treatments-xml/data/03/E8/87/03E887C2523EFFDDFE2DFBC4FD27CA46.xml

292 lines
29 KiB
XML
Raw Normal View History

2024-06-21 12:22:17 +02:00
<document ID-DOI="10.24349/pjye-gkeo" ID-ISSN="2107-7207" ID-Zenodo-Dep="7160532" approvalRequired="18" approvalRequired_for_taxonomicNames="3" approvalRequired_for_textStreams="14" approvalRequired_for_treatments="1" checkinTime="1665197567050" checkinUser="felipe" docAuthor="Brückner, Adrian, Barnett, Austen A., Bhat, Prashant, Antoshechkin, Igor A. &amp; Kitchen, Sheila A." docDate="2022" docId="03E887C2523EFFDDFE2DFBC4FD27CA46" docLanguage="en" docName="Acarologia.62.2.532-573.pdf.pdf" docOrigin="Acarologia 62 (2)" docSource="https://www1.montpellier.inrae.fr/CBGP/acarologia/article.php?id=4528" docStyle="DocumentStyle:0387F17C4AF9F8D6336E46CC5E5664D0.4:Acarologia.2018-.journal_article" docStyleId="0387F17C4AF9F8D6336E46CC5E5664D0" docStyleName="Acarologia.2018-.journal_article" docStyleVersion="4" docTitle="Archegozetes Hox" docType="treatment" docVersion="2" lastPageNumber="543" masterDocId="FFD1FFBA5235FFD1FFC6FFAFF96ACE25" masterDocTitle="Molecular evolutionary trends and biosynthesis pathways in the Oribatida revealed by the genome of Archegozetes longisetosus" masterLastPageNumber="573" masterPageNumber="532" pageNumber="542" updateTime="1665198950934" updateUser="ExternalLinkService" zenodo-license-document="CC-BY-4.0">
<mods:mods xmlns:mods="http://www.loc.gov/mods/v3">
<mods:titleInfo>
<mods:title>Molecular evolutionary trends and biosynthesis pathways in the Oribatida revealed by the genome of Archegozetes longisetosus</mods:title>
</mods:titleInfo>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Brückner, Adrian</mods:namePart>
<mods:affiliation>Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, United States of America.</mods:affiliation>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Barnett, Austen A.</mods:namePart>
<mods:affiliation>Department of Biology, DeSales University, 2755 Station Avenue, Center Valley, PA 18034, United</mods:affiliation>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Bhat, Prashant</mods:namePart>
<mods:affiliation>Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, United States of America. &amp; David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, United States of America.</mods:affiliation>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Antoshechkin, Igor A.</mods:namePart>
<mods:affiliation>Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, United States of America.</mods:affiliation>
</mods:name>
<mods:name type="personal">
<mods:role>
<mods:roleTerm>Author</mods:roleTerm>
</mods:role>
<mods:namePart>Kitchen, Sheila A.</mods:namePart>
<mods:affiliation>Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, United States of America.</mods:affiliation>
</mods:name>
<mods:typeOfResource>text</mods:typeOfResource>
<mods:relatedItem type="host">
<mods:titleInfo>
<mods:title>Acarologia</mods:title>
</mods:titleInfo>
<mods:part>
<mods:date>2022</mods:date>
<mods:detail type="pubDate">
<mods:number>2022-06-08</mods:number>
</mods:detail>
<mods:detail type="volume">
<mods:number>62</mods:number>
</mods:detail>
<mods:detail type="issue">
<mods:number>2</mods:number>
</mods:detail>
<mods:extent unit="page">
<mods:start>532</mods:start>
<mods:end>573</mods:end>
</mods:extent>
</mods:part>
</mods:relatedItem>
<mods:location>
<mods:url>https://www1.montpellier.inrae.fr/CBGP/acarologia/article.php?id=4528</mods:url>
</mods:location>
<mods:classification>journal article</mods:classification>
<mods:identifier type="DOI">10.24349/pjye-gkeo</mods:identifier>
<mods:identifier type="ISSN">2107-7207</mods:identifier>
