1">MacKenzie, Ken</mods:namePart>
</mods:name>
<mods:typeOfResource id="3BDB7F21E8AF7287228516615297DD44">text</mods:typeOfResource>
<mods:relatedItem id="754AAE190ED12DB8ACFC485FD9358107" type="host">
<mods:titleInfo id="A600554F5244D09F11F908F820138B50">
<mods:title id="0A9D470E04822ED3A52D8DC43F0351DA">Zoologischer Anzeiger</mods:title>
</mods:titleInfo>
<mods:part id="F2952373509E8B25142DC18FE9FB6C68">
<mods:date id="63D1A277531DE93510BB01A005AAD7A0">2023</mods:date>
<mods:detail id="B4AD0656EB1033CCFF48AB5FC9EFB574" type="pubDate">
<mods:number id="A40A6937E05670CDBA6B4FD88C5F5788">2023-07-31</mods:number>
</mods:detail>
<mods:detail id="FB5E680EB967BCDB0479E5B8AF47954F" type="volume">
<mods:number id="92F62410E10632119078FDB09BB42CDE">305</mods:number>
</mods:detail>
<mods:extent id="A4E7B3358AC42E61A40CD06E1F7C12B5" unit="page">
<mods:start id="B74FDF9B1B32A778342EF88F025921E4">11</mods:start>
<mods:end id="0AE184D4B71B5B4006BBCE3A277A9358">22</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location id="66EFF167033EB556D338A5431B3B0048">
<mods:url id="506572060C5133139548A2127ECE78F3">http://dx.doi.org/10.1016/j.jcz.2023.05.003</mods:url>
</mods:location>
<mods:classification id="355D9359C541E90543C274A75E0C662F">journal article</mods:classification>
<mods:identifier id="DB49B64A88078DE2E75B0C6E1DC38184" type="DOI">10.1016/j.jcz.2023.05.003</mods:identifier>
<mods:identifier id="69E44A398B7C18669C5242CB5B292CCB" type="ISSN">1873-2674</mods:identifier>
</mods:mods>
<treatment id="03CA3B6FF33EFFC5FCD4D5D6FDB8C1E3" LSID="urn:lsid:plazi:treatment:03CA3B6FF33EFFC5FCD4D5D6FDB8C1E3" httpUri="http://treatment.plazi.org/id/03CA3B6FF33EFFC5FCD4D5D6FDB8C1E3" lastPageId="9" lastPageNumber="20" pageId="8" pageNumber="19">
<subSubSection id="C379D9F2F33EFFC4FCD4D5D6FAFEC59A" box="[818,1324,428,447]" pageId="8" pageNumber="19" type="nomenclature">
<paragraph id="8BDC8A79F33EFFC4FCD4D5D6FAFEC59A" blockId="8.[818,1324,428,447]" box="[818,1324,428,447]" pageId="8" pageNumber="19">
<heading id="D0943D15F33EFFC4FCD4D5D6FAFEC59A" box="[818,1324,428,447]" fontSize="36" level="2" pageId="8" pageNumber="19" reason="3">
<emphasis id="B917566BF33EFFC4FCD4D5D6FAFEC59A" bold="true" box="[818,1324,428,447]" italics="true" pageId="8" pageNumber="19">
4.4. Gastrodermal ultrastructural features of
<taxonomicName id="4C63F1FAF33EFFC4FB2BD5D6FAFEC59A" ID-CoL="67QN2" baseAuthorityName="Odhner" baseAuthorityYear="1900" box="[1229,1324,428,447]" class="Trematoda" family="Aporocotylidae" genus="Aporocotyle" kingdom="Animalia" order="Diplostomida" pageId="8" pageNumber="19" phylum="Platyhelminthes" rank="species" species="simplex">A. simplex</taxonomicName>
</emphasis>
</heading>
</paragraph>
</subSubSection>
<subSubSection id="C379D9F2F33EFFC5FCB7D59EFDB8C1E3" lastPageId="9" lastPageNumber="20" pageId="8" pageNumber="19" type="description">
<paragraph id="8BDC8A79F33EFFC5FCB7D59EFDCFC70D" blockId="8.[818,1488,484,1982]" lastBlockId="9.[100,771,147,1478]" lastPageId="9" lastPageNumber="20" pageId="8" pageNumber="19">
As shown in the present investigation, the lumen of four ramifications of the caecum in all studied specimens of
<taxonomicName id="4C63F1FAF33EFFC4FB12D67AFA80C636" baseAuthorityName="Odhner" baseAuthorityYear="1900" box="[1268,1362,512,531]" class="Trematoda" family="Aporocotylidae" genus="Aporocotyle" kingdom="Animalia" order="Diplostomida" pageId="8" pageNumber="19" phylum="Platyhelminthes" rank="species" species="simplex">
<emphasis id="B917566BF33EFFC4FB12D67AFA80C636" bold="true" box="[1268,1362,512,531]" italics="true" pageId="8" pageNumber="19">A. simplex</emphasis>
