<documentid="4F5FCC7F12DFE3328BC413423AA90E72"ID-CLB-Dataset="296805"ID-DOI="10.1093/zoolinnean/zlad077"ID-GBIF-Dataset="a5f57d75-9b7c-46dc-b11f-ee2fc4200e29"ID-ISSN="0024-4082"ID-Zenodo-Dep="11239996"ID-ZooBank="E48CE650-52B3-4853-9249-D228B9E00306C"IM.bibliography_approvedBy="guilherme"IM.illustrations_approvedBy="guilherme"IM.materialsCitations_approvedBy="felipe"IM.metadata_approvedBy="felipe"IM.tables_requiresApprovalFor="GgImagineBatch,operationResults"IM.taxonomicNames_approvedBy="guilherme"IM.treatments_approvedBy="guilherme"checkinTime="1716361067006"checkinUser="plazi"docAuthor="Lunina, Anastasiia, Kulagin, Dmitry & Vereshchaka, Alexander"docDate="2024"docId="03B987DA2251B661FF2C36DDFDF4BA5C"docLanguage="en"docName="zlad077.pdf"docOrigin="Zoological Journal of the Linnean Society (Zool. J. Linn. Soc.) 200 (2)"docSource="http://dx.doi.org/10.1093/zoolinnean/zlad077"docStyle="DocumentStyle:4F230B9370E98E256D973D6DFB57F36C.6:ZoolJLinnSoc.2023-.journal_article"docStyleId="4F230B9370E98E256D973D6DFB57F36C"docStyleName="ZoolJLinnSoc.2023-.journal_article"docStyleVersion="6"docTitle="Hymenodoridae Lunina & Kulagin & Vereshchaka 2024"docType="treatment"docVersion="4"lastPageNumber="350"masterDocId="FF80FFA2225CB66FFFDC3007FF83BD1F"masterDocTitle="The taxonomic status of Hymenodora (Crustacea: Oplophoroidea): morphological and molecular analyses suggest a new family and an undescribed diversity deep in the sea"masterLastPageNumber="351"masterPageNumber="336"pageNumber="349"updateTime="1732691561270"updateUser="ExternalLinkService">
<mods:titleid="B19393B27FC4E7705A894A4965233029">The taxonomic status of Hymenodora (Crustacea: Oplophoroidea): morphological and molecular analyses suggest a new family and an undescribed diversity deep in the sea</mods:title>
<taxonomicNameid="4C104D4F2251B662FE3536DDFD19BBEB"authorityName="Lunina & Kulagin & Vereshchaka"authorityYear="2024"box="[489,666,1754,1780]"class="Malacostraca"family="Hymenodoridae"higherTaxonomySource="CoL"kingdom="Animalia"order="Decapoda"pageId="13"pageNumber="349"phylum="Arthropoda"rank="family">Hymenodoridae</taxonomicName>
<taxonomicNameid="4C104D4F2251B662FF323707FE1BBA07"authorityName="Lunina & Kulagin & Vereshchaka"authorityYear="2024"box="[238,408,1792,1816]"family="Hymenodoridae"pageId="13"pageNumber="349"rank="family">Hymenodoridae</taxonomicName>
is robust in all analyses and represents a deep-sea branch of
<taxonomicNameid="4C104D4F2251B662FF1B3738FEC5BA48"authorityName="G. O. Sars"authorityYear="1877"box="[199,326,1855,1879]"class="Malacostraca"family="Oplophoridae"genus="Hymenodora"higherTaxonomySource="GBIF"kingdom="Animalia"order="Decapoda"pageId="13"pageNumber="349"phylum="Arthropoda"rank="genus">
<taxonomicNameid="4C104D4F2251B662FBE6371DFB67BA2D"authorityName="Lunina & Kulagin & Vereshchaka"authorityYear="2024"box="[1082,1252,1818,1842]"family="Hymenodoridae"pageId="13"pageNumber="349"rank="family">Hymenodoridae</taxonomicName>
is supported by three synapomorphies, which are linked to mouthparts (
<figureCitationid="132B2A492251B662FABE373DFA32BA4E"box="[1378,1457,1849,1874]"captionStart="Figure 5"captionStartId="7.[129,194,1068,1092]"captionTargetBox="[131,1466,146,1039]"captionTargetId="figure-437@7.[129,1473,144,1040]"captionTargetPageId="7"captionText="Figure 5. Phylogenetic analyses of Oplophoroidea.A, molecular tree (six-gene analysis). Only supported clades are shown (analysis 3). Statistical support is indicated as Bayesian posterior probabilities (black, below branches) and maximum likelihood bootstrap (blue, above branches). B, morphological tree (analyses 4 and 5; trees were similar, and supports are divided by an oblique stroke character if they differed). Only supported clades are shown. Statistical support is indicated as Bremer support (black, below branches) and maximum likelihood bootstrap (red, above branches). C, common morphological synapomorphies (see coding in Supporting Information, Table S4)."figureDoi="http://doi.org/10.5281/zenodo.11240008"httpUri="https://zenodo.org/record/11240008/files/figure.png"pageId="13"pageNumber="349">Fig. 5C</figureCitation>
).