<mods:identifier type="Zenodo-Dep">7160532</mods:identifier>
</mods:mods>
<treatment LSID="urn:lsid:plazi:treatment:03E887C2523EFFDDFE2DFBC4FD27CA46" httpUri="http://treatment.plazi.org/id/03E887C2523EFFDDFE2DFBC4FD27CA46" lastPageId="12" lastPageNumber="543" pageId="11" pageNumber="542">
<subSubSection pageId="11" pageNumber="542" type="nomenclature">
<paragraph blockId="11.[491,904,1129,1157]" box="[491,904,1129,1157]" pageId="11" pageNumber="542">
<heading bold="true" box="[491,904,1129,1157]" fontSize="12" level="2" pageId="11" pageNumber="542" reason="6">
<emphasis bold="true" box="[491,904,1129,1157]" pageId="11" pageNumber="542">
The
<taxonomicName authority="Hox" authorityName="Hox" box="[549,799,1129,1157]" class="Arachnida" family="Trhypochthoniidae" genus="Archegozetes" kingdom="Animalia" order="Sarcoptiformes" pageId="11" pageNumber="542" phylum="Arthropoda" rank="genus">
<emphasis bold="true" box="[549,737,1129,1157]" italics="true" pageId="11" pageNumber="542">Archegozetes</emphasis>
Hox
</taxonomicName>
cluster
</emphasis>
</heading>
</paragraph>
<paragraph blockId="11.[491,1503,1183,2036]" pageId="11" pageNumber="542">
The Hox genes are a group of highly conserved transcription factor-encoding genes that are used to pattern the antero-posterior axis in bilaterian metazoans (
<bibRefCitation author="Holland P. &amp; Hogan B." box="[1218,1426,1218,1242]" pageId="11" pageNumber="542" pagination="773 - 782" refId="ref28589" refString="Holland P., Hogan B. 1988. Expression of homeo box genes during mouse development: a review. Gene Devol, 2: 773 - 782. https: // doi. org / 10.1101 / gad. 2.7.773" type="journal article" year="1988">
<collectingCountry box="[1218,1300,1218,1242]" name="Netherlands" pageId="11" pageNumber="542">Holland</collectingCountry>
and Hogan,
</bibRefCitation>
</paragraph>
</subSubSection>
<subSubSection lastPageId="12" lastPageNumber="543" pageId="11" pageNumber="542" type="description">
<paragraph blockId="11.[491,1503,1183,2036]" pageId="11" pageNumber="542">
1988;
<bibRefCitation author="Hrycaj S. M. &amp; Wellik D. M." box="[555,806,1252,1276]" pageId="11" pageNumber="542" pagination="5" refId="ref28728" refString="Hrycaj S. M., Wellik D. M. 2016. Hox genes and evolution. F 1000 Research, 5. https: // doi. org / 10.12688 / f 1000 research. 7663.1" type="journal article" year="2016">Hrycaj and Wellik, 2016</bibRefCitation>
). Ancestrally, arthropods likely had ten Hox genes arranged in a cluster (
<bibRefCitation author="Hughes C. L. &amp; Kaufman T. C." box="[626,909,1287,1311]" pageId="11" pageNumber="542" pagination="459 - 499" refId="ref28836" refString="Hughes C. L., Kaufman T. C. 2002. Hox genes and the evolution of the arthropod body plan. Evol Dev, 4: 459 - 499. https: // doi. org / 10.1046 / j. 1525 - 142 X. 2002.02034. x" type="journal article" year="2002">Hughes and Kaufman, 2002</bibRefCitation>
). During arthropod development, the Hox genes specify the identities of the body segments, and mutations in Hox genes usually result in the transformation of segmental identities (
<bibRefCitation author="Hughes C. L. &amp; Kaufman T. C." box="[892,1171,1356,1380]" pageId="11" pageNumber="542" pagination="459 - 499" refId="ref28836" refString="Hughes C. L., Kaufman T. C. 2002. Hox genes and the evolution of the arthropod body plan. Evol Dev, 4: 459 - 499. https: // doi. org / 10.1046 / j. 1525 - 142 X. 2002.02034. x" type="journal article" year="2002">Hughes and Kaufman, 2002</bibRefCitation>
). The importance of Hox genes in development of metazoans makes knowledge of their duplication and disappearances important for understanding their role in the evolution of body plans (