</taxonomicName>
is filled with moderately dense amorphous finely dispersed material, in which dark inclusions and residual bodies are embedded. In
<taxonomicName id="4C63F1FAF33EFFC4FB19D642FA8FC66F" baseAuthorityName="Odhner" baseAuthorityYear="1900" box="[1279,1373,567,587]" class="Trematoda" family="Aporocotylidae" genus="Aporocotyle" kingdom="Animalia" order="Diplostomida" pageId="8" pageNumber="19" phylum="Platyhelminthes" rank="species" species="simplex">
<emphasis id="B917566BF33EFFC4FB19D642FA8FC66F" bold="true" box="[1279,1373,567,587]" italics="true" pageId="8" pageNumber="19">A. simplex</emphasis>
</taxonomicName>
the luminal amplification of the syncytial gastrodermal lining is flexible lamellae, ranging in length from about 0.9 to 2.5 μm. A single cell
<typeStatus id="54D834DBF33EFFC4FADAD60AFAB7C6A6" box="[1340,1381,624,643]" pageId="8" pageNumber="19">type</typeStatus>
constitutes the digenean cellular or syncytial lamellated caecal epithelial lining (gastrodermis), the cytological nature of which changes with each phase of the digestive activity for both secretory and absorptive functions (
<bibRefCitation id="EFF2F788F33EFFC4FCDCD6A5FC33C6D7" author="Davis, D. A. &amp; Bogitsh, B. J. &amp; Nunally, D. A." box="[826,993,735,755]" pageId="8" pageNumber="19" pagination="96 - 106" refId="ref10600" refString="Davis, D. A., Bogitsh, B. J., Nunally, D. A., 1968. Cytochemical and biochemical observations on the digestive tract of digenetic trematodes. I. Ultrastructure of Heamatoloechus medioplexus gut. Exp. Parasitol. 22, 96 - 106." type="journal article" year="1968">Davis et al., 1968</bibRefCitation>
;
<bibRefCitation id="EFF2F788F33EFFC4FC08D6A5FACDC6D7" author="Robinson, G. &amp; Threadgold, L. T." box="[1006,1311,735,754]" pageId="8" pageNumber="19" pagination="20 - 36" refId="ref12747" refString="Robinson, G., Threadgold, L. T., 1975. Electron microscope studies of Fasciola hepatica. XII. The fine structure of the gastrodermis. Exp. Parasitol. 37, 20 - 36. https: // doi. org / 10.1016 / 0014 - 4894 (75) 90050 - 8." type="journal article" year="1975">Robinson and Threadgold, 1975</bibRefCitation>
). As shown in our study, in the case of
<taxonomicName id="4C63F1FAF33EFFC4FC08D681FB98C72B" baseAuthorityName="Odhner" baseAuthorityYear="1900" box="[1006,1098,763,782]" class="Trematoda" family="Aporocotylidae" genus="Aporocotyle" kingdom="Animalia" order="Diplostomida" pageId="8" pageNumber="19" phylum="Platyhelminthes" rank="species" species="simplex">
<emphasis id="B917566BF33EFFC4FC08D681FB98C72B" bold="true" box="[1006,1098,763,782]" italics="true" pageId="8" pageNumber="19">A. simplex</emphasis>
</taxonomicName>
, the secretory and absorptive functions in the gastrodermal syncytial epithelium may be observed along different regions of the caecum, performing both functions simultaneously. As noted by
<bibRefCitation id="EFF2F788F33EFFC4FC6DD735FB16C747" author="Robinson, G. &amp; Threadgold, L. T." box="[907,1220,847,866]" pageId="8" pageNumber="19" pagination="20 - 36" refId="ref12747" refString="Robinson, G., Threadgold, L. T., 1975. Electron microscope studies of Fasciola hepatica. XII. The fine structure of the gastrodermis. Exp. Parasitol. 37, 20 - 36. https: // doi. org / 10.1016 / 0014 - 4894 (75) 90050 - 8." type="journal article" year="1975">Robinson and Threadgold (1975)</bibRefCitation>
, every gastrodermal cell (or gastrodermal syncytial region) shows an alternation in phases of its activity and the ability of the gastrodermis to perform some function.