<taxonomicNameid="4C104D4F2251B662FCE5375EFC3BBA6E"authorityName="G. O. Sars"authorityYear="1877"box="[825,952,1881,1905]"class="Malacostraca"family="Oplophoridae"genus="Hymenodora"higherTaxonomySource="GBIF"kingdom="Animalia"order="Decapoda"pageId="13"pageNumber="349"phylum="Arthropoda"rank="genus">
shows omnivorous behaviour, with a strong tendency towards carnivory (
<bibRefCitationid="EF814B3D2251B662FB8D377FFAA1BA8F"author="Kreibich T & Hagen W & Saborowski R"box="[1105,1314,1912,1936]"pageId="13"pageNumber="349"pagination="105 - 15"refId="ref10832"refString="Kreibich T, Hagen W, Saborowski R. Food utilization of two pelagic crustaceans in the Greenland Sea: Meganyctiphanes norvegica (Euphausiacea) and Hymenodora glacialis (Decapoda, Caridea). Marine Ecology Progress Series 2010; 413: 105 - 15."type="journal article"year="2010">
of feeding in the bathypelagic realm. The simplified second maxilla and modified first maxilliped might be more efficient for consuming small deep-sea copepods that contribute significantly to the diet of
<taxonomicNameid="4C104D4F2252B661FEE730E9FD18BC19"authority="(Kreibich et al. 2010)"baseAuthorityName="Kreibich"baseAuthorityYear="2010"box="[315,667,238,262]"class="Malacostraca"family="Oplophoridae"genus="Hymenodora"higherTaxonomySource="GBIF"kingdom="Animalia"order="Decapoda"pageId="14"pageNumber="350"phylum="Arthropoda"rank="genus">
<bibRefCitationid="EF814B3D2252B661FE1630E9FD0CBC19"author="Kreibich T & Hagen W & Saborowski R"box="[458,655,238,262]"pageId="14"pageNumber="350"pagination="105 - 15"refId="ref10832"refString="Kreibich T, Hagen W, Saborowski R. Food utilization of two pelagic crustaceans in the Greenland Sea: Meganyctiphanes norvegica (Euphausiacea) and Hymenodora glacialis (Decapoda, Caridea). Marine Ecology Progress Series 2010; 413: 105 - 15."type="journal article"year="2010">
<taxonomicNameid="4C104D4F2252B661FE91310AFE74BC3A"authorityName="Lunina & Kulagin & Vereshchaka"authorityYear="2024"box="[333,503,269,293]"family="Hymenodoridae"pageId="14"pageNumber="349"rank="family">Hymenodoridae</taxonomicName>
show further specialization for feeding through two nearly opposite traits.