<bibRefCitation author="Hughes C. L. &amp; Kaufman T. C." box="[1198,1436,1425,1449]" pageId="11" pageNumber="542" pagination="459 - 499" refId="ref28836" refString="Hughes C. L., Kaufman T. C. 2002. Hox genes and the evolution of the arthropod body plan. Evol Dev, 4: 459 - 499. https: // doi. org / 10.1046 / j. 1525 - 142 X. 2002.02034. x" type="journal article" year="2002">Hughes and Kaufman,</bibRefCitation>
</paragraph>
<paragraph blockId="11.[491,1503,1183,2036]" box="[491,536,1460,1484]" pageId="11" pageNumber="542">2002).</paragraph>
<paragraph blockId="11.[491,1503,1183,2036]" pageId="11" pageNumber="542">
Mites largely lack overt, external signs of segmentation, other than the serially arranged appendages of the prosoma (
<bibRefCitation author="Dunlop J. A. &amp; Lamsdell J. C." box="[789,1078,1529,1553]" pageId="11" pageNumber="542" pagination="395 - 418" refId="ref25924" refString="Dunlop J. A., Lamsdell J. C. 2017. Segmentation and tagmosis in Chelicerata. Arthropod Struct Dev, 46: 395 - 418. https: // doi. org / 10.1016 / j. asd. 2016.05.002" type="journal article" year="2017">Dunlop and Lamsdell, 2017</bibRefCitation>
). Signs of segmentation in the posterior body tagma, the opisthosoma, do exist in adult members of Endeostigmata (
<bibRefCitation author="van der Hammen L." box="[1368,1448,1563,1587]" pageId="11" pageNumber="542" pagination="3 - 10" refId="ref37511" refString="van der Hammen L. 1970. La segmentation primitive des Acariens. Acarologia, 12: 3 - 10." type="journal article" year="1970">van der</bibRefCitation>
</paragraph>
<paragraph blockId="11.[491,1503,1183,2036]" pageId="11" pageNumber="542">
Hammen, 1970). However, these segmental boundaries are largely present only in the dorsal opisthosoma, making it difficult to assess how these correspond to the ventral somites (
<bibRefCitation author="van der Hammen L." pageId="11" pageNumber="542" pagination="3 - 10" refId="ref37511" refString="van der Hammen L. 1970. La segmentation primitive des Acariens. Acarologia, 12: 3 - 10." type="journal article" year="1970">van der Hammen, 1970</bibRefCitation>
;
<bibRefCitation author="Dunlop J. A. &amp; Lamsdell J. C." box="[697,977,1667,1691]" pageId="11" pageNumber="542" pagination="395 - 418" refId="ref25924" refString="Dunlop J. A., Lamsdell J. C. 2017. Segmentation and tagmosis in Chelicerata. Arthropod Struct Dev, 46: 395 - 418. https: // doi. org / 10.1016 / j. asd. 2016.05.002" type="journal article" year="2017">Dunlop and Lamsdell, 2017</bibRefCitation>
). Developmental genetic studies of the spider mite and
<taxonomicName box="[591,738,1701,1725]" class="Arachnida" family="Trhypochthoniidae" genus="Archegozetes" kingdom="Animalia" order="Sarcoptiformes" pageId="11" pageNumber="542" phylum="Arthropoda" rank="genus">
<emphasis box="[591,738,1701,1725]" italics="true" pageId="11" pageNumber="542">Archegozetes</emphasis>
</taxonomicName>
suggest that acariform mites only pattern two segments in the posterior body region, during embryogenesis (
<bibRefCitation author="Grbic M. &amp; Van Leeuwen T. &amp; Clark R. M. &amp; Rombauts S. &amp; Rouze P. &amp; Grbic V. &amp; Osborne E. J. &amp; Dermauw W. &amp; Ngoc P. C. T. &amp; Ortego F." box="[870,1063,1736,1760]" pageId="11" pageNumber="542" pagination="487 - 492" refId="ref26919" refString="Grbic M., Van Leeuwen T., Clark R. M., Rombauts S., Rouze P., Grbic V., Osborne E. J., Dermauw W., Ngoc P. C. T., Ortego F. 2011. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479: 487 - 492. https: // doi. org / 10.1038 / nature 10640" type="journal article" year="2011">
Grbić
<emphasis box="[959,1014,1736,1760]" italics="true" pageId="11" pageNumber="542">et al.</emphasis>
, 2011
</bibRefCitation>
;