<bibRefCitation id="EFF2F788F33EFFC4FCD4D7D8FBB9C790" author="Robinson, G. &amp; Threadgold, L. T." box="[818,1131,930,949]" pageId="8" pageNumber="19" pagination="20 - 36" refId="ref12747" refString="Robinson, G., Threadgold, L. T., 1975. Electron microscope studies of Fasciola hepatica. XII. The fine structure of the gastrodermis. Exp. Parasitol. 37, 20 - 36. https: // doi. org / 10.1016 / 0014 - 4894 (75) 90050 - 8." type="journal article" year="1975">Robinson and Threadgold (1975)</bibRefCitation>
suggested that the various organelles of each gastrodermal region may reflect the physiological state of the particular region. Moreover,
<bibRefCitation id="EFF2F788F33EFFC4FBD8D7A0FB3BC7C8" author="Davis, D. A. &amp; Bogitsh, B. J. &amp; Nunally, D. A." box="[1086,1257,986,1006]" pageId="8" pageNumber="19" pagination="96 - 106" refId="ref10600" refString="Davis, D. A., Bogitsh, B. J., Nunally, D. A., 1968. Cytochemical and biochemical observations on the digestive tract of digenetic trematodes. I. Ultrastructure of Heamatoloechus medioplexus gut. Exp. Parasitol. 22, 96 - 106." type="journal article" year="1968">Davis et al. (1968)</bibRefCitation>
noted that secretory and nonsecretory digestive cycles exist in the cellular gastrodermis of the plagiorchiid,
<emphasis id="B917566BF33EFFC4FC57D068FB75C000" bold="true" box="[945,1191,1042,1061]" italics="true" pageId="8" pageNumber="19">Heamatoechus medioplexus</emphasis>
, and it is highly probable that both functions are performed simultaneously whenever food is present in the caecal lumen. The presence of a secretory cycle in the cellular gastrodermis of the plagiorchiid
<taxonomicName id="4C63F1FAF33EFFC4FB81D01CFB02C05D" box="[1127,1232,1125,1145]" class="Trematoda" family="Paramphistomidae" genus="Paramphistomum" kingdom="Animalia" order="Plagiorchiida" pageId="8" pageNumber="19" phylum="Platyhelminthes" rank="species" species="epiclitum">
<emphasis id="B917566BF33EFFC4FB81D01CFB02C05D" bold="true" box="[1127,1232,1125,1145]" italics="true" pageId="8" pageNumber="19">P. epiclitum</emphasis>
</taxonomicName>
was indicated by
<bibRefCitation id="EFF2F788F33EFFC4FA9BD01CFC79C0B0" author="Mattison, R. G. &amp; Hanna, R. E. B. &amp; Nizami, W. A." pageId="8" pageNumber="19" pagination="1089 - 1101" refId="ref11264" refString="Mattison, R. G., Hanna, R. E. B., Nizami, W. A., 1992. Ultrastructure and histochemistry of the digestive tract of juvenile Paramphistomum epiclitum (Paramphistomidae: Digenea) during migration in Indian ruminants. Int. J. Parasitol. 22, 1089 - 1101. https: // doi. org / 10.1016 / 0020 - 7519 (92) 90029 - k." type="journal article" year="1992">Mattison et al. (1992)</bibRefCitation>
. In another plagiorchiid feeding on blood,
<taxonomicName id="4C63F1FAF33EFFC4FAA9D0FBFC89C095" authorityName="Nicoll" authorityYear="1909" baseAuthorityName="Olsson" baseAuthorityYear="1868" class="Trematoda" family="Fellodistomidae" genus="Fellodistomum" kingdom="Animalia" order="Plagiorchiida" pageId="8" pageNumber="19" phylum="Platyhelminthes" rank="species" species="fellis">
<emphasis id="B917566BF33EFFC4FAA9D0FBFC89C095" bold="true" italics="true" pageId="8" pageNumber="19">Fellodistomum fellis</emphasis>
</taxonomicName>
, as in polyopisthocotylidean monogeneans, the digestive caeca consists of a layer of digestive cells overlain by a syncytial layer of connective tissue (
<bibRefCitation id="EFF2F788F33EFFC4FC39D0AFFB89C0CC" author="Halton, D. W." box="[991,1115,1237,1257]" pageId="8" pageNumber="19" pagination="693 - 704" refId="ref10860" refString="Halton, D. W., 1997. Nutritional adaptations to parasitism within the Platyhelminthes. Int. J. Parasitol. 27, 693 - 704. https: // doi. org / 10.1016 / s 0020 - 7519 (97) 00011 - 8." type="journal article" year="1997">