possesses a subovoid terminal segment of the second maxilliped attached diagonally, which is likely unsuccessful in catching large and fast-moving planktonic animals (
<figureCitationid="132B2A492252B661FDE3318CFD0FBCBD"box="[575,652,395,419]"captionStart="Figure 7"captionStartId="11.[129,194,1351,1375]"captionTargetBox="[162,1441,146,1321]"captionTargetId="figure-226@11.[160,1443,144,1323]"captionTargetPageId="11"captionText="Figure 7. Morphological characters distinguishing three families of Oplophoroidea.A–E, Hymenodoridae (Hymenodora frontalis, St. 7497 d271) mandibles (A), second maxilla (B), proximal endite of second maxilla (C), first maxilliped (D) and second maxilliped (E). F–J, Oplophoridae (Systellaspis debilis, 179RT 23.1) mandibles (F), second maxilla (G), proximal endite of second maxilla (H), first maxilliped (I) and second maxilliped (J). K–O, Acanthephyridae (Acanthephyra quadrispinosa Kemp, 1939, AMK87 7277-D13) mandibles (K), second maxilla (L), proximal endite of second maxilla (M), first maxilliped (N) and second maxilliped (O). All scale bars:1 mm."figureDoi="http://doi.org/10.5281/zenodo.11240012"httpUri="https://zenodo.org/record/11240012/files/figure.png"pageId="14"pageNumber="350">Fig. 7E</figureCitation>
), whereas
<taxonomicNameid="4C104D4F2252B661FFAD31ADFF54BCDD"authorityName="Vereshchaka, Kulagin & Lunina"authorityYear="2021"box="[113,215,426,450]"class="Malacostraca"family="Acanthephyridae"genus="Sclerodora"kingdom="Animalia"order="Decapoda"pageId="14"pageNumber="350"phylum="Arthropoda"rank="genus">
has a specialized subtriangular terminal segment attached to the penultimate segment transversely and bearing robust terminal setae (
<bibRefCitationid="EF814B3D2252B661FE9431EEFDB8BF1E"author="Vereshchaka A & Kulagin D & Lunina A"box="[328,571,489,513]"pageId="14"pageNumber="350"pagination="536"refId="ref11584"refString="Vereshchaka A, Kulagin D, Lunina A. A new shrimp genus (Crustacea: Decapoda) from the Deep Atlantic and an unusual cleaning mechanism of pelagic decapods. Diversity 2021; 13: 536."type="journal article"year="2021">
<taxonomicNameid="4C104D4F2252B661FE293220FD1CBF20"authorityName="Lunina & Kulagin & Vereshchaka"authorityYear="2024"box="[501,671,551,575]"family="Hymenodoridae"pageId="14"pageNumber="349"rank="family">Hymenodoridae</taxonomicName>
is linked to the carapace and pleon strengthening:
<taxonomicNameid="4C104D4F2252B661FDF93241FD08BF41"authorityName="Vereshchaka, Kulagin & Lunina"authorityYear="2021"box="[549,651,582,606]"class="Malacostraca"family="Acanthephyridae"genus="Sclerodora"kingdom="Animalia"order="Decapoda"pageId="14"pageNumber="350"phylum="Arthropoda"rank="genus">
is membranous, with the characteristic reticulum of carinae and sulci making the carapace more rigid. Similar, but not homologous, compensatory strengthening of the carapace (a possible response to increasing carapace loads) has been observed in other
<taxonomicNameid="4C104D4F2252B661FEB43305FE6ABE05"authorityName="S. I. Smith"authorityYear="1882"box="[360,489,770,794]"class="Malacostraca"family="Oplophoridae"genus="Meningodora"higherTaxonomySource="GBIF"kingdom="Animalia"order="Decapoda"pageId="14"pageNumber="350"phylum="Arthropoda"rank="genus">
<taxonomicNameid="4C104D4F2252B661FDC53304FF4DBE25"authority="(Lunina et al. 2021)"baseAuthorityName="Lunina"baseAuthorityYear="2021"class="Malacostraca"family="Oplophoridae"genus="Notostomus"higherTaxonomySource="GBIF"kingdom="Animalia"order="Decapoda"pageId="14"pageNumber="350"phylum="Arthropoda"rank="genus">