<bibRefCitation author="Barnett A. A. &amp; Thomas R. H." box="[1075,1334,1736,1760]" pageId="11" pageNumber="542" pagination="383 - 92" refId="ref22248" refString="Barnett A. A., Thomas R. H. 2012. The delineation of the fourth walking leg segment is temporally linked to posterior segmentation in the mite Archegozetes longisetosus (Acari: Oribatida, Trhypochthoniidae). Evol Dev, 14: 383 - 92. https: // doi. org / 10.1111 / j. 1525 - 142 X. 2012.00556. x" type="journal article" year="2012">Barnett and Thomas, 2012</bibRefCitation>
;
<bibRefCitation author="Barnett A. A. &amp; Thomas R. H." box="[1345,1392,1736,1760]" pageId="11" pageNumber="542" pagination="23" refId="ref22369" refString="Barnett A. A., Thomas R. H. 2013 b. Posterior Hox gene reduction in an arthropod: Ultrabithorax and Abdominal-B are expressed in a single segment in the mite Archegozetes longisetosus. EvoDevo, 4: 23. https: // doi. org / 10.1186 / 2041 - 9139 - 4 - 23" type="journal article" year="2013">2013b</bibRefCitation>
;
</paragraph>
<paragraph blockId="11.[491,1503,1183,2036]" pageId="11" pageNumber="542">
<bibRefCitation author="Barnett A. A. &amp; Thomas R. H." box="[491,534,1770,1794]" pageId="11" pageNumber="542" pagination="213 - 217" refId="ref22428" refString="Barnett A. A., Thomas R. H. 2018. Early segmentation in the mite Archegozetes longisetosus reveals conserved and derived aspects of chelicerate development. Dev Genes Evol, 228: 213 - 217. https: // doi. org / 10.1007 / s 00427 - 018 - 0615 - x" type="journal article" year="2018">2018</bibRefCitation>
). This stands in stark contrast to other studied chelicerate embryos. For example, during embryogenesis the spider
<taxonomicName baseAuthorityName="C. L. Koch" baseAuthorityYear="1841" box="[770,1061,1805,1829]" class="Arachnida" family="Theridiidae" genus="Parasteatoda" kingdom="Animalia" order="Araneae" pageId="11" pageNumber="542" phylum="Arthropoda" rank="species" species="tepidariorum">
<emphasis box="[770,1061,1805,1829]" italics="true" pageId="11" pageNumber="542">Parasteatoda tepidariorum</emphasis>
</taxonomicName>
patterns twelve opisthosomal segments
</paragraph>
<paragraph blockId="11.[491,1503,1183,2036]" box="[491,1474,1839,1863]" pageId="11" pageNumber="542">
(
<bibRefCitation author="Schwager E. E. &amp; Schonauer A. &amp; Leite D. J. &amp; Sharma P. P. &amp; McGregor A. P." box="[498,722,1839,1863]" pageId="11" pageNumber="542" refId="ref35673" refString="Schwager E. E., Schonauer A., Leite D. J., Sharma P. P., McGregor A. P. 2015. Chelicerata. Amsterdam: Springer. https: // doi. org / 10.1007 / 978 - 3 - 7091 - 1865 - 8 _ 5" type="book" year="2015">
Schwager
<emphasis box="[612,668,1839,1863]" italics="true" pageId="11" pageNumber="542">et al.</emphasis>
, 2015
</bibRefCitation>
) and the opilionid
<taxonomicName authorityName="Linnaeus" authorityYear="1758" box="[944,1152,1839,1863]" class="Arachnida" family="Phalangiidae" genus="Phalangium" kingdom="Animalia" order="Opiliones" pageId="11" pageNumber="542" phylum="Arthropoda" rank="species" species="opilio">
<emphasis box="[944,1152,1839,1863]" italics="true" pageId="11" pageNumber="542">Phalangium opilio</emphasis>
</taxonomicName>
patterns seven (
<bibRefCitation author="Sharma P. P. &amp; Schwager E. E. &amp; Extavour C. G. &amp; Giribet G." box="[1318,1474,1839,1863]" pageId="11" pageNumber="542" pagination="450 - 463" refId="ref35904" refString="Sharma P. P., Schwager E. E., Extavour C. G., Giribet G. 2012. Hox gene expression in the harvestman Phalangium opilio reveals divergent patterning of the chelicerate opisthosoma. Evol Dev, 14: 450 - 463. https: // doi. org / 10.1111 / j. 1525 - 142 X. 2012.00565. x" type="journal article" year="2012">
Sharma