<collectingRegion id="49A7449BF33EFFC4FC39D0AFFBF3C0CD" box="[991,1057,1237,1256]" country="United Kingdom" name="Halton" pageId="8" pageNumber="19">Halton</collectingRegion>
, 1997
</bibRefCitation>
). In contrast to polyopisthocotylideans, digestive cells possessing intracellular hemoglobin degradation (Konstanzov´a et al., 2015;
<bibRefCitation id="EFF2F788F33EFFC4FBB4D177FA81C105" author="Poddubnaya, L. G. &amp; Hemmingsen, W. &amp; Reed, C. &amp; Gibson, D. I." box="[1106,1363,1293,1313]" pageId="8" pageNumber="19" pagination="2599 - 2610" refId="ref12137" refString="Poddubnaya, L. G., Hemmingsen, W., Reed, C., Gibson, D. I., 2015. Ultrastructural characteristics of the caeca of basal polyopisthocotylean monogeneans of the families Chimaericolidae and Hexabothriidae parasitic on cartilaginous fishes. Parasitol. Res. 114, 2599 - 2610. https: // doi. org / 10.1007 / s 00436 - 015 - 4464 - 5." type="journal article" year="2015">Poddubnaya et al., 2015</bibRefCitation>
;
<bibRefCitation id="EFF2F788F33EFFC4FA8ED177FC19C119" author="Cable, J. &amp; El-Naggar, M. M." pageId="8" pageNumber="19" pagination="3181 - 3193" refId="ref10343" refString="Cable, J., El-Naggar, M. M., 2021. Gastrodermis ultrastructure of the different life stages of the polyopisthocotylean monogenean gill parasite Discocotyle sagittata. Parasitol. Res. 120, 3181 - 3193. https: // doi. org / 10.1007 / s 00436 - 021 - 07286 - 6." type="journal article" year="2021">Cable and El-Naggar, 2021</bibRefCitation>
) in
<taxonomicName id="4C63F1FAF33EFFC4FC15D153FBE6C119" authorityName="Nicoll" authorityYear="1909" baseAuthorityName="Olsson" baseAuthorityYear="1868" box="[1011,1076,1321,1340]" class="Trematoda" family="Fellodistomidae" genus="Fellodistomum" kingdom="Animalia" order="Plagiorchiida" pageId="8" pageNumber="19" phylum="Platyhelminthes" rank="species" species="fellis">
<emphasis id="B917566BF33EFFC4FC15D153FBE6C119" bold="true" box="[1011,1076,1321,1340]" italics="true" pageId="8" pageNumber="19">F. fellis</emphasis>
</taxonomicName>
haemoglobin is not degraded within digestive cells, but is entrapped and digested within pockets formed by luminal lamellae, in which contents of zymogen-like granules are released with subsequent formation of residual haematin bodies. Such a
<typeStatus id="54D834DBF33EFFC4FCD4D1E3FC89C189" box="[818,859,1433,1452]" pageId="8" pageNumber="19">type</typeStatus>
of digestion is called extracellular (
<bibRefCitation id="EFF2F788F33EFFC4FB24D1E3FA93C189" author="Halton, D. W." box="[1218,1345,1433,1452]" pageId="8" pageNumber="19" pagination="693 - 704" refId="ref10860" refString="Halton, D. W., 1997. Nutritional adaptations to parasitism within the Platyhelminthes. Int. J. Parasitol. 27, 693 - 704. https: // doi. org / 10.1016 / s 0020 - 7519 (97) 00011 - 8." type="journal article" year="1997">
<collectingRegion id="49A7449BF33EFFC4FB24D1E3FAD6C189" box="[1218,1284,1433,1452]" country="United Kingdom" name="Halton" pageId="8" pageNumber="19">Halton</collectingRegion>
, 1997
</bibRefCitation>
). It should be emphasized that for the digeneans
<bibRefCitation id="EFF2F788F33EFFC4FB9CD1CEFAD7C1ED" author="Bogitsh, B. J." box="[1146,1285,1460,1480]" pageId="8" pageNumber="19" pagination="1 - 9" refId="ref9664" refString="Bogitsh, B. J., 1993. A comparative review of the flatworms gut with emphasis on the Rhabdocoela and Neodermata. Trans. Am. Microsc. Soc. 112, 1 - 9. https: // doi. org / 10.2307 / 3226777." type="journal article" year="1993">Bogitsh (1993)</bibRefCitation>