<bibRefCitationid="EF814B3D2252B661FD473305FF41BE25"author="Lunina AA & Kulagin DN & Vereshchaka AL"pageId="14"pageNumber="350"pagination="1002 - 19"refId="ref11203"refString="Lunina AA, Kulagin DN, Vereshchaka AL. Phylogenetic revision of the shrimp genera Ephyrina, Meningodora and Notostomus (Acanthephyridae: Caridea). Zoological Journal of the Linnean Society 2021; 193: 1002 - 19."type="journal article"year="2021">
<taxonomicNameid="4C104D4F2252B661FED53346FE30BE46"authorityName="Lunina & Kulagin & Vereshchaka"authorityYear="2024"box="[265,435,833,857]"family="Hymenodoridae"pageId="14"pageNumber="349"rank="family">Hymenodoridae</taxonomicName>
also shows a morphological trait linked to the telson, a spinose endpiece in the
<bibRefCitationid="EF814B3D2252B661FFA0341BFEB4B92B"author="Vereshchaka AL"box="[124,311,1052,1076]"pageId="14"pageNumber="350"pagination="1639 - 68"refId="ref11557"refString="Vereshchaka AL. Macroplankton in the near-bottom layer of continental slopes and seamounts. Deep Sea Research Part I 1995; 42: 1639 - 68."type="journal article"year="1995">Vereshchaka 1995</bibRefCitation>
), we suggest that the spatulate endpiece on the telson might serve in bedding into sediments.
clade) and to various strategies of passive defence (number of pre- and postorbital rostral teeth) and escape behaviour (proportions of the carapace and rostrum). In fact, pelagic decapods may use the rostrum as a passive defensive structure (long, acute and spiny) and/or as a rudder during backwards escape flips (active protection) (
<bibRefCitationid="EF814B3D2252B661FEE03551FE6DB871"author="Lunina AA & Kulagin DN & Vereshchaka AL"box="[316,494,1366,1390]"pageId="14"pageNumber="350"pagination="213 - 32"refId="ref11158"refString="Lunina AA, Kulagin DN, Vereshchaka AL. Oplophoridae (Decapoda: Crustacea): phylogeny, taxonomy and evolution studied by a combination of morphological and molecular methods. Zoological Journal of the Linnean Society 2019; 186: 213 - 32."type="journal article"year="2019">
<figureCitationid="132B2A492252B661FDA23551FD36B871"box="[638,693,1366,1390]"captionStart="Figure 6"captionStartId="10.[113,178,1411,1435]"captionTargetBox="[210,1364,147,1381]"captionTargetId="figure-177@10.[209,1364,145,1383]"captionTargetPageId="10"captionText="Figure 6. Principal component analysis of seven morphological characters of the clade Hymenodoridae. A, molecular clades within Hymenodora glacialis and Hymenodora gracilis combined (analysis 6). B, molecular clades within H. glacialis and H.gracilis analysed separately (analysis 7). The x- and y-axes are eigenvalue scales; the morphometric dataset is presented in the Supporting Information (Table S5); only four most significant factors are shown."figureDoi="http://doi.org/10.5281/zenodo.11240010"httpUri="https://zenodo.org/record/11240010/files/figure.png"pageId="14"pageNumber="350">Fig. 6</figureCitation>
) show that the rostral angle and the numbers of post- and preorbital teeth are three major factors explaining morphological diversification within
Overall, in contrast to their unusually high molecular divergence,
<taxonomicNameid="4C104D4F2252B661FF613636FEE4BB56"authorityName="Lunina & Kulagin & Vereshchaka"authorityYear="2024"box="[189,359,1585,1609]"family="Hymenodoridae"pageId="14"pageNumber="349"rank="family">Hymenodoridae</taxonomicName>
show very low morphological diversity, which is likely linked to a homogeneous deep-sea habitat. Remarkable traits can be found only in the likely benthopelagic species,
, whereas evolution of definitely pelagic clades is coupled mainly with feeding specialization (mouthparts), strengthening of the membranous carapace (carinae and sulci) or the proportions of the body. The last of these is the only group of characters that mirrors the cryptic speciation found here through molecular methods.