<emphasis box="[1412,1468,1839,1863]" italics="true" pageId="11" pageNumber="542">et al.</emphasis>
,
</bibRefCitation>
</paragraph>
<paragraph blockId="11.[491,1503,1183,2036]" pageId="11" pageNumber="542">
2012). Furthermore, a member of Parasitiformes, the tick
<emphasis box="[1109,1380,1874,1898]" italics="true" pageId="11" pageNumber="542">
<taxonomicName box="[1109,1376,1874,1898]" class="Arachnida" family="Ixodidae" genus="Rhipicephalus" kingdom="Animalia" order="Ixodida" pageId="11" pageNumber="542" phylum="Arthropoda" rank="species" species="microplus">Rhipicephalus microplus</taxonomicName>
,
</emphasis>
appears to pattern eight opisthosomal segments during embryogenesis (Santos
<emphasis box="[1214,1267,1908,1932]" italics="true" pageId="11" pageNumber="542">et al.</emphasis>
, 2013).
</paragraph>
<paragraph blockId="11.[491,1503,1183,2036]" pageId="11" pageNumber="542">
Parallel to the observation of segmental reduction in the spider mite, genomic evidence suggests that this acariform mite has lost two of its Hox genes,
<emphasis box="[1148,1250,1978,2002]" italics="true" pageId="11" pageNumber="542">i.e., Hox3</emphasis>
and
<emphasis box="[1300,1503,1978,2002]" italics="true" pageId="11" pageNumber="542">abdominal-A (abd-</emphasis>
</paragraph>
<paragraph blockId="11.[491,1503,1183,2036]" lastBlockId="12.[489,1496,229,1048]" lastPageId="12" lastPageNumber="543" pageId="11" pageNumber="542">
<emphasis box="[491,507,2012,2036]" italics="true" pageId="11" pageNumber="542">A</emphasis>
) (
<bibRefCitation author="Grbic M. &amp; Van Leeuwen T. &amp; Clark R. M. &amp; Rombauts S. &amp; Rouze P. &amp; Grbic V. &amp; Osborne E. J. &amp; Dermauw W. &amp; Ngoc P. C. T. &amp; Ortego F." box="[529,702,2012,2036]" pageId="11" pageNumber="542" pagination="487 - 492" refId="ref26919" refString="Grbic M., Van Leeuwen T., Clark R. M., Rombauts S., Rouze P., Grbic V., Osborne E. J., Dermauw W., Ngoc P. C. T., Ortego F. 2011. The genome of Tetranychus urticae reveals herbivorous pest adaptations. Nature, 479: 487 - 492. https: // doi. org / 10.1038 / nature 10640" type="journal article" year="2011">
Grbić
<emphasis box="[598,651,2012,2036]" italics="true" pageId="11" pageNumber="542">et al.</emphasis>
, 2011
</bibRefCitation>
). Interestingly, orthologs of
<emphasis box="[1021,1086,2012,2036]" italics="true" pageId="11" pageNumber="542">abd-A</emphasis>
in other studied arthropods pattern the posterior segments as well. A genomic comparison of arthropod Hox clusters has also shown a correlation between independent losses of
<emphasis box="[967,1032,264,288]" italics="true" pageId="12" pageNumber="543">abd-A</emphasis>
and a reduction in posterior segmentation (
<bibRefCitation author="Pace R. M. &amp; Grbic M. &amp; Nagy L. M." box="[498,670,299,323]" pageId="12" pageNumber="543" pagination="11" refId="ref32893" refString="Pace R. M., Grbic M., Nagy L. M. 2016. Composition and genomic organization of arthropod Hox clusters. EvoDevo, 7: 11. https: // doi. org / 10.1186 / s 13227 - 016 - 0048 - 4" type="journal article" year="2016">
Pace
<emphasis box="[558,612,299,323]" italics="true" pageId="12" pageNumber="543">et al.</emphasis>
, 2016
</bibRefCitation>
). To investigate whether the loss of segmentation in
<taxonomicName box="[1259,1406,299,323]" class="Arachnida" family="Trhypochthoniidae" genus="Archegozetes" kingdom="Animalia" order="Sarcoptiformes" pageId="12" pageNumber="543" phylum="Arthropoda" rank="genus">
<emphasis box="[1259,1406,299,323]" italics="true" pageId="12" pageNumber="543">Archegozetes</emphasis>
</taxonomicName>
is also due to an absence in
<emphasis box="[716,781,333,357]" italics="true" pageId="12" pageNumber="543">abd-A</emphasis>