assumed the absence of intracellular digestion of exogenous food in the gastrodermis, but the presence of extracellular digestion in the caecal lumen, in so-called superficial digestive vacuoles formed by the luminal lamellae. However, in other studies of blood flukes, the schistosomes demonstrated the acidic contents of their gastrodermis, suggesting that it is a site of hemoglobinolytic action and the enzymes secreted by the gastrodermis (
<bibRefCitation id="EFF2F788F33EFFC4FCDCD202FB9CC2AE" author="Bogitsh, B. J. &amp; Davenport, C. R." box="[826,1102,1656,1675]" pageId="8" pageNumber="19" pagination="187 - 193" refId="ref9761" refString="Bogitsh, B. J., Davenport, C. R., 1991. The in vitro effects of various lysosomatic agents on the gut of Schistosoma mansoni schistosomules. J. Parasitol. 77, 187 - 193. https: // doi. org / 10.2307 / 3283078." type="journal article" year="1991">Bogitsh and Davenport, 1991</bibRefCitation>
). Distribution of acid phosphatase activity was associated with the luminal surface of the gastrodermis, gastrodermal lysosome-like structures such as the multivesiculate bodies, a variety of cytoplasmic vesicles and bodies in the schistosome gastrodermis (
<bibRefCitation id="EFF2F788F33EFFC4FC99D29DFB52C2DF" author="Bogitsh, B. J. &amp; Shannon Jr." box="[895,1152,1767,1786]" pageId="8" pageNumber="19" pagination="337 - 347" refId="ref9864" refString="Bogitsh, B. J., Shannon Jr., 1971. Cytochemical and biochemical observations on the digestive tracts of digenetic trematodes. VIII. Acid phosphatase activity in Schistosoma mansoni and Schistosomatium douthitti. Exp. Parasitol. 29, 337 - 347. https: // doi. org / 10.1016 / 0014 - 4894 (71) 90041 - 5." type="journal article" year="1971">Bogitsh and Shannon, 1971</bibRefCitation>
). Acid phosphatase was established as a marker for lysosomes and related organelles such as food vacuoles and may reflect the presence of a lysosome system in the digenean gastrodermis (
<bibRefCitation id="EFF2F788F33EFFC4FC5FD341FBF7C36B" author="Ernst" box="[953,1061,1851,1870]" pageId="8" pageNumber="19" pagination="633 - 647" refId="ref10734" refString="Ernst, S. C., 1975. Biochemical and cytochemical studies of digestive-absorptive functions of esophagus, caecum and tegument in Schistosoma mansoni: acid phosphatase and tracer studies. J. Parasitol. 61, 633 - 647. https: // doi. org / 10.2307 / 3279456." type="journal article" year="1975">Ernst, 1975</bibRefCitation>
;
<bibRefCitation id="EFF2F788F33EFFC4FBD6D341FAE5C36B" author="Bogitsh, B. J. &amp; Ryckman, C. S." box="[1072,1335,1851,1870]" pageId="8" pageNumber="19" pagination="824 - 833" refId="ref9814" refString="Bogitsh, B. J., Ryckman, C. S., 1982. Ultrastructure of Brachycoelium salamandrae gastrodermis with observation on the effects of starvation. J. Parasitol. 68, 824 - 833. https: // doi. org / 10.2307 / 3280989." type="journal article" year="1982">Bogitsh and Ryckman, 1982</bibRefCitation>
). Moreover, the proteolytic pathway of hemoglobin digestion in the schistosome gastrodermis may indicate endopeptidase, as asparaginil, which has a pivotal role in haemoglobin digestion (
<bibRefCitation id="EFF2F788F33EFFC4FB43D3F5FA85C384" author="Dalton, J. P. &amp; Smith, A. M. &amp; Clough, K. A. &amp; Brindley, P. J." box="[1189,1367,1934,1954]" pageId="8" pageNumber="19" pagination="299 - 303" refId="ref10532" refString="Dalton, J. P., Smith, A. M., Clough, K. A., Brindley, P. J., 1995. Digestion a haemoglobin by schistosomes: 35 years on. Parasitol. Today 11, 299 - 303. https: // doi. org / 10.1016 / 0169 - 4758 (95) 80045 - x." type="journal article" year="1995">Dalton et al., 1995</bibRefCitation>
). In the gastrodermal cytoplasm of
<taxonomicName id="4C63F1FAF33EFFC4FBFCD3D1FBABC398" baseAuthorityName="Odhner" baseAuthorityYear="1900" box="[1050,1145,1962,1982]" class="Trematoda" family="Aporocotylidae" genus="Aporocotyle" kingdom="Animalia" order="Diplostomida" pageId="8" pageNumber="19" phylum="Platyhelminthes" rank="species" species="simplex">
<emphasis id="B917566BF33EFFC4FBFCD3D1FBABC398" bold="true" box="[1050,1145,1962,1982]" italics="true" pageId="8" pageNumber="19">A. simplex</emphasis>
</taxonomicName>
there are extensive GER and Golgi complexes producing rounded vesicles (0.10.3 μm in diameter) containing an agglomeration of finely dispersed substance. In addition, the occurrence of multivesiculate bodies (0.4 μm in diameter), different kinds of residual bodies (2.02.6 μm in diameter), and large residual bodies (0.91.5 μm in diameter) may indicate the gastrodermal pathways of haemoglobin digestion in the studied marine aporocotylid species. The presence of protein synthesis in the gastrodermis is indicated by the observation that the enzymes enclosed within the Golgi vesicles are primary lysosomes (
<bibRefCitation id="EFF2F788F33FFFC5FE4AD509FD03C5A3" author="Bogitsh, B. J. &amp; Davenport, C. R." box="[428,721,371,390]" pageId="9" pageNumber="20" pagination="187 - 193" refId="ref9761" refString="Bogitsh, B. J., Davenport, C. R., 1991. The in vitro effects of various lysosomatic agents on the gut of Schistosoma mansoni schistosomules. J. Parasitol. 77, 187 - 193. https: // doi. org / 10.2307 / 3283078." type="journal article" year="1991">Bogitsh and Davenport, 1991</bibRefCitation>
). As shown our investigation, haematin accumulates in the gastrodermal lumen of
<taxonomicName id="4C63F1FAF33FFFC5FF59D5D1FECFC598" baseAuthorityName="Odhner" baseAuthorityYear="1900" box="[191,285,426,446]" class="Trematoda" family="Aporocotylidae" genus="Aporocotyle" kingdom="Animalia" order="Diplostomida" pageId="9" pageNumber="20" phylum="Platyhelminthes" rank="species" species="simplex">
<emphasis id="B917566BF33FFFC5FF59D5D1FECFC598" bold="true" box="[191,285,426,446]" italics="true" pageId="9" pageNumber="20">A. simplex</emphasis>
</taxonomicName>
. The fact that haematin occurs both intracellularly (within residual bodies) and within the gastrodermal lumen between lamellae may suggest the possibility that it is being moved across the membrane. As Morris (1968) postulated for schistosomes, and we assume it is true for the aporocotylid blood fluke,
<emphasis id="B917566BF33FFFC5FDC8D660FD41C608" bold="true" box="[558,659,538,557]" italics="true" pageId="9" pageNumber="20">
<taxonomicName id="4C63F1FAF33FFFC5FDC8D660FD5CC608" baseAuthorityName="Odhner" baseAuthorityYear="1900" box="[558,654,538,557]" class="Trematoda" family="Aporocotylidae" genus="Aporocotyle" kingdom="Animalia" order="Diplostomida" pageId="9" pageNumber="20" phylum="Platyhelminthes" rank="species" species="simplex">A. simplex</taxonomicName>
,
</emphasis>
a combination of extra- and intracellular digestion occurs. Extracellular digestive enzymes produced by the esophagus initiate the digestion of hemoglobin, and the digestive process may then be completed after uptake by the gastrodermis, in which an intermediate is phagocytosed and broken down to simple end products (see Morris, 1968, p. 482). Moreover, the presence of a number of regularly arranged tubular arrays in the gastrodermal cytoplasm of
<taxonomicName id="4C63F1FAF33FFFC5FEABD6A7FE7FC6D5" baseAuthorityName="Odhner" baseAuthorityYear="1900" box="[333,429,733,752]" class="Trematoda" family="Aporocotylidae" genus="Aporocotyle" kingdom="Animalia" order="Diplostomida" pageId="9" pageNumber="20" phylum="Platyhelminthes" rank="species" species="simplex">
<emphasis id="B917566BF33FFFC5FEABD6A7FE7FC6D5" bold="true" box="[333,429,733,752]" italics="true" pageId="9" pageNumber="20">A. simplex</emphasis>
</taxonomicName>
may support a transport system of host proteins from the gastrodermal lumen to the intracellular reticular system of channels of gastrodermal cytoplasm.