, we annotated its Hox cluster, paying close attention to the region between the Hox genes
<emphasis box="[743,891,368,392]" italics="true" pageId="12" pageNumber="543">Ultrabithorax</emphasis>
(
<emphasis box="[905,949,368,392]" italics="true" pageId="12" pageNumber="543">Ubx</emphasis>
) and
<emphasis box="[1009,1152,368,392]" italics="true" pageId="12" pageNumber="543">Abdominal-B</emphasis>
(
<emphasis box="[1165,1233,368,392]" italics="true" pageId="12" pageNumber="543">Abd-B</emphasis>
), which is usually where this gene resides in other arthropods (
<bibRefCitation author="Hughes C. L. &amp; Kaufman T. C." box="[875,1156,402,426]" pageId="12" pageNumber="543" pagination="459 - 499" refId="ref28836" refString="Hughes C. L., Kaufman T. C. 2002. Hox genes and the evolution of the arthropod body plan. Evol Dev, 4: 459 - 499. https: // doi. org / 10.1046 / j. 1525 - 142 X. 2002.02034. x" type="journal article" year="2002">Hughes and Kaufman, 2002</bibRefCitation>
). Our results suggest that the
<taxonomicName authority="Hox" authorityName="Hox" box="[531,728,437,461]" class="Arachnida" family="Trhypochthoniidae" genus="Archegozetes" kingdom="Animalia" order="Sarcoptiformes" pageId="12" pageNumber="543" phylum="Arthropoda" rank="genus">
<emphasis box="[531,678,437,461]" italics="true" pageId="12" pageNumber="543">Archegozetes</emphasis>
Hox
</taxonomicName>
genes are clustered in a contiguous sequence (HiC scaffold 3, total size ~12.36 Mbp) in the same order as suggested for the ancestral arthropod (
<bibRefCitation author="Heethoff M. &amp; Rall B. C." box="[1234,1428,471,495]" pageId="12" pageNumber="543" pagination="53 - 61" refId="ref28282" refString="Heethoff M., Rall B. C. 2015. Reducible defence: chemical protection alters the dynamics of predator-prey interactions. Chemoecology, 25: 53 - 61. https: // doi. org / 10.1007 / s 00049 - 014 - 0184 - z" type="journal article" year="2015">Heethoff and Rall,</bibRefCitation>
</paragraph>
<paragraph blockId="12.[489,1496,229,1048]" pageId="12" pageNumber="543">
2015). Furthermore, we found no sequences suggestive of an
<emphasis box="[1153,1218,506,530]" italics="true" pageId="12" pageNumber="543">abd-A</emphasis>
ortholog in
<taxonomicName box="[1349,1496,506,530]" class="Arachnida" family="Trhypochthoniidae" genus="Archegozetes" kingdom="Animalia" order="Sarcoptiformes" pageId="12" pageNumber="543" phylum="Arthropoda" rank="genus">
<emphasis box="[1349,1496,506,530]" italics="true" pageId="12" pageNumber="543">Archegozetes</emphasis>
</taxonomicName>
(
<figureCitation box="[499,608,541,565]" captionStart="Figure 5" captionStartId="13.[119,186,1678,1699]" captionTargetBox="[106,1479,243,1621]" captionTargetId="figure-2@13.[103,1494,234,1625]" captionTargetPageId="13" captionText="Figure 5 The genomic organization of the Hox genes and life-stage specific expression patters of developmental genes in Archegozetes longise- tosus. a Schematic of the genomic region enclosing the ArchegozetesHox cluster. The genomic organization of the Hox cluster is collinear," figureDoi="http://doi.org/10.5281/zenodo.7160542" httpUri="https://zenodo.org/record/7160542/files/figure.png" pageId="12" pageNumber="543">
<emphasis bold="true" box="[499,608,541,565]" pageId="12" pageNumber="543">Figure 5a</emphasis>
</figureCitation>
). These data also support the findings of a previous PCR survey that retrieved no
<emphasis box="[491,556,575,599]" italics="true" pageId="12" pageNumber="543">abd-A</emphasis>
ortholog in
<taxonomicName authority="(Cook et al., 2001)" baseAuthorityName="Cook" baseAuthorityYear="2001" box="[684,1009,575,599]" class="Arachnida" family="Trhypochthoniidae" genus="Archegozetes" kingdom="Animalia" order="Sarcoptiformes" pageId="12" pageNumber="543" phylum="Arthropoda" rank="genus">