</paragraph>
<paragraph id="8BDC8A79F33FFFC5FF62D74BFDB8C1E3" blockId="9.[100,771,147,1478]" pageId="9" pageNumber="20">
Another aporocotylid species, the freshwater blood fluke
<taxonomicName id="4C63F1FAF33FFFC5FD42D74BFD2EC761" box="[676,764,817,836]" class="Trematoda" family="Aporocotylidae" genus="Sanguinicola" kingdom="Animalia" order="Diplostomida" pageId="9" pageNumber="20" phylum="Platyhelminthes" rank="species" species="inermis">
<emphasis id="B917566BF33FFFC5FD42D74BFD2EC761" bold="true" box="[676,764,817,836]" italics="true" pageId="9" pageNumber="20">S. inermis</emphasis>
</taxonomicName>
, has five, short, reduced intestinal outgrowths, the luminal surface of which lacks lamellae (McMichael et al., 1994a). In the brief description of the
<taxonomicName id="4C63F1FAF33FFFC5FF43D7FFFF2DC7BD" box="[165,255,901,920]" class="Trematoda" family="Aporocotylidae" genus="Sanguinicola" kingdom="Animalia" order="Diplostomida" pageId="9" pageNumber="20" phylum="Platyhelminthes" rank="species" species="inermis">
<emphasis id="B917566BF33FFFC5FF43D7FFFF2DC7BD" bold="true" box="[165,255,901,920]" italics="true" pageId="9" pageNumber="20">S. inermis</emphasis>
</taxonomicName>
intestine by McMichael et al. (1994a), the expanded cisternae of GER and Golgi complexes and electron-dense granules are restricted to some gastrodermal areas. However, these authors assumed that this is likely to facilitate food transport across the external tegument and might account for the reduction of the intestine and apical gastrodermal projections in the genus
<taxonomicName id="4C63F1FAF33FFFC5FE77D06AFDD0C006" authorityName="Plehn" authorityYear="1905" box="[401,514,1040,1059]" class="Trematoda" family="Aporocotylidae" genus="Sanguinicola" kingdom="Animalia" order="Diplostomida" pageId="9" pageNumber="20" phylum="Platyhelminthes" rank="genus">
<emphasis id="B917566BF33FFFC5FE77D06AFDD0C006" bold="true" box="[401,514,1040,1059]" italics="true" pageId="9" pageNumber="20">Sanguinicola</emphasis>
</taxonomicName>
. It is pertinent to note here that the previously published ultrastructural studies on the tegumental structure of the aporocotilid digeneans,
<taxonomicName id="4C63F1FAF33FFFC5FE07D032FD92C07E" baseAuthorityName="Odhner" baseAuthorityYear="1900" box="[481,576,1096,1115]" class="Trematoda" family="Aporocotylidae" genus="Aporocotyle" kingdom="Animalia" order="Diplostomida" pageId="9" pageNumber="20" phylum="Platyhelminthes" rank="species" species="simplex">
<emphasis id="B917566BF33FFFC5FE07D032FD92C07E" bold="true" box="[481,576,1096,1115]" italics="true" pageId="9" pageNumber="20">A. simplex</emphasis>
</taxonomicName>
and
<taxonomicName id="4C63F1FAF33FFFC5FD96D032FD1AC07E" box="[624,712,1096,1115]" class="Trematoda" family="Aporocotylidae" genus="Sanguinicola" kingdom="Animalia" order="Diplostomida" pageId="9" pageNumber="20" phylum="Platyhelminthes" rank="species" species="inermis">
<emphasis id="B917566BF33FFFC5FD96D032FD1AC07E" bold="true" box="[624,712,1096,1115]" italics="true" pageId="9" pageNumber="20">S. inermis</emphasis>
</taxonomicName>
, have revealed no morphological evidence, which may reflect the physiological state for blood feeding through the tegument (