<emphasis box="[684,830,575,599]" italics="true" pageId="12" pageNumber="543">Archegozetes</emphasis>
(
<bibRefCitation author="Cook C. E. &amp; Smith M. L. &amp; Telford M. J. &amp; Bastianello A. &amp; Akam M." box="[837,1004,575,599]" pageId="12" pageNumber="543" pagination="759 - 763" refId="ref24834" refString="Cook C. E., Smith M. L., Telford M. J., Bastianello A., Akam M. 2001. Hox genes and the phylogeny of the arthropods. Curr Biol, 11: 759 - 763. https: // doi. org / 10.1016 / S 0960 - 9822 (01) 00222 - 6" type="journal article" year="2001">
Cook
<emphasis box="[903,955,575,599]" italics="true" pageId="12" pageNumber="543">et al.</emphasis>
, 2001
</bibRefCitation>
)
</taxonomicName>
. Genomic evidence from the Parasitiformes
<taxonomicName box="[491,680,609,633]" class="Arachnida" family="Ixodidae" genus="Ixodes" kingdom="Animalia" order="Ixodida" pageId="12" pageNumber="543" phylum="Arthropoda" rank="species" species="scapularis">
<emphasis box="[491,680,609,633]" italics="true" pageId="12" pageNumber="543">Ixodes scapularis</emphasis>
</taxonomicName>
and
<taxonomicName box="[734,1000,609,633]" class="Arachnida" family="Phytoseiidae" genus="Metaseiulus" kingdom="Animalia" order="Mesostigmata" pageId="12" pageNumber="543" phylum="Arthropoda" rank="species" species="occidentalis">
<emphasis box="[734,1000,609,633]" italics="true" pageId="12" pageNumber="543">Metaseiulus occidentalis</emphasis>
</taxonomicName>
reveal that these taxa maintain orthologs of all ten Hox genes, however in
<taxonomicName box="[823,990,644,668]" class="Arachnida" family="Phytoseiidae" genus="Metaseiulus" kingdom="Animalia" order="Mesostigmata" pageId="12" pageNumber="543" phylum="Arthropoda" rank="species" species="occidentalis">
<emphasis box="[823,990,644,668]" italics="true" pageId="12" pageNumber="543">M. occidentalis</emphasis>
</taxonomicName>
these genes are not clustered as they are in
<taxonomicName class="Arachnida" family="Ixodidae" genus="Ixodes" kingdom="Animalia" order="Ixodida" pageId="12" pageNumber="543" phylum="Arthropoda" rank="species" species="scapularis">
<emphasis italics="true" pageId="12" pageNumber="543">I. scapularis</emphasis>
</taxonomicName>
(
<bibRefCitation author="Gulia-Nuss M. &amp; Nuss A. B. &amp; Meyer J. M. &amp; Sonenshine D. E. &amp; Roe R. M. &amp; Waterhouse R. M. &amp; Sattelle D. B. &amp; De La Fuente J. &amp; Ribeiro J. M. &amp; Megy K." box="[616,852,678,702]" pageId="12" pageNumber="543" pagination="1 - 13" refId="ref27142" refString="Gulia-Nuss M., Nuss A. B., Meyer J. M., Sonenshine D. E., Roe R. M., Waterhouse R. M., Sattelle D. B., De La Fuente J., Ribeiro J. M., Megy K. 2016. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nature communications, 7: 1 - 13." type="journal article" year="2016">
Gulia-Nuss
<emphasis box="[745,799,678,702]" italics="true" pageId="12" pageNumber="543">et al.</emphasis>
, 2016
</bibRefCitation>
;
<bibRefCitation author="Hoy M. A. &amp; Waterhouse R. M. &amp; Wu K. &amp; Estep A. S. &amp; Ioannidis P. &amp; Palmer W. J. &amp; Pomerantz A. F. &amp; Simao F. A. &amp; Thomas J. &amp; Jiggins F. M." box="[861,1041,678,703]" pageId="12" pageNumber="543" refId="ref28631" refString="Hoy M. A., Waterhouse R. M., Wu K., Estep A. S., Ioannidis P., Palmer W. J., Pomerantz A. F., Simao F. A., Thomas J., Jiggins F. M. 2016. Genome sequencing of the phytoseiid predatory mite Metaseiulus occidentalis reveals completely atomized Hox genes and superdynamic intron evolution. Genome" type="book" year="2016">
Hoy
<emphasis box="[931,985,678,702]" italics="true" pageId="12" pageNumber="543">et al.</emphasis>
, 2016
</bibRefCitation>
).
</paragraph>
<paragraph blockId="12.[489,1496,229,1048]" pageId="12" pageNumber="543">
Taken together, these observations suggest that the last common ancestor of acariform mites likely lost its
<emphasis box="[706,846,747,771]" italics="true" pageId="12" pageNumber="543">abdominal-A</emphasis>
gene as well as experiencied a reduction in opisthosomal segmentation (
<figureCitation box="[650,762,782,806]" captionStart="Figure 5" captionStartId="13.[119,186,1678,1699]" captionTargetBox="[106,1479,243,1621]" captionTargetId="figure-2@13.[103,1494,234,1625]" captionTargetPageId="13" captionText="Figure 5 The genomic organization of the Hox genes and life-stage specific expression patters of developmental genes in Archegozetes longise- tosus. a Schematic of the genomic region enclosing the ArchegozetesHox cluster. The genomic organization of the Hox cluster is collinear," figureDoi="http://doi.org/10.5281/zenodo.7160542" httpUri="https://zenodo.org/record/7160542/files/figure.png" pageId="12" pageNumber="543">
<emphasis bold="true" box="[650,762,782,806]" pageId="12" pageNumber="543">Figure 5b</emphasis>
</figureCitation>
). Alternatively, these shared losses of
<emphasis box="[1189,1254,782,806]" italics="true" pageId="12" pageNumber="543">abd-A</emphasis>
may be due to convergence due to similar selective pressures favoring a reduction in body size. The dorsal, external segmentation of endeostigmatid mites does not necessarily contradict the hypothesis of a loss of
<emphasis box="[623,688,886,910]" italics="true" pageId="12" pageNumber="543">abd-A</emphasis>
at the base of the acariform mites. As Hox genes are usually deployed after the genetic establishment of segments in arthropods (
<bibRefCitation author="Hughes C. L. &amp; Kaufman T. C." box="[1096,1377,920,944]" pageId="12" pageNumber="543" pagination="459 - 499" refId="ref28836" refString="Hughes C. L., Kaufman T. C. 2002. Hox genes and the evolution of the arthropod body plan. Evol Dev, 4: 459 - 499. https: // doi. org / 10.1046 / j. 1525 - 142 X. 2002.02034. x" type="journal article" year="2002">Hughes and Kaufman, 2002</bibRefCitation>
), the opisthosomal segments in endeostigmatid mites may still develop in the absence of
<emphasis box="[1402,1467,955,979]" italics="true" pageId="12" pageNumber="543">abd-A</emphasis>
. However, this hypothesis needs further testing with observations of segmental gene expression in endeostigmatids as well as additional acariform species.
</paragraph>
<paragraph blockId="12.[491,1101,1097,1123]" box="[491,1101,1097,1123]" pageId="12" pageNumber="543">
<emphasis bold="true" box="[491,1101,1097,1123]" pageId="12" pageNumber="543">Life-stage specific RNA expression patterns</emphasis>
</paragraph>
</subSubSection>
</treatment>
</document>