<bibRefCitation id="EFF2F788F33FFFC5FDA9D0FAFF46C08A" author="Poddubnaya, L. G. &amp; Hemmingsen, W. &amp; Poddubny, S. A. &amp; Gibson, D. I." pageId="9" pageNumber="20" pagination="2801 - 2810" refId="ref12211" refString="Poddubnaya, L. G., Hemmingsen, W., Poddubny, S. A., Gibson, D. I., 2019. Unique ultrastructural characteristics of the tegument of the digenean blood fluke Aporocotyle simplex Odhner, 1900 (Digenea: Aporocotylidae), a parasite of flatfishes. Parasitol. Res. 118, 2801 - 2810. https: // doi. org / 10.1007 / s 00436 - 019 - 06436 - 1." type="journal article" year="2019">Poddubnaya et al., 2019</bibRefCitation>
;
<bibRefCitation id="EFF2F788F33FFFC5FF40D0E6FF33C08A" author="Poddubnaya, L. G. &amp; Zhokhov, A. E. &amp; Gibson, D. I." box="[166,225,1180,1199]" pageId="9" pageNumber="20" pagination="108 - 117" refId="ref12383" refString="Poddubnaya, L. G., Zhokhov, A. E., Gibson, D. I., 2020 b. Ultrastructural features of aporocotylid blood flukes: the tegument and sensory receptors of Sanguinicola inermis Plehn, 1905 from the pike Esox lucius, with a comparative analysis of their traits within the Neodermata. Zool. Anz. 289, 108 - 117. https: // doi. org / 10.1016 / j. jcz. 2020.10.001." type="journal article" year="2020">2020b</bibRefCitation>
). Moreover, the distal cytoplasmic layer of these two aporocotylid digeneans is poor in organoids and vesicular inclusions. Further, using nucleotide pulse-chase,
<bibRefCitation id="EFF2F788F33FFFC5FE3BD0AEFD95C0C2" author="Lee, J." box="[477,583,1236,1255]" pageId="9" pageNumber="20" pagination="1 - 17" refId="ref11217" refString="Lee, J., 2023. Planarians to schistosomes: an overview of flatworm cell-types and regulations. J. Helminthol. 97 (e 7), 1 - 17. https: // doi. org / 10.1017 / S 0022149 X 22000621." type="journal article" year="2023">Lee (2023)</bibRefCitation>
noted that a large proportion of stem cells produce tegument precursors in schistosomula/juveniles. Such continuous replenishment of stem cell-driven tegument cell production likely contributes to the schistosome s ability to evade host immunity (
<bibRefCitation id="EFF2F788F33FFFC5FEA4D13EFE4CC173" author="Lee, J." box="[322,414,1347,1367]" pageId="9" pageNumber="20" pagination="1 - 17" refId="ref11217" refString="Lee, J., 2023. Planarians to schistosomes: an overview of flatworm cell-types and regulations. J. Helminthol. 97 (e 7), 1 - 17. https: // doi. org / 10.1017 / S 0022149 X 22000621." type="journal article" year="2023">Lee, 2023</bibRefCitation>
, p. 4). We may assume that the presence of short intestinal caeca in species of the genus
<taxonomicName id="4C63F1FAF33FFFC5FD81D125FD0AC157" authorityName="Plehn" authorityYear="1905" box="[615,728,1375,1394]" class="Trematoda" family="Aporocotylidae" genus="Sanguinicola" kingdom="Animalia" order="Diplostomida" pageId="9" pageNumber="20" phylum="Platyhelminthes" rank="genus">
<emphasis id="B917566BF33FFFC5FD81D125FD0AC157" bold="true" box="[615,728,1375,1394]" italics="true" pageId="9" pageNumber="20">Sanguinicola</emphasis>
</taxonomicName>
is a result of miniaturization of both body size and organs in the species of this genus. In any case, for freshwater species of the genus
<emphasis id="B917566BF33FFFC5FD6DD1EDFCD3C18F" bold="true" box="[651,769,1431,1450]" italics="true" pageId="9" pageNumber="20">
<taxonomicName id="4C63F1FAF33FFFC5FD6DD1EDFD2CC18F" authorityName="Plehn" authorityYear="1905" box="[651,766,1431,1450]" class="Trematoda" family="Aporocotylidae" genus="Sanguinicola" kingdom="Animalia" order="Diplostomida" pageId="9" pageNumber="20" phylum="Platyhelminthes" rank="genus">Sanguinicola</taxonomicName>
,
</emphasis>
additional studies of the digestive system are required.
</paragraph>
</subSubSection>
</treatment>
</document>